TWM345249U - Two f-θ lens used for micro-electro mechanical system(MEMS) laser scanning unit - Google Patents

Two f-θ lens used for micro-electro mechanical system(MEMS) laser scanning unit Download PDF

Info

Publication number
TWM345249U
TWM345249U TW97205198U TW97205198U TWM345249U TW M345249 U TWM345249 U TW M345249U TW 97205198 U TW97205198 U TW 97205198U TW 97205198 U TW97205198 U TW 97205198U TW M345249 U TWM345249 U TW M345249U
Authority
TW
Taiwan
Prior art keywords
lens
light
scanning
mirror
optical surface
Prior art date
Application number
TW97205198U
Other languages
Chinese (zh)
Inventor
Bo-Yuan Shih
Original Assignee
E Pin Optical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Pin Optical Industry Co Ltd filed Critical E Pin Optical Industry Co Ltd
Priority to TW97205198U priority Critical patent/TWM345249U/en
Publication of TWM345249U publication Critical patent/TWM345249U/en
Priority to JP2009001485U priority patent/JP3150839U/en

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Lenses (AREA)

Abstract

Two f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit having a first lens and a second lens, and both lens are the shape of meniscus type and formed by the lens in which the concaved surface faces towards to the side of the MEMS reflecting mirror. The first lens has a first optical surface and a second optical surface, which convert the mapped spots by scanning light at nonlinear relationship between the angle and the time of the MEMS reflecting mirror into the mapped spots by scanning light at the linear relationship between the rotating angle and the distance of the MEMS reflecting mirror. The second lens has a third optical surface and a fourth optical surface, which focuses the scanning light to the target by calibrating itself. Both the first lens and the second lens are satisfied the specified optical condition. The purpose of linear scanning and high resolution scanning can be achieved by disposing the first lens and the second lens.

Description

M345249 八、新型說明: 【新型所屬之技術領域】 本創作係有關一種微機電雷射掃描裝置之二片式ίθ鏡 片,特別指一種用以修正呈簡諧性運動之微機電反射鏡而產生 隨時間成正弦關係之角度變化量,以達成雷射掃瞄裝置所要求 之線性掃描效果之二片式历鏡片。 【先前技術】 目前雷射光束印表機LBP(Laser Beam Print)所用之雷射掃 描裝置LSU(Laser Scanning Unit),係利用一高速旋轉之多面鏡 (polygon mirror)以操控雷射光束之掃描動作(laser beam scanning) ’ 如美國專利 US7079171、US6377293、US6295116, 或如台灣專利1198966所述。其原理如下簡述:利用一半導體 雷射發出雷射光束⑽⑽蠢^先經由一準直鏡⑼馳·), 再經由一光圈(aperture)而形成平行光束,而平行光束再經過一 柱面鏡(cylindrical lens)後,能在副掃瞄方向(sub sr_;ng direction)之Y轴上之寬度能沿著主掃描方向扣血 direction)之X歡平行方向平行聚焦而形成一線狀_ i^iage),再投射至一高速旋轉之多面鏡上,而多面鏡上均句連 續設置有多面反射鏡,其恰位於或接近於上述線狀成像_ mia^e)之焦點位置。藉由多面鏡控制雷射光束之投射方向,當 連縯之複數反概在高速旋轉時可將射至—反射鏡上之雷射 光束延著主掃描方向(X軸)之平行方向以同一轉角速度 (angivdodty)偏斜反射至一扭線性婦描鏡片上,而扭線性 M345249 掃描鏡片係設置於多面鏡旁侧,可為單件式鏡片結構 (single-element scanning lens)或為二件式鏡片結構。此代線性 掃描鏡片之功能在於使經由多面鏡上之反射鏡反射而射入扭 鏡片之雷射光束能聚焦成一橢圓型光點並投射在一光接收面 (photoreceptor drum,即成像面)上,並達成線性掃描(scanning linearity)之要求。然而,習用之雷射掃瞄裝置LSU在使用上會 有下列問題: (1) 、旋轉式多面鏡之製作難度高且價格不低,相對增加 _ LSU之製作成本。 (2) 、多面鏡須具高速旋轉(如40000轉/分)功能,精密度要 . 求又高,以致一般多面鏡上反射面之鏡面γ軸寬度極薄,使習 用LSU中均需增設一柱面鏡。(Cyiin(jricai iens)以使雷射光束經 過柱面鏡能聚焦成一線(Y軸上成一點)而再投射在多面鏡之反 射鏡上,以致增加購件及組裝作業流程。 (3) 、習用多面鏡須高速旋轉(如40000轉/分),致旋轉噪音 相對提高,且多面鏡從啟動至工作轉速須耗費較長時間,增加 開機後之等待時間。 (4) 、習用LSU之組裝結構中,投射至多面鏡反射鏡之雷 射光束中心軸並非正對多面鏡之中心轉軸,以致在設計相配合 ,鏡片時,需同時考慮多面鏡之離軸偏差(deviati〇n)問 題,相對增加f0鏡片之設計及製作上麻煩。 近年以來,為了改善習用LSU組裝結構之問題,目前市 面上開發出一種擺動式(〇sci 1 latory )的微機電反射鏡(MEMS irror) ’用以取代習用之多面鏡來操控雷射光束掃描。微機 6 M345249M345249 VIII. New Description: [New Technology Field] This is a two-piece ίθ lens for a microelectromechanical laser scanning device, especially a microelectromechanical mirror for correcting harmonic motion. The time is a sinusoidal angle change to achieve a two-dimensional lens of the linear scanning effect required by the laser scanning device. [Prior Art] At present, the laser scanning device LSU (Laser Scanning Unit) used in the laser beam printer LBP (Laser Beam Print) uses a high-speed rotating polygon mirror to manipulate the scanning action of the laser beam. (Laser beam scanning) ' as described in U.S. Patent No. 7,707,171, US Pat. No. 6,377,293, US Pat. The principle is as follows: a laser beam (10) is emitted by a semiconductor laser (10), and a parallel beam is formed via a collimator (9), and then a parallel beam is formed through an aperture, and the parallel beam passes through a cylindrical mirror. After the (cylindrical lens), the width of the Y-axis in the sub-scanning direction (sub sr_;ng direction) can be parallelized in the X-parallel direction of the main scanning direction to form a line _ i^iage ), and then projected onto a multi-speed rotating polygon mirror, and the polygon mirror is continuously provided with a polygon mirror which is located at or close to the focus position of the above-mentioned linear imaging _ mia^e). By controlling the projection direction of the laser beam by the polygon mirror, the laser beam incident on the mirror can be extended to the parallel direction of the main scanning direction (X-axis) at the same corner when the complex is reversed at a high speed. The speed (angivdodty) is deflected and reflected onto a twisted linear lens, while the twisted linear M345249 scanning lens is placed beside the polygon mirror, which can be a single-element scanning lens or a two-piece lens. structure. The function of this generation of linear scanning lens is that the laser beam reflected by the mirror on the polygon mirror and incident on the twisted lens can be focused into an elliptical spot and projected onto a light receiving surface (photographing surface). And to achieve the requirements of linear scanning (scanning linearity). However, the conventional laser scanning device LSU has the following problems in use: (1) The rotary polygon mirror is difficult to manufacture and the price is not low, and the production cost of the LSU is relatively increased. (2) Multi-mirror mirrors must have high-speed rotation (such as 40,000 rpm), and the precision should be high. As a result, the mirror surface γ-axis width of the reflective surface on the general polygon mirror is extremely thin, so that one of the conventional LSUs needs to be added. Cylindrical mirror. (Cyiin (jricai iens) allows the laser beam to be focused into a line (one point on the Y-axis) through the cylindrical mirror and then projected onto the mirror of the polygon mirror, thus increasing the purchase and assembly process. (3) The conventional polygon mirror must be rotated at a high speed (for example, 40,000 rpm), so that the rotation noise is relatively increased, and the polygon mirror takes a long time from the start to the working speed, and the waiting time after the power-on is increased. (4) The assembly structure of the conventional LSU In the middle, the central axis of the laser beam projected onto the polygon mirror is not the center axis of the polygon mirror, so that when the design is matched, the lens needs to consider the off-axis deviation (deviati〇n) of the polygon mirror, and the relative increase In recent years, in order to improve the conventional LSU assembly structure, a MEMS irror has been developed on the market to replace the conventional Multi-facet mirror to control laser beam scanning. Microcomputer 6 M345249

電反射鏡為轉矩振盪器(torsion oscillators)表層上附有 反光層,可藉由振盪擺動反光層,將光線反射而掃描,未來 將可應用於影像糸統(imaging system)、掃描器(scanner)或 雷射印表機(laser printer)之雷射掃描裝置(iaser scanning unit ’ 間稱 LSU) ’ 其知描效率(Scanning efficiency)將可 高於傳統的旋轉多面鏡。如美國專利US6, 844, 951、 US6, 956, 597 ’係產生至少一驅動訊號,其驅動頻率趨近複數 微機電反射鏡之共振頻率,並以一驅動訊號驅動微機電反射鏡 以產生一掃瞄路徑、US7, 064, 876、US7,184,187、 US7,190,499 、 US2006/0033021 、 US2007/0008401 、 US2006/0279826 ;或如台灣專利 TW M253133,其係於一 LSU 模組結構中準直鏡及鏡片之間,利用一微機電反射鏡取代 省用方疋轉式多面鏡’藉以控制雷射光束之投射方向;或如曰本 專利JP 2006-201350等。此微機電反射鏡具有元件小,轉動 速度快’製造成本低的優點。然而由於微機電反射鏡,在接收 一電壓驅動後,將作一簡諧運動,且此簡諧運動之方式為時間 與角速度呈正弦關係,而投射於微機電反射鏡,其經反射後之 反射角度0與時間t的關係為: θ{ί) = θ8 -sin(2^. / -t) (1) 其中:ί為微機電反射鏡的掃描頻率;A為雷射光束經微 機電反射鏡後,單邊最大的掃描角度。 因此’在相同的時間間隔下△,,所對應的反射角度的變化 里並不相同且為遞減,係一與時間成正弦函數(Sinus〇idai)的 關係’即在相同時間間隔時,反射角度變化為: M345249 △θ(㈣,邮以令_2以·ί2)) ’與時間為非線性關係,·當此反 射的光線以不同角度投射在目標物時,因受不同角度之關係, 相同時間間隔產生的光點距離為不相同。 由於微機電反射鏡位於正弦波之波峰及波谷之角度變化 量將隨時間遞增或遞減,與習知之多面鏡成等角速度轉動之運 動方式不同’若使利知之於具有微機電反射鏡之雷 射掃瞒裝置(LSUU ’將無·正顯電反射鏡其鷄隨時間 成正弦關係所產生之角度變化量,造成投射在成像面上之雷射 光速將產生非等速祷描現象,而造成雜面上之絲偏差。 因此’對於微機電反射鏡所構成的雷射掃描裝 電雷射掃描裝置酿su),其特性為雷射光線經由 射鏡掃描彳4 ’形成料間不同肖度轉描光線,目此發展可使 用於微機電雷射掃描裝置的历鏡片以修正掃描光線,使可在目 夺示物上正確成像,將為迫切所需。 【新型内容】 、本創作之目的在於提供一種微機電雷射掃描裝置之二片 式历鏡片,該二片式扭鏡片由微機電反射鏡起算依序,係由 新月形且凹面在微機電反射鏡侧之第一鏡片及係一新月形 且凹面在微機電反射鏡側之第二鏡片所構成,可將微機電反射 鏡所反射之掃&光線於目標物上正4成像,而達成雷射掃瞒裝 置所要求之線性掃描效果。 本創作之另一目的在於提供一種微機電雷射掃描裝置之二 片式历鏡片,係用以縮小投射在目標物上光點(叩〇〇之面積, M345249 而達成提高解析度之效果。 本創作之再-目的在於提供—種微機電雷射掃描裝置之二 片式历鏡4,可畸赚正目雜猶偏誠軸,喊成於主掃 描方向及副掃描方向之偏移增加,使成像於感光鼓之光點變形 成類姻形之問題,並使每—魏光社小得以羽化,而達 成提升解像品質之功效。 因此’本創作微機電雷射掃描裝置之二片式扭鏡片,適用 触彡、包含-紐射雷縣束之麵、、以共振左右獅將光源 發射之雷射光束反射成為掃描光線之微機電反射鏡,以在目禪 物上成像;對於雷射印表機而言,此目標㈣為感光鼓 (drum) ’即,待成像之光驗由光源發出雷射絲,經由微機 電反射鏡左右掃描’微機蚊魏反射雷射絲形成掃描光 線,掃描光線經由本創作之二片式扭鏡片修正角度與位置後, 於感光鼓上形成光點(Sp〇t),由於感光鼓塗有光敏劑,可感應 碳粉之聚集於紙上,如此可將資料列印出。 本創作之二以ίθ鏡片包含由微機電反_起算依序之 -第-鏡片及—第二鏡片’其中第—鏡片具有一第—光學面及 -第二光學面,係主要將呈簡諧縣之微機電反概,在成像 面上光闕距由縣__加而遞減或遞增_等速率掃 描現象’修正為等速轉描’使雷射光束於成像面之投射作等 速輯描。第二制具有-第三絲面及—細光學面,主要 用以均勻化掃喊線触掃财向及卿财向因偏移光轴 而造成_絲上碱絲駐,並料—鏡狀掃描光線修 正聚光於目標物Κ。 ^ 9 M345249 【實施方式】 參考圖1所示,為本創作微機電雷射掃描裝置之二片式扭 鏡片之光學路徑之示意圖。本創作微機電雷射掃描裝置之二片 式ίθ鏡片包含一具有一第一光學面131a及一第二光學面131b 之第一鏡片131,與一具有一第三光學面132a及一第四光學面 132b之第二鏡片132,係適用於微機電雷射掃瞄裝置。圖中, 微機電雷射掃描裝置主要包含一雷射光源11、一微機電反射鏡 10、一柱面鏡16、二光電感測器i4a、14b,及一用以感光之 目標物。在圖中,目標物係以用感光鼓(drum) 15來實施。雷射 光源11所產生之光束111通過柱面鏡16後,投射到微機電反 射鏡10上。而微機電反射鏡10以共振左右擺動之方式,將光 束 111 反射成掃瞄光線 113a、113b、114a、114b、115a、115b。 其中掃瞄光線 113a、113b、114a、114b、115a、115b 在 X 方 向之投影稱之為副掃描方向(sub scanning direction),在Y方向 之投影稱之為主掃描方向(main scanning direction),而微機電反 射鏡10掃描角度為0c。 由於微機電反射鏡10呈一簡譜運動,其運動角度隨時間 呈一正弦變化,如圖2所示,因此掃瞄光線之射出角度與時間 為非線性關係。如圖示中的波峰a-a,及波谷b-b,,其擺動角度 明顯小於波段a-b及a’-b’,而此角速度不均等的現象容易造成 知描光線在感光鼓15上產生成像偏差。因此,光電感測器“a、 14b係設置於微機電反射鏡1〇最大掃描角度±0C之内,其爽角 為土θρ ’雷射光束111被微機電反射鏡1〇由圖2之波峰開始反 射’此時相當於圖1之掃描光線ll5a;當光電感測器14a偵測 M345249 幻^田光束的時候,表示微機電反射鏡10係擺動到+θρ角度, ,:相田於圖1之掃描光線114a,·當微機電反射鏡10掃描角 :變化圖2的&點時,此時相當於掃描光線113a位置;此時 1光源11被控制開始發出雷射光束⑴,而掃描至圖2的b =日^此時相當於掃描光線脳位置為止(相當土θη角度内由 :、光^ 11發出雷射光束⑴);在微機電反射鏡1G反振時, ;波#又a b時由雷射光源^被控制開始發出雷射光束 111 ;如此完成一個週期。 ^考圖3所示’為通過第—鏡片及第二鏡片之掃描光線之 夕圖、其中’土如為有效掃描角度’當微機電反射鏡10 度it入土θη時,雷射光源η開始發出待掃描的雷射光 經由微機電反射鏡10反射成掃猫光線,掃猫光線得以 通過苐一鏡片⑶而受第一鏡片131之第一光學面愈第二光學 ===微機電反射鏡10所反射之距離與時間成非線性關 係之城光線觀成_與_為雜_之掃描絲。並當 =:=3丄與Γ鏡片132後,藉由第-鏡片131與第 與二以風光學面、第二光學面、第三光學面、第四光 舰所職㈣域果,卿描猶聚焦於 it H 鼓15上形成一列的光點(_)2,而投 :中Ά15上,兩最遇光點2之間距稱為有效掃描視窗3。 其中,cn為微機電反射鏡10至第一光學面之間距、犯 光學面至第二光學面之間距、d3為第二光學面至第三光學面之 第三光學面至第四光學面之間距、&為第四光學 面至感光豉15之間距、R1為第一光學面之曲率半徑 11The electric mirror is a reflective layer on the surface of the torsion oscillators. It can oscillate and illuminate the reflective layer to reflect the light and scan it. In the future, it can be applied to imaging systems and scanners. ) or laser printer laser scanner (iaser scanning unit 'intermediate LSU)' its scanning efficiency (Scanning efficiency) will be higher than the traditional rotating polygon mirror. For example, US Pat. No. 6,844,951, US 6,956,597 " generates at least one driving signal whose driving frequency approaches the resonant frequency of the plurality of microelectromechanical mirrors, and drives the microelectromechanical mirror with a driving signal to generate a scan. Path, US7, 064, 876, US7, 184, 187, US7, 190, 499, US2006/0033021, US2007/0008401, US2006/0279826; or Taiwan patent TW M253133, which is a collimator lens and lens in an LSU module structure In the meantime, a micro-electromechanical mirror is used instead of the conventional square-turn polygon mirror to control the projection direction of the laser beam; or, for example, JP 2006-201350. This microelectromechanical mirror has the advantages of small components, fast rotation speed, and low manufacturing cost. However, due to the microelectromechanical mirror, after receiving a voltage drive, a simple harmonic motion will be performed, and the simple harmonic motion is a sinusoidal relationship between time and angular velocity, and is projected on the microelectromechanical mirror, and the reflected reflection The relationship between angle 0 and time t is: θ{ί) = θ8 -sin(2^. / -t) (1) where: ί is the scanning frequency of the microelectromechanical mirror; A is the laser beam passing through the microelectromechanical mirror After the maximum scan angle on one side. Therefore, 'at the same time interval △, the corresponding change of the reflection angle is not the same and is decreasing, and the relationship between the time and the sine function (Sinus〇idai) is the reflection angle at the same time interval. The change is: M345249 △ θ ((4), postal order _2 to · ί2)) 'Non-linear relationship with time, · When this reflected light is projected at different angles on the target, it is subject to different angles, the same The distances produced by the time interval are not the same. Since the angle of change of the galvanometer mirror at the peaks and troughs of the sine wave will increase or decrease with time, it will be different from the conventional polygon mirror in the same angular velocity rotation, if it is known to be a laser with a microelectromechanical mirror. The broom device (LSUU 'will change the angle of the sinusoidal relationship between the chicken and the sinusoidal relationship with time, causing the laser light velocity projected on the imaging surface to produce a non-equal speed prayer phenomenon, resulting in miscellaneous The deviation of the wire on the surface. Therefore, 'the laser scanning laser scanning device for the microelectromechanical mirror is made of su), the characteristic is that the laser beam is scanned by the mirror 彳4' to form different degrees of distortion between the materials. Light, the development of this will make it possible to use the lens of the microelectromechanical laser scanning device to correct the scanning light so that it can be correctly imaged on the object. [New content] The purpose of this creation is to provide a two-piece lens of a micro-electromechanical laser scanning device. The two-piece torsion lens is ordered by a micro-electromechanical mirror, which is crescent-shaped and concave in MEMS. The first lens on the side of the mirror and the second lens which is crescent-shaped and concave on the side of the microelectromechanical mirror can image the light reflected by the microelectromechanical mirror on the target, and Achieve the linear scanning effect required by the laser broom. Another object of the present invention is to provide a two-piece calendar lens of a microelectromechanical laser scanning device, which is used to reduce the light spot projected on the object (the area of the surface, M345249, to achieve an improved resolution). The second step of the creation is to provide a two-piece calendar 4 of a micro-electromechanical laser scanning device, which can be used to earn a false positive axis and increase the offset in the main scanning direction and the sub-scanning direction. The image spotted on the photosensitive drum becomes a kind of marriage-like problem, and each Wei-Xingshe is feathered to achieve the effect of improving the resolution quality. Therefore, the two-piece twist lens of the micro-electromechanical laser scanning device is created. Applicable to the touch, including - the beam of the beam of the Rayleigh County, and the laser beam emitted by the lion to reflect the light beam into a micro-electromechanical mirror for scanning light to image on the subject; for the laser printer In other words, the target (4) is a photosensitive drum (drum), that is, the light to be imaged is emitted by the light source, and the scanning light is formed by the micro-electromechanical mirror scanning left and right. After the two-piece twist lens is corrected in angle and position, a light spot (Sp〇t) is formed on the photosensitive drum, and since the photosensitive drum is coated with a photosensitizer, the toner can be induced to gather on the paper, so that the data can be printed out. The second aspect of the present invention is that the ίθ lens comprises a microelectromechanical inverse-initial-first lens and a second lens, wherein the first lens has a first optical surface and a second optical surface, and the main surface is simplified. Harmony County's micro-electromechanical inverse, the optical pupil distance on the imaging surface is reduced or incremented by the county __ plus rate scan phenomenon 'corrected to constant velocity transfer' to make the projection of the laser beam on the imaging surface as a constant velocity The second system has a third silk surface and a fine optical surface, which is mainly used to homogenize the sweeping line to sweep the financial direction and the Qingcai caused by the offset optical axis. The mirror-scanning light correction is concentrated on the target object. ^ 9 M345249 [Embodiment] Referring to Figure 1, the optical path of the two-piece twisted lens of the microelectromechanical laser scanning device is created. The two-piece ίθ lens of the laser scanning device comprises a first optical surface 1 The first lens 131 of the 31a and the second optical surface 131b, and the second lens 132 having a third optical surface 132a and a fourth optical surface 132b are suitable for the microelectromechanical laser scanning device. The MEMS laser scanning device mainly comprises a laser light source 11, a microelectromechanical mirror 10, a cylindrical mirror 16, two photodetectors i4a, 14b, and a target for sensitization. In the figure, the target The system is implemented by a photosensitive drum 15. The light beam 111 generated by the laser light source 11 passes through the cylindrical mirror 16 and is projected onto the microelectromechanical mirror 10. The microelectromechanical mirror 10 is oscillated by resonance. The light beam 111 is reflected into the scanning light rays 113a, 113b, 114a, 114b, 115a, 115b. The projection of the scanning light rays 113a, 113b, 114a, 114b, 115a, 115b in the X direction is called sub scanning direction (sub scanning) In the direction of the Y, the projection in the Y direction is referred to as the main scanning direction, and the scanning angle of the microelectromechanical mirror 10 is 0c. Since the microelectromechanical mirror 10 exhibits a spectral motion, its motion angle changes sinusoidally with time, as shown in Fig. 2, so that the angle of incidence of the scanning light is nonlinear with time. The peaks a-a and troughs b-b in the figure show that the swing angle is significantly smaller than the wavelength bands a-b and a'-b', and the phenomenon of uneven angular velocity tends to cause imaging deviation of the visible light on the photosensitive drum 15. Therefore, the photodetector "a, 14b is set within the maximum scanning angle ±0C of the microelectromechanical mirror 1 ,, its refresh angle is soil θρ 'the laser beam 111 is microelectromechanical mirror 1 〇 from the peak of Figure 2 Start reflection 'this is equivalent to the scanning light ll5a of FIG. 1; when the optical inductance detector 14a detects the M345249 magical beam, it means that the microelectromechanical mirror 10 is swung to the angle of +θρ, :: Scanning light 114a, when the microelectromechanical mirror 10 scans the angle: changes the & point of Figure 2, this time corresponds to the position of the scanning light 113a; at this time, the light source 11 is controlled to start emitting the laser beam (1), and scan to the map 2 b = day ^ this time is equivalent to the scanning ray 脳 position (comparable to the angle θ η within the angle of the angle:, the light ^ 11 emitted laser beam (1)); when the microelectromechanical mirror 1G vibration, when the wave # ab The laser beam 111 is controlled to start to emit the laser beam 111; thus completing one cycle. ^ Figure 3 shows the image of the scanning light passing through the first lens and the second lens, where 'the soil is an effective scanning angle 'When the microelectromechanical mirror 10 degrees it into the soil θη, the laser source η starts to send The laser light to be scanned is reflected by the microelectromechanical mirror 10 to sweep the cat's light, and the sweeping cat light is passed through the first lens (3) and the first optical surface of the first lens 131 is second optically === microelectromechanical mirror 10 The distance between the reflected distance and the time is nonlinear. The ray of the city is _ and _ is the scanning line of the ray. And when the =:=3 丄 and the Γ lens 132, the first lens and the second and the second The optical surface, the second optical surface, the third optical surface, and the fourth optical ship's position (4) domain, the focus is on the it H drum 15 to form a column of light spots (_) 2, and cast: Lieutenant 15, The distance between the two most encountered spots 2 is called the effective scanning window 3. Where cn is the distance between the microelectromechanical mirror 10 and the first optical surface, the distance between the optical surface and the second optical surface, and d3 is the second optical surface. The distance between the third optical surface and the fourth optical surface of the third optical surface, & is the distance between the fourth optical surface and the photosensitive web 15, and R1 is the radius of curvature of the first optical surface 11

M345249 (Curvature)、R2 為第一 先予面之曲率半徑、R3為第三光學面 之曲率指及114騎四先學蚊鱗半徑。 4所示,為掃描光線投射在感光鼓 隨投射位置之不同而鑤外——立 叫價 化之不思圖。當掃瞄光線113a沿光軸 Γ —鏡片131及第二鏡#132後投射在感光鼓15時, 射於第一鏡片131及第二鏡片132之角度為零,因此於 是零’因此成像於感光鼓上15之光點2a :圓形。虽掃描光線U3bm3c透過第一鏡片⑶及第 ,片32後才又射在感光鼓時由於入射於第一鏡片⑶ 及第二鏡4132與光軸_成之岐不為零,因此於主掃描方 向之偏料不树,岭雜轉财向之郷長度較掃描光 線Ula所形成的光點為大;此情形在副掃描方向也相同,偏 離掃描級111a讀描統所軸的光點,也絲大;所以 成像於感光鼓上之光點2b、2c為一類橢圓形,且2b、2c之面 積大於2a。其中’SaO與SbO為微機電反射鏡反射面上掃瞄光 線的光點在主掃描方向(γ方向)及副掃描方向(χ方向)之長 度、Sa與Sb為感光鼓上掃_光線形成的任_個光點在γ方向 及X方向之長度。本創作之二片式扭鏡片可在主掃描方向將 光點大小經由ίθ鏡片的畸變(distortion)修正,使光點大小控制 在有限的範圍同時,可在副掃描方向將光點大小經由扭鏡片的 畸變(distortion)修正,使光點大小控制在有限的範圍。藉由本 創作之二片式f〇鏡片第一鏡片131及第二鏡片132各光學面在 主掃描方向及副掃描方向之畸變修正,使各光點大小分佈(最 大光點與最小光點比值),並控制在適當範圍,以提供符合的 12 M345249 解析度。 為達成上述功效,本創作二片式扭鏡片在第一鏡片的第一 光學面或第二光學面及第二鏡片的第三光學面或第四光學 面,可使用球面曲面或非球面曲面為設計,若使用非球面曲面 設計,其非球面係以下列方程式為設計: 1 :橫像曲面 方程式(Anamorphic equation) z = —-_(_^K2+(Cy)r2 r , ol2 1 + VwTTKx){Cx)2X2 ~(lT^XCy)2Y2' + Ar~Ap+(1 + Ap)Y ] +M345249 (Curvature), R2 is the radius of curvature of the first pre-preface, R3 is the curvature of the third optical surface, and 114 is the radius of the mosquito. As shown in Fig. 4, the scanning light is projected on the photosensitive drum in accordance with the difference in projection position - the price is not considered. When the scanning light 113a is projected on the photosensitive drum 15 along the optical axis 镜片 lens 31 and the second mirror #132, the angles incident on the first lens 131 and the second lens 132 are zero, so zero is thus imaged in the photosensitive The light spot on the drum is 2a: round. Although the scanning light U3bm3c passes through the first lens (3) and the first film 32 and is incident on the photosensitive drum, since it is incident on the first lens (3) and the second mirror 4132 and the optical axis is not zero, the main scanning direction is The eccentricity is not the tree, and the length of the ridge to turn the wealth is larger than the light spot formed by the scanning light Ula; this case is also the same in the sub-scanning direction, and the light point of the axis of the scanning system is read from the scanning stage 111a. Large; therefore, the spots 2b, 2c imaged on the photosensitive drum are of a type of ellipse, and the area of 2b, 2c is greater than 2a. Where 'SaO and SbO are the lengths of the spot of the scanning light on the reflecting surface of the MEMS mirror in the main scanning direction (γ direction) and the sub-scanning direction (χ direction), and Sa and Sb are formed by the scanning light on the photosensitive drum. The length of any _ spot in the γ direction and the X direction. The two-piece twist lens of the present invention can correct the spot size through the distortion of the ίθ lens in the main scanning direction, so that the spot size is controlled within a limited range, and the spot size can be transmitted through the twisted lens in the sub-scanning direction. The distortion correction corrects the spot size to a limited extent. By the two-piece f-lens of the present invention, the optical surfaces of the first lens 131 and the second lens 132 are corrected in the main scanning direction and the sub-scanning direction to correct the spot size (the maximum spot to the minimum spot ratio). And control in the appropriate range to provide a resolution of 12 M345249. In order to achieve the above effects, the two-piece twisted lens of the present invention can be used on the first optical surface or the second optical surface of the first lens and the third optical surface or the fourth optical surface of the second lens, and a spherical curved surface or an aspheric curved surface can be used. Design, if an aspheric surface design is used, the aspheric surface is designed with the following equation: 1: Anamorphic equation z = —-_(_^K2+(Cy)r2 r , ol2 1 + VwTTKx){ Cx)2X2 ~(lT^XCy)2Y2' + Ar~Ap+(1 + Ap)Y ] +

Br [(1 ~ Bp)x2 +(1 + BP)Y2 J3 + c,, [(1 ~ CP)X2 +(1 + CP)Y2]4 + dr[(^dp)x2^(i + Dp)Y2J (2) 其中’Z為鏡片上任一點以光軸方向至〇點切平面的距離 (SAG) ’(^與(^分別為X方向及γ方向之曲率(curvature); a與 A刀別為X方向及Y方向之圓錐係數(C〇nie 4、 A G與为別為叙轉對稱(r〇tati〇naiiy Sy血p〇r^i〇n)之四 -人/、次、八次與十次冪之圓錐變形係數(如加脱行⑽丘〇111如 eonic) ’ 4、a、cP 與外分別非旋轉對稱(non-r〇tati〇naiiy symmetric components)之分別為四次、六次、八次、十次冪之 圓錐變形係數(deformation from the conic);當,尤=& 且 4='=cp='=o則簡化為單一非球面。 2 :環像曲面方程式(Toric equation ) z = zy+—(^£L== 1 + φ-(Οχγ)2Χ2Br [(1 ~ Bp)x2 +(1 + BP)Y2 J3 + c,, [(1 ~ CP)X2 +(1 + CP)Y2]4 + dr[(^dp)x2^(i + Dp) Y2J (2) where 'Z is the distance (SAG) from the optical axis direction to the tangent plane of any point on the lens ((^ and (^ are the curvature of the X direction and the γ direction respectively; a and A are The conic coefficient in the X direction and the Y direction (C〇nie 4, AG and the other are the symmetry of the symmetry (r〇tati〇naiiy Sy blood p〇r^i〇n) four-person/, times, eight times and ten The conical deformation coefficient of the power (such as the add-off line (10) the hillock 111 such as eonic) '4, a, cP and the outer non-r〇tati〇naiiy symmetric components are four, six times, respectively. Deformation from the conic of eight times and ten powers; when, especially = & and 4 = '= cp = '= o is reduced to a single aspheric surface. 2 : Toric equation z = zy+—(^£L== 1 + φ-(Οχγ)2Χ2

Cxy = —— 1 (l/Cx)-ZyCxy = —— 1 (l/Cx)-Zy

Zy = (Cy)Y2 ^^(l + Ky)(Cy)2Y2 + 54r4+56r6+58r8+V10 ⑶ 13 M345249 ϋ、’.ζ為鏡片上任一點以光軸方向至〇點切平面的距離 屯"、C"刀別Υ方向與X方向之曲率(curvature); a: ; £ / 2錐係數(Conic coefficient) ; n 各與〜 為人/、-人、八次、十次幂之係數(4th〜10th order coefficients) deformation from the conic) ; tcx=cyM. 心=^=A=cP=q=〇則簡化為單一球面。 i " 為能使掃描光線在目標物上成像的掃描速度為等速率, 在兩個相同的時間間隔,兩個光點的距離相等;本創作之-片 式_可將掃描光線n3a至掃描先線:之 == 鏡片131及第二鏡片132進行掃描光線出射角之修正,使相同 士的時間間隔的兩掃描光線,經出射角度修正後,於成像的感光 • 政15上形成的兩個光點的距離相等。更進一步,當雷射光束 111經域機電反機1G反射後,其光點較大,如i此掃描光 線經過微魏反機1G誠級15之雜後,光點將更大, 不符合實用解析度要求;本創作之二片式扭鏡片進一步可將微 機電反射鏡1G反射的掃描光線113a至掃描絲⑽之間進 行聚焦於成像的感光鼓15上’形成較小的光點;再者,本創 作之二片式ίθ鏡片更可將成像在感光鼓15上的光點大小均句 化(限制於-符合解析度要求職_),以得最佳的解析度。 本創作之二>;式fe鏡#包含,由微機電反射鏡lQ起算依 序’為-第-鏡片131及-第二鏡片132,均為新月形且凹面 在微機電反射鏡侧之鏡片所構成。其中第一鏡片具有一第 -光學面及-第二光學面’係將微機電反射鏡1Q反射之角度 與時間非線性關係之掃描光線光點轉換成距離與時間為線2 關係之掃描光線光點·,其中第二鏡片132具有第三光學面及第 M345249Zy = (Cy)Y2 ^^(l + Ky)(Cy)2Y2 + 54r4+56r6+58r8+V10 (3) 13 M345249 ϋ, '.ζ is the distance from the optical axis direction to the tangent plane at any point on the lens 屯&quot ;,C"curvature of the direction of the knife and the direction of the X direction; a: ; £ / 2 cone coefficient (Conic coefficient); n each and ~ is the coefficient of human /, - person, eight times, ten power ( 4th~10th order coefficients) deformation from the conic) ; tcx=cyM. Heart =^=A=cP=q=〇 is simplified to a single sphere. i " In order to enable the scanning light to image on the target at an equal rate, at the same time interval, the distance between the two spots is equal; the creation of the slice _ can scan the light n3a to scan The first line: the == lens 131 and the second lens 132 are corrected for the scanning light exit angle, so that the two scanning rays of the same time interval are corrected by the exit angle, and the two formed on the imaging sensation 15 The distances of the spots are equal. Furthermore, when the laser beam 111 is reflected by the domain electromechanical counter-machine 1G, its light spot is larger. If the scanning light passes through the micro-wei back machine 1G Cheng class 15 miscellaneous, the spot will be larger, which is not in line with practical analysis. The two-piece twisted lens of the present invention can further form a small spot on the photosensitive drum 15 which is focused between the scanning light 113a reflected by the microelectromechanical mirror 1G and the scanning wire (10); The two-piece ίθ lens of the present invention can evenly distinguish the size of the spot image formed on the photosensitive drum 15 (limited to - meet the resolution requirement _) for the best resolution. The second type of the present invention includes a MEMS mirror, which is sequentially subjected to a microelectromechanical mirror lQ as a -first lens 131 and a second lens 132, both of which are crescent shaped and concave on the side of the microelectromechanical mirror. The lens is composed of. The first lens has a first optical surface and a second optical surface is a scanning light ray that converts the angle of the microelectromechanical mirror 1Q and the time nonlinear relationship into a scanning light ray having a distance and time relationship of 2 Point · wherein the second lens 132 has a third optical surface and the first M345249

四光學面,係將第一鏡片131之掃描光線修正聚光於目標物 上;藉由該二片式鏡片將微機電反射鏡10反射之掃描光 線於敢光鼓15上成像;其中,第一光學面、第二光學面、第 三光學面及第四光學面在主掃描方向至少有一個為非球面所 構成之光學面、第一光學面、第二光學面、第三光學面及第四 光學面在副掃描方向至少有一個為非球面所構成之光學面。更 進一步,在第—鏡片131及第二鏡片132構成上,在光學效果The four optical surfaces are used to condense the scanning light of the first lens 131 onto the target; the scanning light reflected by the microelectromechanical mirror 10 is imaged on the light drum 15 by the two-piece lens; The optical surface, the second optical surface, the third optical surface, and the fourth optical surface have at least one optical surface composed of an aspherical surface in the main scanning direction, a first optical surface, a second optical surface, a third optical surface, and a fourth The optical surface has at least one optical surface formed by an aspherical surface in the sub-scanning direction. Further, in the composition of the first lens 131 and the second lens 132, the optical effect

上’本創作之一片式ί <9鏡片,在主掃描方向進一步滿足式(4) 及式(5)條件: J{\)Y (4) 0<-^-<0.6 J(2)Y (5) 或,在主掃描方向滿足式(6) ο·〇5<Λ(ί^+(〜2-ι))<05 J^Y /(2)7 (6) 且在副掃描方向滿足式(7) 其中’ί(υγ為第一鏡片131在主掃描方向之焦距、f(2)Y為 苐一鏡片132在主掃描方向之焦距、由為0=〇。第一鏡片131 目標物侧光學面至第二鏡片132微機電反射鏡侧光學面之距 離、d4為0=0。第二鏡片132厚度、(15為0=〇。第二鏡片132目 標物侧光學面至目標物之距離,f⑴χ為第一鏡片131在副掃描 方向之焦距、f(2)x為第二鏡片132副掃描方向之焦距、代為二 片式f 0鏡片之複合焦距(combined focal length)、Rix第i光學 15 M345249 面在X方向的曲率半徑;Rix為第i光學面在又方向的曲率半 徑;ndl與nd2為第一鏡片131與第二鏡片132之折射率 (refraction index) 〇 再者,本創作之二片式fe鏡片所形成的光點均一性,可 以取大光點與农小光點大小的比值5表示,即滿足式(8): 0.2<S = ~^Sb'Sa^ max(V&) ⑻On the 'one piece of this creation ί < 9 lens, in the main scanning direction to further satisfy the formula (4) and formula (5) conditions: J{\)Y (4) 0<-^-<0.6 J(2) Y (5) or, in the main scanning direction, satisfies the equation (6) ο·〇5<Λ(ί^+(~2-ι))<05 J^Y /(2)7 (6) and in the sub-scan The direction satisfies the equation (7) where 'ί (υγ is the focal length of the first lens 131 in the main scanning direction, f(2)Y is the focal length of the first lens 132 in the main scanning direction, and is 0 = 〇. The first lens 131 The distance from the target side optical surface to the second lens 132 microelectromechanical mirror side optical surface, d4 is 0 = 0. The thickness of the second lens 132, (15 is 0 = 〇. The second lens 132 target side optical surface to the target The distance of the object, f(1)χ is the focal length of the first lens 131 in the sub-scanning direction, f(2)x is the focal length of the second lens 132 in the sub-scanning direction, and the combined focal length of the two-piece f 0 lens (combined focal length), Rix The radius of curvature of the ith optics 15 M345249 in the X direction; Rix is the radius of curvature of the i-th optical surface in the other direction; ndl and nd2 are the refractive indices of the first lens 131 and the second lens 132. The two-piece fe of this creation Spot uniformity sheet is formed, may be a ratio takes a large spot and the agricultural small spot size 5 represent, i.e., satisfying the formula (8): 0.2 < S = ~ ^ Sb'Sa ^ max (V &) ⑻

更進一步,本創作之二片式f 0鏡片所形成的解析度,可 使用7? max為微機電反射鏡1〇反射面上掃瞄光線的光點經掃描 在感光鼓15上最大光點的比值(Rati〇 〇f scanning light 〇f maximum spot)與〜in為微機電反射鏡1〇反射面上掃瞄光線 的光點經掃描在目標物上最小光關比值(RatiQ Qf light of minimum spot)為表示,即可滿足式⑼及(1〇), <0.25 <0.05Furthermore, the resolution of the two-piece f 0 lens of the present invention can be used to scan the spot of the light on the photosensitive drum 15 by using 7? max as the spot of the micro-electromechanical mirror 1 scanning surface. Rati〇〇f scanning light 〇f maximum spot and ~in is the minimum spot ratio of the spot scanned on the target surface of the microelectromechanical mirror. To express, it can satisfy formulas (9) and (1〇), <0.25 <0.05

_ maxQVD (9) (10) 一 (Ho) _ 二 min〇V&) (^0 * ^α0 ) 其中’ Sa與Sb為感光鼓15上掃目苗光線形成的任一個光點 在主掃描方向及!_^向之長度、5城級15上最小光 點與最大光狀_ ; ^與&輕_反魏誠射面上掃 瞄光線的光點在主掃描方向及副掃描方向之長度。 為使本創錢加明料實,_舉較ς實施例並配 cr下列圖7F將本創作之結構及其技術特徵詳述如後: 本創作以下所揭不之實補,乃是針縣創作微機電雷射 掃描裝置之二/式fB鏡片之主要構成元件而作說明 ’因此本創 作以下所揭不之實;^例雖是應用於_微機電雷射掃描裝置 M345249 中,但就-般具有微機t雷射掃描裝置而言,除了本創作所揭 示之二片式fe鏡料,其他結構乃屬—般通知之技術因此一 般在此領域幢纽項賴之人士_,本__示微機電 田射掃描4置之->{式㊉鏡片之構成元件並不關於以下所 揭示之實施例結構,也就是該微機電雷射掃描裝置之二片式扭 鏡片之各構成元件是可以進行許纽變、修改、甚至等效變更 的’例如:第-鏡片131及第二鏡片132之曲率半徑設計 或面型設計、材質選用、間距調整等並不限制。 <第一實施例> 132玉本實施例之二片式扭鏡片之第一鏡片131及一第二鏡片 一均為新月形且凹面在微機電反射鏡侧之鏡片所構成,在第 使131第一光學面、第二鏡片13第四光學面係為非球面, 片第為非球面公式設計;在第一鏡片第二光學面及第二鏡 牿〜予面係為非球面,使用式(2)為非球面公式設計。其光學 …與非球面參數如表—及表二。 17 M345249 表一、第一實施例之f<9光學特性_ maxQVD (9) (10) one (Ho) _ two min〇V&) (^0 * ^α0 ) where ' Sa and Sb are any light spots formed by the light of the seedlings on the photosensitive drum 15 in the main scanning direction And the length of the _^ direction, the minimum light spot and the maximum light shape on the 5th level 15; ^ & light _ anti-Weicheng surface scan the light spot in the main scanning direction and the length of the sub-scanning direction . In order to make this money more clear, _ cite the example and match the following figure 7F to detail the structure and technical features of this creation as follows: The main constituent elements of the second-type fB lens of the micro-electromechanical laser scanning device are described as the description. Therefore, the following is not disclosed in the present invention; although the example is applied to the _microelectromechanical laser scanning device M345249, In general, with the microcomputer-based laser scanning device, in addition to the two-piece fe-mirror disclosed in this creation, the other structures are generally notified of the technology, so generally the people in this field are _, this __ shows The micro-electromechanical field scanning 4--the constituent elements of the ten-lens lens are not related to the structure of the embodiment disclosed below, that is, the constituent elements of the two-piece twist lens of the microelectromechanical laser scanning device are For example, the curvature radius design or the surface design, the material selection, the pitch adjustment, and the like of the first lens 31 and the second lens 132 are not limited. <First Embodiment> 132 The first lens 131 and the second lens 1 of the two-piece twist lens of the present embodiment are each formed of a crescent-shaped lens having a concave surface on the side of the microelectromechanical mirror. The first optical surface of the 131 and the fourth optical surface of the second lens 13 are aspherical, and the sheet is designed to be aspherical; the second optical surface of the first lens and the second mirror and the second surface are aspherical, and are used. Equation (2) is an aspheric formula design. Its optical ... and aspheric parameters are as shown in Table - and Table 2. 17 M345249 Table 1, f<9 optical characteristics of the first embodiment

*****氺氺氺Rl^ssRl^ss*****氺氺氺Rl^ssRl^ss

Ky圓錐係數 (Conic Coefficent) -0.688265 -0.623312 -2.651065 -77.902229 4th次冪係數 6th次冪係數 Order Order Coefficient (AR) Coefficient (BR) 9.942E-09 1.683E-08 4.265E-08 2.333E-08 2.767E-06 -2.557E-09 -1.601E-06 4.703E-12Ky Coefficient (Conic Coefficent) -0.688265 -0.623312 -2.651065 -77.902229 4th power coefficient 6th power coefficient Order Order Coefficient (AR) Coefficient (BR) 9.942E-09 1.683E-08 4.265E-08 2.333E-08 2.767 E-06 -2.557E-09 -1.601E-06 4.703E-12

Kx圓錐係數 (Conic Coefficent) -9.853981 -29.337466 260.400009 -72.328827 他次冪係數 6th次冪係數 Order Order Coefficient (AP) Coefficient (BP) 3.420E+01 0.000E+00 -1.698E+01 0.000E+00 -3.371E-01 0.000E+00 3.526E-03 0.000E+00 8th次幂係數 Order Coefficient (CR) 0.000E+00 0.000E+00 7.079E-13 _ 0.000E+00 10th次冪係數 Order Coefficient (DR) 0.000E+00 0.000E+00 0.000E+00 0.000E+00 8th次冪係數 Order Coefficient (CP) 0.000E+00 0.000E+00 0.000E+00 0.000E+00 10th次冪係數 Order Coefficient (DP) 0.000E+00 0.000E+00 0.000E+00 0.000E+00 fs=202.22 ----— 光學面 曲率半控(mm) d厚度(mm) n(j折射率 (optical surface) (curvature) ^thickness)___(refraction index) MEMS反射面R 〇.〇〇〇〇〇〇 35.00 1 lens 1 1 R1 (Anamorphic) 1 Rlx* 29.538106 7.72 Rly* -22.035098 R2iAnamorohic) R2x* -85.322727 15.00 R2y* -19.335857 lens 2 1.525 R3 (Anamorphic) R3x* 57.186317 8.00 R3y* -53.102372 R4f Anamorphic) R4x* -77.826614 73.86 R4y* -231.535308 感光鼓idrum)R5 〇.〇〇〇〇〇〇 0.00 *表示非球面 表二、第一實施例之光學面非球面參數 surface) 橫像曲面方程式係數(Anamorphic equation coefficent) 經由此所構成的二片式ίθ鏡片之光學面其光路圖如圖$。 f⑴γ= 152.84、f(2)Y= -132.768可將掃描光線轉換成距離與時間 為線性之掃描光線光點,並將微機電反射鏡1〇上光點s — 18 M345249 154· 6、Sb〇= 3587.48掃描成為掃描光線,在感光鼓i5 、一 χ 焦,形成較小的光點6,並滿足式⑷〜式(1〇)之條件,如聚 光點大小自中心軸5至掃描視窗3之左侧分了中 之 心軸H(掃描視窗3最左側),如圖 視 右侧與左侧為對稱相同。 @ 表三、第一實施例滿足條件表Kx Coefficient (Conic Coefficent) -9.853981 -29.337466 260.400009 -72.328827 Other power coefficient 6th power coefficient Order Order Coefficient (AP) Coefficient (BP) 3.420E+01 0.000E+00 -1.698E+01 0.000E+00 - 3.371E-01 0.000E+00 3.526E-03 0.000E+00 8th power factor Order Coefficient (CR) 0.000E+00 0.000E+00 7.079E-13 _ 0.000E+00 10th power factor Order Coefficient (DR ) 0.000E+00 0.000E+00 0.000E+00 0.000E+00 8th power factor Order Coefficient (CP) 0.000E+00 0.000E+00 0.000E+00 0.000E+00 10th power factor Order Coefficient (DP ) 0.000E+00 0.000E+00 0.000E+00 0.000E+00 fs=202.22 ----- Optical surface curvature half control (mm) d thickness (mm) n (j refractive surface (curvature) ^thickness)___(refraction index) MEMS reflective surface R 〇.〇〇〇〇〇〇35.00 1 lens 1 1 R1 (Anamorphic) 1 Rlx* 29.538106 7.72 Rly* -22.035098 R2iAnamorohic) R2x* -85.322727 15.00 R2y* -19.335857 lens 2 1.525 R3 (Anamorphic) R3x* 57.186317 8.00 R3y* -53.102372 R4f Anamorphic) R4x* -77.826614 73.86 R4y* -231.535308 Photosensitive drum idrum) R5 〇.〇〇〇〇〇〇0.00 * indicates aspheric surface table 2, optical surface aspherical surface parameter of the first embodiment) Anamorphic equation coefficent The optical surface of the optical surface of the ίθ lens is shown in Figure $. f(1)γ= 152.84, f(2)Y= -132.768 converts the scanning light into a scanning light spot whose distance is linear with time, and illuminates the microelectromechanical mirror 1 18 18 M345249 154· 6 , Sb〇 = 3587.48 Scanning becomes scanning light, forming a small spot 6 on the photosensitive drum i5, a focus, and satisfying the condition of the formula (4)~1(1〇), such as the spot size from the central axis 5 to the scanning window 3 The left side is divided into the center axis H (the leftmost side of the scanning window 3), and the right side and the left side are symmetric as shown in the figure. @表三, The first embodiment satisfies the condition table

d3+d4+d5D3+d4+d5

•0.5563 A. Α2)Υ 0.6337 主掃描方向 /,( (〜1 一 1) . (X/2 - 1)、 '(i)r• 0.5563 A. Α 2) Υ 0.6337 Main scanning direction /, ( (~1 to 1) . (X/2 - 1), '(i)r

f(2)Y 副掃描方向 0.1050 6.1800f(2)Y Sub-scanning direction 0.1050 6.1800

0.8150 0.00880.8150 0.0088

max〇V\) =max〇V&) i^bO * ^a0 )Max〇V\) =max〇V&) i^bO * ^a0 )

=min〇V5J ~ Ho) — 19 M345249 <苐二實施例> 132ΐ=^片式扭鏡片之第—鏡片m及-第二鏡片 -鏡片1 = ΓΓ在峨林数物構成,在第 學面及第二鏡片132第三學面係為 ’使用式(2)為非球面公式設計;在第二鏡片⑶第凹學 面係為球面。其光學特性與非球面參數如表四及表五。=min〇V5J ~ Ho) — 19 M345249 <苐二实施例> 132ΐ=^The type of twisted lens - lens m and - second lens - lens 1 = ΓΓ in Yulin number composition, in the first The third surface of the surface and the second lens 132 is 'the use equation (2) is an aspherical formula; the second lens (3) is a spherical surface. Its optical characteristics and aspherical parameters are shown in Tables 4 and 5.

表四、第二實施例之f<9光學特性Table 4, f<9 optical characteristics of the second embodiment

fs-155.0 ~--------- 光學面 曲率半徑(mm) d厚度(mm) nd折射率 (optical surface) (curvature) (thickness) (refraction index) MEMS及射而Rn 〇.〇〇〇〇〇〇 35.00 1 lens 1 1.533 R1 (Y Toroid) Rlx* -31.195065 8.00 Rly* -66.689255 R2iAnamorphic、 R2x* -11.537224 15.00 R2y* -59.430437 lens 2 1.533 R3fAnamorphic) R3x* 138.084983 8.00 R3y* -380.314932 R4fY Toroid) R4x 291.593710 73.86 R4y -406.695465 威先玆rdmm)R5 〇.〇〇〇〇〇〇 0.00 *表示非球面 20 M345249 表五、第二實施例之光學面非球面參數 u----孝像曲面方程式樣數Toric ennatirm Coefficient 先學面(,1 Ky圓錐係數嫩冪係數^次冪係數她次幂係數麵次幕係數 surface) (Conic 〇rder 〇rder Order Order Coefficent)·-_CoefficienUB4) CoefficientΓΒ6) Coefficient(B8) Coefficient l^l724 ^1.232E-08 -3.228E-08 0.000E+00 0.000E+00Fs-155.0 ~--------- Optical surface curvature radius (mm) d thickness (mm) nd refractive index (optical surface) (curvature) (thickness) (refraction index) MEMS and shot and Rn 〇.〇 〇〇〇〇〇35.00 1 lens 1 1.533 R1 (Y Toroid) Rlx* -31.195065 8.00 Rly* -66.689255 R2iAnamorphic, R2x* -11.537224 15.00 R2y* -59.430437 lens 2 1.533 R3fAnamorphic) R3x* 138.084983 8.00 R3y* -380.314932 R4fY Toroid ) R4x 291.593710 73.86 R4y -406.695465 Weisz rdmm)R5 〇.〇〇〇〇〇〇0.00 * indicates aspherical surface 20 M345249 Table V. Optical surface aspherical parameters of the second embodiment u----Shadow image equation Toric ennatirm Coefficient First, (1 Ky conic coefficient, power coefficient ^ power factor, her power coefficient surface coefficient coefficient surface) (Conic 〇rder 〇rder Order Order Coefficent)·-_CoefficienUB4) CoefficientΓΒ6) Coefficient(B8 Coefficient l^l724 ^1.232E-08 -3.228E-08 0.000E+00 0.000E+00

Rl* ------------ - -—松像曲面方程式係數(Anamorphic equation coefficent) ^圓錐係數她次冪係數6th次冪係數8th次冪係數10th次冪係數 (rCZC A 〇rder Order 〇rder OrderRl* ------------ - - - Anamorphic equation coefficent ^ Conic coefficient her power coefficient 6th power coefficient 8th power coefficient 10th power coefficient (rCZC A 〇 Rder Order 〇rder Order

¥x -— ^^,741£"°7 -1.049E-11 0.000E+00 O.OOQE+OO C〇effi^ C〇efS^^^ Sefficient(DP) ~~_〇=:= 、稍此所構成的二>;式fe制之光學面其光關如圖7。 =,157、w— -1242G· 515可將掃描光線轉換成距離與時 之掃描光線光點,並將微機電反射鏡1G上光點&。= 聚隹观7·158掃描成為掃描光線,在感光鼓15上進行 光^:小的光點8,並滿足⑷〜式⑽之條件,如表三; 尤點大小自中心軸7至掃描視窗3之左 ^、%娜则3最綱,地^ (中 右側與左側為對稱相… 旧’外描視窗3之 21 M345249 表六、弟二豐j包例滿足條件表 d3 +<i4 ,(i)r¥x -— ^^,741£"°7 -1.049E-11 0.000E+00 O.OOQE+OO C〇effi^ C〇efS^^^ Sefficient(DP) ~~_〇=:= , slightly The optical surface made of the second embodiment of the formula is shown in Fig. 7. =, 157, w - - 1242G · 515 can convert the scanning light into a scanning light spot of distance and time, and the spot of the microelectromechanical mirror 1G & = 隹 7 · · 158 158 158 158 158 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 left ^,% Na is the most important, the ground ^ (the right side and the left side are symmetrical phase... The old 'outside drawing window 3 of 21 M345249 Table six, brother Erfeng j package case meets the condition table d3 +<i4, (i)r

-0.00594 0.1291 0.1034 0.6455 0.3661-0.00594 0.1291 0.1034 0.6455 0.3661

d5 主掃描方向 f ^Hd\ ""Ο f (nd2 -1)^ /(1)7 f(2)Y 副掃描方向 (---)+ (----) f κ rJ k)Js minOVSj maxOVSj = nm(V5a) (H) —_J^a〇) 0.0233 0Ό085 <第三實施例> =例之二片式㈣片之第—鏡片i3i及 彻且㈣在微魏反她狀制賴成 HI =第一光學面及第二鏡片第四光學面在副掃描方向係 二^ 31第二光學面及第二鏡片132第三光學面 1、二表面,使用式(2)為非球面公式設計;第一鏡片131第一 ==1二鏡片132第四光學面在主掃描方向係為非球面, 式(3)為非球面公式設計。其光學特性與非球面參數如表七 22 M345249 表七、第三實施例之f0光學特性D5 Main scanning direction f ^Hd\ ""Ο f (nd2 -1)^ /(1)7 f(2)Y Sub-scanning direction (---)+ (----) f κ rJ k) Js minOVSj maxOVSj = nm(V5a) (H) —_J^a〇) 0.0233 0Ό085 <Third embodiment>=Example of the two-piece (four) piece of the lens-the lens i3i and the (four) in the micro-wei The ray is HI = the first optical surface and the second optical surface of the second lens are in the sub-scanning direction, the second optical surface of the second optical surface, and the third optical surface 1 and the second surface of the second lens 132. The equation (2) is used. Spherical formula design; first lens 131 first = 1 2 lens 132 fourth optical surface is aspherical in the main scanning direction, and equation (3) is aspherical formula design. The optical characteristics and aspherical parameters are as shown in Table 7 22 M345249 Table VII, f0 optical characteristics of the third embodiment

fs=155.0 光學面 曲率半徑(mm) d厚度(mm) nd折射率 (optical surface) (curvature) (thickness) (refraction index: MEMS反射面RJ 〇.〇〇〇〇〇〇 35.00 1 lens 1 1.53 R1 (Ύ Toroid) Rlx* 85.066265 8.00 Rly* -400.564464 R2fAnamorphic) R2x* -27.590261 15.00 R2y* -348.520789 lens 2 1.53 R3iAnamon)hic) R3x* 20.877074 8.00 R3y* -278.424555 R4fY Toroid) R4x* 50.511279 73.86 R4y* -4988.475863 感糸鼓idrum)R5 〇.〇〇〇〇〇〇 0.00 *表示非球面 23 M345249 表八、第三實施例之光學面非球面參數 環像曲面方程式係數T〇ric equation Coefficient 光學面(optical Ky圓錐係數 (Conic Coefficent) 4th次冪係數 6th次冪係數 8th次冪係數 10th次冪係數 surface) 0rder Order Order Coefficient Coefficient (B4) Coefficient (B6) iB8) Order Coefficient (B10) Rl* 155.019090 -1.590E-06 6.905E-10 -7.927E-13 0.000E+00 R4* 9532.167358 -8.270E-07 -1.516E-10 1.011E-13 0.000E+00Fs=155.0 optical surface curvature radius (mm) d thickness (mm) nd refractive index (optical surface) (curvature) (thickness) (refraction index: MEMS reflective surface RJ 〇.〇〇〇〇〇〇35.00 1 lens 1 1.53 R1 (Ύ Toroid) Rlx* 85.066265 8.00 Rly* -400.564464 R2fAnamorphic) R2x* -27.590261 15.00 R2y* -348.520789 lens 2 1.53 R3iAnamon)hic) R3x* 20.877074 8.00 R3y* -278.424555 R4fY Toroid) R4x* 50.511279 73.86 R4y* -4988.475863糸 drum idrum) R5 〇.〇〇〇〇〇〇0.00 * indicates aspherical surface 23 M345249 Table 8. Optical surface aspherical parameters of the third embodiment Ring image Equation coefficient Coefficient optical surface (optical Ky conic coefficient (Conic Coefficent) 4th power coefficient 6th power coefficient 8th power coefficient 10th power coefficient surface) 0rder Order Order Coefficient Coefficient (B4) Coefficient (B6) iB8) Order Coefficient (B10) Rl* 155.019090 -1.590E-06 6.905 E-10 -7.927E-13 0.000E+00 R4* 9532.167358 -8.270E-07 -1.516E-10 1.011E-13 0.000E+00

Ky圓錐係數 冪係數 6th次冪係數8th次冪係數 10th次冪係數 (Conic CoefFicent) J QL. . 〇rder Order Coefficient Order Coefficient Coefficient (AR) Coefficient (CR) (ΌΚ) _=冗-S-〇93E-l〇( -2,93E-13(DR) 0,〇〇E+00 ~~謂 2.058E-14 0.00QE4-0Q =^冪係數她次幕藏~g欠冪係數 …v四平丨少外 …丨…,、取 …u -八▼邶双 次桊係數 0.000E+00 0.000E+00 9 (conicc:rsr〇efficient -^(° — L由此所構成的二片式扭鏡片之光學面其光路圖如圖y。 f0)Y= 4831.254、f(2)Y= -559· 613 可將掃描 間為線性之掃描光線光點,並將 :成距離與時 咖、一掃描成為掃二反射在=^^ 1焦,形成較小的先點丨〇,並滿足(4 ^ 灯 光點大小自中心軸9至掃描視窗3之左侧^,如表三; 心轴)、6b〜6j(掃描視窗3最左侧),蝴:、、、·光點6a(中 之右側與左側為對稱相同。 ,另掃描視窗3 24 M345249 表九、第三實施例滿足條件表 + + d5 r -0.1320 /⑴r d5 r 0.0200 主掃描方向 /产;Ύ)) 0.1298 /(1)7 /(2)7 副掃描方向 、vu 4.4038 5 minOVK) max〇V\) 0.2200 ^ max〇V&) 0.1442 /max \^bO Ao) min〇V&) 胃_ (Ho) 0.0317Ky conic coefficient power coefficient 6th power coefficient 8th power coefficient 10th power coefficient (Conic CoefFicent) J QL. . 〇rder Order Coefficient Order Coefficient Coefficient (AR) Coefficient (CR) (ΌΚ) _=Redundancy-S-〇93E -l〇( -2,93E-13(DR) 0,〇〇E+00 ~~说2.058E-14 0.00QE4-0Q =^The power factor is the next time she hides ~g under power coefficient...v4 丨 丨...丨...,,...u-eight▼邶double-twist coefficient 0.000E+00 0.000E+00 9 (conicc:rsr〇efficient -^(°—L The optical surface of the two-piece twisted lens thus formed The optical path diagram is shown in Figure y. f0) Y= 4831.254, f(2)Y= -559· 613 The scanning light spot can be linear between scans, and the distance between the scan and the time is changed. At =^^ 1 focus, a smaller first point is formed, and it satisfies (4 ^ light point size from center axis 9 to left side of scan window 3, as shown in Table 3; mandrel), 6b~6j (scan Window 3 on the far left), Butterfly:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (1)r d5 r 0.0200 Scanning direction/production; Ύ)) 0.1298 /(1)7 /(2)7 Sub-scanning direction, vu 4.4038 5 minOVK) max〇V\) 0.2200 ^ max〇V&) 0.1442 /max \^bO Ao) min〇 V&) Stomach _ (Ho) 0.0317

25 M345249 <第四實施例> 本實知例之二片式扭鏡片之第-鏡片131及-第二鏡片 為新4形且㈣在微機€反射細之·所構成,在第 m1第一光學面、第二鏡片132第四光學面係為非球 面’使用式⑶為非球面公式設計;在第—鏡片131第風 及第-鏡片132第三學面係為非球面,使用式( 設計。其絲雜與猶面參數如表十及表十—轉4面厶式 表十、第四實施例之f0光學特性 ts=155.0 -----—---- ~徑(麵)~5¾¾ nd# 射率 MEMS及鼾 lens 1 R1 (Ύ Toroid、 〇.〇〇〇〇〇〇 v^n^isjiessj 35.00 (retraction lndex^ 1 1.53 Rlx* Rly* 627.190018 -158.005702 7.50 R2fAnamon)hic>) R2x* R2y* lens 2 -13.634788 -64.326186 15,00 1.53 R3fAnamorphic) R3x* R3y* 65.108392 -75.524638 8.00 R4iY Toroid) R4x* R4y* 38.125658 -661.484106 73.86 感免敍rdrun 〇.〇〇〇〇〇〇 0.00 *表示非球面 26 M345249 表Η、第四實施例之光學面非球面參數 光學面 (optical surface) 環像曲面方程式係數Toric equation Coefficient Ky圓錐係數 (Conic Coefficent) 4th次幕係數 6th次冪係數8th次冪係數 〇rder Order Order Coefficient Coefficient fB4) Coefficient (B6) (BS) 10th次冪係數 Order Coefficient iB10) Rl* R4* 23.495732 〇.〇〇〇〇〇〇 -1 · 149E-06 1.607E-09 0.000E+00 —1.887E-07 0.000E+00 0.000E+00 0.000E+00 0.000E+0025 M345249 <Fourth Embodiment> The first lens 31 and the second lens of the two-piece twist lens of the present embodiment are formed in a new shape of 4 and (4) in the micro-machine reflection, in the m1th The optical surface, the second optical surface of the second lens 132 is aspherical, and the equation (3) is an aspherical formula; the third surface of the first lens 131 and the third surface of the lens 132 are aspherical, and the Design. The parameters of the wire and the surface are as shown in Table 10 and Table 10 - Turning the 4 surface 表 table 10, the f0 optical characteristic of the fourth embodiment ts = 155.0 ---------- ~ diameter (surface) ~53⁄43⁄4 nd# MEMS and 鼾lens 1 R1 (Ύ Toroid, 〇.〇〇〇〇〇〇v^n^isjiessj 35.00 (retraction lndex^ 1 1.53 Rlx* Rly* 627.190018 -158.005702 7.50 R2fAnamon)hic>) R2x * R2y* lens 2 -13.634788 -64.326186 15,00 1.53 R3fAnamorphic) R3x* R3y* 65.108392 -75.524638 8.00 R4iY Toroid) R4x* R4y* 38.125658 -661.484106 73.86 感免述 rdrun 〇.〇〇〇〇〇〇0.00 * indicates non Spherical surface 26 M345249, the optical surface aspherical parameter of the fourth embodiment, optical surface, ring image surface Toric equation Coefficient Ky Coefficient (Conic Coefficent) 4th sub-curtain coefficient 6th power coefficient 8th power coefficient 〇rder Order Order Coefficient Coefficient fB4) Coefficient (B6) (BS) 10th power coefficient Order Coefficient iB10) Rl* R4* 23.495732 〇.〇〇〇〇〇〇-1 · 149E-06 1.607E-09 0.000E+00 —1.887E-07 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Ky圓錐係數 她次幕係數 6th次冪係數8th次冪係數 10th次冪係數 (Conic Coefficent) 0rder Order Order Coefficient Order CoefficientKy conic coefficient her secondary curtain coefficient 6th power coefficient 8th power coefficient 10th power coefficient (Conic Coefficent) 0rder Order Order Coefficient Order Coefficient

Coefficient (AR) Coefficient (CR) (DR) R3* 00?8702 6·195Ε·10 0.000E+00 0.000E+00 ----⑶ 18702 9 646E-07 -M42E-10 0.000E+00 Q.Q00K+00Coefficient (AR) Coefficient (CR) (DR) R3* 00?8702 6·195Ε·10 0.000E+00 0.000E+00 ----(3) 18702 9 646E-07 -M42E-10 0.000E+00 Q.Q00K +00

Kx圓錐係數 人幂係數 6th次冪係數8th次冪係數 10th次冪係數 (ConicC〇efficent)c-cientw^ Order Coefficient 2M69?'l 3.083E-01 〇.〇〇〇E+〇〇 〇.〇〇〇E+〇〇 〇 ~__O^OOE+00_Μ00Ε+00 〇nnnF+nn 經由此所構成的K fB鏡片之光學面其光路圖如圖 11。W= 199.885、f(2)Y= -162. 471可將掃描光轉換成距離與 時間為線性之掃描光線光點,並將微機電反射鏡1〇上光點&= 14·374、Sm= 2917.652掃描成為掃描光線,在感光鼓15 1 = 聚焦’形成較小的光點12,並滿足(4)〜式(1〇)之條件,· 光點大小自巾咏U讀描視13之左侧分料:二 =)、7b〜7j(掃描視窗3最左侧),如圖12 ; 之右側與左侧為對稱相同。 田視自3 27 M345249 表十二、第四實施例滿足條件表 + d5 Αόυ 主掃描方向 副掃描方向 々I)rKx conic coefficient human power coefficient 6th power coefficient 8th power coefficient 10th power coefficient (ConicC〇efficent) c-cientw^ Order Coefficient 2M69?'l 3.083E-01 〇.〇〇〇E+〇〇〇.〇〇〇 E+〇〇〇~__O^OOE+00_Μ00Ε+00 〇nnnF+nn The optical path of the optical surface of the K fB lens thus constructed is shown in Fig. 11. W= 199.885, f(2)Y= -162. 471 can convert the scanning light into a scanning light spot whose distance is linear with time, and illuminate the microelectromechanical mirror 1 &= 14·374, Sm = 2917.652 scan becomes the scanning light, the photosensitive drum 15 1 = focus 'forms a smaller spot 12, and satisfies the condition of (4) ~ (1〇), · the spot size from the frame U read the description 13 Left side material: two =), 7b ~ 7j (scanning window 3 leftmost), as shown in Figure 12; the right side and the left side are symmetric. Tian Shi from 3 27 M345249 Table 12, the fourth embodiment satisfies the condition table + d5 Αόυ Main scanning direction Sub-scanning direction 々I)r

W A,minOVK) max(^ -Sa)(、Λ。) min(^ ^min -0.4546 0.4846 0.0946 1.6099 0.2191 0.2037 0.0446 藉由上述之實施例說明,本創作至少可達下列功效·· 嫩德藉由本創作之—片式鏡片之設置,可將呈簡諧運動之 或反射,在成像面上光簡距由絲_ _加而遞減 速率掃描現象’修正為等速率掃描,使雷射光束 鄰光點間等速率掃描,使成像於目標物上形成之兩相 描方作之—片式鏡片之設置,可畸變修正於主掃 點得;^ 崎描錢,使聚焦於成料目標物上之光 描二:設置:變修, 均勻化。 柯描先線,使成像在目標物上的光點大小 僅是二::僅,創作的較佳實施例’對本創作而言 、 非限制性的;本專業技術人員理解, 28 .M345249 =!:權利要求所限定的精神和範 吁夕改變,修改,甚至等效變 Γ對其進灯 保護範圍内。 一卩將落入本創作的 【囷式簡單說明】 m 1 馮本創作二片式历鏡片之光學路徑 立 圖2為-微機電反射麟描肢θ 不忍圖;WA, minOVK) max(^ -Sa)(,Λ.) min(^ ^min -0.4546 0.4846 0.0946 1.6099 0.2191 0.2037 0.0446 By the above examples, the creation can at least achieve the following effects. · Nende by this creation The setting of the chip lens can be a simple harmonic motion or reflection, and the light distance on the imaging surface is corrected by the wire _ _ plus the deceleration rate scanning phenomenon to the equal-rate scanning, so that the laser beam is adjacent to the light spot. The equal-rate scanning enables the two-phase depiction formed on the target to be set as a slice lens, which can be corrected to the main sweep point; ^ Scratch the money to focus on the light on the material target Two: setting: modification, homogenization. The line is drawn so that the size of the spot on the target is only two:: only the preferred embodiment of the creation is non-limiting for the creation; the technical expertise Personnel understand, 28 .M345249 =!: The spirit and the ceremonial ceremonies defined in the claims change, modify, and even the equivalent change into the scope of the protection of the lamp. A glimpse of the simple description of the 】 】 m 1 The optical path of Feng Ben's two-piece lens Figure 2 is a microelectromechanical reflex narration θ not tolerant;

圖3為通過第一鏡片及第二鏡片之掃:二:之關係圖; 號說明圖; 田先線之光學路徑圖及符 圖4為掃描光線投射在感光鼓上後,朵 同而變化之示意圖; “,概投射位置之不 圖5為第一實施例之光路圖; 圖6為第一實施例之光點示意圖; 圖7為第二實施例之光路圖; 圖8為第二實施例之光點示意圖; 圖9為第三實施例之光路圖; 圖10為第三實施例之光點示意圖; 圖11為第四實施例之光路圖;以及 圖12為第四實施例之光點示意圖。 29Figure 3 is a diagram of the relationship between the first lens and the second lens: the second: the relationship diagram; the optical path diagram of the Tian Xian line and the symbol 4, after the scanning light is projected on the photosensitive drum, the same change Figure 5 is a light path diagram of the first embodiment; Figure 6 is a light path diagram of the first embodiment; Figure 7 is a light path diagram of the second embodiment; Figure 8 is a second embodiment FIG. 9 is a light path diagram of the third embodiment; FIG. 10 is a light path diagram of the third embodiment; FIG. 11 is a light path diagram of the fourth embodiment; and FIG. 12 is a light spot of the fourth embodiment. Schematic. 29

Claims (1)

M345249 九、申請專利範圍: 1·一種微機電雷射掃描裝置之二片式ίθ鏡片;其係適用於 微機電雷射掃描裝置,該微機電雷射掃描裝置至少包含一用 以發射光束之光源、以共振左右擺動將光源發射之光束反射 成為掃描光線之微機電反射鏡、及一用以感光之目標物;該 一片式历鏡片包含’由该微機電反射鏡起算依序’係由一新 月形且凹面在該微機電反射鏡侧之一第一鏡片及係一新月 _ 形且凹面在該微機電反射鏡侧之一第二鏡片所構成,其中該 第一鏡片具有一第一光學面及一第二光學面,係將該微機電 反射鏡反射之角度與時間非線性關係之掃描光線光點轉換 成距離與時間為線性關係之掃描光線光點;其中該第二鏡片 具有一第三光學面及一第四光學面,係將該第一鏡片之掃描 光線修正聚光於該目標物上;藉由該二片式伤鏡片將該微機 電反射鏡反射之掃描光線於目標物上成像。 2·如申請專利範圍第1項所述之二片式f(9鏡片,在主掃 描方向進一步滿足下列條件: Ai)Y <0.6 J{2)Y ,中,f(W為該第一鏡片在主掃描方向之焦距、f(2)Y為該第 一鏡片在主掃描方向之焦距、&為0=〇。該第一鏡片目標物 侧光學^气該第二鏡片微機電反射鏡侧光學面之距離、山 為Θ-0该第二鏡片厚度、山為0=〇。該第二鏡片目標物侧 光學面至該目標物之距離。 3·如申請專利範圍第丨項所述之二片鏡片,進一步 滿足下列條件: 31 M345249 在主掃描方向滿足 0.05 < fs( , K2-I). <0.5 在副掃描方向滿足 <10.0 〇·1<(^T~) + (V———)fs Rh K rJJs 其中,f(m與f(m為該第一鏡片在主掃描方向與副掃描方向 之焦距、{⑽與“為該第二鏡片在主掃描方向與副掃描方 向之焦距、匕為二片式鏡片之複合焦距、Rix第i光學 面在X方向的曲率半徑;Rix為第i光學面在χ方向的曲 1與nd2為該第一鏡片與該第二鏡片之折射率。 4·如申請專利範圍第!項所述之二片式【0鏡片, 大光點與最小光點大小的比值滿足: /、 0.2 max(S, -Sa) ^中,Sa與Sb為感光鼓上掃瞄光線形成的任一個光 方向之長度、㈣-感光鼓上最小光點 5.如申請專利範圍第1項所述之二片式f(9鏡片,其中目標 41 物上最大光點的比值與在目標物上最小光點的比^分別^ 足 臓n) (H) minH) <0.25 <0.05 其中,Sao與Sb〇為該微機電反射鏡反射面上掃瞄 在主掃描方向及副掃描方向之長度、&與&為—^光鼓丄 掃瞒光線形成的任-個光點在主掃描方向及崎^方向之 長度、7?max為微機電反射鏡反射面上掃瞄光線的妒 描在^標物上最大光關比值、心in為微機電反射鏡反射 面上掃瞄光線的光點經掃描在目標物上最小光點的比值。 32M345249 IX. Patent application scope: 1. A two-piece ίθ lens of a microelectromechanical laser scanning device; the system is suitable for a microelectromechanical laser scanning device, and the MEMS laser scanning device comprises at least one light source for emitting a light beam a micro-electromechanical mirror that reflects the light beam emitted from the light source into a scanning light, and a target for sensing light; the one-piece calendar lens includes 'from the microelectromechanical mirror in order' a first lens having a moon shape and a concave surface on the side of the microelectromechanical mirror; and a second lens having a crescent shape and a concave surface on the side of the microelectromechanical mirror, wherein the first lens has a first optical And a second optical surface, wherein the scanning light spot of the angle of the reflection of the microelectromechanical mirror and the time nonlinear relationship is converted into a scanning light spot whose distance is linear with time; wherein the second lens has a first a three-optical surface and a fourth optical surface, wherein the scanning light of the first lens is corrected to be condensed on the target; the micro-electromechanical reflection is reflected by the two-piece lens The scanning light reflected on the object image. 2. The two-piece f (9 lens described in the first paragraph of the patent application scope further satisfies the following conditions in the main scanning direction: Ai) Y < 0.6 J{2) Y , middle, f (W is the first The focal length of the lens in the main scanning direction, f(2)Y is the focal length of the first lens in the main scanning direction, & 0 = 〇. The first lens target side optically embodies the second lens microelectromechanical mirror The distance between the side optical surfaces, the mountain is Θ-0, the thickness of the second lens, and the mountain is 0=〇. The distance from the optical surface of the second lens target side to the target object. 3. As described in the scope of the patent application. The two lenses further satisfy the following conditions: 31 M345249 satisfies 0.05 < fs( , K2-I) in the main scanning direction. <0.5 satisfies <10.0 〇·1<(^T~) + in the sub-scanning direction ( V———) fs Rh K rJJs where f (m and f (m is the focal length of the first lens in the main scanning direction and the sub-scanning direction, {(10) and “for the second lens in the main scanning direction and the sub-scanning The focal length of the direction, 匕 is the composite focal length of the two-piece lens, the radius of curvature of the Rix i-th optical surface in the X direction; Rix is the ith optical surface in the χ direction The curves 1 and nd2 are the refractive indices of the first lens and the second lens. 4. The two-piece type [0 lens, as described in the scope of the patent application, the ratio of the large spot to the minimum spot size satisfies: / In 0.2 max(S, -Sa) ^, Sa and Sb are the lengths of any one of the light directions formed by the scanning light on the photosensitive drum, and (4) the minimum light spot on the photosensitive drum 5. As described in claim 1 The two-piece f (9 lenses, in which the ratio of the maximum spot on the object 41 to the minimum spot on the target is ^^^() H) minH) <0.25 <0.05 where Sao And Sb〇 is the length of the scanning direction of the microelectromechanical mirror in the main scanning direction and the sub-scanning direction, && is any light spot formed by the broom broom light in the main scanning direction The length of the direction of the 崎崎^, 7?max is the maximum light-off ratio of the scanning light on the reflecting surface of the MEMS mirror, and the heart is the spot of the scanning light on the reflecting surface of the MEMS mirror The ratio of the minimum spot on the target after scanning.
TW97205198U 2008-03-26 2008-03-26 Two f-θ lens used for micro-electro mechanical system(MEMS) laser scanning unit TWM345249U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW97205198U TWM345249U (en) 2008-03-26 2008-03-26 Two f-θ lens used for micro-electro mechanical system(MEMS) laser scanning unit
JP2009001485U JP3150839U (en) 2008-03-26 2009-03-13 Two-piece fθ lens for microelectromechanical system laser beam detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97205198U TWM345249U (en) 2008-03-26 2008-03-26 Two f-θ lens used for micro-electro mechanical system(MEMS) laser scanning unit

Publications (1)

Publication Number Publication Date
TWM345249U true TWM345249U (en) 2008-11-21

Family

ID=44337740

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97205198U TWM345249U (en) 2008-03-26 2008-03-26 Two f-θ lens used for micro-electro mechanical system(MEMS) laser scanning unit

Country Status (1)

Country Link
TW (1) TWM345249U (en)

Similar Documents

Publication Publication Date Title
US7679803B2 (en) Two-element f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit
US7619801B1 (en) Two-element f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit
TWI377433B (en) Two f-θ lens used for micro-electro mechanical system(mems) laser scanning unit
TW201015113A (en) Two optical elements fθ lens of MEMS laser scanning unit 9
TWM345249U (en) Two f-θ lens used for micro-electro mechanical system(MEMS) laser scanning unit
TW201007209A (en) Two optical elements fθ lens of MEMS laser scanning unit 7
TWI359747B (en) Single f-θ lens used for micro-electro mechanical
TWM349849U (en) Two optical elements fθ lens of MEMS laser scanning unit 4
TWI343328B (en) Two optical elements fθlens of mems laser scanning unit 2
TWI343329B (en) Two optical elements fθ lens of mems laser scanning unit 6
TWI343327B (en) Two optical elements fθlens of mems laser scanning unit 5
CN201293871Y (en) Two-slice type fTheta lens for micro-electromechanical laser scanning apparatus
TWM345250U (en) Single f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit
TWI426297B (en) Two optical elements fθ lens of short focal distance for laser scanning unit
TWM346804U (en) Two optical elements f θ lens of MEMS laser scanning
TWM357614U (en) Two optical elements f-θ lens of MEMS laser scanning
CN201293870Y (en) Two-slice type fTheta lens for micro-electromechanical laser scanning apparatus
JP3150839U (en) Two-piece fθ lens for microelectromechanical system laser beam detector
CN201293873Y (en) Two-slice type fTheta lens for micro-electromechanical laser scanning apparatus
JP3149995U (en) Two-piece fθ lens for microelectromechanical system laser beam scanner
TW201013222A (en) Two optical elements fθ lens of MEMS laser scanning unit 8
TWM357615U (en) Two optical elements f-θ lens of MEMS laser scanning
TWM346805U (en) Two optical elements f θ lens of MEMS laser scanning
JP3150871U (en) Two-piece fθ lens for microelectromechanical system laser beam scanner
TWM348012U (en) Two optical elements fθ lens of MEMS laser scanning unit 7

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees