TWM346805U - Two optical elements f θ lens of MEMS laser scanning - Google Patents

Two optical elements f θ lens of MEMS laser scanning Download PDF

Info

Publication number
TWM346805U
TWM346805U TW97213975U TW97213975U TWM346805U TW M346805 U TWM346805 U TW M346805U TW 97213975 U TW97213975 U TW 97213975U TW 97213975 U TW97213975 U TW 97213975U TW M346805 U TWM346805 U TW M346805U
Authority
TW
Taiwan
Prior art keywords
lens
scanning
light
optical surface
coefficient
Prior art date
Application number
TW97213975U
Other languages
Chinese (zh)
Inventor
Bo-Yuan Shih
Original Assignee
E Pin Optical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Pin Optical Industry Co Ltd filed Critical E Pin Optical Industry Co Ltd
Priority to TW97213975U priority Critical patent/TWM346805U/en
Publication of TWM346805U publication Critical patent/TWM346805U/en
Priority to JP2009001485U priority patent/JP3150839U/en

Links

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

Two f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit having a first lens and a second lens, the first lens is a meniscus lens which concave surface towards the MEMS mirror, the second lens is a biconcave lens. The first lens has two optical surfaces, and at least one of the optical surfaces is aspheric surfaces which at the main scanning direction. The second lens has two optical surfaces, which focuses the scanning light to the target by calibrating itself. Both the first lens and the second lens are satisfied the specified optical condition. The purpose of linear scanning and high resolution scanning can be achieved by disposing the first lens and the second lens.

Description

M346805 " 八、新型說明: 【新型所屬之技術領域】 本創作係有關一種微機電雷射掃描裝置之二片式份鏡片,特 別指一種用以修正呈簡諧性運動之微機電反射鏡而產生隨時間成 - 正弦關係之角度變化量,以達成雷射掃瞄裝置所要求之線性掃描 效果之二片式历鏡片。 • 【先前技術】 目前雷射光束印表機LBP(Laser Beam Print)所用之雷射掃描 裝置LSU(Laser Scanning Unit),係利用一高速旋轉之多面鏡 (polygon mirror)以操控雷射光束之掃描動作(laser beam scanning),如美國專利 US7079171、US6377293、US6295116 ,或 如台灣專利1198966所述。其原理如下簡述:利用一半導體雷射發 出雷射光束_6!^6&111),先經由一準直鏡((:0山111对(^),再經由一光 圈(aperture)而形成平行光束,而平行光束再經過一柱面鏡 鲁(cylindrical lens)後’能在副掃猫方向(sub scanning direction)之 Y 轴 上之見度能沿著主掃描方向(main scanning direction)之X轴之平行 方向平行聚焦而形成一線狀成像(line image),再投射至一高速旋 轉之多面鏡上,而多面鏡上均勻連續設置有多面反射鏡,其恰位 於或接近於上述線狀成像(line image)之焦點位置。藉由多面鏡控 制雷射光束之投射方向,當連續之複數反射鏡在高速旋轉時可將 射至一反射鏡上之雷射光束延著主掃描方向(X軸)之平行方向以 同一轉角速度(angular velocity)偏斜反射至一 ίθ線性掃描鏡片上, 而历線性掃描鏡片係設置於多面鏡旁侧,可為單件式鏡片結構 5 M346805 " (sinSle_element scanning lens)或為二件式鏡片結構。此扭線性掃描 鏡片之功能在於使經由多面鏡上之反射鏡反射而射入扭鏡片之雷 射光束能聚焦成一橢圓型光點並投射在一光接收面(ph〇t〇reeeptor drum ’即成像面)上,並達成線性掃描(scanning此伽办)之要求。 然而,習用之雷射掃瞄裝置LSU在使用上會有下列問題·· (1)、旋轉式多面鏡之製作難度高且價格不低,相對增加Lsu • 之製作成本。 . (2)、多面鏡須具高速旋轉(如40000轉/分)功能,精密度要求 又咼’以致一般多面鏡上反射面之鏡面γ軸寬度極薄,使習用LSU 中均需增設一柱面鏡(cylindrical iens)以使雷射光束經過柱面鏡能 聚焦成一線(Y軸上成一點)而再投射在多面鏡之反射鏡上,以致增 加構件成本及組裝作業流程。 (3)、習用多面鏡須高速旋轉(如4〇〇〇〇轉/分),致旋轉噪音相 對提南,且多面鏡從啟動至工作轉速須耗費較長時間,增加開機 後之等待時間。 > (4)、習用LSU之組裝結構中,投射至多面鏡反射鏡之雷射光 束中心轴並非正對多面鏡之中心轉軸,以致在設計相配合之历鏡 片時舄同時考慮多面鏡之離轴偏差(〇任axis deviati〇n)問題,相對 增加ίθ鏡片之設計及製作上麻煩。 近年以來,為了改善習用LSU組裝結構之問題,目前市面上 開發出一種擺動式(oscillat〇ry)的微機電反射鏡,用 以取代習用之多面鏡來操控雷射光束掃描。微機電反射鏡為轉矩 振盡器(torsionosciUat〇rs),其表層上附有反光層,可藉由振盪擺 動反光層’將光線反射而掃描,未來將可應用於影像系統(imaging 6 M346805 雀 system)、知描器(scanner)或雷射印表機(iaserprinter)之雷射掃描震 置(laser scanning unit,簡稱 LSU),其掃描效率(Scanning efficiency) 將可高於傳統的旋轉多面鏡。如美國專利US6,844,951、 US6,956,597,係產生至少一驅動訊號,其驅動頻率趨近複數微機 電反射鏡之共振頻率,並以一驅動訊號驅動微機電反射鏡以產生 一掃蹣路徑、US7,064,876、US7,184,187、US7,190,499、 -US2006/0113393 ;或如台灣專利TWM253133,其係於一 LSU模M346805 " VIII, new description: [New technical field] This is a two-piece lens for a microelectromechanical laser scanning device, especially a microelectromechanical mirror for correcting harmonic motion. A two-piece calendar lens that produces an angular change in time-sinusoidal relationship to achieve the linear scanning effect required by a laser scanning device. • [Prior Art] At present, the laser scanning device LSU (Laser Scanning Unit) used in the laser beam printer LBP (Laser Beam Print) uses a high-speed rotating polygon mirror to control the scanning of the laser beam. Laser beam scanning, as described in U.S. Patent Nos. 7,707,171, 6,377,293, 6,295,116, or as described in Taiwan Patent No. 1198966. The principle is as follows: a laser beam is emitted by a semiconductor laser _6!^6&111), first through a collimating mirror ((: 0 mountain 111 pairs (^), then through an aperture) The parallel beam, while the parallel beam passes through a cylindrical lens, the visibility on the Y-axis of the sub-scanning direction can be along the X of the main scanning direction. The parallel directions of the axes are parallelly focused to form a line image, which is then projected onto a high-speed rotating polygon mirror, and the polygon mirror is uniformly and continuously provided with a polygon mirror which is located at or close to the linear image ( Line image) The position of the laser beam is controlled by a polygon mirror. When a continuous multi-mirror rotates at a high speed, the laser beam incident on a mirror can be extended in the main scanning direction (X-axis). The parallel direction is deflected to the ίθ linear scanning lens at the same angular velocity, and the linear scanning lens is placed beside the polygon mirror, which can be a one-piece lens structure. 5 M346805 " (sinSle_element scann The ing lens) is a two-piece lens structure. The function of the twisted linear scanning lens is to enable the laser beam reflected by the mirror on the polygon mirror to be incident on the twisted lens to be focused into an elliptical spot and projected on a light receiving device. The surface (ph〇t〇reeeptor drum ' ie the imaging surface) meets the requirements of linear scanning (scanning). However, the conventional laser scanning device LSU has the following problems in use... (1) Rotary polygon mirrors are difficult to manufacture and the price is not low, which increases the production cost of Lsu • (2) Multi-mirror mirrors must have high-speed rotation (such as 40,000 rpm), and the precision requirements are so high. The mirror surface of the polygon mirror has a very small y-axis width, so that a cylindrical mirror is required in the conventional LSU to allow the laser beam to be focused into a line (a point on the Y-axis) through the cylindrical mirror. Projected on the mirror of the polygon mirror, so as to increase the component cost and assembly process. (3), the conventional polygon mirror must be rotated at high speed (such as 4 rpm), causing the rotation noise to be relatively south, and the polygon mirror It takes a long time from start to work speed In addition, the waiting time after power-on is increased. (4) In the assembly structure of the conventional LSU, the center axis of the laser beam projected onto the polygon mirror is not the center axis of the polygon mirror, so that the design fits In the case of the lens, the problem of the off-axis deviation of the polygon mirror (the axis deviati〇n) is considered at the same time, and the design and production of the lens are relatively troublesome. In recent years, in order to improve the conventional LSU assembly structure, an oscillat〇ry microelectromechanical mirror has been developed on the market to replace the conventional polygon mirror to control laser beam scanning. The MEMS mirror is a torque oscillating device (torsionosciUat〇rs) with a reflective layer on the surface, which can be scanned by oscillating the oscillating reflective layer to reflect light. In the future, it will be applied to the imaging system (imaging 6 M346805 The laser scanning unit (LSU) of the scanner, or the scanner (iaserprinter), has a higher scanning efficiency than conventional rotating polygon mirrors. For example, US Pat. No. 6,844,951, US Pat. No. 6,956,597, which is to generate at least one driving signal whose driving frequency is close to the resonant frequency of the plurality of microelectromechanical mirrors, and drives the microelectromechanical mirror with a driving signal to generate a broom path, US7. 064,876, US 7,184,187, US 7,190,499, -US2006/0113393; or as Taiwan patent TWM253133, which is attached to an LSU module

組結構中準直鏡及鏡片之間,利用一微機電反射鏡取代習用旋 ® 轉式多面鏡,藉以控制雷射光束之投射方向;或如日本專利JP 2006-201350等。此微機電反射鏡具有元件小,轉動速度快,製造 成本低的優點。然而由於微機電反射鏡,在接收一電壓驅動後, 將作一簡諧運動,且此簡諧運動(harmonicmotion)之方式為時間與 角速度呈正弦關係,而投射於微機電反射鏡,其經反射後之反射 角度Θ與時間t的關係為: θ{ί) = θ8 -sin(2^· / -t) ⑴ 其中· f為微機電反射鏡的掃描頻率;4為雷射光束經微機電 反射鏡後’單邊最大的掃描角度。 因此,在相同的時間間隔下〜,所對應的反射角度係與時間 成正弦函數(Sinusoidal)變化,即在相同時間間隔△,時,反射角度變 化為:ΔΘ⑺—sin(2;r./.,2)),而與時間呈非線性關係, 亦即當此反射的光線以不同角度投射在目標物時於相同時間間隔 内所產生的光點距離間隔並不相同而可能隨時間遞增或遞減。 舉例而言,當微機電反射鏡之擺動角度位於正弦波之波峰及 波谷時,角度變化量將隨時間遞增或遞減,與習知之多面鏡成等 角速度轉動之運動方式不同,若使用習知之扭鏡片於具有微機電 7 M346805 , 反射鏡之雷射掃瞄裝置(LSU)上,將無法修正微機電反射鏡所產生 之角度變化量,造成投射在成像面上之雷射光速將產生非等速率 掃描現象而產生位於成像面上之成像偏差。因此,對於微機電反 射鏡所構成的雷射掃描裝置,簡稱為微機電雷射掃描裝置(MEMS LSU),其特性為雷射光線經由微機電反射鏡掃描後,形成等時間 間隔不等角度的掃描光線,因此發展可使用於微機電雷射掃描裝 置的ίθ鏡片以修正掃描光線,使可在目標物上正確成像,將為迫 _ 切所需。 【新型内容】 本創作之目的在於提供一種微機電雷射掃描裝置之二片式历 鏡片’ $亥一片式ίθ鏡片由微機電反射鏡依序起算,係由一新月形 且凹面在微機電反射鏡侧之第一鏡片及一雙凹形之第二鏡片所構 成,可將微機電反射鏡所反射之掃描光線於目標物上正確成像, 而達成雷射掃目苗裝置所要求之線性掃描效果。Between the collimating mirror and the lens in the group structure, a micro-electromechanical mirror is used instead of the conventional rotary-rotating polygon mirror to control the projection direction of the laser beam; or, as in Japanese patent JP 2006-201350. The microelectromechanical mirror has the advantages of small components, fast rotation speed and low manufacturing cost. However, due to the microelectromechanical mirror, after receiving a voltage drive, a simple harmonic motion will be performed, and the harmonic motion is a sinusoidal relationship between time and angular velocity, and is projected on the microelectromechanical mirror, which is reflected. The relationship between the reflection angle Θ and the time t is: θ{ί) = θ8 -sin(2^· / -t) (1) where f is the scanning frequency of the microelectromechanical mirror; 4 is the laser beam reflected by the microelectromechanical After the mirror, the maximum scanning angle of one side. Therefore, at the same time interval ~, the corresponding reflection angle changes with the time sinusoidal function, that is, at the same time interval Δ, the reflection angle changes to: ΔΘ(7)-sin(2;r./. , 2)), and has a nonlinear relationship with time, that is, when the reflected light is projected at different angles to the target, the distances of the spots generated during the same time interval are not the same and may increase or decrease with time. . For example, when the swing angle of the MEMS mirror is located at the peaks and troughs of the sine wave, the amount of angular change will increase or decrease with time, which is different from the movement of the conventional polygon mirror at an equal angular velocity. The lens on the laser scanning device (LSU) with MEMS 7 M346805 and mirror will not be able to correct the angular variation caused by the microelectromechanical mirror, causing the laser light velocity projected on the imaging surface to produce a non-equal rate. The scanning phenomenon produces an imaging deviation on the imaging surface. Therefore, a laser scanning device composed of a microelectromechanical mirror is simply referred to as a microelectromechanical laser scanning device (MEMS LSU), which is characterized in that laser light is scanned through a microelectromechanical mirror to form unequal angles at equal intervals. The light is scanned, so development of the ίθ lens for use in a microelectromechanical laser scanning device to correct the scanning light so that it can be imaged correctly on the target will be required. [New content] The purpose of this creation is to provide a two-piece calendar lens for a micro-electromechanical laser scanning device. The $ hai ί θ lens is sequentially calculated by a micro-electromechanical mirror, which is a crescent-shaped concave surface in MEMS. The first lens on the mirror side and the second lens in a concave shape can correctly image the scanning light reflected by the microelectromechanical mirror on the target, and achieve the linear scan required by the laser sweeping device. effect.

、本創作之另一目的在於提供一種微機電雷射掃描裝置之二片 式扭鏡片,係用以縮小投射在目標物上光點(sp〇t)之面積,而達成 提高解析度之效果。 本創作之再一目的在於提供一種微機電雷射掃描裝置之二片 式扭鏡片’可畸變修正因掃描光線偏離光軸,而造成主掃描方 ^及副掃描方向之偏移增加,使成像於感光鼓之光點變形成類擴 =之問題’並使每-成縣歡小得叫純,而達成提升解 像品質(resolution quality)之功效。 因此,本_微機電雷射娜裝置之二^切鏡片,適用於 8 M346805 J t3將&射雷射光束之光源以共振左右擺動將光源發射之 μ射光束反射成為掃描光線之微機f反賴,以在目標物上成 像;對於雷射印表機而言’此目標物常為感光鼓咖叫,即待成 像之光點經由光源發出雷射光束,經由微機電反射鏡左右掃描, 微機電反魏反射雷射光絲鱗描规,掃絲_由本創作 之-片式ίθ鏡片修正角度與位置後,於感光鼓上形成光點(啊), •由於感光鼓塗有光敏劑,可感應碳粉使其聚集於紙上,如此可將 資料列印出。 本創作之二片式ίθ鏡片包含由微機電反射鏡依序起算之一第 :鏡片及-第二鏡片,其中第—鏡片具有_第—光學面及一第二 光學面,該第—光學面與該第二光學©,在主掃描方向至少有一 個光學面為非球面所構成,係主要將呈簡譜運動之微機電反射 鏡,在成像面上光點間距由原來隨時間增加而遞減或遞增的非等 速率掃描現象,修正為等速率掃描,使雷射光束於成像面之 作等速率掃描。第二鏡片具有一第三光學面及一第四光學面,該 .第二光學面與該第四光學面,在主掃描方向至少有一個光學面為 非球面所構成,主要用以均勻化掃目苗光線於主掃描方向及副掃才苗 方向因偏移光轴而造成於感光鼓上形成成像偏差,並將第一鏡片 之掃描光線修正聚光於目標物上。 【實施方式】 a月參如、圖1 ’為本創作微機電雷射掃描裝置之二片式历鏡片 之光學路徑之示意圖。本創作微機電雷射掃描裝置之二片式历鏡 片包含一具有一第一光學面131a及一第二光學面131b之第一鏡 片131 ’與一具有一第三光學面132a及一第四光學面132b之第二 9 M346805 鏡片132,係適用於微機電雷射掃瞄裝置。圖中,微機電雷射掃描 裝置主要包含-雷射光源η、—微機電反射鏡⑴、—柱面鏡16、 -光電感測器14a、14b,及-用以感光之目標物。在圖中,目標 物係以用感光鼓(drum) 15來實施。雷射光源u所產生之光束nl 通過柱面鏡16後,投賴錢較職1G上。而織電反射鏡 ίο以共振左右擺動之方式,將光束ln反射成掃目苗光線113a、 113b、114a、114b、115a、115b。其中掃瞄光線 113a、113b、114a、 114b 115a 115b在X方向之投影稱之為副掃描方向(㈣scanning direction) ’在γ方向之投影稱之為主掃描方向㈣n %細}叩 direction),而微機電反射鏡10掃描角度為㈦。 明參照圖1及圖2,其中圖2為-微機電反射鏡掃描角度㊀ 與時間t之關係圖。由於微機電反射鏡1〇呈一簡諧運動,其運動 角度Ik時間呈-正弦變化,因此掃瞄光線之射出肢與時間為非 線性關係。如圖示中的波峰a_a,及波谷b_b,,其擺動角度明顯小於 波段a-b及a,-b,,而此角速度不均等的聽容易造成掃描光線在 感光鼓15上產生成像偏差。因此,光電❹指14&、⑽係設置 於微機電反射鏡Η)最大掃描角度进之内,其夾角為土郎,雷射光 束由圖2之波峰處開始被微機電反射鏡⑴所反射,此時相當於圖 1之掃描光、線115a ;當光電感測器14a _到掃描光束的時候, 表不微機電反射鏡10係擺動到+0p角度,此時相當於圖丨之掃描 光線114a,·當微機電反射鏡10掃描角度變化如圖2❺&點時,Z 時相當於掃描光線113a位置,·此時雷射光源u職驅動而發出 雷射光束111,而掃描至圖2的b點時,此時相當於掃描光線⑽ 位置為止(相當瑜角度_雷射光源u發出雷射光束ln); 機電反射鏡1G產生反振時,如於波段a,_b,時由雷射光源u ^驅 M346805 動而開始發出雷射光束111 ;如此完成一個週期。 請參照圖1及圖3,其中圖3為通過第一鏡片及第二鏡片之掃 描光線之光學路徑圖。其中,士θη為有效掃描角度,當微機電反射 鏡10之轉動角度進入士θη時,雷射光源11開始發出雷射光束m, 經由微機電反射鏡10反射為掃瞄光線,當掃瞄光線通過第一鏡片 131時受第一鏡片131之第一光學面131a與第二光學面131b折 射,將微機電反射鏡10所反射之距離與時間成非線性關係之掃描 光線轉換成距離與時間為線性關係之掃描光線。當掃描光線通過 第一鏡片131與第二鏡片132後,藉由第一光學面13u、第二光 子面131b、弟二光學面i32a、第四光學面132b之光學性質,將 掃描光線聚焦於感光鼓15上,而於感光鼓15上形成一列的光點 (Spot) 2於感光鼓15上,兩最遠光點2之間距稱為有效掃描視窗 3其中,dl為微機電反射鏡1〇至第一光學面Bla之間距、汜 為第-^學面131a至第二鮮面131b之間距,為第二光學面 131b至第三光學面132a之間距、似為第三光學面咖至第四光 學面l/2b之間距、d5為第四光學面132b至感光鼓15之間距、 &為第-光學面131a之曲率半徑(c_t㈣、&為第二光學面 :之曲率半徑、R3為第三光學面132a之曲率半徑及仏為第四 光學面132b之曲率半徑。 射在感級上後,光點面積(spot 同而變化之示意圖。當掃猫光線肋沿光軸 :ί:鏡片131及第二鏡片132後投射在感細時,因 :31及第二鏡片132之角度為零,於主掃描方向 所產生之偏移率疋零,因此成像於感級15上 11 M346805 ‘後而投射在感級I5時,因人射於第-鏡片131及第二鏡片132 與光軸所形成之夾肖不為零,於主掃描方向所產生之偏移率不為 零、’而造成於主掃描方向之投影長度較掃描光線llla所形成的光 點為大,此情形在副掃描方向也相同,偏離掃描光線llla之掃描 • 光線所形成的光點,也將較大;所以成像於感光鼓15上之光點 2b、2c為一類橢圓形,且2b、2c之面積大於2a。其中,&與‘ 為微機電反射鏡10反射面上掃瞄光線的光點在主掃描方向(γ = φ 向)及剎掃描方向(X方向)之長度、Ga與Gb為掃瞄光線之高斯光束 (GaussianBeams)於光強度為13·5%處在γ方向及X方向之光束半 徑’如圖5所示,圖5中僅顯示γ方向的光束半徑之說明。 縱上所述,本創作之二片式历鏡片可將微機電反射鏡10反射 之掃描光線,將高斯光束之掃描光線進行畸變(dist〇rti〇n)修正,及 將時間-角速度之關係轉成時間_距離之關係。在主掃描方向與副掃 描方向,掃描光線在X方向與γ方向之光束半徑經過扭鏡片的各 角度一定的放大率,於成像面上產生光點,以提供符合需求的解 | 析度。 為達成上述功效,本創作二片式ίθ鏡片在第一鏡片131的第 一光學面131a或第二光學面132a及第二鏡片132的第三光學面 132a或第四光學面132b,在主掃描方向或副掃描方向,可使用球 面曲面或非球面曲面設計,若使用非球面曲面設計,其非球面曲 面係以下列曲面方程式: 1 ·橫像曲面方程式(Anamorphic equation) + Ar]^\-Ap)X2 +(l + ^p)72]2 z {Cx)X2+{Cy)Y2 1 + + Kx)(Cx)2 X2 - (1 + Ky\Cy)2 Y2 br[(\-bp)x2 +(1+^)72]3 +cj(i~cp)x2 +(i+cp)r 12 M346805 • Α[(1—Ζ)Ρ)Ζ2+(1 + Ή (2) 其中’Ζ為鏡片上任一點以光軸方向至〇點切平面的距離 (SAG) ’ (^與<^分別為X方向及γ方向之曲率(curyature);尤與心 刀另〗為X方向及γ方向之圓錐係數(C〇nic c〇egjcient);戽、a、q , 與仏为別為旋轉對稱(r〇tati〇naUy symmetric portion)之四次、六 人八人與十_人冪之圓錐變形係數(此細咖衫㈤丘⑽此conic); Ap Bp Cp與A分別非旋轉對稱(non_rotationally symmetric φ comp〇nents)之分別為四次、六次、八次、十次冪之圓錐變形係數 (deformati〇nfromthec〇nic);當c〆〆且 則簡化為單一非球面。 2 ·%像曲面方程式(T〇ric equau〇n) Z = Z^ +_{Cxy)X^^ i+Another object of the present invention is to provide a two-piece twist lens of a microelectromechanical laser scanning device for reducing the area of a spot on a target object to achieve an improved resolution. A further object of the present invention is to provide a two-piece torsion lens of a microelectromechanical laser scanning device. The distortion correction is caused by the deviation of the scanning light from the optical axis, and the offset between the main scanning side and the sub-scanning direction is increased, so that the imaging is performed. The light spot of the photosensitive drum becomes a problem of expansion-like = and makes each----------------------------------------------------------------------------------------------------- Therefore, the _micro-electromechanical laser device is suitable for 8 M346805 J t3. The light source of the laser beam is oscillated by resonance and the μ beam emitted from the light source is reflected into the scanning machine. Lai, to image on the target; for laser printers, 'this target is often the photosensitive drum, that is, the spot to be imaged emits a laser beam through the light source, scanning left and right via the microelectromechanical mirror, micro Electromechanical anti-Wei-reflecting laser light scales, sweeping silk _ by this creation - slice ίθ lens to correct the angle and position, forming a light spot on the photosensitive drum (ah), • because the photosensitive drum is coated with a photosensitizer, can be induced The toner is allowed to collect on the paper so that the data can be printed out. The two-piece ίθ lens of the present invention comprises: a lens and a second lens sequentially calculated by the microelectromechanical mirror, wherein the first lens has a _th optical surface and a second optical surface, the first optical surface And the second optical ©, at least one optical surface is aspherical in the main scanning direction, and is mainly a microelectromechanical mirror which is in the form of a spectral motion, and the spot spacing on the imaging surface is decreased or increased from the original with time. The non-equal rate scanning phenomenon is corrected to an equal-rate scanning, so that the laser beam is scanned at an equal rate on the imaging surface. The second lens has a third optical surface and a fourth optical surface, and the second optical surface and the fourth optical surface are formed by at least one optical surface in the main scanning direction, which is mainly used for uniformizing the scanning. In the main scanning direction and the sub-sweeping direction, the eye beam causes an imaging deviation on the photosensitive drum due to the offset optical axis, and the scanning light of the first lens is corrected and condensed on the target. [Embodiment] A month reference, FIG. 1 ' is a schematic diagram of an optical path of a two-piece calendar lens of a microelectromechanical laser scanning device. The two-piece lens of the present microelectromechanical laser scanning device comprises a first lens 131' having a first optical surface 131a and a second optical surface 131b and a third optical surface 132a and a fourth optical The second 9 M346805 lens 132 of the face 132b is suitable for use in a microelectromechanical laser scanning device. In the figure, the microelectromechanical laser scanning device mainly comprises a laser light source η, a microelectromechanical mirror (1), a cylindrical mirror 16, a photoinductor 14a, 14b, and a target for sensitization. In the figure, the target system is implemented by a photosensitive drum 15. The beam nl generated by the laser source u passes through the cylindrical mirror 16 and is invested in the 1G. The weaving mirror ίο reflects the beam ln into the beaming light 113a, 113b, 114a, 114b, 115a, 115b in such a manner that the resonance oscillates left and right. The projection of the scanning rays 113a, 113b, 114a, 114b 115a 115b in the X direction is referred to as the sub-scanning direction ((4) scanning direction) 'the projection in the γ direction is called the main scanning direction (four) n % fine} 叩 direction), and micro The scanning angle of the electromechanical mirror 10 is (7). 1 and 2, wherein Fig. 2 is a graph showing the relationship between the scanning angle of the microelectromechanical mirror and the time t. Since the microelectromechanical mirror 1 〇 exhibits a simple harmonic motion, the movement angle Ik time is -sinusoidal, so the projecting limb of the scanning light is non-linear with time. As shown in the figure, the peak a_a and the valley b_b have a swing angle significantly smaller than the wavelength bands a-b and a, -b, and the uneven angular velocity is liable to cause the scanning light to cause an imaging deviation on the photosensitive drum 15. Therefore, the photoelectric finger 14&, (10) is disposed within the maximum scanning angle of the microelectromechanical mirror ,), and the angle is the lang, and the laser beam is reflected by the microelectromechanical mirror (1) from the peak of Fig. 2, At this time, it is equivalent to the scanning light and line 115a of FIG. 1. When the photo-electrical sensor 14a_ scans the beam, the micro-electromechanical mirror 10 is swung to an angle of +0p, which is equivalent to the scanning light 114a of FIG. When the scanning angle of the microelectromechanical mirror 10 changes as shown in Fig. 2❺& point, Z corresponds to the position of the scanning light 113a. At this time, the laser light source is driven to emit the laser beam 111, and is scanned to the b of Fig. 2 At the time of the point, this is equivalent to the position of the scanning light (10) (equivalent to the angle _the laser source u emits the laser beam ln); when the electromechanical mirror 1G generates the vibration, as in the band a, _b, the laser source u ^ Drive M346805 to start emitting laser beam 111; this completes a cycle. Please refer to FIG. 1 and FIG. 3, wherein FIG. 3 is an optical path diagram of the scanned light passing through the first lens and the second lens. Wherein, the θη is an effective scanning angle. When the rotation angle of the microelectromechanical mirror 10 enters the θηη, the laser light source 11 starts to emit the laser beam m, which is reflected by the MEMS mirror 10 as a scanning light, and when the light is scanned When passing through the first lens 131, the first optical surface 131a and the second optical surface 131b of the first lens 131 are refracted, and the scanning light that is nonlinearly related to the distance reflected by the microelectromechanical mirror 10 is converted into a distance and time. Scanning light in a linear relationship. After the scanning light passes through the first lens 131 and the second lens 132, the scanning light is focused on the photosensitive light by the optical properties of the first optical surface 13u, the second photon surface 131b, the second optical surface i32a, and the fourth optical surface 132b. On the drum 15, a row of spots 2 is formed on the photosensitive drum 15, and the distance between the two farthest spots 2 is called an effective scanning window 3, where dl is a microelectromechanical mirror 1 to The distance between the first optical surface Bla and the distance between the first and second matte surfaces 131a to 131b is the distance between the second optical surface 131b and the third optical surface 132a, which is the third optical surface to the fourth The distance between the optical surfaces l/2b, d5 is the distance between the fourth optical surface 132b and the photosensitive drum 15, and the radius of curvature of the first optical surface 131a (c_t (four), & is the second optical surface: the radius of curvature, R3 is The radius of curvature of the third optical surface 132a and the radius of curvature of the fourth optical surface 132b. After the reflection level, the area of the spot (the same as the variation of the spot. When the cat ray rib along the optical axis: ί: lens After the 131 and the second lens 132 are projected, the angle between the 31 and the second lens 132 is zero, and the main lens is The offset rate generated by the drawing direction is zero, so that the image is formed on the sense level 15 after 11 M346805', and when projected on the sense level I5, the person is incident on the clip formed by the first lens 131 and the second lens 132 and the optical axis. The radii are not zero, the offset rate generated in the main scanning direction is not zero, and the projection length in the main scanning direction is larger than the light spot formed by the scanning ray 11la. This case is also the same in the sub-scanning direction. Scanning from the scanning light llla • The light spot formed by the light will also be larger; therefore, the light spots 2b, 2c imaged on the photosensitive drum 15 are of a kind of elliptical shape, and the area of 2b, 2c is larger than 2a. And the length of the spot for scanning the light on the reflecting surface of the microelectromechanical mirror 10 in the main scanning direction (γ = φ direction) and the scanning direction (X direction), and Ga and Gb are the Gaussian Beams of the scanning light (GaussianBeams) The beam radius 'in the γ direction and the X direction at a light intensity of 13.5% is as shown in Fig. 5, and only the description of the beam radius in the γ direction is shown in Fig. 5. In the above, the two slices of the creation The lens can reflect the scanning light of the microelectromechanical mirror 10, and the Gaussian beam The ray is corrected for distortion (dist〇rti〇n), and the relationship between time-angular velocity is converted into time-distance relationship. In the main scanning direction and the sub-scanning direction, the beam radius of the scanning ray in the X direction and the γ direction is twisted. A certain magnification of each angle of the lens produces a spot on the imaging surface to provide a solution that meets the requirements. To achieve the above effect, the two-piece ίθ lens is on the first optical surface 131a of the first lens 131. Or the third optical surface 132a or the fourth optical surface 132a of the second optical surface 132a and the second lens 132 may be designed in a main scanning direction or a sub-scanning direction by using a spherical curved surface or an aspherical curved surface, and if an aspherical curved surface design is used, The aspherical surface is based on the following surface equation: 1 · Anamorphic equation + Ar]^\-Ap)X2 +(l + ^p)72]2 z {Cx)X2+{Cy)Y2 1 + + Kx)(Cx)2 X2 - (1 + Ky\Cy)2 Y2 br[(\-bp)x2 +(1+^)72]3 +cj(i~cp)x2 +(i+cp)r 12 M346805 • Α[(1—Ζ)Ρ)Ζ2+(1 + Ή (2) where 'Ζ is the distance from the optical axis direction to the tangent plane (SAG) ' (^ and <^ respectively X direction and Curvature of the direction; especially with the heart knife, the conic coefficient of the X direction and the γ direction (C〇nic c〇egjcient); 戽, a, q, and 仏 are rotationally symmetric (r〇tati〇naUy Symmetrical portion of the four times, six people and eight people and ten people power cone deformation coefficient (this fine jersey (five) hill (10) this conic); Ap Bp Cp and A respectively non-rotationally symmetric (non_rotationally symmetric φ comp〇nents) They are the deformation coefficients of deformation of four, six, eight, and ten powers respectively (deformati〇nfromthec〇nic); when c〆〆 is simplified to a single aspheric surface. 2 ·% like surface equation (T〇ric equau〇n) Z = Z^ +_{Cxy)X^^ i+

Cxy = —.—\___ (l/Cx)-Zy Z;;=^S^F+i?W6 —⑶ ❿ 其中,Z為鏡片上任一點以光軸方向至〇點切平面的距離 (SAG); 分別γ方向與χ方向之曲率(cu喊㈣; '為γ 方向之圓錐魏(Conie eGeffident) ; w 58私。為四次、六 次、八次、十次冪之係數(他〜驗order coeffldents) def_ati(m from the conic),當Cx=c,j^ =4=A=Cp='=()則簡化為單一球 面0 ^能使掃描光線在目標物上之成像面上轉等掃描速度,舉 例而0 ’在兩個相同的時間間隔内,維持兩個光點的間距相等; 本創作之二料ίθ 可轉描规ma輯描統職之 13 M346805 間’藉由第—鏡片131及第二鏡#132進行掃描光線出射角之修 正,使相同的時間間隔的兩掃描光線,經出射角度修正後,於成 像的感光鼓15上形成的兩個光點的距離相等。更進一步當雷射 光束m、經由微機電反射鏡10反射後,其高斯光束半^仏田與田⑼Cxy = —.—\___ (l/Cx)-Zy Z;;=^S^F+i?W6 —(3) ❿ where Z is the distance from the optical axis direction to the tangent plane (SAG) of any point on the lens ; respectively, the curvature of the γ direction and the χ direction (cu shout (four); 'Conie eGeffident for the γ direction; w 58 private. The coefficient of four, six, eight, ten powers (he ~ check order Coeffldents) def_ati(m from the conic), when Cx=c,j^=4=A=Cp='=() is simplified to a single sphere 0 ^ enables the scanning light to be scanned on the imaging surface of the target Speed, for example, 0' maintains the spacing of the two spots equally in two identical time intervals; the second material of the creation ίθ can be converted to the rule of the 13th M346805's by the first lens And the second mirror #132 performs the correction of the scanning light exit angle, so that the two scanning rays of the same time interval are corrected by the exit angle, and the distances of the two light spots formed on the imaged photosensitive drum 15 are equal. Further After the laser beam m is reflected by the microelectromechanical mirror 10, its Gaussian beam half is 仏田和田(9)

較大’如果此掃描光線經過微機電反射鏡1〇與感光鼓i5之距離 後,高斯光束半徑Ga與Gb將更大,不符合實用解析度要求;本 創作之二片式職片進-步可將微機電反射鏡1G反射的掃描光線 113a至掃描光線113b之間形成Ga與⑼較小的高斯光束,進行 聚焦於成像的感光鼓15上產生較小的光點;再者,本創作之二片 式历鏡片更可將成像在感光鼓15上的光點大小均勻化(限網;一 符合解析度要麵顧内)’崎最佳的解析效果。 本創作之二>{式fe鏡>{包含,由微機電反射鏡lG依序起算, 為一第-鏡片131及第二鏡片132’第一鏡片131為一新月形且凹 面在微機電反射鏡1G侧之鏡片及第二鏡片為—雙凹形鏡片所構 成,其中第-鏡片131财第-光學面131a及第二光學面服, 係將微機電反繼10反射之角度與時_雜_之掃描光線光 點轉換成距離與咖為線性_之掃描光線光點;針第二鏡片 132具有第三光學φ啦及第四絲面⑽,係將第—鏡片⑶ 線修正聚光於目標物上;藉由該二片式扭鏡片將微機電 反射鏡1〇反射之掃描光線於感光鼓15上成像’·其中,第一光學 面131a、第二光學面131b、第三光學面⑽及第四光學面⑽ 在主掃描方向至少有—個為非球面所構成之光學面、第一 ^、第二光學面131b、第三光學面132a及第四光學面1325在 方向可至)有一個為非球面所構成之光學面或在副婦描方 。句使用球面所構成之光學面。更進—步,在第—鏡片⑶及第 M346805 二鏡片132構成上,在光學效果上,本創作之二片式扭鏡片在 主知描方向進一步滿足式(4)〜式(5)條件: (4) ⑶ (6) ⑺ 0.8<^1±^1±Α<1.6 /(i)r -2·〇<Α_<—1·〇 ,(2)r 或,在主掃描方向滿足式(6) ·/⑴少 J (2)y 且在副掃描方向滿足式(7)Larger 'If the scanning light passes through the distance between the microelectromechanical mirror 1〇 and the photosensitive drum i5, the Gaussian beam radius Ga and Gb will be larger, which does not meet the requirements of practical resolution; the two-piece job of this creation is step-by-step. The scanning light ray 113a reflected by the microelectromechanical mirror 1G to the scanning light ray 113b forms Ga and (9) a smaller Gaussian light beam, and the photosensitive drum 15 focused on the image forming a smaller spot; further, the creation The two-piece calendar lens can evenly equalize the size of the spot formed on the photosensitive drum 15 (limited to the net; one conforms to the resolution). The second embodiment of the present invention includes a micro-electromechanical mirror 1G, which is a first lens 131 and a second lens 132. The first lens 131 has a crescent shape and a concave surface. The lens of the electromechanical mirror 1G side and the second lens are composed of a double concave lens, wherein the first lens 131-optical surface 131a and the second optical surface are angles of time for reflecting the microelectromechanical 10 The scanning light spot is converted into a scanning light spot whose distance is linear and linear; the second lens 132 has a third optical φ and a fourth silk surface (10), and the first lens (3) line is corrected and concentrated. On the target object, the scanning light reflected by the microelectromechanical mirror 1 is imaged on the photosensitive drum 15 by the two-piece twisted lens, wherein the first optical surface 131a, the second optical surface 131b, and the third optical surface (10) and the fourth optical surface (10) at least one of the optical surfaces formed by the aspherical surface in the main scanning direction, the first ^, the second optical surface 131b, the third optical surface 132a, and the fourth optical surface 1325 are in the direction) There is an optical surface that is made up of an aspheric surface or a square in the side. The sentence uses the optical surface formed by the spherical surface. Further, in the optical lens effect of the first lens (3) and the M346805 two lens 132, the two-piece twist lens of the present invention further satisfies the conditions of the formula (4) to the formula (5) in the main scanning direction: (4) (3) (6) (7) 0.8<^1±^1±Α<1.6 /(i)r -2·〇<Α_<-1·〇, (2)r or, satisfies in the main scanning direction (6) ·/(1) Less J (2)y and satisfying equation (7) in the sub-scan direction

7.0 <(·^士) + (^--—)/5X <10.0 K\x ^2x A4jc 其中,f⑴y為第一鏡片131在主掃描方向之焦距、f(2)Y為第二 鏡片132在主掃描方向之焦距、由為θ=〇。第一鏡片131目標物侧 光學面至第二鏡片132微機電反射鏡10侧光學面之距離、山為 θ=0°第二鏡片132厚度、山為θ=0。第二鏡片132目標物侧光學面 至目標物之距離,fsx為二片式扭鏡片在副掃描方向之複合焦距 (combination focal length)、fsY為二片式历鏡片在主择描方向之複 合焦距、Rix第i光學面在副掃描方向的曲率半徑;~為第i光學 面在主掃描方向的曲率半徑;1^與仏2為第一鏡片131與第二鏡 片 132 之折射率(refraction index)。 再者,本創作之一片式ίθ鏡片所形成的光點均一性,可以掃 描光線在感光鼓15上之光束大小的最大值與最小值的比值δ表 示,即滿足式(8): 〇.4<^ = £^(^J /〇χ maWJ ⑻ 更進一步,本創作之二片式历鏡片所形成的解析度,可使用 Imax為微機電反射鏡10反射面上掃瞄光線的光點經掃描在减光鼓 15 M346805 15上光點最大㈣比值與η*為微機電 線的光點鱗描錢級I5上先崎小㈣比值^ 足式(9)及(10), %7.0 <(·^士) + (^---)/5X <10.0 K\x ^2x A4jc where f(1)y is the focal length of the first lens 131 in the main scanning direction, and f(2)Y is the second lens The focal length of 132 in the main scanning direction is θ = 〇. The distance from the target side optical surface of the first lens 131 to the optical surface of the second lens 132 microelectromechanical mirror 10 side, the mountain is θ = 0°, the thickness of the second lens 132, and the mountain is θ = 0. The second lens 132 is the distance from the object side optical surface to the target object, fsx is the combined focal length of the two-piece torsional lens in the sub-scanning direction, and fsY is the composite focal length of the two-piece lens in the main selection direction. The radius of curvature of the i-th optical surface of the Rix in the sub-scanning direction; ~ is the radius of curvature of the i-th optical surface in the main scanning direction; and 1 and 仏2 are the refractive indices of the first lens 131 and the second lens 132 (refraction index) . Furthermore, the spot uniformity formed by one of the ίθ lenses of the present invention can be expressed by the ratio δ of the maximum value to the minimum value of the beam size of the light on the photosensitive drum 15, that is, satisfying the formula (8): 〇.4&lt ;^ = £^(^J /〇χ maWJ (8) Further, the resolution of the two-piece lens of this creation can be scanned using Imax as the spot of the scanning light on the reflecting surface of the microelectromechanical mirror 10. On the dimming drum 15 M346805 15 the maximum spot (four) ratio and η* is the spot of the microcomputer wire. The scale of the I5 is small (four) ratio ^ foot type (9) and (10), %

Vn ,max(^ -Sn) (¾ .D min〇V\) <0.10 (n) <0.10 -不’即可滿(9)(10) 八中a/、Sb為感光豉15上掃瞄光線形成的一 m之長度、s為感光鼓15上最小光點與最大 s , 1G反射面上細光線的光點與感光鼓15 光點在主斤方广、Sb0為微機電反射鏡10反射面上掃晦光線的 先點在主知描方向及副掃描方向之長度。 n本創作更加明確詳實’兹列舉較佳實施例並配合下列圖 不,將本創作之結構及其技術特徵詳述如後·· 描裝’乃是針對本創作微機電雷射掃 下^揭鏡片之主要構成70件而作說明,因此本創作以 下所揭不之實施例雖是應驗―微機電雷射掃描裝置中, 般具有微機電雷射掃描裝置而言,除了本創作所揭示之二片式扭 t二ί他結構乃屬—般通知之技術’因此—般在此領域中熟 心此項技藝之人士瞭解,本創作所揭示微機電雷射掃描裝置之二 2 ίθ鏡片之構成元件並不限制於以下所揭示之實施例結構,也 就疋該微觀雷崎純置之二収fe削之各構成元 以 =于=多改變、修改、甚至等效變更的,例如:第一鏡片i3i及 =鏡片132之醇伟設計或面型設計、材質翻 專並不限制。 M346805 <第一實施例> 請參_ 3及圖心其中圖6係為本創作 鏡片之掃描光線之實施例之光學路徑圖 "·见及第二 片之第-鏡片131及-第二鏡片二片式历鏡 形且凹面在微機電反射鏡10侧之鏡片,其中第二新月 凹形鏡片所構成,在第一鏡片131第一乃 马一雙 ⑽、第二鏡請第三光學面 非球面,個式(2)為非球面公式設計。其光學特性與非球面= 如表一及表二。 少 表一、第一實施例之历光學特性 光學面 曲率半徑(mm) d厚度(mm) !^折射率 MEMS反射面R 〇〇 、一__^rcimuuuii macxj 35.00 1 lens 1 1.527 ΚΓ(Ύ Toroid) Rlx -65.49 6.21 Rly* -29.16 R2(Y Toroid、 R2x -29.08 31.79 R2y* -20.33 lens 2 1.527 R3fY Toroid) R3x 23.44 5.00 R3y* -313.47 R4fY Toroid) R4x 123.02 108.71 R4y* 38.25 盧光鼓idrum^lRS 3fc 士 一V」L -1、— 〇〇 0.00 % 17 M346805 表二、第一實施例之光學面非球面參數 _莖像曲面方程式係數Torir, equation Coefficient 光學面(optical Ky圓錐係數 surface) (Conic Coefficent) 4th次冪係數 6Λ次幂係數 Order 〇rder Coefficient (B4) Coefficient mA 8th次幂係數 Order Coefficient ΓΒ8) 10th次冪係數 Order (Coefficient Rl* -4.8995E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 R2* R3* R4* -2.2142E+00 1.4721E+01 -8.7774E+00 0.0000E+00 0.0000E+00 •3.1146E-07 -4.8494E-11 -9.3076E-09 0.0000F+OO 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00Vn ,max(^ -Sn) (3⁄4 .D min〇V\) <0.10 (n) <0.10 - not 'can be full (9)(10) eight a/, Sb is the photosensitive 豉15 sweep The length of one millimeter formed by the aiming light, s is the minimum spot and the maximum s on the photosensitive drum 15, the spot of the fine light on the 1G reflecting surface and the spot of the photosensitive drum 15 are wide, and the Sb0 is the microelectromechanical mirror 10 The first point of the breeze light on the reflecting surface is the length of the main scanning direction and the sub-scanning direction. n This creation is more clear and detailed. 'The preferred embodiment is listed and the following diagrams are not included. The structure and technical features of this creation are detailed as follows. · The description is based on the micro-electromechanical laser scanning of this creation. The main components of the lens are described as 70 pieces. Therefore, the embodiments disclosed in the present invention are not limited to the embodiment of the micro-electromechanical laser scanning device, except for the micro-electromechanical laser scanning device. The singularity of the film is a technique of notification. Therefore, those who are familiar with this skill in this field understand that the components of the 2 ί θ lens of the MEMS laser scanning device disclosed in the present disclosure. It is not limited to the structure of the embodiment disclosed below, that is, the constituent elements of the micro-recovery of the micro-recovery are changed, modified, and even equivalently changed, for example, the first lens. The i3i and = lens 132 alcohol design or surface design, material translation is not limited. M346805 <First Embodiment> Please refer to _ 3 and the figure of FIG. 6 which is the optical path diagram of the embodiment of the scanning light of the authoring lens "·see the second film of the first lens-131 and - The second lens is a lens with a concave shape on the side of the microelectromechanical mirror 10, wherein the second crescent lens is formed, and the first lens 131 is a first pair of horses (10), and the second lens is third. The optical surface is aspherical, and the formula (2) is an aspheric formula. Its optical properties and aspherical surface = as shown in Table 1 and Table 2. Less Table 1 , Optical Characteristics of the First Embodiment Optical Surface Curvature Radius (mm) d Thickness (mm) !^ Refractive Index MEMS Reflecting Surface R 〇〇, a __^rcimuuuii macxj 35.00 1 lens 1 1.527 ΚΓ (Ύ Toroid Rlx -65.49 6.21 Rly* -29.16 R2(Y Toroid, R2x -29.08 31.79 R2y* -20.33 lens 2 1.527 R3fY Toroid) R3x 23.44 5.00 R3y* -313.47 R4fY Toroid) R4x 123.02 108.71 R4y* 38.25 Lu Guang drum idrum^lRS 3fc士一V"L -1, - 〇〇0.00 % 17 M346805 Table 2. Optical surface aspheric parameters of the first embodiment _ stem image surface equation coefficient Torir, equation Coefficient optical surface (optical Ky cone coefficient surface) (Conic Coefficent) 4th power coefficient 6Λ power coefficient Order 〇rder Coefficient (B4) Coefficient mA 8th power coefficient Order Coefficient ΓΒ8) 10th power coefficient Order (Coefficient Rl* -4.8995E+00 0.0000E+00 0.0000E+00 0.0000 E+00 0.0000E+00 R2* R3* R4* -2.2142E+00 1.4721E+01 -8.7774E+00 0.0000E+00 0.0000E+00 •3.1146E-07 -4.8494E-11 -9.3076E-09 0.0000F+OO 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

經由此所構成的二片式历鏡片之光學面,f⑴1〇2.512、f(2)Y= _64·358、fsx=42.255、fsY=-600 (mm)可將掃描光線轉換成距離與 時間為線性之掃描光線光點,並將微機電反射鏡1〇上光點 Sa〇=18J7(pm)、Sb()= 3918·086(μιη)掃描成為掃描光線,在感光鼓 15上進行聚焦,形成較小的光點6,並滿足式(4)〜式(10)之條件, 如表二、感光鼓15上以中心軸ζ軸在γ方向距離中心軸γ距離 (mm)的光點之高斯光束直徑(μιη),如表四;且本實施例之光點分 布圖如圖7所示。圖中,單位圓直徑為〇〇5mm。 查兰丄g二實施例滿足岭(半袅 ^3 + ^4 + ^ ' ------The optical surface of the two-piece calendar lens thus constructed, f(1)1〇2.512, f(2)Y=_64·358, fsx=42.255, fsY=-600 (mm) can convert the scanning light into a linear distance and time. Scanning the light spot, and scanning the microelectromechanical mirror 1 〇Upper spot Sa〇=18J7(pm), Sb()= 3918·086(μιη) into scanning light, focusing on the photosensitive drum 15, forming a comparison a small spot 6 and satisfying the conditions of the formulas (4) to (10), as shown in Table 2, a Gaussian beam of a light spot on the photosensitive drum 15 with a central axis ζ axis in the γ direction from the central axis γ distance (mm) The diameter (μιη) is as shown in Table 4; and the light spot distribution map of this embodiment is as shown in FIG. In the figure, the unit circle has a diameter of 〇〇5 mm. The two examples of Chalan丄g satisfy the ridge (half 袅 ^3 + ^4 + ^ ' ------

Ady 1.4194 f{2)Y -1.6892 0.7577 1.4785 0.4728 0.0656 0.0310 f(2)y 主掃描方向 虽!1掃描方向 max〇V\) (n) 7mm — M346805 表四、第-實施碱級上光點高斯絲錄的最大值 -99 923 'η '一" * -79.633 -59.820 -40.216 -20.360 0.000Ady 1.4194 f{2)Y -1.6892 0.7577 1.4785 0.4728 0.0656 0.0310 f(2)y Main scanning direction! 1 scanning direction max〇V\) (n) 7mm — M346805 Table 4, the first implementation of the alkali-level glazing point Gauss The maximum value of silk record -99 923 'η '一 " * -79.633 -59.820 -40.216 -20.360 0.000

Max(2Ga, 2Gb) 2.10E-02 1.94E-02 9 ----J°9E_〇3 1.05Ε-02 9.16Ε-03 2.16Ε-02 2.85Ε-02 <第二實施例> 本實施你!之二片式历鏡片之第一鏡片131及一第二鏡片 132 ’其中第一鏡>} 131為新月形且凹面在微機電反射鏡1〇侧之 鏡片’其中第二鏡片132為—雙凹形鏡片所構成,在第一鏡片131 第-光學面131a與第二光學面⑽、第二鏡片132第三光學面 ma係為非球面,使用式(3)為非球面公式設計;在第二鏡片出 第四光學面mb使用式(2)為非球面公式設計。其光學特性與 面參數如表五及表六。 、 表五、第二實施例之扭光學特性 nd折射率 tiiickness)_(refraction index) 1 1.527 光學面 (optical surface) (curvature MEMS反鼾面R lens 1 R1 (Ύ Toroid、 Rlx -151.54 Rly* -53.55 R2fY Toroid R2x -28.86 R2y* -26.53 lens 2 R3fY Toroid R3x 30.40 R3y* -68.92 R4fAnamorphic) R4x* 7602.53 R4y* 48.87 感光鼓idrum)R5 〇〇 *表示非球面 35.00 6.86 30.00 1.527 6.14 98.40 0.00 19 M346805 • 表六、第二實施例之光學面非球面參數 光學面(optical 壤像曲面方程式係數T〇ric equation Coefficient surface) 以圓錐係數牠次冪係數 6th次冪係數8th次幂係數l〇th次冪係數 (Conic Order 〇rder 0rder Order -Coefficent) Coefficient (B4) Coefficient Coefficient iB8) Coe伍cient Rl* -2.7293E+01 2.7013E-06 ---- R2* -4.1136E+00 4.8140E-07 R3*_2.0319E+00 6.1497E-07 0.0000E+00 0.0000E+00 -1.0495E-09 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 -1.5106E-16 橫像曲面方程式係數(Anam〇rphic equati〇n e()efj]cent)Max(2Ga, 2Gb) 2.10E-02 1.94E-02 9 ----J°9E_〇3 1.05Ε-02 9.16Ε-03 2.16Ε-02 2.85Ε-02 <Second embodiment> The first lens 131 and the second lens 132 of the two-piece calendar lens are implemented: wherein the first mirror >} 131 is a crescent-shaped lens having a concave surface on the side of the microelectromechanical mirror 1 'the second lens 132 is a double concave lens, and the first optical surface 131a and the second optical surface (10) of the first lens 131 and the third optical surface ma of the second lens 132 are aspherical, and the equation (3) is an aspherical formula. Design; in the second lens, the fourth optical surface mb is designed using the formula (2) as an aspherical formula. Its optical characteristics and surface parameters are shown in Tables 5 and 6. Table 5, Twist optical characteristics of the second embodiment nd refractive index tiiickness) _ (refraction index) 1 1.527 optical surface (curvature MEMS reverse surface R lens 1 R1 (Ύ Toroid, Rlx -151.54 Rly* - 53.55 R2fY Toroid R2x -28.86 R2y* -26.53 lens 2 R3fY Toroid R3x 30.40 R3y* -68.92 R4fAnamorphic) R4x* 7602.53 R4y* 48.87 Drum idrum) R5 〇〇* indicates aspheric 35.00 6.86 30.00 1.527 6.14 98.40 0.00 19 M346805 • Table 6. Optical surface aspherical parameter optical surface of the second embodiment (optical equation Coefficient surface) with conical coefficient, its power coefficient, 6th power coefficient, 8th power coefficient, l〇th power coefficient ( Conic Order 〇rder 0rder Order -Coefficent) Coefficient (B4) Coefficient Coefficient iB8) Coe cient Rl* -2.7293E+01 2.7013E-06 ---- R2* -4.1136E+00 4.8140E-07 R3*_2. 0319E+00 6.1497E-07 0.0000E+00 0.0000E+00 -1.0495E-09 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 -1.5106E-16 Horizontal image surface equation coefficient (Anam〇rphic equati〇ne()efj]cent )

Ky圓錐係數 (Conic Coefficent) R4* 次幂係數 6th次冪係數8th次幂係數10th次冪係數Ky Coefficient (Round Coefficient) R4* Power Coefficient 6th Power Coefficient 8th Power Coefficient 10th Power Coefficient

Order Order 〇rder OrderOrder Order 〇rder Order

Coefficient (AR) Coefficient TRR) Coefficient (CR) Coefficient iDR)Coefficient (AR) Coefficient TRR) Coefficient (CR) Coefficient iDR)

Kx圓錐係數 (Conic Coefficent Order Order Order -1.5106E-16 loth次幂係數 OrderKx Cone Coefficient (Conic Coefficent Order Order Order -1.5106E-16 loth Power Coefficient Order

-j>3632E-07 0.Q00QE+00 2.1921E-14 4th次幂係數6th次冪係數8th次幂係數 經由此所構成的二片式扭鏡片,w= 91 725、f(2)Y= a 、 fsx=40.302、fsY=-480 (mm)可將掃描光線轉換成距離與時 之知描先㈣點’並顧魏反概1G絲 ‘j 測场順描成為掃描光線,在感光鼓ls上進㈣=怎 小的光點8,並滿邪)〜式⑽之條件,如表七;感 〔二 心轴Z軸在γ方向距離中心軸γ距離 ::1 ㈣,如表八;且本實關之光點 ^之喊光束直徑 位圓直徑為〇.〇5職。 '圖8所不。圖中,單 20 M346805 表七、第二實施例滿足條件表 c/3 ++ d5 1.4668 -1.8466 /(i)y d5-j>3632E-07 0.Q00QE+00 2.1921E-14 4th power coefficient 6th power coefficient 8th power coefficient via this two-piece twist lens, w= 91 725, f(2)Y= a , fsx=40.302, fsY=-480 (mm) can convert the scanning light into the distance and the time to know the first (four) point 'and the Wei anti-general 1G wire 'j field to read the scanning light, on the photosensitive drum ls Into (four) = how small light spot 8, and full of evil) ~ the condition of the formula (10), as shown in Table VII; Sense [two-axis Z-axis in the γ direction from the central axis γ distance:: 1 (four), as shown in Table VIII; The light of the real point of the light ^ shouting beam diameter circle diameter is 〇. 〇 5 positions. 'Figure 8 does not. In the figure, single 20 M346805 Table VII, the second embodiment satisfies the condition table c/3 ++ d5 1.4668 -1.8466 /(i)y d5

f(2)Y 主掃描方向 fsY * ( ⑻1 一 1),(〜2 — 1) f(i)y f(2)y 副掃描方向 δf(2)Y Main scanning direction fsY * ( (8)1 - 1), (~2 - 1) f(i)y f(2)y Sub-scanning direction δ

minH) max〇V^y _max〇V&)、(n〇) _ miH) 1.9894 1.3486 0.4446 0.0698 0.0311 表八、第 ‘實施例感光鼓上光點高斯光束錄的最大值 Y -107.977 -100.943 -80 1»^ΓΓΖ:-- W.187 -59.820 -39.831 -19.959 0.000minH) max〇V^y _max〇V&), (n〇) _ miH) 1.9894 1.3486 0.4446 0.0698 0.0311 Table VIII, the maximum value of the Gaussian beam recording on the photosensitive drum of the first embodiment Y -107.977 -100.943 -80 1»^ΓΓΖ:-- W.187 -59.820 -39.831 -19.959 0.000

Max(2Ga,2Gb) 1.03E-02 9.37E-03 7 1胙 μ …一 -----9.12Ε-03 1.27Ε-02 1.06Ε-02 7.09Ε-03Max(2Ga,2Gb) 1.03E-02 9.37E-03 7 1胙 μ ...一 -----9.12Ε-03 1.27Ε-02 1.06Ε-02 7.09Ε-03

<第三實施例> 本實施例之二片式fe鏡片之第一鏡片131及一第二鏡片 132 ’其中第一鏡片131為新月形且凹面在微機電反射鏡1〇侧之 ,片’其中第二鏡片132為一雙凹形鏡片所構成,在第一鏡片131 第一光學面131a與第二光學面131b、第二鏡片132第三光學面 ma係為非球面’使用式(3)為非球面公式設計;在第二鏡片 第四光學面mb使用式⑺為非球面公式設計。其光學 面參數如表九絲十。 谓興非球 21 M346805 表九、第三實施例之f〇光學特性 光學面 曲率半徑(mm) (optical surface) (curvature) d厚度(mm) (thickness、 nd折射率 (refraction index) MEMS反射面R 〇〇 33.34 1 lens 1 R1 (Ύ Toroid) i.jZ/ Rlx -861.62 7.46 Rly* -60.80 R2fY Toroid R2x -30.46 26.44 R2y* -29.49 lens 2 1.527 R3iY Toroid、 R3x 31.43 5.00 R3y* -65.75 R4fAnamorohic) R4x* 4222.69 104.00 R4y* 0.02 感光鼓rdrum)R5 * - Jl- -r- OO 0.00 *表示非球面<Third Embodiment> The first lens 131 and the second lens 132' of the two-piece fe lens of the present embodiment, wherein the first lens 131 is crescent-shaped and concave on the side of the microelectromechanical mirror 1 The second lens 132 is a pair of concave lenses, and the first optical surface 131a and the second optical surface 131b of the first lens 131 and the third optical surface ma of the second lens 132 are aspherical. 3) Designed for the aspherical formula; the fourth optical surface mb of the second lens is designed using the formula (7) as an aspherical formula. The optical surface parameters are as shown in Table 9.喜兴球 21 M346805 Table IX, the third embodiment of the optical characteristics of the optical surface radius of curvature (mm) (optical surface) (curvature) d thickness (mm) (thickness, nd refractive index (refraction index) MEMS reflective surface R 〇〇33.34 1 lens 1 R1 (Ύ Toroid) i.jZ/ Rlx -861.62 7.46 Rly* -60.80 R2fY Toroid R2x -30.46 26.44 R2y* -29.49 lens 2 1.527 R3iY Toroid, R3x 31.43 5.00 R3y* -65.75 R4fAnamorohic) R4x * 4222.69 104.00 R4y* 0.02 Drum rdrum) R5 * - Jl- -r- OO 0.00 * indicates aspheric

表十、第三實施例之光學面非球面參數 環像曲面方程式係數T〇ric equation Coefficient 无學面(optical Ky圓錐係數 4th次幂係數 6th次冪係數 8th次冪係數 10Λ次幂係數 surtace) (Conic Order Order Order Order Coefficent) Coefficient (B4) Coefficient Coefficient Coefficient Rl* -3.4458E+01 2.7278E-06 0.0000E+00 0.0000E+00 0.0000E+00 R2* -4.9048E+00 6.6294E-07 0.0000E+00 0.0000E+00 0.0000E+00 _ R3* 1.4352E+00 5.4938E-07 -1.2559E-09 1.9341E-14 -1.6358E-16 橫像曲面方程式係數(Anamorphic equation coefficent) Ky圓錐係數 4th次幂係數 6th次幂係數 8th次冪係數 10th次冪係數 (Conic Order Order Order Order Coefficent) Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient fDR) 一 R4* -1.8269E+01 -2.0899E-07 0.0000E+00 3.0720E-14 0.0000E+00 Kx圓錐係數 4tii次冪係數 6th次冪係數 8th次冪係數 10th次冪係數 (Conic Order Order Order Order Coefficent) Coefficient (AP) Coefficient (BP) Coefficient (CP) Coefficient __ R4* -1.3932E+04 5.925 IE-01 0.0000E+00 0.0000E+00 0.0000E+00 經由此所構成的二片式ίθ鏡片,f⑴Y= 100.396、f(2)Y=-58.178、 &χ=38·34、fsY=-318.7 (mm)可將掃描光線轉換成距離與時間為線性 之掃描光線光點,並將微機電反射鏡10上光點SaG= 23.62〇im;)、 22 M346805Table 10 and the third embodiment of the optical surface aspherical surface ring image surface equation coefficient T〇ric equation Coefficient no learning surface (optical Ky cone coefficient 4th power coefficient 6th power coefficient 8th power coefficient 10Λ power coefficient surtace) Coefficient (B4) Coefficient Coefficient Coefficient Rl* -3.4458E+01 2.7278E-06 0.0000E+00 0.0000E+00 0.0000E+00 R2* -4.9048E+00 6.6294E-07 0.0000E +00 0.0000E+00 0.0000E+00 _ R3* 1.4352E+00 5.4938E-07 -1.2559E-09 1.9341E-14 -1.6358E-16 Anamorphic equation coefficent Ky cone coefficient 4th times Power factor 6th power factor 8th power factor 10th power factor (Conic Order Order Order Coefficent) Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient fDR) A R4* -1.8269E+01 -2.0899E-07 0.0000E+00 3.0720E-14 0.0000E+00 Kx Cone Coefficient 4tii Power Coefficient 6th Power Coefficient 8th Power Coefficient 10th Power Coefficient (Conic Order Order Order Coefficent) Coefficient (AP) Coefficient (BP) Coefficie Nt (CP) Coefficient __ R4* -1.3932E+04 5.925 IE-01 0.0000E+00 0.0000E+00 0.0000E+00 The two-piece ίθ lens thus constructed, f(1)Y=100.396, f(2)Y= -58.178, &χ=38·34, fsY=-318.7 (mm) converts the scanning light into a scanning light spot whose distance is linear with time, and the spot of the microelectromechanical mirror 10 is SaG= 23.62〇im ;), 22 M346805

Sb0= 3667.96㈣掃描成為掃描光線,在 成較小的光點10,並滿足(4)〜式(1〇)之條先豉15上進行聚焦,形 15上以中心軸z軸在γ方向距離中.、,’如表十-;感光鼓 斯光束直徑㈣,如表十二;本實齡 的光點之高 圖中,單位圓餘為0.05mm。 _刀布圖如圖9所示。 牛表 /(2)r 主掃描方向 fsrSb0=3667.96(4) Scanning becomes a scanning ray, focusing on a sigma 15 which is a small spot 10 and satisfies (4)~(1〇), and the distance of the center axis z-axis in the γ direction In the middle, and, as shown in Table 10, the diameter of the photosensitive drum beam (four), as shown in Table 12; in the height map of the actual light spot, the unit circle is 0.05 mm. The _ knife layout is shown in Figure 9. Cattle table / (2) r main scanning direction fsr

Xndx -1) , (nd7 -l) r(i)y f(2)y 5 — minQVD max〇V&) 一 max〇y\) 酿一 (Ho)min〇y\) (^bO * ^aO ) V, 1.3491 -1.7875 1.2142 1.2426 0.4498 0.0732 0.0329 表十二、第三實 施例感光紅光點高斯光束直徑 的最大值 -29.882 -9.978 0.000 Y -108.083 -90.623 -69^Γ^^Xndx -1) , (nd7 -l) r(i)yf(2)y 5 — minQVD max〇V&) a max〇y\) brewing one (Ho)min〇y\) (^bO * ^aO ) V, 1.3491 -1.7875 1.2142 1.2426 0.4498 0.0732 0.0329 Table 12, the maximum value of the photosensitive red dot Gaussian beam diameter of the third embodiment -29.882 -9.978 0.000 Y -108.083 -90.623 -69^Γ^^

Max(2Ga,2Gb) 1.34E-02 1.64E-02 1.88E-09 i ---L73E-02 <第四實施例> 本實施例之二片式ίθ鏡片之第一鏡片131及一第二鏡片 m ’其中第-鏡片m為新月形且凹面在微機電反射鏡川侧之 鏡片,其中第二鏡>1 132為-雙凹形鏡片所構成,在第一鏡片⑶ 23 M346805 第光予面IMa與第二光學面⑽、第二鏡片⑶第三光學面 ,係為非球面,使用式⑶為非球面公式設計;在第二鏡片132 第四光學面職使用式(2)為非球面公式設計。其光學特性 面參數如表十三及表十四。 农 表十三、第四實施例之伤光學特性 光,面 曲率半徑(mm) d厚度(mm) η(ι折射率 MEMS及射而R OO -—------ l 111UCA ) 41.93 1 lens 1 1.527 R1 (Y Toroid、 Rlx -188.48 6.57 Rly* -73.02 R2iY Toroid、 R2x -30.68 24.50 R2y* -36.39 lens 2 1.527 R3fY Toroid^ R3x 34.23 5.00 R3y* 44.18 R4fAnamorphic) R4x* 31859.04 90.18 R4y* 111.07 感光鼓idrum)R5 OO 0.00 *表示非球面 24 M346805 表十四、第四實施例之光學面非球面參數 環像曲面方裎式係數Toric equation Coefficient 光學面(optical Ky圓錐係數 surface) (ConicMax(2Ga, 2Gb) 1.34E-02 1.64E-02 1.88E-09 i ---L73E-02 <Fourth Embodiment> The first lens 131 and one of the two-piece ίθ lens of the present embodiment The second lens m' wherein the first lens is a crescent moon and the concave surface is on the side of the microelectromechanical mirror, wherein the second lens > 1 132 is a double concave lens, and the first lens (3) 23 M346805 The front surface IMa and the second optical surface (10) and the second optical surface of the second lens (3) are aspherical surfaces, and the equation (3) is designed as an aspherical formula; in the second optical lens 132, the fourth optical surface uses the equation (2) as a non-spherical surface. Spherical formula design. The optical characteristics of the surface parameters are shown in Table 13 and Table 14. Nineteenth, fourth embodiment of the injury optical characteristics of light, surface radius of curvature (mm) d thickness (mm) η (ι refractive index MEMS and shot and R OO - ------- l 111UCA) 41.93 1 Lens 1 1.527 R1 (Y Toroid, Rlx -188.48 6.57 Rly* -73.02 R2iY Toroid, R2x -30.68 24.50 R2y* -36.39 lens 2 1.527 R3fY Toroid^ R3x 34.23 5.00 R3y* 44.18 R4fAnamorphic) R4x* 31859.04 90.18 R4y* 111.07 Drum Idrum)R5 OO 0.00 * indicates aspherical surface 24 M346805 Table 14. Optical surface aspherical parameters of the fourth embodiment. Ring surface coefficient Toric equation Coefficient Optical surface (optical Ky conic coefficient surface) (Conic

Coefficent) 4th次冪係數 5ΪΓ次幂係數 8th次幂係數 10th次冪係數 Order Order Order OrderCoefficent) 4th power factor 5ΪΓ power factor 8th power factor 10th power factor Order Order Order Order

Coefficient (B4) Coefficient (B6) Coefficient (B8) Coefficient -2.3803E+01 2.7403E-06 1.1204E-09 0.0000E+00 0.0000E+00 -4.5934E+00 2.5256E-06 5.7439E-11 0.0000E+00 0.0000E+00 5.5380E-01 3.6151E-06 -2.8152E-09 1.5659E-12 -3.6298E-16 • Ky圓錐係數 (Conic Coefficent) 4th次冪係數 6Λ次幂係數 8th次幂係數 10th次冪係數 Order Order Order Order Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient fDR^ R4* -4.8385E+01 -3.0469E-07 9.4705E-11 4.7886E-16 0.0000E+00 • Kx圓錐係數 (Conic Coefficent) 4th次冪係數 6Λ次冪係數 8th次幂係數 Order Order Order Coefficient (AP) Coefficient (BP) Coefficient (CP) 10th次冪係數 Order Coefficient iDP) R4* -2.7900E+06 5.5496E-01 0.0000E+00 0.0000E+00 0.0000E+00 經由此所構成的二片式 ίθ 鏡片,f(1)Y=129.589、f(2:)Y=_;59J()3、 ί;χ=40·549、fsY=-157.192 (mm)可將掃描光線轉換成距離與時間為 線性之知描光線光點’並將微機電反射鏡1 〇上光點s 一 280·62(μιη)、Sb〇=4059.84&m)掃描成為掃描光線,在感光鼓15= 進仃聚焦’形成較小的光點I2,並滿足⑷〜式⑽之條件,如 五,感光鼓15上以中心軸Z軸在γ方向距離中心 的光點之高斯光束直徑(μιη),如表十六;且 “ (mm 圖如圖10所示。圖中’單位圓直徑為_mm。、Μ之光點分布 25 M346805 表十五、第四實施例滿足條件表Coefficient (B4) Coefficient (B6) Coefficient (B8) Coefficient -2.3803E+01 2.7403E-06 1.1204E-09 0.0000E+00 0.0000E+00 -4.5934E+00 2.5256E-06 5.7439E-11 0.0000E+ 00 0.0000E+00 5.5380E-01 3.6151E-06 -2.8152E-09 1.5659E-12 -3.6298E-16 • Ky Cone Coefficient (Conic Coefficent) 4th Power Coefficient 6Λ Power Coefficient 8th Power Coefficient 10th Power Coefficient Order Order Order Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient fDR^ R4* -4.8385E+01 -3.0469E-07 9.4705E-11 4.7886E-16 0.0000E+00 • Kx Cone Factor (Conic Coefficent) 4th power coefficient 6Λ power coefficient 8th power coefficient Order Order Order Coefficient (AP) Coefficient (BP) Coefficient (CP) 10th power coefficient Order Coefficient iDP) R4* -2.7900E+06 5.5496E-01 0.0000E +00 0.0000E+00 0.0000E+00 The two-piece ίθ lens formed by this, f(1)Y=129.589, f(2:)Y=_;59J()3, ί;χ=40·549 , fsY=-157.192 (mm) can convert the scanning light into a distance and time linear linear light spot 'and the microelectromechanical mirror 1 〇 light spot s 280·62 ( Ιη), Sb〇=4059.84&m) scanning into scanning light, forming a small spot I2 on the photosensitive drum 15=input, and satisfying the conditions of (4) to (10), such as five, on the photosensitive drum 15 The Gaussian beam diameter (μιη) of the Z-axis of the central axis in the γ direction from the center, as shown in Table 16; and “(mm is shown in Figure 10. In the figure, the diameter of the unit circle is _mm. Point distribution 25 M346805 Table fifteen, the fourth embodiment satisfies the condition table

f(\)Y ^(2)Y 主掃描方向 副掃描方向一- δ % f(Oy f(2)y ,) + ( 士- ^lx ^2x 及 3x Αχf(\)Y ^(2)Y Main scanning direction Sub-scanning direction one - δ % f(Oy f(2)y ,) + (士- ^lx ^2x and 3x Αχ

)fsX minH) 臟(v义)-臟n)a。) _ min(V^) 0.9235 -1.5207 0.7577 1.2105 0.5062 0.0028 0.0014 表十六、細實施规級^絲綠紐的最大值 Y -108.008~^99.923 ^7963?Γ------ 一 _ 簾-02 丨露02,, ^ -〇·^6 -20,60 〇.〇〇〇 C第五實施例> 132,Ht例之二片式β鏡片之第—鏡片131及—第二鏡片 妒/,甘/一鏡#131為新月形且凹面在微機電反射鏡10侧之 ί 一上中第二鏡片尸2為—雙凹形鏡片所構成,在第一鏡片131 與第二光學面131b、第二制132第三光學面 第四’使用式(3)為非球面公式設計;在第二鏡片132 面參數^ +」^^2。)為_面公式設計。私科性與非球 26 M346805 表十七、第五實施例之历光學特性 光學面 曲率半徑(mm) (optical surface) (curvature) d厚度(mm) (thickness) nd折射率 (refraction index) MEMS反射面R oo 35.00 1 lens 1 1.491757 R1 (Y Toroich Rlx -9000.00 7.14 Rly* •52.93 R2fY Toroid) R2x -29.93 30.00 R2y* -25.32 lens 2 1.491757 R3fY Toroid) R3x 28.88 5.86 R3y* -67.92 R4(Anamorphic) R4x* 8037.31 98.41 R4y* 43.31 感光鼓idrum)R5 氺主二Jk Irfe工 oo 0.00) fsX minH) dirty (v meaning) - dirty n) a. ) _ min(V^) 0.9235 -1.5207 0.7577 1.2105 0.5062 0.0028 0.0014 Table 16. Fine implementation of the standard ^ silk green button maximum value Y -108.008~^99.923 ^7963?Γ------ A curtain 02 丨露02,, ^ -〇·^6 -20,60 〇.〇〇〇C fifth embodiment> 132, Ht example two-piece beta lens first lens 31 and second lens 妒/ , Gan / one mirror #131 is crescent shaped and concave on the side of the microelectromechanical mirror 10, the second lens body 2 is composed of a double concave lens, in the first lens 131 and the second optical surface 131b The second system 132 third optical surface fourth 'use formula (3) is an aspherical formula design; the second lens 132 surface parameter ^ + "^^2. ) Designed for the _face formula. Private and aspheric 26 M346805 Table 17. Optical characteristics of the fifth embodiment. Optical surface radius of curvature (mm) (optical surface) (curvature) d thickness (mm) (thickness) nd refractive index (refraction index) MEMS Reflective surface R oo 35.00 1 lens 1 1.491757 R1 (Y Toroich Rlx -9000.00 7.14 Rly* • 52.93 R2fY Toroid) R2x -29.93 30.00 R2y* -25.32 lens 2 1.491757 R3fY Toroid) R3x 28.88 5.86 R3y* -67.92 R4(Anamorphic) R4x * 8037.31 98.41 R4y* 43.31 Drum idrum) R5 氺 main two Jk Irfe oo 0.00

表十八、第五實施例之光學面非球面參數 壞像曲面方程式係數Toric equation Coefficient 光學面(optical Ky圓錐係數 surface) (Conic Coefflcent) 4th次冪係數 6th次冪係數 8th次冪係數 Order Order Order Coefficient (B4) Coefficient (B6) Coefficient (R8) 10Λ次冪係數 Order Coefficient Rl* R2* R3* -2.9745E+01 -4.0699E+00 1.9449E+00 2.9200E-06 0.0000E+00 0.0000E+00 3.9682E-07 0.0000E+00 0.0000E+00 4.4576E-07 -1.1663E-09 0 nonOF+no 0.0000E+00 0.0000E+00 -2.9472E-16 檢像曲面方程式係數(Anamorphic equation coefficentl Ky圓錐係數 (Conic Coefficent) 4th次冪係數 6Λ次幂係數 8th次冪係數 10th次冪係數 Order Order 〇rder 〇rder Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient (DR) R4* -1.1170E+01 -3.9867E-07 0.0000E+00 ? 400QF-14 0.0000E+00 Kx圓錐係數 (Conic Coefficent) 4th次冪係數 6Λ次幂係數 8th次冪係數 Order Order 〇r(jer Coefficient (AP) Coefficient (BP^ Coefficient iCP) 10th次幂係數 Order Coefficient (DP、 R4* 4.3379E+04 2.4718E-01 0.0000E+00 0.0000E+00 0.0000E+00 經由此所構成的二片式ίθ鏡片,f⑴υ=92.049、ί^γ= -53.487、 fsX=40.278、fsY=-480 (mm)可將掃描光線轉換成距離與時間為線性 27 M346805 之純先線先點,並將微機電反射鏡Table 18: Optical surface aspherical parameters of the fifth embodiment: Toric equation Coefficient Optical surface (Conic Coefflcent) 4th power coefficient 6th power coefficient 8th power coefficient Order Order Order Coefficient (B4) Coefficient (B6) Coefficient (R8) 10Λ Power Coefficient Order Coefficient Rl* R2* R3* -2.9745E+01 -4.0699E+00 1.9449E+00 2.9200E-06 0.0000E+00 0.0000E+00 3.9682E-07 0.0000E+00 0.0000E+00 4.4576E-07 -1.1663E-09 0 nonOF+no 0.0000E+00 0.0000E+00 -2.9472E-16 Anamorphic equation coefficentl Ky conic coefficient (Conic Coefficent) 4th power coefficient 6Λ power coefficient 8th power coefficient 10th power coefficient Order Order 〇rder 〇rder Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient (DR) R4* -1.1170E+01 - 3.9867E-07 0.0000E+00 ? 400QF-14 0.0000E+00 Kx Cone Coefficient (Conic Coefficent) 4th Power Coefficient 6Λ Power Coefficient 8th Power Coefficient Order Order 〇r(jer Coefficient (AP) Coefficient (BP^ Coefficient iCP) 10th power factor Order Coefficient (DP, R4* 4.3379E+04 2.4718E-01 0.0000E+00 0.0000E+00 0.0000E+00 The two-piece ίθ lens formed by this, f(1)υ=92.049, ί^γ= -53.487, fsX =40.278, fsY=-480 (mm) converts the scanned light into a pure line with a distance of 27 M346805 and a microelectromechanical mirror

Sbo=3918.08(_掃描成為掃 ^ U8.17_)、 成較小的純12,*、ΓΓ 4极15上進行聚焦,形 的先^ 12並滿足(4)〜式⑽之條件,如表十九.咸料 15上以中^軸z軸在γ方向 斜九’感先豉 x r - 中車由Y距離(mm)的光點之高 斯先束直_m),如表二十;且本實施例之辆 示。圖中,單位圓直徑為〇 〇5mm。 · · Θ所 表十九、第五實施例滿足條件表Sbo=3918.08 (_scan becomes sweep ^ U8.17_), into a smaller pure 12, *, ΓΓ 4 pole 15 to focus, the shape of the first ^ 12 and meet the conditions of (4) ~ formula (10), as shown in Table 10 9. On the salt material 15, the z axis in the middle axis is inclined in the γ direction, and the first sensation is xr - the height of the light point of the Y distance (mm) is _m), as shown in Table 20; The vehicle of the embodiment. In the figure, the unit circle diameter is 〇 〇 5 mm. · · Θ 表 Table 19, the fifth embodiment meets the condition table

'⑴r 1.4586 _A_ /(2片 -1.8398 主掃描方向 f Y .^ndl ~1) | (nd2 ~1) f(2)y δ'(1)r 1.4586 _A_ /(2 pieces -1.8398 main scanning direction f Y .^ndl ~1) | (nd2 ~1) f(2)y δ

min(V\) max〇V 乂) _ max(V&) :' (^o*^o) _ minQVD 一—OVD 1.8487 1.4229 0.4433 0.0717 0.0318 表二十、第五實施例感光高斯光束直徑的最大值 Y -108.083 -90.623 ^69.966 -49.784 -29.882 -9.978 0.000Min(V\) max〇V 乂) _ max(V&) :' (^o*^o) _ minQVD I—OVD 1.8487 1.4229 0.4433 0.0717 0.0318 Table XX, the maximum value of the photosensitive Gaussian beam diameter of the fifth embodiment Y -108.083 -90.623 ^69.966 -49.784 -29.882 -9.978 0.000

Max(2Ga?2Gb) 0.00E+00 6.35E-03 4J1E-Q3 7.15E-03 2.82E-03 3.59E-03 4.82E-03 <第六實施例> 本實施例之二片式ίθ鏡片之第一鏡片丨31及一第二鏡片 132,其中第一鏡片131為新月形且凹面在微機電反射鏡1〇侧之 28 M346805 鏡片,其中第二鏡片132為-雙凹形鏡片所構成,在第—鏡片131 第-光學面131a與第二光學面131b、第二鏡片132第三光學面 i32a與第四光學面mb係為非球面,使用式⑺為非球面公式設 計。其光學特性與非球面參數如表二十一及表二十二。 表二十一、第六實施例之ίθ光學特性Max(2Ga?2Gb) 0.00E+00 6.35E-03 4J1E-Q3 7.15E-03 2.82E-03 3.59E-03 4.82E-03 <Sixth embodiment> The two-piece ίθ lens of this embodiment a first lens 丨 31 and a second lens 132, wherein the first lens 131 is a crescent-shaped 28 M346805 lens concave on the side of the microelectromechanical mirror 1 , wherein the second lens 132 is a double concave lens The first optical surface 131a and the second optical surface 131b of the first lens 131 and the third optical surface i32a and the fourth optical surface mb of the second lens 132 are aspherical, and the equation (7) is designed as an aspherical formula. Its optical characteristics and aspherical parameters are shown in Table 21 and Table 22. Table 21, the optical characteristics of ίθ of the sixth embodiment

光學面 曲率半徑(mm) (optical surface) (curvature) d厚度(mm) (thickness) nd折射率 (refraction index、 MEMS反射面R 〇〇 35.00 1 lens 1 1.491757 R1 fAnamorphic) Rlx* -2287.60 6.97 Rly* 127.06 R2iAnamorphic) R2x* 23.72 30.00 R2y* 36.34 lens 2 1.491757 R3 f Anamorohic) R3x* -35.40 6.03 R3y* 70.31 R4fAnamorphic>) R4x* 12242.55 98.55 R4y* -49.90 感先鼓 fdrum)R5 00 氺主二《It t 〇·〇〇 *表示非球面 29 M346805 表二十二、第六實施例之光學面非球面參數 橫像曲面方程式係數(Anamorphic equation coefficent) 光學面(optical Ky圓錐係數 surface) (Conic Coefficent) 如i次幂係數 6th次幂係數 8th次幂係數 10Λ次冪係數 Order Order Order Order Coefficient (AR) Coefficient (BR) Coefficient TCR) Coefficient (DR) Rl* R2* R3* R4* -3.0641E+01 -3.6863E+00 1.4891E+00 -1.0500E+01 -2.8449E-06 -4.7220E-07 -6.3868E-06 4.3018E-07 0.0000E+00 0.0000E+00 1.0061E-09 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 -2.4783E-14 0.0000E+00 0.0000E+00 2.8649E-16 0.0000E+00 光學面(optical surface) Kx圓錐係數 (Conic Coefficent) 4th次冪係數 6tfi次幂係數 Order Order Coefficient fAP) Coefficient mp) 8th次幂係數 Order Coefficient (CP) 10th次冪係數 Order Coefficient Rl* R2* R3* R4* -1.8438E+05 1.8753E-01 7.1172E-01 3.7587E+Q4 -2.2809E-02 0.0000E+00 -1.0004E+00 1.1998E-Q1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.Q000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 —經由此所構成的二片式扭鏡片,%)Y=l〇2.145、f(2)Y=_59.〇7b fsX=38.62卜fsY=_480 (mm)可將掃描光線轉換成距離與時間為 之婦描光線光點,並將微機電反射鏡上光點 Sbo=3918.08(_掃描成為掃描光線,在感光鼓15上 ) 成較小的総丨2,並滿足(4)〜式⑽之條件,如表 ’形 示。圖中,單位狀光料相—η所 30 M346805 表二十三、第六實施例滿足條件表Optical surface curvature radius (mm) (curvature) d thickness (mm) (thickness) nd refractive index (refraction index, MEMS reflective surface R 〇〇 35.00 1 lens 1 1.491757 R1 fAnamorphic) Rlx* -2287.60 6.97 Rly* 127.06 R2iAnamorphic) R2x* 23.72 30.00 R2y* 36.34 lens 2 1.491757 R3 f Anamorohic) R3x* -35.40 6.03 R3y* 70.31 R4fAnamorphic>) R4x* 12242.55 98.55 R4y* -49.90 First drum fdrum) R5 00 氺主二《It t 〇 ·〇〇* indicates aspheric surface 29 M346805 Table 22, the optical surface aspherical parameter of the sixth embodiment, Anamorphic equation coefficent (optical Ky cone coefficient surface) (Conic Coefficent), such as i times Power Coefficient 6th Power Coefficient 8th Power Coefficient 10Λ Power Coefficient Order Order Order Coefficient (AR) Coefficient (BR) Coefficient TCR) Coefficient (DR) Rl* R2* R3* R4* -3.0641E+01 -3.6863E+ 00 1.4891E+00 -1.0500E+01 -2.8449E-06 -4.7220E-07 -6.3868E-06 4.3018E-07 0.0000E+00 0.0000E+00 1.0061E-09 0.0000E+00 0.0000E+00 0.0000 E+00 0. 0000E+00 -2.4783E-14 0.0000E+00 0.0000E+00 2.8649E-16 0.0000E+00 optical surface Kx Cone Coefficient 4th power coefficient 6tfi power factor Order Order Coefficient fAP) Coefficient mp) 8th power coefficient Order Coefficient (CP) 10th power factor Order Coefficient Rl* R2* R3* R4* -1.8438E+05 1.8753E-01 7.1172E-01 3.7587E+Q4 -2.2809E-02 0.0000E +00 -1.0004E+00 1.1998E-Q1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.Q000E+00 0.0000E+00 0.0000E +00 0.0000E+00 0.0000E+00 — Two-piece twisted lens constructed by this, %) Y=l〇2.145, f(2)Y=_59.〇7b fsX=38.62b fsY=_480 (mm) The scanning light can be converted into a distance and time for the illuminating light spot, and the spot on the microelectromechanical mirror Sbo=3918.08 (_scanning into scanning light, on the photosensitive drum 15) becomes a smaller 総丨2, And meet the conditions of (4) ~ formula (10), as shown in the table 'form. In the figure, the unit light phase - η 30 M346805 Table 23, the sixth embodiment meets the condition table

1.31761.3176

Αι_ f(2)Y 主掃描方向 J(l)y J (2)y 副掃描方向( -1.6683 1.6850 1.1367 3_ min(SrSa)Αι_ f(2)Y Main scanning direction J(l)y J (2)y Sub-scanning direction ( -1.6683 1.6850 1.1367 3_ min(SrSa)

max〇V 义) 0.4476 —maxQV、) 风。·ί〇) 0.0853 一 minCV 义) • mill / \ i^bO Φ^α〇) 0.0382Max〇V meaning) 0.4476 —maxQV,) Wind. ·ί〇) 0.0853 a minCV meaning) • mill / \ i^bO Φ^α〇) 0.0382

表二十四 、第六實關感光鼓上光點高斯光束雜的最大值 Υ -108.005 -100.853 -80.098 -59 819 ~ -39.925 -20.060 〇.〇〇〇Table 24: The maximum value of the Gaussian beam miscellaneous on the photosensitive drum on the sixth real-time drum Υ -108.005 -100.853 -80.098 -59 819 ~ -39.925 -20.060 〇.〇〇〇

Max(2Ga,2Gb) Ο,ΟΟΕ+ΟΟ 2.64^02^230^02 2.02E-02 2.24E-02 2.17E-02 2.51E-02 <第七實施例> 本實施例之二片式扭鏡片之第一鏡片131及一第二鏡片 U2,其中第一鏡片丨31為新月形且凹面在微機電反射鏡1〇側之 ,片“其中第一鏡片132為一雙凹形鏡片所構成,在第一鏡片131 第一光學面131a與第二光學面131b、第二鏡片132第三光學面 j32a係為非球面’使用式(3)為非球面公式設計,·在第二鏡片 弟光予面132b使用式(2)為非球面公式設計。其光學特性與非球 面參數如表二十五及表二十六。 31 M346805 ,表二十五、第七實施例之ίθ光學特性 光學面 曲率半徑(mm) (optical surface) (curvature) d厚度(mm) nd折射率 (thickness)__(refraction index) MEMS反射面R OO 35.00 i lens 1 1.52996 Rl (Ύ Toroid) Rlx -490.28 8.00 Rly* 124.37 R2fY Toroid) R2x 31.40 30.00 R2y* 35.62 lens 2 1.52996 R3iY Toroid、 R3x -31.81 5.00 R3y* 39.55 R4f Anamorphic) R4x* -1084.88 95.99 R4y* 98.74 感来鼓idmm)R5 OO 0.00 *表示非球面Max(2Ga, 2Gb) Ο, ΟΟΕ+ΟΟ 2.64^02^230^02 2.02E-02 2.24E-02 2.17E-02 2.51E-02 <Seventh Embodiment> The two-piece twist of this embodiment The first lens 131 and the second lens U2 of the lens, wherein the first lens 31 is crescent shaped and concave on the side of the microelectromechanical mirror 1 , wherein the first lens 132 is a double concave lens The first optical surface 131a and the second optical surface 131b of the first lens 131 and the third optical surface j32a of the second lens 132 are aspherical surfaces. The equation (3) is an aspherical formula design, and the second lens is light. The surface 132b is designed using the formula (2) as an aspherical formula. The optical characteristics and aspherical parameters are as shown in Table 25 and Table 26. 31 M346805, Table 25, and the θθ optical characteristic optical surface of the seventh embodiment Curvature radius (mm) (optical surface) (curvature) d thickness (mm) nd refractive index (thickness)__(refraction index) MEMS reflective surface R OO 35.00 i lens 1 1.52996 Rl (Ύ Toroid) Rlx -490.28 8.00 Rly* 124.37 R2fY Toroid) R2x 31.40 30.00 R2y* 35.62 lens 2 1.52996 R3iY Toroid, R3x -31.81 5.00 R3y* 39.55 R4f Anamorphic) R4x* -1084.88 95.99 R4y* 98.74 Sense drum idmm) R5 OO 0.00 * indicates aspheric

表二十六、第七實施例之光學面非球面參數 _環像曲面方程式係數Toric equation Coefficient_ 光學面(optical Ky圓錐係數4th次幂係數(5th次冪係數8th次冪係數10th次幂係數 surface) (Conic Order Order Order Order __Coefficent) Coefficient (B4) Coefficient (B6、Coefficient (B8) CoefficientTable 26: Optical surface aspheric parameters of the seventh embodiment _ ring image surface coefficient coefficient Toric equation Coefficient_ optical surface (optical Ky cone coefficient 4th power coefficient (5th power coefficient 8th power coefficient 10th power coefficient surface) (Conic Order Order Order Order __Coefficent) Coefficient (B4) Coefficient (B6, Coefficient (B8) Coefficient

Rl* 0.0000E+00 -3.7954E-07 0.0000E+00 0.0000E+00 0.0000E+00 R2* 0.0000E+00 -3.7949E-06 0.0000E+00 0.0000E+00 0.0000E+00 —R3*_0.0000E+00 -2.7407E-06^ 9.4369E-10 0.0000E+00 -1.5635E-16 _橫像曲面方程式係數(Anamorphic equation coefficent)_Rl* 0.0000E+00 -3.7954E-07 0.0000E+00 0.0000E+00 0.0000E+00 R2* 0.0000E+00 -3.7949E-06 0.0000E+00 0.0000E+00 0.0000E+00 —R3*_0 .0000E+00 -2.7407E-06^ 9.4369E-10 0.0000E+00 -1.5635E-16 _Anamorphic equation coefficent_

Ky圓錐係數 4th次冪係數 6Λ次幂係數如1次冪係數 10th次冪係數 (Conic Order Order Order OrderKy cone coefficient 4th power factor 6Λ power factor such as 1 power factor 10th power factor (Conic Order Order Order Order

Coefficent) Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient (DR) R4*_-1.8709E+01 2.9497E-08 O.OOOOE+OQ -1.5049E-14 0.0000E+00Coefficent) Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient (DR) R4*_-1.8709E+01 2.9497E-08 O.OOOOE+OQ -1.5049E-14 0.0000E+00

Kx圓錐係數 4th次幂係數 6th次幂係數 8th次冪係數 l(Hh次冪係數 (Conic Order Order Order OrderKx Conic Coefficient 4th Power Coefficient 6th Power Coefficient 8th Power Coefficient l (Hh Power Coefficient (Conic Order Order Order Order

Coefficent) Coefficient (AP) Coefficient (BP) Coefficient (CP) Coefficient ΓΡΡ) ___R4*_-4.4249E+03 2.2610E+00 0.0000E+00 0.0000E+00 0.0000E+00 經由此所構成的二片式ίθ鏡片’ f⑴y=92.228、-53.135、 fsx=39.746、fsY=-480 (mm)可將掃描光線轉換成距離與時間為線性 之掃描光線光點,並將微機電反射鏡10上光點SaG= 18J7@m)、 32 M346805 s^39·8㈣掃描成為掃描光線,在感光鼓i5上進行 成杈小的先點12,並毅⑷〜式⑽之條件, 二、= 15上以中心軸Ζ軸在γ方向距離中 (―,感光妓 , ?由Y距離(mm)的光點之高 戶^束直仅㈣’如表二十八;且本實施例之光點分布圖如圖η 表二十七、第七實施例滿足條件表Coefficent) Coefficient (AP) Coefficient (BP) Coefficient (CP) Coefficient ΓΡΡ) ___R4*_-4.4249E+03 2.2610E+00 0.0000E+00 0.0000E+00 0.0000E+00 The two-piece ίθ The lens 'f(1)y=92.228, -53.135, fsx=39.746, fsY=-480 (mm) converts the scanning light into a scanning light spot whose distance is linear with time, and the spot of the microelectromechanical mirror 10 is SaG=18J7 @m), 32 M346805 s^39·8 (4) Scanning becomes scanning light, and the first point 12 is formed on the photosensitive drum i5, and the condition of (4)~(10) is determined, and the second axis is at the center axis. In the γ-direction distance (―, 妓, 由, the distance from the Y-distance (mm), the beam is only straight (4)' as shown in Table 28; and the light spot distribution map of this embodiment is shown in Figure XX. Seventh, the seventh embodiment satisfies the condition table

f(2)Y 主掃描方向 八((〜1 - 1) i (〜2 - 1) f{\)y 1.4203 -1.8066 2.0293 1.2463 0.4323 0.0731 0.0316 副掃描方向(」---—) + (—---—)fxf(2)Y Main scanning direction eight ((~1 - 1) i (~2 - 1) f{\)y 1.4203 -1.8066 2.0293 1.2463 0.4323 0.0731 0.0316 Sub-scanning direction ("----) + (-- ---)fx

κ rJ \x rJJsXκ rJ \x rJJsX

max(H) =max(^ -Sa) = min(V^ SSb〇 D 5 一 min(K) 表二十八、 第七實—級上^斯光束直徑的最夫估 Y -107.990 -100.745 -80.240 .59.952 Max(2Ga,2Gb) O.OOE+OO 1.23E-02 1.13E-02Max(H) = max(^ -Sa) = min(V^ SSb〇D 5 - min(K) Table 28, the most effective estimate of the beam diameter of the seventh real-stage Y-107.990 -100.745 - 80.240 .59.952 Max(2Ga,2Gb) O.OOE+OO 1.23E-02 1.13E-02

It由上述之實施例說明,本創作至少可達下列功效· ⑴藉由本創作之二片式fe鏡片之設置,可將呈簡麟動之微機 電反射鏡在成像面上光點間距由原來隨時間增加而遞減或遞 33 M346805 • ❻群顧絲,紅料料雜,使雷射光束於 鄰光點乍等速率婦描,使成像於目標物上形成之兩相 (2) 之二片式扭鏡片之設置,可崎變修正於主掃描方 *得以=。"方_光線’使聚焦於成像的目標物上之光點 ⑶乍之二片式历鏡片之設置,可畸變修正於主掃描方 • ^知描方向掃描光線’使成像在目標物上的光點大小均 以上所述僅為本創作的較佳實施例,對本創作而言僅是說明 ,、’而非限制性的;本專業技術人員理解 更,但都將落入本創作的保護範圍内。 哥双交 【圖式簡單說明】 _ ®1為本創作二片式历鏡片之光學路徑之示意圖; 圖2為-微機電反射鏡掃描角度θ與時間t之關係圖; 圖3為通過第-鏡片及第二鏡片之掃描光線之光學路捏圖及符號 說明圖; 圖4為掃描光線投射在感光鼓上後,光點面積隨投射位置之不同 而變化之示意圖; 圖5為光束之高斯分佈與光強度之關係圖; 圖6為本創作通過第一鏡片及第二鏡片之掃描光線之實施例之光 學路徑圖; 34 M346805 .圖7為第一實施例之光點示意圖; 圖8為第二實施例之光點不意圖, 圖9為第三實施例之光點示意圖; 圖10為第四實施例之光點示意圖; 圖11為第五實施例之光點示意圖; 圖12為第六實施例之光點示意圖;以及 — 圖13為第七實施例之光點示意圖。 【主要元件符號說明】 10 :微機電反射鏡; 11 :雷射光源; 111 :光束; 113a、113b、113c、114a、114b、115a、115b :掃瞄光線; 131 :第一鏡片; 132 :第二鏡片; p 14a、14b :光電感測器; 15 :感光鼓; 16 :柱面鏡; 2、2a、2b、2c :光點;以及 3·有效掃描視窗。 35It is explained by the above embodiment that the creation can at least achieve the following effects. (1) With the setting of the two-piece fe lens of the present creation, the spacing of the spot of the microelectromechanical mirror on the imaging surface can be Time increases or decreases or hands up 33 M346805 • ❻ 顾 顾 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The setting of the twisted lens can be corrected on the main scanning side*. "square_ray' enables the focus of the spot on the imaged object (3) to set the two-piece lens, and the distortion can be corrected on the main scanning side. • The scanning direction of the visible light is imaged on the target. The above-mentioned light spot size is only a preferred embodiment of the present invention, and is merely illustrative, and is not limiting; the skilled person understands more, but will fall within the scope of protection of the present creation. Inside.哥双交 [Simple description of the schema] _ ® 1 is a schematic diagram of the optical path of the two-piece calendar lens; Figure 2 is a diagram of the relationship between the scanning angle θ of the microelectromechanical mirror and the time t; Figure 2 is a schematic diagram showing the optical path of the scanning light of the lens and the second lens; FIG. 4 is a schematic diagram showing the variation of the spot area with the projection position after the scanning light is projected on the photosensitive drum; Figure 6 is an optical path diagram of an embodiment of the scanning light passing through the first lens and the second lens; 34 M346805. Figure 7 is a schematic view of the light spot of the first embodiment; 2 is a light spot diagram of a third embodiment; FIG. 10 is a light spot diagram of a fourth embodiment; FIG. 11 is a light spot diagram of the fifth embodiment; A schematic diagram of a light spot of an embodiment; and - Figure 13 is a schematic view of a light spot of the seventh embodiment. [Main component symbol description] 10: Microelectromechanical mirror; 11: Laser light source; 111: Light beam; 113a, 113b, 113c, 114a, 114b, 115a, 115b: Scanning light; 131: First lens; 132: Two lenses; p 14a, 14b: photodetector; 15: photosensitive drum; 16: cylindrical mirror; 2, 2a, 2b, 2c: light spot; and 3 · effective scanning window. 35

Claims (1)

M346805 九、申請專利範圍: 1·一種微機電雷射掃描裝置之二片式fe鏡片,其係適用於一微機 電雷射掃描裝置,該微機電雷射掃描裝置至少包含一用以發射 光束之光源、一用以共振左右擺動將光源發射之光束反射成為 掃描光線之微機電反射鏡、及一用以感光之目標物;該二片式 历鏡片包含,由該微機電反射鏡依序起算,係由一新月形且凹 " 面在該微機電反射鏡側之第一鏡片及一雙凹形之第二鏡片所構 成,其中該第一鏡片具有一第一光學面及一第二光學面,該第 一光學面與該第二光學面,在主掃描方向至少有一個光學面為 非球面所構成,係將該微機電反射鏡反射之角度與時間非線性 關係之掃描光線光點轉換成距離與時間為線性關係之掃描光線 光點,其中該第二鏡片具有一第三光學面及一第四光學面,該 第三光學面與該第四光學面,在主掃描方向至少有一個光學面 為非球面所構成’係將該第一鏡片之掃描光線修正聚光於該目 標物上;藉由該二片式fe鏡片將該微機電反射鏡反射之掃描光 線於該目標物上成像。 i 2·如申請專利範圍第丨項所述之微機電雷射掃描裝置之二片式扭 鏡片’在主掃描方向進一步滿足下列條件: 〇·8<^~+4+4 <1.6 ; /(i)r -2.0 < -- 5 < -1.0 I /(2)7 其中,f^Y為該第一鏡片在主掃描方向之焦距、f(2)Y為該第 二鏡片在主掃描方向之焦距、山為θ=0。該第一鏡片目標物侧光 學面至该第二鏡片微機電反射鏡侧光學面之距離、屯為θϋ亥 第二鏡片厚度、山為0=0。該第二鏡片目標物侧光學面至該目標 36 M346805 物之距離。 3·如申4專利範圍第1項所述之微機電雷射掃描裝置之二片式扭 鏡片,進一步滿足下列條件: 在主掃描方向滿足 ο·6< /# ·((〜+(化一认 在副掃描方向滿足 7.0 < <10.0 ;M346805 Nine, the scope of application for patents: 1. A two-piece fe lens of a microelectromechanical laser scanning device, which is suitable for a microelectromechanical laser scanning device, the microelectromechanical laser scanning device includes at least one for emitting a light beam a light source, a microelectromechanical mirror for reflecting the left and right swings to reflect the light beam emitted by the light source into a scanning light, and a target for sensing; the two-piece calendar lens comprises, by the microelectromechanical mirror, sequentially The first lens and the second concave lens are formed by a crescent-shaped concave concave surface on the microelectromechanical mirror side, wherein the first lens has a first optical surface and a second optical The first optical surface and the second optical surface are formed by at least one optical surface in the main scanning direction, which is an aspherical surface, and is a scanning light ray spot conversion in which the angle of the microelectromechanical mirror is reflected and the time nonlinear relationship is a scanning light spot having a linear relationship with time, wherein the second lens has a third optical surface and a fourth optical surface, and the third optical surface and the fourth optical surface are in the main scanning Having at least one optical surface in the aspherical surface is configured to condense the scanning light of the first lens onto the target; the scanning light reflected by the microelectromechanical mirror is Imaging on the target. i 2· The two-piece twisted lens of the microelectromechanical laser scanning device as described in the scope of claim 2 further satisfies the following conditions in the main scanning direction: 〇·8<^~+4+4 <1.6; / (i) r -2.0 < - 5 < -1.0 I /(2)7 where f^Y is the focal length of the first lens in the main scanning direction, f(2)Y is the second lens in the main The focal length of the scanning direction and the mountain are θ=0. The distance from the first lens target side optical surface to the second lens microelectromechanical mirror side optical surface, 屯 is θ ϋ 第二 second lens thickness, and the mountain is 0 =0. The distance from the second lens target side optical surface to the target 36 M346805. 3. The two-piece twist lens of the microelectromechanical laser scanning device according to claim 1 of the patent scope of claim 4 further satisfies the following conditions: satisfies ο·6</# in the main scanning direction ((~+(一一) It is recognized that the sub-scanning direction satisfies 7.0 <<10.0; 其中,W與f(2)Y為該第一鏡片及該第二鏡片在主掃描方 向^焦距、fsX為二片式ie鏡片在副掃描方向之複合焦距、k 為二片式ίθ鏡片在主掃描方向之複合焦距、心為第i光學面在 副掃描方向_率半徑、%為第i絲面縣掃描方向的曲率 半徑、如與細分顺該第—制與鄕二創之折射率。 4·如申請專利範圍第丨項所述之微機電雷射掃描裝置之二片式扭 鏡片,其中最大光點與最小光點大小的比值滿足: 〇A<^=min(^^ . max(V&) 其中,Sa與Sb為一感光鼓上掃瞄光線形成的任一 主掃描方向及副掃描方向之長度、δ為該感光鼓上最小光2 最大光點之比值。 5·如申請專職圍第!撕述之微機電雷射掃财置之二片式扭 鏡片,其中該目標物上最大光點的比值與在該目標物上 點的比值分別滿足 J疋 <0.10 maxQVD ~TsbQ -Sa0fWherein, W and f(2)Y are the focal length of the first lens and the second lens in the main scanning direction, fsX is a composite focal length of the two-piece IE lens in the sub-scanning direction, and k is a two-chip ίθ lens in the main The composite focal length in the scanning direction, the center of the i-th optical surface in the sub-scanning direction _ rate radius, % is the radius of curvature of the scanning direction of the i-th silk surface county, and the refractive index of the sub-system and the second generation. 4. The two-piece twisted lens of the microelectromechanical laser scanning device according to the scope of the patent application, wherein the ratio of the maximum spot to the minimum spot satisfies: 〇A<^=min(^^.max( V&) where Sa and Sb are the lengths of any of the main scanning directions and the sub-scanning directions formed by the scanning light on the photosensitive drum, and δ is the ratio of the minimum light 2 maximum spot on the photosensitive drum. Wai Di! The MEMS micro-electromechanical laser sweeping the two-piece twisted lens, wherein the ratio of the maximum spot on the target to the point on the target satisfies J疋<0.10 maxQVD ~TsbQ - Sa0f minH) <0.10 ; 37 M346805minH) <0.10 ; 37 M346805 、 0 一 b0為该微機電反射鏡反射面上掃瞒光線的光 點在主職方向朗_方向之競、sa與sb為1光鼓上掃 目苗光線形成的任一個光點在主掃描方向及副掃描方向之長度、 T|max為該微機電反射鏡反射面上掃瞄光線的光點經掃描在該目 標物上最大光點的比值、ηπϋη為該微機電反射鏡反射面上掃瞄光 線的光點經掃描在該目標物上最小光點的比值。 380, b0 is the spot of the broom light on the reflecting surface of the MEMS mirror in the main direction, the direction of the _ direction, sa and sb are 1 spot on the light drum to sweep the seed light in the main scan The length of the direction and the sub-scanning direction, T|max is the ratio of the spot of the scanning light on the reflecting surface of the MEMS mirror to the maximum spot on the object, and ηπϋη is the scanning surface of the MEMS mirror The ratio of the spot of the light that is scanned to the minimum spot on the target. 38
TW97213975U 2008-03-26 2008-08-05 Two optical elements f θ lens of MEMS laser scanning TWM346805U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW97213975U TWM346805U (en) 2008-08-05 2008-08-05 Two optical elements f θ lens of MEMS laser scanning
JP2009001485U JP3150839U (en) 2008-03-26 2009-03-13 Two-piece fθ lens for microelectromechanical system laser beam detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97213975U TWM346805U (en) 2008-08-05 2008-08-05 Two optical elements f θ lens of MEMS laser scanning

Publications (1)

Publication Number Publication Date
TWM346805U true TWM346805U (en) 2008-12-11

Family

ID=44339222

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97213975U TWM346805U (en) 2008-03-26 2008-08-05 Two optical elements f θ lens of MEMS laser scanning

Country Status (1)

Country Link
TW (1) TWM346805U (en)

Similar Documents

Publication Publication Date Title
TW201007210A (en) Two optical elements fθ lens of MEMS laser scanning unit 4
TW201007208A (en) Two optical elements fθ lens of MEMS laser scanning unit 3
TWI377433B (en) Two f-θ lens used for micro-electro mechanical system(mems) laser scanning unit
TW201015113A (en) Two optical elements fθ lens of MEMS laser scanning unit 9
TWM346805U (en) Two optical elements f θ lens of MEMS laser scanning
TW201007209A (en) Two optical elements fθ lens of MEMS laser scanning unit 7
JP2000267030A (en) Optical scanning device
TWI359747B (en) Single f-θ lens used for micro-electro mechanical
TW201100863A (en) Two optical elements f θ lens of short focal distance for laser scanning unit
TWI343328B (en) Two optical elements fθlens of mems laser scanning unit 2
TWM357614U (en) Two optical elements f-θ lens of MEMS laser scanning
TWI343327B (en) Two optical elements fθlens of mems laser scanning unit 5
TWI343329B (en) Two optical elements fθ lens of mems laser scanning unit 6
JP3156052U (en) Two-piece fθ lens with short focal length suitable for laser beam scanning device
JP2002006211A (en) Temperature compensation lens and optical device using the same
TWM348011U (en) Two optical elements fθ lens of MEMS laser scanning unit 3
TWM346804U (en) Two optical elements f θ lens of MEMS laser scanning
TWM348010U (en) Two optical elements fθ lens of MEMS laser scanning unit 6
TWM349849U (en) Two optical elements fθ lens of MEMS laser scanning unit 4
TWM345249U (en) Two f-θ lens used for micro-electro mechanical system(MEMS) laser scanning unit
JP3150839U (en) Two-piece fθ lens for microelectromechanical system laser beam detector
JP3149596U (en) Single-piece fθ lens for microelectromechanical system laser scanner
TW201013222A (en) Two optical elements fθ lens of MEMS laser scanning unit 8
JP3149995U (en) Two-piece fθ lens for microelectromechanical system laser beam scanner
TWM348012U (en) Two optical elements fθ lens of MEMS laser scanning unit 7