TWM348011U - Two optical elements fθ lens of MEMS laser scanning unit 3 - Google Patents

Two optical elements fθ lens of MEMS laser scanning unit 3 Download PDF

Info

Publication number
TWM348011U
TWM348011U TW97213969U TW97213969U TWM348011U TW M348011 U TWM348011 U TW M348011U TW 97213969 U TW97213969 U TW 97213969U TW 97213969 U TW97213969 U TW 97213969U TW M348011 U TWM348011 U TW M348011U
Authority
TW
Taiwan
Prior art keywords
lens
mirror
optical surface
light
scanning direction
Prior art date
Application number
TW97213969U
Other languages
Chinese (zh)
Inventor
Bo-Yuan Shih
Original Assignee
E Pin Optical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Pin Optical Industry Co Ltd filed Critical E Pin Optical Industry Co Ltd
Priority to TW97213969U priority Critical patent/TWM348011U/en
Publication of TWM348011U publication Critical patent/TWM348011U/en
Priority to JP2009000637U priority patent/JP3149995U/en

Links

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

Two f- θ lens used for micro-electro mechanical system(MEMS) laser scanning unit having a first lens and a second lens, the first lens is a biconvex lens, the second lens is a biconcave lens. The first lens has two optical surfaces, which convert the mapped spots by scanning light at nonlinear relationship between the angle and the time of the MEMS reflecting mirror into the mapped spots by scanning light at the linear relationship between the rotating angle and the distance of the MEMS reflecting mirror. The second lens has two optical surfaces, which focuses the scanning light to the target by calibrating itself. Both the first lens and the second lens are satisfied the specified optical condition. The purpose of linear scanning and high resolution scanning can be achieved by disposing the first lens and the second lens.

Description

M348011 七、指定代表圖: (一) 本案指定代表圖為:圖(3)。 (二) 本代表圖之元件符號簡單說明: 2 :光點; 3:掃描視窗; 131 :第一鏡片;以及 132 :第二鏡片。 M348011 八、新型說明: 【新型所屬之技術領域】 本創作係有關一種微機電雷射掃描裝置之二片式f6l鏡片, 特別指一種用以修正呈簡諧性運動之微機電反射鏡而產生隨時間 成正弦關係之角度變化量,以達成雷射掃瞄裝置所要求之線性掃 描效果之二片式f Θ鏡片。 _ 【先前技術】 目前雷射光束印表機LBP(Laser Beam Print)所用之雷射掃描 裝置LSU(Laser Scanning Unit),係利用一高速旋轉之多面鏡 (polygon mirror)以操控雷射光束之掃描動作〇aser “椰 scanning),如美國專利 US7079m、US6377293、哪295116,或 如台灣專利1198966所述。其原理如下簡述:利用一半導體雷射 發出雷射光束(laser beam),先經由一準直鏡(c〇llimat〇r),再 經由一光圈(aperture)而形成平行光束,而平行光束再經過一柱 φ 面鏡(cylindrical iens)後,能在副掃瞄方向(sub scanning direction)之Y抽上之寬度能沿著主掃描方向(脈h direct廳)之X軸之平行方向平行聚焦而形成一線狀成像⑴⑽ image),再投射至—高速旋轉之多面鏡上,而多面鏡上均句連續 設置有多©反射鏡,其恰位於或接近於上述線狀雜im㈣ 之焦點位置。藉由多面鏡控衡射光束之投射方向,當連續之複 數反射鏡在高速旋轉時可將射至一反射鏡上之雷射光束延著主掃 描方向〇ί轴)之平行方向以同一轉角速度(anguiar油。⑼偏 f反線性掃描鏡片上,而f6>線性掃描鏡片係設置於 夕面兄方側’可為單件式鏡片結構(single-elemenl: scanning 6 M348011 lens)或為二件式鏡片結構。此f 0線性掃描鏡片之功能在於使經 * 由多面鏡上之反射鏡反射而射入鏡片之雷射光束能聚焦成一 橢圓型光點並投射在一光接收面(photoreceptor drum,即成像面) 上,並達成線性掃描(scanning linearity)之要求。然而,習用 之雷射掃瞄裝置LSU在使用上會有下列問題:M348011 VII. Designated representative map: (1) The representative representative of the case is: Figure (3). (2) A brief description of the component symbols of this representative figure: 2: light spot; 3: scanning window; 131: first lens; and 132: second lens. M348011 VIII. New description: [New technical field] This is a two-piece f6l lens for a microelectromechanical laser scanning device, especially a microelectromechanical mirror for correcting harmonic motion. Time is a sinusoidal angle change in order to achieve the linear scanning effect required by the laser scanning device. _ [Prior Art] At present, the laser scanning device LSU (Laser Scanning Unit) used in the laser beam printer LBP (Laser Beam Print) uses a high-speed rotating polygon mirror to control the scanning of the laser beam. Action 〇 aser "Coconut scanning", such as US patent US7079m, US6377293, 295116, or as described in Taiwan Patent 1198966. The principle is as follows: using a semiconductor laser to emit a laser beam, first through a quasi A straight mirror (c〇llimat〇r), and then a parallel beam is formed by an aperture, and the parallel beam passes through a column φ mirror, which can be in the sub-scanning direction. The width of Y can be parallelly focused along the parallel direction of the X-axis of the main scanning direction (pulse h direct hall) to form a linear imaging (1) (10) image), and then projected onto the multi-mirror rotating mirror, and the polygon mirror is The sentence is continuously arranged with a multi-reflector which is located at or close to the focus position of the above-mentioned linear impurity im (4). The multi-faceted mirror controls the projection direction of the beam, when the continuous multi-mirror is at a high speed At the same time, the laser beam incident on a mirror can be in the parallel direction of the main scanning direction 〇ί axis) at the same angular velocity (anguiar oil. (9) on the f-linear scanning lens, and f6> linear scanning lens system The side of the mating side can be a single-elemenl (scanning 6 M348011 lens) or a two-piece lens structure. The function of the f 0 linear scanning lens is to make it through the polygon mirror. The laser beam reflected by the mirror and incident on the lens can be focused into an elliptical spot and projected onto a light receiving surface (photoreceptor drum), and meets the requirements of linear scanning. However, conventional The laser scanning device LSU has the following problems in its use:

. (1)、旋轉式多面鏡之製作難度高且價格不低,相對增加LSU 之製作成本。 (2) 、多面鏡須具高速旋轉(如40000轉/分)功能,精密度要 籲求又高’以致一般多面鏡上反射面之鏡面Y軸寬度極薄,使習用 LSU中均需增設一柱面鏡(cylindrical lens)以使雷射光束經過 柱面鏡能聚焦成一線(Y軸上成一點)而再投射在多面鏡之反射鏡 上,以致增加構件成本及組裝作業流程。 (3) 、習用多面鏡須高速旋轉(如40000轉/分),致旋轉β喿音 相對提高,且多面鏡從啟動至工作轉速須耗費較長時間,增加開 機後之等待時間。 (4) 、習用LSU之組裝結構中’投射至多面鏡反射鏡之雷射光 籲束中心軸並非正對多面鏡之中心轉軸,以致在設計相配合之 鏡片時’需同時考慮多面鏡之離軸偏差(off axis deviati〇n)問 題,相對增加f 6»鏡片之設計及製作上麻煩。 近年以來,為了改善習用LSU組裝結構之問題,目前市面上 開發出一種擺動式(osciHatory)的微機電反射鏡(MEMS mirror) ’用以取代習用之多面鏡來操控雷射光束掃描。微機電反 射鏡為轉矩振盪器(torsion oscillators),其表層上附有反光 層,可藉由振盪擺動反光層,將光線反射而掃描,未來將可應用 於影像系統(imaging system)、掃描器(scanner)或雷射印表機 7 M348011 (laser pointer)之雷射掃描裝置(laser scanning肋衍’簡稱 LSU),其掃描效率(Scanning efficiency)將可高於傳統的旋轉多 面鏡。如美國專利US6, 844, 95卜US6,956, 597,係產生至少-驅 動訊號,其驅動頻率趨近複數微機電反射鏡之共振頻率,並以一 驅動訊號驅動微機電反射鏡以產生一掃瞄路徑、仍7, 〇64, 87β、(1) Rotary polygon mirrors are difficult to manufacture and the price is not low, which increases the production cost of LSU. (2) Multi-mirror mirrors must have high-speed rotation (such as 40,000 rpm), and the precision should be high. Therefore, the width of the mirror surface of the reflective surface of the general polygon mirror is extremely thin, so that a column needs to be added to the conventional LSU. The cylindrical lens allows the laser beam to be focused into a line (a point on the Y-axis) through the cylindrical mirror and then projected onto the mirror of the polygon mirror, thereby increasing component cost and assembly process. (3) The conventional polygon mirror must be rotated at a high speed (for example, 40,000 rpm), so that the rotation of the β-sound is relatively increased, and the polygon mirror takes a long time from the start to the working speed, increasing the waiting time after the start of the machine. (4) In the assembly structure of the conventional LSU, the laser beam projected onto the polygon mirror is not centered on the center axis of the polygon mirror, so that when designing the matching lens, it is necessary to consider the off-axis of the polygon mirror. The problem of deviation (off axis deviati〇n) is relatively troublesome in designing and manufacturing the lens. In recent years, in order to improve the conventional LSU assembly structure, an osciHatory MEMS mirror has been developed on the market to replace the conventional polygon mirror to control laser beam scanning. The microelectromechanical mirror is a torsion oscillators with a reflective layer on the surface. It can oscillate and illuminate the reflective layer to reflect and scan the light. In the future, it can be applied to imaging systems and scanners. (Scanner) or laser printer 7 M348011 (laser pointer) laser scanning device (laser scanning ribs) (LSU for short), its scanning efficiency (Scanning efficiency) will be higher than the traditional rotating polygon mirror. For example, U.S. Patent No. 6,844,95, U.S. Patent No. 6,956,597, the disclosure of which is incorporated herein by reference to the entire disclosure of the entire disclosure of the disclosure of Path, still 7, 〇64, 87β,

US7,184,187、US7,190,499、US2G()6/()113393 ;或如台灣專利 TW M253133,其係於一 LSU模組結構中準直鏡及f0鏡片之間,利用 一微機電反射鏡取代習用旋轉式多面鏡,藉以控制雷射光束之投 射方向;或如日本專利薦―謝咖等。此微機電反射鏡具^ 元件小,轉動速度快,製造成本低的優點。然而由於微機電反射 鏡’在接收-電壓驅動後,將作—簡譜運動,且此簡譜運動 (harmonic motion)之方式為時間與角速度呈正弦關係’而投射於 微機電反射鏡,其經反射後之反射角度Θ與時間t _係為:、 θ(ί) = θ3 -sin{2n· f-t) 〇) 其中:f為微機電反射鏡的掃描頻率;A為雷射光束經微機 反射鏡後,單邊最大的掃描角度。 、因此,在相同的時間間隔下△,’所對應的反射角度係與時間 成正弦函數(Sinusoidal)變化,即在相同時間間隔Δί時,反二 係’亦即當狀射的光線料同肢投射在目標物時於相同時間 =隔内所產生的光點距離間隔並不相同而可能隨時間遞増或遞 、舉例而言,當微機電反射鏡之擺動角度位於正弦波之波峰及 波谷時,角度變化量將隨時間遞增或遞減,與習知之多面鏡成 角速度轉動之運動方式柯,若使用習知之f Θ制於具有=機電 8 M348011 反射鏡之雷鱗崎置(LSU)上,將紐紅_電反職所產生 之角度變化量,造成投射在成像面上之魏歧將產生非等速率 掃描現象喊生位於面上之成像·。因此,對於微機電反 射鏡所構成的魏掃描裝置,_為微機電雷射掃描裝置(嶋 LSU) /、特為雷射光線經由微機電反射鏡掃描後,形成等時間 間隔不等肖度的掃減線,·發展可使用於微機雜射掃描裝 置的ίθ鏡片以修正掃描光線,使可在目標物上正顧像,將為 迫切所需。 【新型内容】 本創作之目的在於提供一種微機電雷射掃描裝置之二片式 鏡片,該二片式f(9鏡片由微機電反射鏡依序起算,係由一雙 凸形之第-鏡片及-雙凹形之第二鏡片所構成,可將微機電反射 鏡所反射之掃描光線於目標物上正確成像,而達成雷射掃瞄裝置 所要求之線性掃描效果。 、本創作之另一目的在於提供一種微機電雷射掃描裝置之二片 式鏡片’係用以縮小投射在目標物上光點(spot)之面積,而 達成提高解析度之效果。 本創作之再一目的在於提供一種微機電雷射掃描裝置之二片 式ίθ鏡片,可畸變修正因掃描光線偏離光轴,而造成於主掃描 方向及副掃描方向之偏移增加,使成像於感光鼓之光點變形成類 橢圓形之問題,並使每一成像光點大小得以均勻化,而達成提升 解像品質(resolution quality)之功效。 因此’本創作微機電雷射掃描裝置之二片式鏡片,適用 於至少包含一將發射雷射光束之光源以共振左右擺動將光源發射 M348011 ί雷光:之,機電反射鏡,以在目標物上成 光源發出雷射光束,經由微機電反射鏡左右: 二鏡,光束形成掃描光線,掃描光線經由本 (_),由於感光鼓 與:^ ’於細上形成光點 如此可將資料列印出。劑’可感應碳粉使其聚集於紙上, 第-片i μ鏡片包含_機電反射鏡依序起算之-ί光學 ,其中第一鏡片具有-第-光學面及-第 来興古先予面與第二光學面’在主婦描方向至少有一個 在I傻itί成’係主要將呈簡譜運動之微機電反射鏡, 由原來隨時間增加而遞減或遞增的非等迷率 速率掃描。第二鏡片具有一第三光學面及一第四光學:= dr學面’在主掃描方向至少有—個光學面為非球面所 2紅 均勻化掃喊線於主掃描方向及卿描方向因偏 移光軸而造成_紐上軸雜偏差 線修正聚光於目·上。 $鏡狀知描先 【實施方式】 請參照圖1,為本創作微機電雷射掃描裝 之光學路徑之示意圖。本創作微機電雷射掃 3片 =:具有一第一光學面131a及-第二光學面二: 梦片具有一第三光學面132a及—第四光學面132b之第二 鏡片Π2,係適用於微機電雷射掃猫裝置。圖中,微機電雷射掃描 M348011 裝置主要包含一雷射光源11、一微機電反射鏡10、一柱面鏡16、 二光電感測器14a、14b,及一用以感光之目標物。在圖中’目標 物係以用感光鼓(drum) 15來實施。雷射光源η所產生之光束m 通過柱面鏡16後,投射到微機電反射鏡1〇上。而微機電反射鏡 10以共振左右擺動之方式’將光束111反射成掃瞄光線H3a、 113b、114a、114b、115a、115b。其中掃瞄光線 113a、113b、114a、US7,184,187, US7,190,499, US2G()6/()113393; or Taiwan patent TW M253133, which is used between a collimating mirror and a f0 lens in an LSU module structure, using a microelectromechanical mirror instead of the conventional Rotary polygon mirror to control the projection direction of the laser beam; or as recommended by the Japanese patent, Xie Ka. The microelectromechanical mirror has the advantages of small component, fast rotation speed and low manufacturing cost. However, since the microelectromechanical mirror 'is driven by the receive-voltage, the spectral motion will be made, and the harmonic motion is in a sinusoidal relationship between time and angular velocity' and projected onto the microelectromechanical mirror, after being reflected. The reflection angle Θ and the time t _ are: θ(ί) = θ3 -sin{2n· ft) 〇) where: f is the scanning frequency of the MEMS mirror; A is the laser beam after passing through the microcomputer mirror The largest scan angle on one side. Therefore, at the same time interval, Δ, the corresponding reflection angle changes with the time sinusoidal function (Sinusoidal), that is, at the same time interval Δί, the anti-secondary ray, that is, the ray of the same limb When the target is projected at the same time = the distance between the spots generated in the interval is not the same, and may be repeated or transferred over time, for example, when the swing angle of the microelectromechanical mirror is at the peak and trough of the sine wave , the amount of angular change will increase or decrease with time, and the movement mode of the angular rotation with the conventional polygon mirror, if using the conventional f Θ on the Leikusaki (LSU) with the electromechanical 8 M348011 mirror, will The amount of change in the angle generated by the New Red _ electro-reaction causes the Wei Qi projected on the imaging surface to produce a non-equal rate scanning phenomenon. Therefore, for the Wei scanning device constituted by the microelectromechanical mirror, _ is a microelectromechanical laser scanning device (嶋LSU) /, and the special laser light is scanned through the microelectromechanical mirror to form an equal time interval unequal Sweeping lines, and developing ίθ lenses that can be used in microcomputer-based sniffer scanning devices to correct the scanning light so that it can be imaged on the target will be urgently needed. [New content] The purpose of this creation is to provide a two-piece lens of a micro-electromechanical laser scanning device. The two-piece f (9 lenses are sequentially calculated by a micro-electromechanical mirror, and are a pair of convex-shaped lenses). And a double-concave second lens, which can correctly image the scanning light reflected by the microelectromechanical mirror on the target, and achieve the linear scanning effect required by the laser scanning device. The purpose of the present invention is to provide a two-piece lens of a microelectromechanical laser scanning device for reducing the area of a spot projected on a target object, thereby achieving an effect of improving resolution. The two-chip ίθ lens of the MEMS laser scanning device can correct the deviation of the scanning light from the optical axis, causing the offset in the main scanning direction and the sub-scanning direction to increase, so that the spot formed on the photosensitive drum becomes an ellipse. The shape of the problem, and the size of each imaging spot is evenified, to achieve the effect of improving the resolution quality. Therefore, the creation of this micro-electromechanical laser scanning device The lens is suitable for at least one light source that emits a laser beam to oscillate left and right to resonate to emit a light source of M348011 ί: an electromechanical mirror to emit a laser beam as a light source on the target, and to pass through the microelectromechanical mirror : Two mirrors, the beam forms the scanning light, and the scanning light passes through the (_). Since the photosensitive drum and the : ^ ' form a light spot on the fine, the data can be printed out. The agent 'induces the carbon powder to make it gather on the paper. The first-piece i μ lens comprises an electromechanical mirror, which in turn has a -O optics, wherein the first lens has a -th-optical surface and - the first and the second optical surface - at least in the direction of the housewife A microelectromechanical mirror that is mainly in the form of a spectrum movement, which is scanned by a non-equal rate rate that decreases or increases with time. The second lens has a third optical surface and a fourth optical := dr learning surface 'At least one optical surface in the main scanning direction is aspherical surface 2 red uniformizing the sweeping line in the main scanning direction and the sharp drawing direction caused by the offset optical axis _ Newton axis misalignment line correction Gather in the eyes. $ Mirror-like knowledge first [Implementation] Please refer to Figure 1, which is a schematic diagram of the optical path of the micro-electromechanical laser scanning device. The original micro-electromechanical laser scanning 3 piece =: has a first optical surface 131a and - The second optical surface 2: the dream sheet has a third optical surface 132a and a second optical surface 132b of the second optical lens ,2, which is suitable for the MEMS laser scanning device. In the figure, the micro-electromechanical laser scanning M348011 device is mainly The utility model comprises a laser light source 11, a microelectromechanical mirror 10, a cylindrical mirror 16, two photodetectors 14a, 14b, and a target for sensitization. In the figure, the target object is a photosensitive drum ( The light source m generated by the laser light source η passes through the cylindrical mirror 16 and is projected onto the microelectromechanical mirror 1 。. The microelectromechanical mirror 10 reflects the light beam 111 in a manner of resonance left and right. The light rays H3a, 113b, 114a, 114b, 115a, 115b are scanned. Wherein the scanning rays 113a, 113b, 114a,

114b、115a、115b在X方向之投影稱之為副掃描方向(sub scanning direction) ’在Y方向之投影稱之為主掃描方向(mainscanning direction),而微機電反射鏡1〇掃描角度為⑴。 請參照圖1及圖2,其中圖2為一微機電反射鏡掃描角度0 與時間t之關係圖。由於微機電反射鏡1〇呈一簡諧運動,其運動 角度隨時間呈-正弦變化’因此掃料線之㈣角度與時間為非 線=關係。如圖示中的波峰a_a’及波谷b_b,,其擺動角度明顯小於 波段、a-+b及a’ -b’ ’而此肖速度稍等的現象容易造成掃描光線 在感光鼓15上產生成像偏差。因此,光電感測器14&、丨化係設 置於微機電反射鏡1〇最大掃描角度±0c之内,其夹角為响,雷 射光束由圖2之波峰處開始被微機電反射鏡10所反射,此時相當 =圖1之掃描光線115a;當光電感測器14a _到掃描光束的時 微機蚊概1G硫_+θρ肢,此時相當於圖i :描桃114a ;當微機t反射鏡1(H傾角賴化如圖2的a 光線而掃描至圖2的b點時,此時相當於掃描 b位置為止(相當±θη角度内由雷射光源丨丨發 U1);當微機電反身1Λ方 士 田射光束 光源11被藝_ 波段“時由雷射 _而開始發出雷射光束⑴;如此完成-個週期。 M348011 請參翻1及圖3,其t圖3為通過第—鏡片及第 描光線之光學路麵。其中,±θη財鱗描肢,#微機 鏡10之轉動角度進入土θη時,雷射光源i J開始發出雷射 射 經由微機電反射鏡職射鱗料線’當胸錢魏第=1’ 131時受第-鏡片131之第-光學面131a與第二光學面咖二 射’將微機電反射鏡10所反射之距離與時間成非線性關係 弟-鏡片13!與第二鏡片132後,藉由第一光學面咖 學面服、第三絲㈣2a、細光料咖之絲性質第j 掃描光線聚感級15上,祕感光鼓15上形成—列的點 於感光鼓15上’兩最遠光點2之間距稱為有效掃描視窗 笛一^與Φ為微機電反射鏡1〇至第一光學面131a之間距、也為 ί Ϊ SDL至第二光學面⑽之間距、^為第二光學面⑽ 距、山為第三光學面咖至第四光學面 132b之間距、d5為第四光學面咖至感光鼓15之間距 一ίί面13U之曲率半徑(CUrVatUre)、R2為第二光學面131b之 ==第三光學面_之曲率半徑心為第四光學面 —射ί感光鼓上後,光點面· 古μ、h i 變不_。#掃料線服沿光秘 鏡片131及第二鏡片132後投射在感光鼓15時,因 所131及第二鏡片132之_零,於_方向 所產生之偏移率是零,因此成像於感光鼓15上之光點2a為一類 ,。當掃描先線咖㈣透過第_鏡片心=13類2 後而投射在感先鼓15時,因入射於第—鏡片131及^二鏡兄片片132 12 M348011The projection of 114b, 115a, 115b in the X direction is referred to as the sub scanning direction. The projection in the Y direction is referred to as the main scanning direction, and the scanning angle of the microelectromechanical mirror 1 is (1). Please refer to FIG. 1 and FIG. 2 , wherein FIG. 2 is a diagram showing the relationship between the scanning angle 0 and the time t of a microelectromechanical mirror. Since the microelectromechanical mirror 1 〇 exhibits a simple harmonic motion, its motion angle changes sinusoidally with time ′ so the (four) angle of the sweep line is temporally related to time. As shown in the figure, the peak a_a' and the trough b_b, the swing angle is significantly smaller than the wavelength band, a-+b and a'-b'', and this slightly shorter phenomenon tends to cause the scanning light to be imaged on the photosensitive drum 15. deviation. Therefore, the photodetector 14&, the sputum system is disposed within the maximum scanning angle ±0c of the microelectromechanical mirror 1 ,, the angle of which is ringing, and the laser beam is started by the peak of FIG. 2 by the microelectromechanical mirror 10 Reflected, at this time is equivalent to = scanning light 115a of Figure 1; when the optical sensor 14a _ to the scanning beam, the microcomputer mosquito 1G sulfur _ + θ ρ limb, this time is equivalent to Figure i: Peach 114a; when the computer t Mirror 1 (H tilt angle is as shown in Fig. 2, and is scanned to point b in Fig. 2, this time corresponds to scan b position (equivalent to ±1 η angle within the angle of the laser source U1); Electromechanical reflexive 1 Λ 田 田 田 光束 光束 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被The optical surface of the lens and the first light. Among them, ±θη 鳞 描 描 , , # # # # # # # # # # # 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微'When the chest money Weidi=1' 131, the first optical lens 131a and the second optical surface will be taken by the second lens The distance reflected by the mirror 10 is nonlinearly related to time. After the lens 13! and the second lens 132, the first optical face is served, the third wire (4) 2a, and the fine light coffee bar is the first. On the scanning light concentrating level 15, the point on the secret photosensitive drum 15 is formed on the photosensitive drum 15 'the distance between the two farthest light points 2 is called the effective scanning window flute and the Φ is the microelectromechanical mirror 1 〇 to The distance between the first optical surfaces 131a is also the distance between the Ϊ Ϊ SDL and the second optical surface (10), the distance between the second optical surface (10), the distance between the third optical surface and the fourth optical surface 132b, and the d5 is The distance between the four optical coffee cups and the photosensitive drum 15 is a radius of curvature of 13U (CUrVatUre), and R2 is the second optical surface 131b = the third optical surface _ the radius of curvature is the fourth optical surface - the photosensitive drum After the upper surface, the light point surface · ancient μ, hi does not become _. # 扫 ray line along the light lens 131 and the second lens 132 after projecting on the photosensitive drum 15, due to the 131 and the second lens 132 _ zero, The offset rate generated in the _ direction is zero, so the spot 2a imaged on the photosensitive drum 15 is of a type, when scanning the first line coffee (four) through the first _ The tablet cores after class 2 = 13 projected in the first sense of the drum 15, due to the first incident - ^ two lenses 131 and mirrors 132 12 M348011 piece brother

^光轴所職之夾討為零,触掃财向所赶之偏移率不為 ^而造成敎掃财向之郷長雜掃描親llla_成的光 點為大;此情形在副掃描方向也_,偏離掃描光線lUa之掃描 光線所形成的光點,也將較大;所以絲域級15上之光: 沘、2(:為一類橢圓形’且21)、2(;之面積大於2&。其中,‘與^ 為微機電反概10反射φ上神統的光點在主掃龄向(γ方 向)及副掃描方向(X方向)之長度、G,Gb為掃目苗光線之高斯光束 (Gaussian Beams)於光強度為13 5%處在γ方向及χ方向之光束半 徑,如圖5所示,圖5中僅顯示γ方向的光束半徑之說明。 縱上所述,本創作之二片式历鏡片可將微機電反射鏡1〇反射 之掃描光線’將高斯光束之掃描光線進行畸變(dist〇rti〇n)修正,及 將時間-角速度之關係轉成時間_距離之關係。在主掃描方向與副掃 描方向’掃描親在X方向與γ方向之光束半徑經過㊉鏡片的各 角度-定職大率,於成像面上產生光點’以提供符合需求的解 析度。 為達成上述功效,本創作二片式扭鏡片在第一鏡片131的第 一光學面131a或第二光學面132a及第二鏡片132的第三光學面 132a或第四光學面132b,在主掃描方向或副掃描方向,可使用球 面曲面或非球面曲面設計,若使用非球面曲面設計,其非球面曲 面係以下列曲面方程式: 1 ·檢像曲面方程式(Anamorphic equation) z^The position of the optical axis is zero, and the offset rate of the flashing of the financial position is not ^, and the light spot of the sweeping pro-llla_ is too large; this situation is in the sub-scan The direction is also _, the spot light formed by the scanning light deviating from the scanning light lUa will also be larger; therefore, the light on the filament level 15: 沘, 2 (: is an elliptical 'and 21', 2 (; area) More than 2 & wherein, 'and ^ is the microelectromechanical inverse 10 reflection φ upper sacred light spot in the main sweep age (γ direction) and the sub-scan direction (X direction) length, G, Gb is the sweeping seedling The Gaussian Beams of the light beam has a beam radius of 13 5% in the γ direction and the χ direction, as shown in Fig. 5, and only the description of the beam radius in the γ direction is shown in Fig. 5. The two-piece calendar lens of the present invention can correct the scanning light of the Gaussian beam by the scanning light of the microelectromechanical mirror 1 〇 〇 〇 〇 , , , , , , , , , , , , , 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高The relationship between the main scanning direction and the sub-scanning direction 'scanning the beam radius in the X direction and the γ direction through the angles of the ten lenses - a high rate of attendance, producing a spot on the image plane to provide a resolution that meets the demand. To achieve the above effect, the present two-piece twist lens is on the first optical surface 131a or the second optical surface 132a of the first lens 131. And the third optical surface 132a or the fourth optical surface 132b of the second lens 132 can be designed in a main scanning direction or a sub-scanning direction using a spherical curved surface or an aspherical curved surface. If an aspherical curved surface design is used, the aspherical surface is below Column surface equation: 1 · Anamorphic equation z

+ (Cv)Y ^rY^-Bp)X2 +(1 + 5,,)72]3 +^((1-0,,)^2 +(1 + CP)F2 Dr [(1 -Dp)X2 +(1 + DP)Y2 13 (2) M348011 其中,Z為鏡片上任一點以光軸方向至〇點切平面的距離 (SAG),c;與q分別為X方向及Υ方向之曲率(curvature);尺與^ 分別為X方向及Υ方向之圓雜係數(Conic coefficient); 4q 與A分別為旋轉對稱(rotationally symmetric portion)之四次、六 次、八次與十次冪之圓錐變形係數(deformati〇nfromthec〇nic); 4、A、cP 與 2^分別非旋轉對稱(n〇n-rotationallysymmetric components)之分別為四次、六次、八次、十次冪之圓錐變形係數 (deformation from the conic);當 q = q,& = &且 4 =义=q = a = 〇 籲則簡化為單-非球面。 " 2 ·環像曲面方程式(T〇ric equation) Z = Zj; + l + yjl-(Cxy)2X2+ (Cv)Y ^rY^-Bp)X2 +(1 + 5,,)72]3 +^((1-0,,)^2 +(1 + CP)F2 Dr [(1 -Dp)X2 +(1 + DP)Y2 13 (2) M348011 where Z is the distance (SAG) of any point on the lens from the optical axis direction to the 切 point tangent plane, c; and q are the curvature of the X direction and the Υ direction respectively (curvature) The ruler and ^ are the Conic coefficient of the X direction and the Υ direction, respectively; 4q and A are the four-, six-, eight- and ten-th power conical deformation coefficients of the rotationally symmetric portion, respectively. Deformati〇nfromthec〇nic); 4, A, cP and 2^ are respectively non-rotationally symmetric (n〇n-rotationally symmetric components) are four, six, eight, ten power cone deformation coefficient (deformation from the Conic); when q = q, & = & and 4 = meaning = q = a = 〇 则 simplifies to a single-aspherical surface. " 2 · T〇ric equation Z = Zj; + l + yjl-(Cxy)2X2

Cxy =_L ... (1/Cx)-Zy 其中’z為鏡片上任一點以光軸方向至〇點切平面的距離 (SAG),q與I分別γ方向與X方向之曲率(curvature);尺為γ =向之圓錐係數(Conic coefficient);孕、&、歧万。為四次、六 -人、八次、十次冪之係數(4th〜1〇th 〇rder c〇effid論) fiOmthecomc);當Cx=q且Ά=5ρ=& = '=〇則簡化為單一球 面。 為能使掃描光線在目標物上之成像面上維持等掃描速度,舉 例而„,在兩個相同的時間間隔内,維持兩個光點的間距相等; 本創作之二片式ίθ鏡片可將掃描光線ma至掃描光線·之 間’藉由第-鏡片131及第二鏡片132進行掃描光線出射角之修 正’使相_時關隔的兩掃描光線,經出射肢修正後,於成 14 M348011 像^感光鼓15上職的_絲的轉 光束m經由微機電反射鏡1G反射後 二‘=射 較大’如果此掃描光線經過微機電反射鏡與⑶ 後,高斯光料祕與Gb概,册實 =;=tr將微機電反_ :繼成像的感光鼓15上產生較小的光點;再:::進: f鏡片更可將成像在感光鼓15上的光點大小均勻化(二= 符。解析度要搞範_),崎最朗解析效果。 兔ί創^一片式历鏡片包含’由微機電反射鏡10依序起算, 3":3;r:r ’、有第光予面131a及第二光學面131b,係將微機 i!To反射之角度與時間非線性關係之掃描光線光點轉換成 距離與時間為線性關係之掃描光線光點;其中第二鏡片132具有 第三光學面132a及第四光學面132b,係將第一鏡片i3i之掃^光 、札正t光於目心物上,藉由該二片式扭鏡片將微機電反射鏡 反射之掃描光線於感光鼓15上成像;其中,第―光學面131&、第 光學面131b、第二光學面i32a及第四光學面132b在主掃描方 向至少有一個為非球面所構成之光學面、第一光學面Uh、第二 光學面131b、第三光學面132&及第四光學面132b在副掃描方向 可至少有一個為非球面所構成之光學面或在副掃描方向均使用球 面所構成之光學面。更進一步,在第一鏡片131及第二鏡片132 L6<~~A~~l<2.5 構成上’在光學效果上’本創作之二片式扭鏡片,在主掃描方向 進一步滿足式(4)〜式(5)條件:Cxy =_L ... (1/Cx)-Zy where 'z is the distance from the optical axis direction to the tangent plane (SAG) of any point on the lens, q and I are respectively the curvature of the γ direction and the X direction (curvature); The ruler is γ = Conic coefficient; pregnancy, & The coefficient of the power of four, six-person, eight, and ten powers (4th~1〇th 〇rder c〇effid) fiOmthecomc); when Cx=q and Ά=5ρ=& = '=〇 is simplified to Single spherical. In order to enable the scanning light to maintain an equal scanning speed on the image plane on the object, for example, the distance between the two spots is maintained equal in two identical time intervals; the two-piece ίθ lens of the creation can be Between the scanning light ma and the scanning light, the 'correction of the scanning light exit angle by the first lens 131 and the second lens 132' causes the two scanning rays separated by the phase to be corrected by the exiting limb, and becomes 14 M348011. The light beam m of the _ wire of the photoreceptor drum 15 is reflected by the microelectromechanical mirror 1G and the second '=shooting larger'. If the scanning light passes through the microelectromechanical mirror and (3), the Gaussian light material is secret and Gb is实实=;=tr will micro-electromechanical inverse _: a small spot on the photosensitive drum 15 that is imaged; again::: In: f lens can evenize the size of the spot imaged on the photosensitive drum 15 ( The second = character. The resolution is to be _), the most accurate analysis effect of the rabbit. Rabbit 创 ^ ^ one-piece calendar lens contains 'from the micro-electromechanical mirror 10 in order, 3 ": 3; r: r ', there is The optical pre-surface 131a and the second optical surface 131b are nonlinearly related to the angle of the reflection of the microcomputer i!To The scanning light spot is converted into a scanning light spot whose distance is linear with time; wherein the second lens 132 has a third optical surface 132a and a fourth optical surface 132b, which is to scan the first lens i3i, The scanning light reflected by the microelectromechanical mirror is imaged on the photosensitive drum 15 by the two-piece twisted lens, wherein the first optical surface 131 & the optical surface 131b and the second optical surface i32a And the fourth optical surface 132b has an optical surface formed by at least one aspherical surface in the main scanning direction, the first optical surface Uh, the second optical surface 131b, the third optical surface 132& and the fourth optical surface 132b in the sub-scanning direction. There may be at least one optical surface formed by an aspherical surface or an optical surface formed by using a spherical surface in the sub-scanning direction. Further, the first lens 131 and the second lens 132 L6<~~A~~l<2.5 constitute On the 'optical effect', the two-piece twisted lens of this creation further satisfies the conditions of equations (4) to (5) in the main scanning direction:

j 丄 /7 _l W ⑷ 15 M348011 ,(2)r 或,在主掃描方向滿足式(6) 0.2 < fsrj 丄 /7 _l W (4) 15 M348011 , (2)r or, in the main scanning direction, satisfy the formula (6) 0.2 < fsr

Xnd\ ~ 1) . (¾ 一 !)、 f(i)y f(2)y <0.4 ⑸⑹ 且在副掃描方向滿足式(7) 0.8 < <1.6 ⑺ 其中,f(i)Y為第一鏡片131在主掃描方向之焦距、f(2)Y為第二 鏡片132在主掃描方向之焦距、山為θ=〇°第一鏡片131目標物側 光學面至第二鏡片132微機電反射鏡10侧光學面之距離、d4為<9 =0°第二鏡片132厚度、山為0=0°第二鏡片132目標物侧光學面 至目標物之距離’丨这為二片式历鏡片在副掃描方向之複合焦距 (combination focal length)、fsY為二片式fB鏡片在主掃描方向之複 合焦距、Rix第i光學面在副掃描方向的曲率半徑;心為第i光學 面在主掃描方向的曲率半徑;nd〗與叫2為第一鏡片131與第二鏡 片 132 之折射率(refracti〇n index)。Xnd\ ~ 1) . (3⁄4 一!), f(i)yf(2)y <0.4 (5)(6) and satisfy the formula (7) in the sub-scan direction 0.8 <<1.6 (7) where f(i)Y is The focal length of the first lens 131 in the main scanning direction, f(2)Y is the focal length of the second lens 132 in the main scanning direction, the mountain is θ=〇° the first lens 131 target side optical surface to the second lens 132 MEMS The distance of the optical surface on the side of the mirror 10, d4 is <9 =0° the thickness of the second lens 132, and the mountain is 0=0° the distance from the target side optical surface of the second lens 132 to the target object 丨This is a two-piece type The composite focal length of the lens in the sub-scanning direction, fsY is the composite focal length of the two-piece fB lens in the main scanning direction, and the radius of curvature of the Rix ith optical surface in the sub-scanning direction; the heart is the ith optical surface The radius of curvature of the main scanning direction; nd and 2 are the refractive indices of the first lens 131 and the second lens 132 (refracti〇n index).

再者,本創作之二片式ίθ鏡片所形成的光點均一性,可以掃 描光線在感光鼓15上之光束大小的最大值與最小值的比值妹 示,即滿足式(8): maxH) (8) 更進-步’本創作之二片式⑺鏡片卿成的解析度,可使 用卜為微機電反雜職射面上_光線岐雜掃描在感光 妓15上先點最大值的比值與“為微機電反射鏡1()反射面上掃 猫光線的絲鱗描麵絲15J^歸小 可滿足式⑼及no), 1 16 M348011Furthermore, the uniformity of the spot formed by the two-piece ίθ lens of the present invention can scan the ratio of the maximum value to the minimum value of the beam size of the light on the photosensitive drum 15, that is, satisfy the formula (8): maxH) (8) Further step-step 'The resolution of the two-piece (7) lens of this creation can be used as the ratio of the maximum value of the first point on the photosensitive 妓15 With the skein of the cat's light on the reflective surface of the microelectromechanical mirror 1 (), the 15J^ is small enough to satisfy the formula (9) and no), 1 16 M348011

max(V 叉) (n) min(V&) <0.10 <0.10 (9)(10) 其中,Sa與Sb域植上掃林線 Y方向及X糾之紐械妞上最小絲躲2胃= 比值、電反賴1G反射社掃目絲_絲與感光鼓^ 士先點之=值,sa。與SbQ為微機電反概職射面上掃瞒光線的 光點在主掃描方向及副掃描方向之長度。Max(V fork) (n) min(V&) <0.10 <0.10 (9)(10) Among them, the Sa and Sb domains are planted on the lining line Y direction and the X-corrected button is the smallest wire to hide 2 Stomach = ratio, electric reciprocal 1G reflex Society sweeping silk _ silk and photosensitive drum ^ Shi first point = value, sa. And SbQ is the length of the spot of the broom light on the MEMS anti-generalized surface in the main scanning direction and the sub-scanning direction.

—為使本創作更加明確詳實,兹列舉較佳實施例並配合下列圖 不,將本創作之結構及其技術特徵詳述如後: 本1 Φ以下所揭不之實施例’乃是針對本創作微機電雷射掃 描裝置之二片式ίθ鏡片之主要構成耕而作說明,因此本創作以 下所揭不之實施_是應驗—微機電雷射職裝置巾,但就一 般具有微機電雷射掃插裝置*言,除了本創作所揭示之二片式扭 鏡片外,其他結構乃屬一般通知之技術,因此一般在此領域中熟 悉此項技藝之人树解,補作所揭示顯電雷騎描裝置之二 X ίΒ鏡&gt;}之構成元件並不關於以下所揭示之實施例結構,也 就是該微舰雷雜鮮置之二丨;切制之各構成元件是可以 進打許多改變、修改、甚至等效變更的,例如:第一鏡片ΐ3ΐ及 第二鏡片132之曲率半徑設計或面型設計、材質選用、間距調整 等並不限制。 〈第一實施例&gt; 請參閱圖3及圖6,其中圖6係為本創作通過第一鏡片及第二 鏡片之掃描光線之實施例之光學路徑圖。本實施例之二片式历鏡 J7 M348011 片之第-鏡片131及-第二鏡片132,其中第一鏡片131a為雙凸 形之鏡片’其中第二鏡片132為一雙凹形鏡片所構成在第一鏡 片131第一光學面i3ia與第二光學面131b、第二鏡片132第三光 學面132a與第四光學面132b均係為非球面,使用式(2)為非球面 公式設計。其光學特性與非球面參數如表一及表二。 表一、第一實施例之f0光學特性 光學面 曲率半徑(mm) (optical surface) (curvature) d厚度(mm) (thickness) nd折射率 (refraction index) MEMS及射® R 0.00 26.23 1 lens 1 1 /im ncn R1 (Anamorphic、 LAyi /j I Rlx* -123.97 15.00 Rly* 275.33 R2iAnamorphic) R2x* -30.25 11.45 R2y* -39.80 lens 2 1.491757 R3fAnamorDhic') R3x* 36.03 8.53 R3y* -127.80 R4(AnamorDhic、 R4x* -92.40 109.50 R4y* 82.47 感先鼓idrum)R5 伞主二db Irfe工 0.00 0.00 表二、第一實施例之光學面非玻面來旃 橫像曲面方程式係數(Anamorphic equation coefflcent) 光學面(optical Ky圓錐係數 surface) (Conic Coefficent) 4th次幂係數 6th次幂係數 8th次幂係數 10th次幂係數 〇rder Order Order Order Coefficient (AR) Coefficient (BR) Coefficient iCIO Coefficient iDR、 Rl* R2* R3* R4* -2.2007E+01 -7.6338E-01 7.8416E+00 -7.8779E+00 -6.5965E-06 3.0048E-08 -5.0148E-06 -2.9418E-07 1.0782E-13 -2.1961E-10 1.1356E-11 2.8385E-11 0.0000E+00 -1.2%3E.09 •8.0222E-15 0.0000E+00 0.0000E+00 8.1727E-16 -5.5747E-09 0.0000E+00 光學面(optical surface) Kx圓錐係數 (Conic Coefficent) 4th次冪係數 6th次幂係數 Order Order Coefficient (AP) Coefficient iRP^ 8Λ次幂係數 10th次幂係數 Order Order Coefficient TCP) Coefficient (ΌΡ) Rl* R2* R3* R4* 0.0000E+00 1.5561E+00 2.6734E+00 0,O000E+〇0 -1.2187E+00 -3.1946E+00 -6.1096E-01 -5.6197E-01 1.9174E+01 -1.8428E-01 1.0979E+00 -1.6934E-01 0.0000E+00 -1.0314E+00 4.3448E-01 0.0000E+00 0.0000E+00 -2.5299E-02 -9.9696E-01 0.0000E+00 18 M348011 經由此所構成的二片式扭鏡片, 〇5 =2.257、fsY,(mm)可將掃描光線轉換成距離:夺間=生 之知描光線絲,並將微機電反射鏡1Q上絲Sart943^性- In order to make the creation more clear and detailed, the preferred embodiment is illustrated with the following figures, and the structure and technical features of the creation are as follows: This embodiment of the present invention is based on the following The main components of the two-piece ίθ lens for creating a micro-electromechanical laser scanning device are described as arable. Therefore, the following implementations of the creation are not fulfilled - the micro-electromechanical laser device wiper, but generally has a micro-electromechanical laser. Sweeping device * In addition to the two-piece twisted lens disclosed in this creation, other structures are generally notified techniques, so it is generally known in this field that the person skilled in the art can solve the problem. The constituent elements of the second device of the scanning device are not related to the structure of the embodiment disclosed below, that is, the second component of the micro-ship is fresh; the constituent elements of the cutting can be changed a lot, Modifications, and even equivalent changes, for example, the curvature radius design or surface design, material selection, pitch adjustment, etc. of the first lens ΐ3ΐ and the second lens 132 are not limited. <First Embodiment> Referring to Figs. 3 and 6, Fig. 6 is an optical path diagram of an embodiment in which scanning light rays passing through the first lens and the second lens are created. The first lens 131a and the second lens 132 of the two-piece calendar J7 M348011 of the embodiment, wherein the first lens 131a is a biconvex lens, wherein the second lens 132 is formed by a double concave lens The first optical surface i3ia and the second optical surface 131b of the first lens 131 and the third optical surface 132a and the fourth optical surface 132b of the second lens 132 are both aspherical surfaces, and the equation (2) is designed as an aspherical formula. Its optical characteristics and aspherical parameters are shown in Table 1 and Table 2. Table 1, f0 optical characteristics of the first embodiment, optical surface curvature radius (mm) (optical surface) (curvature) d thickness (mm) (thickness) nd refractive index (refraction index) MEMS and ray® R 0.00 26.23 1 lens 1 1 /im ncn R1 (Anamorphic, LAyi /j I Rlx* -123.97 15.00 Rly* 275.33 R2iAnamorphic) R2x* -30.25 11.45 R2y* -39.80 lens 2 1.491757 R3fAnamorDhic') R3x* 36.03 8.53 R3y* -127.80 R4(AnamorDhic, R4x * -92.40 109.50 R4y* 82.47 Drum first idrum) R5 Umbrella main two db Irfe work 0.00 0.00 Table 2, optical surface non-glass surface of the first embodiment, Anamorphic equation coefflcent optical surface (optical Ky cone coefficient surface) (Conic Coefficent) 4th power coefficient 6th power coefficient 8th power coefficient 10th power coefficient 〇rder Order Order Order Coefficient (AR) Coefficient (BR) Coefficient iCIO Coefficient iDR, Rl* R2* R3* R4* -2.2007E+01 -7.6338E-01 7.8416E+00 -7.8779E+00 -6.5965E-06 3.0048E-08 -5.0148E-06 -2.9418E-07 1.0782E-13 -2.1961E-10 1.1356 E-11 2.8385E-11 0.0000E+ 00 -1.2%3E.09 •8.0222E-15 0.0000E+00 0.0000E+00 8.1727E-16 -5.5747E-09 0.0000E+00 Optical surface Kx Coefficient (Conic Coefficent) 4th power factor 6th power coefficient Order Order Coefficient (AP) Coefficient iRP^ 8Λ power factor 10th power coefficient Order Order Coefficient TCP) Coefficient (ΌΡ) Rl* R2* R3* R4* 0.0000E+00 1.5561E+00 2.6734E+00 0,O000E+〇0 -1.2187E+00 -3.1946E+00 -6.1096E-01 -5.6197E-01 1.9174E+01 -1.8428E-01 1.0979E+00 -1.6934E-01 0.0000E+00 -1.0314E +00 4.3448E-01 0.0000E+00 0.0000E+00 -2.5299E-02 -9.9696E-01 0.0000E+00 18 M348011 The two-piece twist lens formed by this, 〇5 = 2.257, fsY, (mm ) can convert the scanning light into a distance: 夺 = = raw ray of light, and the micro-electromechanical mirror 1Q on the wire Sart943 ^

Sb0=3972.24㈣掃描成為掃描光線,在感光鼓15 成較小的絲6,並滿足_〜式⑽之條件,如表、= =心軸ζ軸在γ方向距離中心軸¥距離(mm)的光 ⑽徑(// m),如表四’且本實施例之光點分布圖如圖7所示 單位圓直徑為0.05mm。 ’ 表二、第一實施例滿足條件表 d3+d4+d5 1.9310 -1.1678 0.3071 1.2693 0.8884 0.0574 0.0510 /(i)y i /(2)r 主掃描方向/#· (%^ + J(^)y J(2)ySb0=3972.24(4) Scanning becomes scanning light, and the photosensitive drum 15 becomes a smaller wire 6, and satisfies the condition of _~ equation (10), such as table, = = mandrel ζ axis in the γ direction from the central axis ¥ distance (mm) The light (10) diameter (//m), as shown in Table 4' and the light spot distribution map of this embodiment is as shown in Fig. 7 and the unit circle diameter is 0.05 mm. 'Table 2, the first embodiment satisfies the condition table d3+d4+d5 1.9310 -1.1678 0.3071 1.2693 0.8884 0.0574 0.0510 /(i)yi /(2)r Main scanning direction /#· (%^ + J(^)y J (2)y

min(^ -Sa) max(SbSa)Min(^ -Sa) max(SbSa)

二 maxQVD _ (H〇) = min(VSJ (*^*0 ' ^a0 ) 表四、第一實施例感光鼓上光點高斯光束直徑的最大值 Y -107.500 -98.223 -89.648 -71.924 -53.905 -35.870 -17.906 0.000Two maxQVD _ (H〇) = min(VSJ (*^*0 ' ^a0 ) Table IV, the maximum value of the Gaussian beam diameter on the photosensitive drum of the first embodiment Y -107.500 -98.223 -89.648 -71.924 -53.905 - 35.870 -17.906 0.000

Max(2Ga, 2Gb) 4.42E-03 3.42E-03 4.84E-03 4.79E-03 4.41E-03 4.12E-03 3.39E-03 2.66E-03 M348011 &lt;第二實施例&gt; 本實施例之二片式扭鏡片之第一鏡片131及一第二鏡片 U2’其中第-鏡片131為雙Λ形之鏡片,其中第二鏡片132為一 雙凹形鏡片所構成,在第-鏡片131第一光學面131a與第二光學 面131b、第二鏡片132第三光學面132a、第二鏡片132第四光學 面132b均係為非球面’使用式(2)為非球面公式設計。其光學特性 與非球面參數如表五及表六。 表五、第二實施例之f 0光學特性 光學面 曲率半徑(mm) d厚度(mm) (optical surface) (curvature) (thiclcn吻、 MEMS反射面R 0.00 18.58 lens 1 R1 fAnamorphic) Rlx* 235.60 15.00 Rly* -1411.53 R2fAnamorphic) R2x* -29.04 9.25 R2y* -31.08 lens 2 R3 f Anamorphic) R3x* 32.84 11.55 R3y* -101.85 R4fAnamorphic) R4x* -73.84 110.20 R4y* -7.53 感先鼓idrum)R5 0.00 0.00 *表示非球面Max(2Ga, 2Gb) 4.42E-03 3.42E-03 4.84E-03 4.79E-03 4.41E-03 4.12E-03 3.39E-03 2.66E-03 M348011 &lt;Second Embodiment&gt; This embodiment The first lens 131 and the second lens U2' of the two-piece twisted lens, wherein the first lens 131 is a double-shaped lens, wherein the second lens 132 is formed by a double concave lens, and the first lens 131 The optical surface 131a and the second optical surface 131b, the second optical surface 132a of the second lens 132, and the fourth optical surface 132b of the second lens 132 are both aspherical surfaces. The equation (2) is an aspherical formula. Its optical characteristics and aspherical parameters are shown in Tables 5 and 6. Table 5, f 0 optical characteristics of the second embodiment optical surface curvature radius (mm) d thickness (mm) (optical surface) (curvature) (thiclcn kiss, MEMS reflective surface R 0.00 18.58 lens 1 R1 fAnamorphic) Rlx* 235.60 15.00 Rly* -1411.53 R2fAnamorphic) R2x* -29.04 9.25 R2y* -31.08 lens 2 R3 f Anamorphic) R3x* 32.84 11.55 R3y* -101.85 R4fAnamorphic) R4x* -73.84 110.20 R4y* -7.53 Sense drum idrum) R5 0.00 0.00 * means Aspherical

nd折射率 (refraction index) 1 1.491757 1.491757 20 ^348011 表六、第二實施例之光學面非球面參數 .-- -逢像曲面方程式係數(Anamorphic equation coefficent)___ 光學面(optical Ky圓.雜係數4th次幂係數6Λ次幂係數8th次幂係數10th次冪係數 surface) (Conic Order 〇rder 〇rder 〇rder ---Coefficcnt) Coefficient (AR) CoefRcient (BR^ Coefficient (CR) Coefficient (DR) -3.9119E+04 -1.0492E-05 Γ.2645Ε-13-—-一^ -7.2963E-01 -1.7208E-08 4.3096E-08 5.9364E+00 -5.9996E-06 3 7530F-11 -7.5250E+QQ -2.1747Ε·07NR refractive index (refraction index) 1 1.491757 1.491757 20 ^348011 Table 6, the optical surface aspherical parameters of the second embodiment. - - Anamorphic equation coefficent ___ optical surface (optical Ky circle. 4th power coefficient 6Λ power coefficient 8th power coefficient 10th power coefficient surface) (Conic Order 〇rder 〇rder 〇rder ---Coefficcnt) Coefficient (AR) CoefRcient (BR^ Coefficient (CR) Coefficient (DR) -3.9119 E+04 -1.0492E-05 Γ.2645Ε-13-—-一^ -7.2963E-01 -1.7208E-08 4.3096E-08 5.9364E+00 -5.9996E-06 3 7530F-11 -7.5250E+QQ -2.1747Ε·07

Rl* R2* R3* R4* 1.0457E-07Rl* R2* R3* R4* 1.0457E-07

0.0000E+00 4.3096E-08 -3.0831E-14 O.OOOftF.+OO 0.0000E+00 -1.0015E-15 2.1197E-09 0.0000F+000.0000E+00 4.3096E-08 -3.0831E-14 O.OOOftF.+OO 0.0000E+00 -1.0015E-15 2.1197E-09 0.0000F+00

* * * * 12 3 4 R R R R = 111錐係數巧次幂係數6th次幂係數她次冪係數1〇th次幂魏 t、 0^Γ Order Order 〇〇6 nnennnF+nn C〇e£?C!ent(AP) Coefficient (Bp) Coefficient (CP) Coefficient (DP) ==-1-2597E+00 2.0320E+01 〇.〇〇〇〇E+〇〇2=E+〇° 丄麵,-9.麵-01 -5.6594E-01 2.8322E+00 1.7665E+00 -9 9133E-01 O.OOOOE+OO 2.0987F.-02 .1 &quot;_调·3Ε 01 o.nnnoF+nn O.OOOOE+OO 2.7778E-01 η ηηΛΠϋ-ι-ΛΛ 經由此所構成的二片式ίθ鏡片,f(1)Y= 60.299、f(2)Y= _8〇 l69、 fsx-27.399、fsY-145.725 (mm)可將掃描光線轉換成距離與時間為線 性之掃描光線光點,並將微機電反射鏡1〇上光點 \〇=19.434(μιη)、SbG= 3972.24(μιη)掃描成為掃描光線,在感光鼓 15上進行聚焦’形成較小的光點8,並滿足(4)〜式⑽之條件,如 表七;感級15上財卻Ζ軸在γ方向轉巾吨γ距離(咖) 的光點之高斯光束餘(/m),如表八;且本實細之光點分布圖 ❿如圖8所示。圖中,單位圓直徑為〇〇5111111。 21 M348011 表七、第二實施例滿足條件表 d% +d4+d5 /(i)y d5 f(W 主掃描方向 fsr f(y)y f(2)y 副讎方向 min(H) δ max(Sb -SJ maxQVD[=(sb0-sS minQVD _ (Ho)— 2.1725 -1.3746 0.2945 1.2444 0.8510 0.0789 0.0671 表八、第二實施例感光鼓上光點高斯光束直徑的最大值* * * * 12 3 4 RRRR = 111 Cone Coefficients Power Coefficients 6th Power Coefficients Her Power Coefficients 1〇th Power Wei t, 0^Γ Order Order 〇〇6 nnennnF+nn C〇e£?C! Ent(AP) Coefficient (Bp) Coefficient (CP) Coefficient (DP) ==-1-2597E+00 2.0320E+01 〇.〇〇〇〇E+〇〇2=E+〇° 丄,-9.面- 01 -5.6594E-01 2.8322E+00 1.7665E+00 -9 9133E-01 O.OOOOE+OO 2.0987F.-02 .1 &quot;_调·3Ε 01 o.nnnoF+nn O.OOOOE+OO 2.7778E -01 η ηηΛΠϋ-ι-ΛΛ By this two-piece ίθ lens, f(1)Y= 60.299, f(2)Y= _8〇l69, fsx-27.399, fsY-145.725 (mm) can be scanned The light is converted into a scanning light spot whose distance and time are linear, and the microelectromechanical mirror 1 〇 〇 〇 〇 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描Focus 'forms a smaller spot 8 and satisfies the conditions of (4) ~ (10), as shown in Table VII; Gaussian beam of the light point of the gamma-direction gamma distance (cafe) I (/m), as shown in Table VIII; and the actual light spot distribution map is shown in Figure 8. In the figure, the unit circle diameter is 〇〇5111111. 21 M348011 Table VII, the second embodiment satisfies the condition table d% +d4+d5 /(i)y d5 f(W main scanning direction fsr f(y)yf(2)y secondary direction min(H) δ max( Sb -SJ maxQVD[=(sb0-sS minQVD _ (Ho) - 2.1725 -1.3746 0.2945 1.2444 0.8510 0.0789 0.0671 Table 8. Maximum value of the Gaussian beam diameter on the photosensitive drum of the second embodiment

&lt;第三實施例&gt; ηΛ實片式扭鏡片之第一鏡片131及一第二鏡片 =雙⑽撕,其為一 =片所構成,在第一鏡片131第一光學面131a與第二光學 面132hii—鏡片132第二光學面132a、第二鏡片132第四光學 與她娜計。其光學特性 22 M348011 表九、第三實施例之f&lt;9光學特性&lt;Third Embodiment&gt; The first lens 131 and the second lens = double (10) tear of the η Λ real lens torsion lens are constituted by one = sheet, and the first optical surface 131a and the second surface of the first lens 131 Optical surface 132hii - lens 132 second optical surface 132a, second lens 132 fourth optical and her. Optical characteristics 22 M348011 Table IX, f&lt;9 optical characteristics of the third embodiment

光學面 曲率半徑(mm) (optical surface) (curvature) d厚度(mm) (thickness) nd折射率 (refraction index) MEMS反射面R 0.00 25.30 1 lens 1 1.527 R1 TAnamorDhic') Rlx* -129.15 12.84 Rly* 307.34 R^Anamorohic) R2x* -29.48 12.63 R2y* -39.22 lens 2 1.527 R3(-AnamorDhic') R3x* 34.60 6.80 R3y* -128.29 R4iAnamorDhic) R4x* -91.52 108.56 R4y* 80.87 感光鼓(drum'iRS 0.00 0.00 *表示非球面 表十、第三實施例之光學面非球面參數 橫像曲面万程式係數(Anamorphic eauation coefficent、 光學面(optical Ky圓錐係數 surface) (Conic Coeificent) 4th次幂係數 6tii次幂係數 Order Order Coefficient (AR) Coefficient rRR'» 8th次幂係數 10th次幂係數 Order Order roefficient rnefficient Rl* R2* R3* R4* -2.0131E+01 -7.5493E-01 7.7107E+00 -7.8405E+00 -6.4896E-06 2.8601E-08 -5.3015E-06 -3.1771E-07 1.0798E-13 _2.4534E.10 9.5982E-12 2.9408E-11 0.0000E+00 7.9465E-09 3.7589E-01 O.OOOOE+OO 0.0000E-K)0 93036E-16 -U163E+00 0.0000E+00 光學面(optical surface) Kx圓錐係數 (Conic Coefficent) 4th次幂係數 Order Coefficient (AP) Mh次幂係數 Order Coefficient mp) 8th次幂係數 Order 10th次幂係數 Order Rl* R2* R3* R4* 0.0000E+00 2.6881E+00 4.2322E+00 0.0000E+00 -1.2181E+00 -2.7147E+00 -5.9523E-01 -6.4538E-01 1.9209E+01 -1.3602E-01 1.0789E+00 -2.0512F.no 丄/ v^ucuiv;icill \ \Jr I 0.0000E+00 0.0000E+00 -1.0031E+00 3.2730E-03 3.7589E-01 -1.1163E+00 0.0000E+00 O.OOOOF.+ΛΛOptical surface curvature radius (mm) (optical surface) (curvature) d thickness (mm) (thickness) nd refractive index (refraction index) MEMS reflective surface R 0.00 25.30 1 lens 1 1.527 R1 TAnamorDhic') Rlx* -129.15 12.84 Rly* 307.34 R^Anamorohic) R2x* -29.48 12.63 R2y* -39.22 lens 2 1.527 R3(-AnamorDhic') R3x* 34.60 6.80 R3y* -128.29 R4iAnamorDhic) R4x* -91.52 108.56 R4y* 80.87 Drum (drum'iRS 0.00 0.00 * Aspherical surface, third embodiment, optical surface aspherical parameter, anamorphic eauation coefficent, optical Ky cone surface (Conic Coeificent) 4th power coefficient 6tii power factor Order Order Coefficient (AR) Coefficient rRR'» 8th power coefficient 10th power factor Order Order roefficient rnefficient Rl* R2* R3* R4* -2.0131E+01 -7.5493E-01 7.7107E+00 -7.8405E+00 -6.4896E -06 2.8601E-08 -5.3015E-06 -3.1771E-07 1.0798E-13 _2.4534E.10 9.5982E-12 2.9408E-11 0.0000E+00 7.9465E-09 3.7589E-01 O.OOOOE+OO 0.0000EK)0 93036E-16 -U163E+00 0.0 000E+00 optical surface Kx cone coefficient (Conic Coefficent) 4th power coefficient Order Coefficient (AP) Mh power coefficient Order Coefficient mp) 8th power coefficient Order 10th power coefficient Order Rl* R2* R3* R4 * 0.0000E+00 2.6881E+00 4.2322E+00 0.0000E+00 -1.2181E+00 -2.7147E+00 -5.9523E-01 -6.4538E-01 1.9209E+01 -1.3602E-01 1.0789E+00 -2.0512F.no 丄/ v^ucuiv;icill \ \Jr I 0.0000E+00 0.0000E+00 -1.0031E+00 3.2730E-03 3.7589E-01 -1.1163E+00 0.0000E+00 O.OOOOF. +ΛΛ

經由此所構成的二片式ίθ鏡片,f⑴γ= 66 828、f(2)Y= _93 〇29、 fsX=31.634、fsY=146.296(mm)可將掃描光線轉換成距離與時間為線 性之掃描光線光點’並將微機電反射鏡上光點;' 19.434_、Sbo=3972.24〇tm)掃描成為掃描光線,在感光鼓15二 23 M348011 進行聚焦,形成較小的光點1〇 一;感級上以中心軸z轴在γ j足(4)〜式⑽之條件,如表十 點之高斯光束直徑(㈣,如表十物=7軸γ距離(mm)的光 9所示。财,询直鶴^^編之紐分布圖如圖 足條件表 +d4+d^ ~ - 1.9153 -1.1670 0.3249 1.286 0.8701 0.0626 0.0545 W f(2)yBy the two-piece ίθ lens thus constructed, f(1)γ= 66 828, f(2)Y= _93 〇29, fsX=31.634, fsY=146.296(mm) can convert the scanning light into a scanning light whose distance is linear with time. The spot 'and the spot on the microelectromechanical mirror; ' 19.434_, Sbo=3972.24〇tm) is scanned into a scanning light, and is focused on the photosensitive drum 15 23 M348011 to form a smaller spot 1; On the central axis z-axis in the condition of γ j foot (4) ~ formula (10), as shown in Table 10, the Gaussian beam diameter ((4), as shown in Table 10 = 7-axis γ distance (mm) of light 9. Consult the straight crane ^^ the layout of the map as shown in the table of conditions +d4+d^ ~ - 1.9153 -1.1670 0.3249 1.286 0.8701 0.0626 0.0545 W f(2)y

Ai)rAi)r

主掃描方向 副掃描方向 min(^·^) max(Sb-Sa) _ maxQVD ^ (¾ •兄。)Main scanning direction Sub-scanning direction min(^·^) max(Sb-Sa) _ maxQVD ^ (3⁄4 • Brother.)

—minQVD _ (n) 表十二、第三實施例感光鼓上光點高斯光束直徑的最大值 Y -108.012 -98.457 -89.700 -71.761~~-53.680 _17799—minQVD _ (n) Table 12, the maximum value of the Gaussian beam diameter of the light spot on the photosensitive drum of the third embodiment Y -108.012 -98.457 -89.700 -71.761~~-53.680 _17799

Max(2Ga, 2Gb) 5.57E-03 7.53E-03 1.01E-02 1.39E-02 1.27E-02 6.20E-03 7.21E-03 7.90E-03 &lt;第四實施例&gt; 本實施例之二片式ίθ鏡片之第一鏡片131及一第二鏡片 132 ’其中第一鏡片131為雙凸形之鏡片,其中第二鏡片132為一 雙凹形鏡片所構成,在第一鏡片131第一光學面131a與第二光學 面131b、第二鏡片132第三光學面132a係為非球面,使用式(2) 為非球面公式設計;在第二鏡片132第四光學面132b使用式(3) 24 M348011 為非球面公絲計。其絲難與轉醇數如奸三及表十 四 表十三、第四實施例之ίθ光學特性 曲率半徑(聰) (curvature、 “hicknesr、 nd折射率 光學面 (optical surface) (curvature) MEMS反射面R 0.00 27.07 lens 1 R1 iAnamorphic) Rlx* -124.92 15.00 Rly* 268.85 R2iAnamorphic) R2x* -30.37 11.92 R2y* -39.70 lens 2 R3iAnamorphic) R3x* 36.01 8.00 R3y* -124.55 R4 (Ύ Toroid) R4x -93.35 110.02 R4y* 83.27 威來鼓Cdrum'lRi 0.00 0.00 &gt;表示非球面 lection index) 1.52528 1.52528 表十四、第四實施例之光學面非球面參數 J像曲面方程式係數Toric equation Coefficient 光學面(optical Ky圓錐絲4th次幂係玉6tti次冪係數~~8th次冪係數10th次冪係數 surface) (Conic Order Order Order Order Coefficent) Coefficient (B4) Coefficient (B6) Coefficient (B8) Coefficient R4* -7.7731E+00 -2.263 8E-07 4.7310E-11 -1.6814E-15 0.0000E+00 光學面(optical surface)Max(2Ga, 2Gb) 5.57E-03 7.53E-03 1.01E-02 1.39E-02 1.27E-02 6.20E-03 7.21E-03 7.90E-03 &lt;Fourth Embodiment&gt; The first lens 131 and the second lens 132 of the two-piece ίθ lens, wherein the first lens 131 is a biconvex lens, wherein the second lens 132 is formed by a pair of concave lenses, first in the first lens 131 The optical surface 131a and the second optical surface 131b, and the second optical surface 132a of the second lens 132 are aspherical, and the equation (2) is aspherical formula; and the second optical surface 132b is used for the fourth optical surface 132b. 24 M348011 is an aspherical male wire gauge. Its wire difficulty and trans-alcohol number, such as traits and the fourteenth table, thirteenth, fourth embodiment of the ίθ optical characteristic radius of curvature (Cong) (curvature, "hicknesr, nd refractive optical surface (curvature) MEMS Reflective surface R 0.00 27.07 lens 1 R1 iAnamorphic) Rlx* -124.92 15.00 Rly* 268.85 R2iAnamorphic) R2x* -30.37 11.92 R2y* -39.70 lens 2 R3iAnamorphic) R3x* 36.01 8.00 R3y* -124.55 R4 (Ύ Toroid) R4x -93.35 110.02 R4y* 83.27 威来鼓Cdrum'lRi 0.00 0.00 &gt; indicates aspherical lection index) 1.52528 1.52528 Table 14. The optical surface aspherical parameters of the fourth embodiment J. Surface equation coefficient Toric equation Coefficient Optical surface (optical Ky wire) 4th power system jade 6tti power factor ~~8th power factor 10th power factor surface) (Conic Order Order Order Coefficent) Coefficient (B4) Coefficient (B6) Coefficient (B8) Coefficient R4* -7.7731E+00 - 2.263 8E-07 4.7310E-11 -1.6814E-15 0.0000E+00 optical surface

Rl* R2* R3* 光學面(optical surface) __橫像曲面方程式係數(Anamorphic equation coefficent)_ Ky圓錐係數 4th次冪係數 6th次幂係數 8th次幂係數 10th次冪係數 (Conic Order Order Order Order Coefficent) Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient (DR) -2.2196E+01 -6.8210E-06 1.1015E-13 3.4729E-21 0.0000E+00 -7.6262E-01 3.1643E-08 -2.5181E-10 -3.2273E-09 8.1560E-16 8.3392E+00 -4.9995E-06 6.6469E-12 -5.5045E-15 -5.5747E-09 Kx圓錐係數~4th次冪係數 6th次冪係數8th次幂係數~~lOthi冪係數 (Conic Order Order Order Order Coefficent) Coefficient (AP) Coefficient (BP) Coefficient (CP) Coefficient (DP)Rl* R2* R3* optical surface __Anamorphic equation coefficent _ Ky conic coefficient 4th power coefficient 6th power coefficient 8th power coefficient 10th power factor (Conic Order Order Order Order Coefficent) Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient (DR) -2.2196E+01 -6.8210E-06 1.1015E-13 3.4729E-21 0.0000E+00 -7.6262E-01 3.1643E-08 - 2.5181E-10 -3.2273E-09 8.1560E-16 8.3392E+00 -4.9995E-06 6.6469E-12 -5.5045E-15 -5.5747E-09 Kx Conic Coefficient ~4th Power Coefficient 6th Power Coefficient 8th Times Coefficient (AP) Coefficient (CP) Coefficient (CP) Coefficient (DP)

*** 1 3 R R R -1.2623E+01 1.1201E+00 2.4829E+00 -1.2176E+00 -3.3105E+00 -6.1236E-01 1.9376E+01 -1.6281E-01 7.8226E-01 -6.7799E-12 -9.5571E-01 -2.1431E-01 0.0000E+00 2.6576E-02 -9.9526E-01 25 M348011 經由此所構成的二片式历鏡片,f(i)Y=67.743、_94 ::=32.864、㈣7.91 (mm)可將掃描光線轉換成距離與時、 性之掃描光線光點,並將微機電反射鏡1〇上光點;綠 19.434_、Sb〇=3972.24㈣掃描成為掃描光線,在感光鼓= 進行聚焦,形成較小的先點U ’並献(4)〜式⑽之條件,如 五;感▲光鼓上以中心軸Z軸在Y方向距離中心軸γ距離(贿)的光 點之局斯光束直徑(㈣’如表十六;且本實施例之光點分布圖如 圖10所示。圖中,單位圓直徑為〇 05mm。 表十五、第四實施例滿足條件表 ^3 ^4 Al)Y d5 /(2)r 主掃描方向 /⑴少 (nd2 ~ 1) /〇 副掃描方向一- y~) + - Y~)fsx ^·2χ ^Ax •卜 min(V 兄)*** 1 3 RRR -1.2623E+01 1.1201E+00 2.4829E+00 -1.2176E+00 -3.3105E+00 -6.1236E-01 1.9376E+01 -1.6281E-01 7.8226E-01 -6.7799E -12 -9.5571E-01 -2.1431E-01 0.0000E+00 2.6576E-02 -9.9526E-01 25 M348011 The two-piece lens formed by this, f(i)Y=67.743, _94 ::= 32.864, (4) 7.91 (mm) can convert the scanning light into a distance and time, the scanning light spot, and the microelectromechanical mirror 1 〇 light spot; green 19.434_, Sb 〇 = 3972.24 (four) scan into scanning light In the photosensitive drum = focus, form a smaller first point U 'and offer (4) ~ type (10) conditions, such as five; sense ▲ light drum on the central axis Z axis in the Y direction from the central axis γ distance (bribery The light beam diameter ((4)' of the light spot is as shown in Table 16; and the light spot distribution map of this embodiment is shown in Fig. 10. In the figure, the unit circle diameter is 〇05 mm. Table 15, the fourth embodiment Satisfaction condition table ^3 ^4 Al)Y d5 /(2)r Main scanning direction /(1) less (nd2 ~ 1) /〇Sub-scanning direction one - y~) + - Y~)fsx ^·2χ ^Ax •b Min (V brother)

_raax(Sb-Sa) _ miH) (H〇) 2.1700 -1.3845 0.3278 1.1290 0.8634 0.0044 0.0038 表十六、第四實施例感光鼓上光點高斯光束直徑的最大值 Y -107.545 -98.226 -S9.602 -71.765 -53.660 -35.621 -17.750 0.000_raax(Sb-Sa) _ miH) (H〇) 2.1700 -1.3845 0.3278 1.1290 0.8634 0.0044 0.0038 Table 16. The maximum value of the Gaussian beam diameter on the photosensitive drum of the fourth embodiment Y -107.545 -98.226 -S9.602 - 71.765 -53.660 -35.621 -17.750 0.000

Max(2Ga, 2Gb) 4.58E-03 3.66E-03 4.84E-03 4.59E-Q3 3.16E-03 3.62E-03 3.32E-03 2.50E-03 26 M348011 藉由上述之實施例說明,本創作至少可達下列功效: (i) 藉由本創作之二片式扭鏡片之設置,可將呈簡諧運動之微機 電反射鏡在成像面上光點間距由原來隨時間增加而遞減或遞 增的非等速轉描縣,修正為等速轉描,使雷射光束於 成像面之投射作等速率掃描,使成像於目標物上形成之兩相 鄰光點間距相等。 # (2) 藉由本創作之二片式ίθ鏡片之設置,可畸變修正於主掃描方 ί及^掃描方向掃描級,使聚焦於成像的目標物上之光點 件以縮小。 ‘ ⑶ =本創作之二片式β鏡片之設置,可畸變修正於主掃描方 ^副掃描方向掃描猶,使成像在目標物上的光點大小均 所限定的精神圍内了=技術人員理解’在本創作權利要求 更’但都將落人本創作的保護細。% 丫〃改甚至細 【圖式簡單說明】 圖1為本創作二収印鏡片之光學路徑之示意圖· ===機電反射鏡掃描纽Θ與時間£之_圓; 說明圖; 而變積隨投射位置之不同 說明、圖辦_制及帛二制之触光線之絲路姻及符號 27 M348011 圖5為光束之高斯分佈與光強度之關係圖; 圖6為本創作通過第一鏡片及第二鏡片之掃描光線之實施例之光 學路徑圖; 圖7為第一實施例之光點示意圖; 圖8為第二實施例之光點示意圖; 圖9為第三實施例之光點示意圖;以及 圖10為第四實施例之光點示意圖。 【主要元件符號說明】 10 :微機電反射鏡; 11 :雷射光源; 111 :光束; 113a、113b、113c、114a、114b、115a、115b :掃瞄光線; 131 :第一鏡片; 132 :第二鏡片; 14a、14b :光電感測器; 15 :感光鼓; 16 :柱面鏡; 2、2a、2b、2c :光點;以及 3:有效掃描視窗。 28Max(2Ga, 2Gb) 4.58E-03 3.66E-03 4.84E-03 4.59E-Q3 3.16E-03 3.62E-03 3.32E-03 2.50E-03 26 M348011 By the above description, this creation At least the following effects can be achieved: (i) By the setting of the two-piece twist lens of the present invention, the spacing of the spot of the microelectromechanical mirror in the simple harmonic motion on the imaging plane can be decreased or increased from the original time. In the constant-speed rotation county, the correction is a constant-speed rotation, so that the projection of the laser beam on the imaging surface is scanned at an equal rate, so that the distance between two adjacent spots formed on the object is equal. # (2) With the setting of the two-piece ίθ lens of this creation, the distortion can be corrected in the main scanning direction and the scanning direction of the scanning direction, so that the spot on the object focused on the imaging is reduced. ' (3) = The setting of the two-piece β-lens of this creation, the distortion can be corrected in the main scanning side, the scanning direction of the sub-scanning direction, so that the size of the spot on the target is limited within the spirit circle = the technician understands 'In this creative claim more' but all will fall under the protection of this creation. % tampering or even thin [Simple diagram of the diagram] Figure 1 is a schematic diagram of the optical path of the two-printed lens of the creation. ===Electro-mechanical mirror scanning Θ and time _ circle; explanatory diagram; The different positions of the projection position, the diagram of the ray system and the symbol of the ray system and the symbol 27 M348011 Figure 5 is the relationship between the Gaussian distribution of the beam and the light intensity; Figure 6 is the first lens and the first lens FIG. 7 is a schematic diagram of a light spot of the first embodiment; FIG. 8 is a schematic view of a light spot of the second embodiment; FIG. 9 is a schematic view of a light spot of the third embodiment; Fig. 10 is a view showing a light spot of the fourth embodiment. [Main component symbol description] 10: Microelectromechanical mirror; 11: Laser light source; 111: Light beam; 113a, 113b, 113c, 114a, 114b, 115a, 115b: Scanning light; 131: First lens; 132: Two lenses; 14a, 14b: photo-electrical detector; 15: photosensitive drum; 16: cylindrical mirror; 2, 2a, 2b, 2c: light spot; and 3: effective scanning window. 28

Claims (1)

M348〇ii 申請專利範圍: 束之^ 該微機電雷射择描裝置至少包含一用以發射光 光線之微機共振左右擺_光源發射之光束反射成為掃描 片包含,2 一用以感光之目標物;該二片式®鏡 及-機電反射鏡依序起算,係由一雙凸形之第一鏡片 面及—第-It鏡^斤構成’其中該第一鏡片具有—第一光學 向光學面與該第二光學面,在主掃描方 之^絲面為鱗面_成,储該韻蚊射鏡反射 又與時間非線性關係之掃描光線光點轉 線^係之掃描光線光點;其中該第二鏡片具有—第三光學字3 ,丨、弟四光學面,該第三絲面與該第四光學面,在主掃描方向至 ^ t個光學©為非球面所構成,係將該第—鏡片之掃描光線修 正聚光於該目標物上;藉由該二4式扭鏡#將該微機電反射鏡 反射之掃描光線於該目標物上成像。 2.如申睛專利範圍第1項所述之微機電雷射掃描裝置之二片式扭 鏡片,在主掃描方向進一步滿足下列條件: 1.6&lt;^L±A&lt;2.5 ; J{1)Y -2.0&lt; &lt;-1.0 ; ,(2)y 其中’ 為該第一鏡片在主掃描方向之焦距、f(2)Y為該第 二鏡片在主掃描方向之焦距、山為θ=〇。該第一鏡片目標物侧光 學面至該弟一鏡片微機電反射鏡侧光學面之距離、(J4為該第二鏡 片厚度、山為θ=0°該第二鏡片目標物側光學面至該目標物之距 離。 29 M348011 3.如申請專利範圍第1項所述之微機電雷射掃描裝置之二片式扭 鏡片,進一步滿足下列條件: 在主掃描方向滿足 0.2 &lt; 八·((〜丨-U + ^nd2 &quot;1); &lt;0.4 ; r(2)y 在副掃描方向滿足 0.8 &lt; &lt;1.6 ^ JA ~HX 其中,化尺與f(2)Y為該第一鏡片及該第二鏡片在主掃描方 向之焦距、fsX為二片式fe鏡片在副掃描方向之複合焦距、心 為二片式历鏡片在主掃描方向之複合焦距、Rix A第i光學面I 副掃描方向的曲率半徑、Riy為第i光學面在主掃描方向的曲率 她、ndl與分縣該第—制_$二鏡狀折射率。 min(vq maxiSb 4.如申請專利細第丨項所述之微機電雷射掃描裝置之二片式历 鏡片,其+最大先_最小先社小的比 0.8&lt;rmin(H ^中,sa與&amp;為一感光鼓上掃晦光線形成 :==顯概故組糾= 的比值分別滿足: 的比值與在該目標物上最小光點 fin max(V&amp;) (H了 &lt;〇.10 ; _ min(Sb -Sa) 30 M348011 其中 ,&amp;〇與sb〇為該微機電反射鏡反射面 點在主掃描方向及副掃插方向之長度、、與Sb== 聪光線形成的任-個光點在主掃描方向及副掃插方向之^度▼ ηπίαχ為該微機電反射鏡反射面上掃瞄光線的光點經掃描在該目 標物上最大光點的比值、Tlmin為該微機電反射鏡反射面上掃瞄光 線的光點經掃描在該目標物上最小光點的比值。M348〇ii Patent application scope: 束之^ The MEMS laser scanning device includes at least one micro-machine resonance left and right pendulum for emitting light rays. The light beam emitted by the light source is reflected as a scanning film, and 2 is a target for sensitization. The two-piece® mirror and the electromechanical mirror are sequentially formed by a pair of convex first lens surfaces and a first-shaped mirror, wherein the first lens has a first optical optical surface. And the second optical surface, the surface of the main scanning side is a scale surface, and the scanning light point of the scanning light point of the reflection of the mosquito mirror is nonlinearly related to time; The second lens has a third optical word 3, a fourth optical surface, and the third optical surface and the fourth optical surface are formed by aspherical surfaces in the main scanning direction to the optical elements. The scanning light correction of the first lens is concentrated on the target; the scanning light reflected by the microelectromechanical mirror is imaged on the target by the two-type twist mirror #. 2. The two-piece twist lens of the microelectromechanical laser scanning device according to claim 1 of the patent application scope further satisfies the following conditions in the main scanning direction: 1.6 &lt;^L±A&lt;2.5; J{1)Y -2.0&lt;&lt;-1.0; , (2) y where ' is the focal length of the first lens in the main scanning direction, f(2)Y is the focal length of the second lens in the main scanning direction, and the mountain is θ=〇 . a distance from the optical surface of the first lens target side to the optical surface of the microelectromechanical mirror side of the lens, (J4 is the thickness of the second lens, and the mountain is θ=0°, the second lens target side optical surface The distance between the target object. 29 M348011 3. The two-piece twisted lens of the microelectromechanical laser scanning device described in claim 1 further satisfies the following conditions: 0.2 in the main scanning direction: 八((~丨-U + ^nd2 &quot;1);&lt;0.4; r(2)y satisfies 0.8 in the sub-scanning direction &lt;1.6 ^ JA ~HX where the ruler and f(2)Y are the first lens And the focal length of the second lens in the main scanning direction, fsX is the composite focal length of the two-piece fe lens in the sub-scanning direction, the composite focal length of the two-piece lens in the main scanning direction, and the Rix A ith optical surface I The radius of curvature of the scanning direction, Riy is the curvature of the i-th optical surface in the main scanning direction, ndl and the sub-standard _$ two mirror-like refractive index. min (vq maxiSb 4. As claimed in the patent The two-piece calendar lens of the micro-electromechanical laser scanning device, the maximum of the first _ minimum first small ratio of 0.8 &lt;rmin(H ^, sa and & is formed on the breeze of the photosensitive drum: == significant combination of the correction = the ratio of the ratio: and the minimum spot on the target, fin max (V&amp ;) (H) &lt;〇.10 ; _ min(Sb -Sa) 30 M348011 where &〇 and sb〇 are the lengths of the reflection point of the microelectromechanical mirror in the main scanning direction and the sub-swapping direction, The light spot formed by the Sb== Cong ray is in the main scanning direction and the sub-sweeping direction. Δπία χ The spot of the scanning ray on the reflecting surface of the MEMS mirror is scanned on the target. The ratio of the spot, Tlmin, is the ratio of the spot of the scanned light on the reflecting surface of the MEMS mirror scanned to the minimum spot on the target. 3131
TW97213969U 2008-08-05 2008-08-05 Two optical elements fθ lens of MEMS laser scanning unit 3 TWM348011U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW97213969U TWM348011U (en) 2008-08-05 2008-08-05 Two optical elements fθ lens of MEMS laser scanning unit 3
JP2009000637U JP3149995U (en) 2008-08-05 2009-02-10 Two-piece fθ lens for microelectromechanical system laser beam scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97213969U TWM348011U (en) 2008-08-05 2008-08-05 Two optical elements fθ lens of MEMS laser scanning unit 3

Publications (1)

Publication Number Publication Date
TWM348011U true TWM348011U (en) 2009-01-01

Family

ID=44370911

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97213969U TWM348011U (en) 2008-08-05 2008-08-05 Two optical elements fθ lens of MEMS laser scanning unit 3

Country Status (1)

Country Link
TW (1) TWM348011U (en)

Similar Documents

Publication Publication Date Title
TW201007210A (en) Two optical elements fθ lens of MEMS laser scanning unit 4
TW201007208A (en) Two optical elements fθ lens of MEMS laser scanning unit 3
TW200941109A (en) Two f-θ lens used for micro-electro mechanical system(MEMS) laser scanning unit
TW201015113A (en) Two optical elements fθ lens of MEMS laser scanning unit 9
TWM348011U (en) Two optical elements fθ lens of MEMS laser scanning unit 3
TW201007209A (en) Two optical elements fθ lens of MEMS laser scanning unit 7
JP2000267030A (en) Optical scanning device
TWI359747B (en) Single f-θ lens used for micro-electro mechanical
TWI343329B (en) Two optical elements fθ lens of mems laser scanning unit 6
TWI343327B (en) Two optical elements fθlens of mems laser scanning unit 5
TWM346804U (en) Two optical elements f θ lens of MEMS laser scanning
TWI343328B (en) Two optical elements fθlens of mems laser scanning unit 2
TWM349849U (en) Two optical elements fθ lens of MEMS laser scanning unit 4
TWM346805U (en) Two optical elements f θ lens of MEMS laser scanning
TW201013222A (en) Two optical elements fθ lens of MEMS laser scanning unit 8
TWM348012U (en) Two optical elements fθ lens of MEMS laser scanning unit 7
TWM345250U (en) Single f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit
TWM348010U (en) Two optical elements fθ lens of MEMS laser scanning unit 6
TWM357614U (en) Two optical elements f-θ lens of MEMS laser scanning
CN201293871Y (en) Two-slice type fTheta lens for micro-electromechanical laser scanning apparatus
CN201293870Y (en) Two-slice type fTheta lens for micro-electromechanical laser scanning apparatus
TW201100863A (en) Two optical elements f θ lens of short focal distance for laser scanning unit
TWM345249U (en) Two f-θ lens used for micro-electro mechanical system(MEMS) laser scanning unit
TWM357615U (en) Two optical elements f-θ lens of MEMS laser scanning
JP3149995U (en) Two-piece fθ lens for microelectromechanical system laser beam scanner

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees