TWM348010U - Two optical elements fθ lens of MEMS laser scanning unit 6 - Google Patents

Two optical elements fθ lens of MEMS laser scanning unit 6 Download PDF

Info

Publication number
TWM348010U
TWM348010U TW97213978U TW97213978U TWM348010U TW M348010 U TWM348010 U TW M348010U TW 97213978 U TW97213978 U TW 97213978U TW 97213978 U TW97213978 U TW 97213978U TW M348010 U TWM348010 U TW M348010U
Authority
TW
Taiwan
Prior art keywords
lens
light
scanning
optical surface
mirror
Prior art date
Application number
TW97213978U
Other languages
Chinese (zh)
Inventor
Bo-Yuan Shih
Original Assignee
E Pin Optical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Pin Optical Industry Co Ltd filed Critical E Pin Optical Industry Co Ltd
Priority to TW97213978U priority Critical patent/TWM348010U/en
Publication of TWM348010U publication Critical patent/TWM348010U/en
Priority to JP2009001550U priority patent/JP3150871U/en

Links

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Lenses (AREA)

Abstract

Two f-θ lens used for micro-electro mechanical system(MEMS) laser scanning unit having a first lens and a second lens, the first lens is a positive power meniscus lens which convex surface towards the MEMS mirror, the second lens is a positive power meniscus lens which convex surface towards the MEMS mirror. The first lens has two optical surfaces, and at least one of the optical surfaces is aspheric surfaces which at the primary scanning direction. The second lens has two optical surfaces, which focuses the scanning light to the target by calibrating itself. Both the first lens and the second lens are satisfied the specified optical condition. The purpose of linear scanning and high resolution scanning can be achieved by disposing the first lens and the second lens.

Description

M348010 八、新型說明: 【新型所屬之技術領域】 本創作係有關一種微機電雷射掃描装置之二片式扭鏡片,特 別指一種用以修正呈簡諧性運動之微機電反射鏡而產生隨時間成 正弦關係之角度變化量,以達成雷射掃瞄裝置所要求之線性掃描 效果之二片式历鏡片。M348010 VIII. New description: [New technical field] This is a two-piece twisted lens for a microelectromechanical laser scanning device, especially a microelectromechanical mirror for correcting harmonic motion. The time is a sinusoidal angle change to achieve a two-dimensional lens of the linear scanning effect required by the laser scanning device.

【先前技術】 目前雷射光束印表機LBP(Laser Beam Print)所用之雷射掃描 裝置LSU(Laser Scanning Unit),係利用一高速旋轉之多面鏡 (polygon mirror)以操控雷射光束之掃描動作(laser beam scanning),如美國專利 US7079171、US6377293、US6295116,或 如台灣專利1198966所述。其原理如下簡述:利用一半導體雷射發 出雷射光束(laser beam),先經由一準直鏡(collimator),再經由一光 圈(aperture)而形成平行光束’而平行光束再經過一柱面鏡 (cylindrical lens)後,能在副掃目苗方向(sub scanning direction)之 Y 轴 上之寬度能沿著主掃描方向(main scanning direction)之X軸之平行 方向平行聚焦而形成一線狀成像(line image),再投射至一高速旋 轉之多面鏡上,而多面鏡上均勻連續設置有多面反射鏡,其恰位 於或接近於上述線狀成像(line image)之焦點位置。藉由多面鏡控 制雷射光束之投射方向,當連續之複數反射鏡在高速旋轉時可將 射至一反射鏡上之雷射光束延著主掃描方向(X軸)之平行方向以 同一轉角速度(angular velocity)偏斜反射至一 ίθ線性掃描鏡片上, 而ίθ線性掃描鏡片係設置於多面鏡旁侧,可為單件式鏡片結構 (single-element scanning lens)或為二件式鏡片結構。此扭線性掃描 5 M348010 鏡片之功能在於使經由多面鏡上之反射鏡反射而射入扭鏡片之雷 射光束能聚焦成-橢圓型光點並投射在—光接收面⑽妳欣印攸 drum,即成像面)上,並達成線性掃描(scanning此伽吻之要求。 然而’ f用之雷射触裝置LSU在使用上會有下列問題: ⑴、旋轉式多面鏡之製作難度高且價格不低,相對增加lsu 之製作成本。 >(2)、多面鏡須具高速旋轉(如4〇_轉/分)功能,精密度要求 又高,以致-般多面鏡上反射面之鏡面γ軸寬度極薄,使習用lsu 中均需增⑤-柱面鏡(eylindrieal lens々使雷射光束經過柱面鏡能 聚焦成-線(Y軸上成-點)而再投射在多面鏡之反射鏡上以致增 加構件成本及組裝作業流程。 (3) 、習用多面麵高速旋轉(如4〇_轉/分),致旋轉噪音相 對提高’且麵鏡從啟動至1作魏祕f錄_,增加開機 後之等待時間。 (4) 、龍LSU之城結射’投射至多面鏡反射鏡之雷射光 束中。軸並非正對多面鏡之中心轉軸’以致在設計相配合之扭鏡 片時,需同時考慮多面鏡之離軸偏差(off axis deviation)問題,相對 增加扭鏡片之設計及製作上麻煩。 近年以來’為了改善習用Lsu組裝結構之問題,目前市面上 開發出-觀赋(嶋祕⑺賴機較概(刪^論叫,用 以取狀多面鏡來操控雷射光束掃描。微機電反射鏡為轉矩 振i器(t〇rsi〇noscmators),其表層上附有反光層,可藉由振魏 動反光層’將光線反射崎描,未來將可應麟影像祕 ^ )知Ά器(scanner)或雷射印表機(laser printer)之雷射掃描裝 (SCanning 而红’簡稱 LSU) ’ 其掃描效率(scanning efflcienCy) 6 M348010 將可高於傳統的旋轉多面鏡。如美國專利US6,844,951、 US6,956,597,係產生至少一驅動訊號,其驅動頻率趨近複數微機 電反射鏡之共振頻率,並以一驅動訊號驅動微機電反射鏡以產生 一掃瞄路徑、US7,064,876、US7,184,187、US7,190,499、 US2006/0113393 ;或如台灣專利TWM253133,其係於一 LSU模[Prior Art] At present, the laser scanning device LSU (Laser Scanning Unit) used in the laser beam printer LBP (Laser Beam Print) uses a high-speed rotating polygon mirror to manipulate the scanning action of the laser beam. (Laser beam scanning), as described in U.S. Patent Nos. 7,707,171, 6,377,293, 6,295,116, or as described in Taiwan Patent No. 1198966. The principle is as follows: a laser beam is emitted by a semiconductor laser, and a parallel beam is formed through a collimator and an aperture, and the parallel beam passes through a cylinder. After the cylindrical lens, the width on the Y-axis of the sub-scanning direction can be parallelly focused along the parallel direction of the X-axis of the main scanning direction to form a line image ( Line image) is projected onto a multi-speed rotating polygon mirror, and the polygon mirror is uniformly and continuously provided with a polygon mirror which is located at or near the focus position of the above line image. By controlling the projection direction of the laser beam by the polygon mirror, when the continuous plurality of mirrors rotate at a high speed, the laser beam incident on a mirror can be extended in the parallel direction of the main scanning direction (X-axis) at the same angular velocity. (angular velocity) is deflected onto a ίθ linear scanning lens, and the ίθ linear scanning lens is disposed beside the polygon mirror, and can be a single-element scanning lens or a two-piece lens structure. The function of the twisted linear scan 5 M348010 lens is that the laser beam reflected by the mirror on the polygon mirror and incident on the twisted lens can be focused into an elliptical spot and projected on the light receiving surface (10). That is, the imaging surface), and achieve a linear scan (scanning the requirements of this gaze. However, the laser contact device LSU used in f will have the following problems in use: (1), the rotary polygon mirror is difficult to manufacture and the price is not low. , relatively increase the production cost of lsu. > (2), multi-mirror must have high-speed rotation (such as 4 〇 _ turn / min) function, the precision requirements are so high, so that the mirror surface γ-axis width of the reflective surface on the multi-mirror Very thin, so that the conventional lsu needs to add a 5-column mirror (eylindrieal lens 々 so that the laser beam can be focused into a line through the cylindrical mirror (on the Y-axis to point - point) and then projected on the mirror of the polygon mirror So as to increase the cost of components and the assembly process. (3), the use of multi-faceted high-speed rotation (such as 4 〇 _ turn / min), resulting in relatively increased rotation noise 'and the mirror from start to 1 for Wei Mi f recorded _, increase boot Waiting time after. (4), Dragon LSU City Shooting 'Projected to Multifaceted In the laser beam of the mirror, the axis is not facing the central axis of the polygon mirror. Therefore, when designing the twisted lens with the lens, the off-axis deviation of the polygon mirror should be considered at the same time, and the design of the twisted lens is relatively increased. In the past few years, in order to improve the problem of the assembly structure of Lsu, the current development of the market - Guan Fu (Secret (7) is relatively simple (deleted ^ called, used to take the polygon mirror to control the laser beam Scanning. The micro-electromechanical mirror is a torque oscillator (t〇rsi〇noscmators) with a reflective layer on the surface, which can reflect the light by the vibration-reflecting layer. ^) Scanner or laser printer laser scanning (SCanning and red 'LSU') The scanning efficiency (scanning efflcienCy) 6 M348010 will be higher than the traditional rotating polygon mirror A driving signal having a driving frequency approaching a resonant frequency of a plurality of microelectromechanical mirrors and driving the microelectromechanical mirror with a driving signal to generate a scanning path is generated, for example, in US Pat. No. 6,844,951 and US Pat. No. 6,956,597. US 7,064,876, US 7,184,187, US 7,190,499, US 2006/0113393; or as Taiwan patent TWM253133, which is attached to an LSU mode

組結構中準直鏡及ίθ鏡片之間,利用一微機電反射鏡取代習用旋 轉式多面鏡,藉以控制雷射光束之投射方向;或如日本專利jp 2006-201350等。此微機電反射鏡具有元件小,轉動速度快,製造 成本低的優點。然而由於微機電反射鏡,在接收一電壓驅動後, 將作一簡諧運動,且此簡諧運動(harmonic motion)之方式為時間與 角速度呈正弦關係,而投射於微機電反射鏡,其經反射後之反射 角度Θ與時間t的關係為: θ{ί) = θβ -sin(2^·· f -t) ⑴ 其中:f為微機電反射鏡的掃描頻率;A為雷射光束經微機電 反射鏡後,單邊最大的掃描角度。 因此,在相同的時間間隔下〜,所對應的反射角度係與時間 成正弦函數(Sinusoidal)變化,即在相同時間間隔△♦反射角度變 化為:4冲)=^.(也(2^/々1)_如(2^/々2)),而與時間呈非線性關係, 亦即當此反射的光線以不同角度投射在目標物時於相同時間間隔 内所產生的光點距離間隔並不相同而可能隨時間遞增或遞減。 、/舉例而言,當微機電反射鏡之擺耗度位於正賊之波峰及 波谷時,歧變化量將隨時間遞增或遞減,與習知之多面鏡 =度轉動之,方式不同,若使闕知之扭鏡狀具有微機電 之&^雷物目W^(LSU)jL ’將無法修正微機電反射鏡所產生 之角歧化量,造成投射在成像面上之雷射光速將產生非等速率 7 M348010 一 掃描現象而產生位於成像面上之成像偏差。因此,對於微機電反Between the collimating mirror and the ίθ lens in the group structure, a micro-electromechanical mirror is used instead of the conventional rotating polygon mirror to control the projection direction of the laser beam; or, for example, Japanese patent jp 2006-201350. The microelectromechanical mirror has the advantages of small components, fast rotation speed and low manufacturing cost. However, due to the microelectromechanical mirror, after receiving a voltage drive, a simple harmonic motion will be performed, and the harmonic motion is a sinusoidal relationship between time and angular velocity, and is projected on the microelectromechanical mirror. The relationship between the reflection angle 反射 after reflection and the time t is: θ{ί) = θβ -sin(2^·· f -t) (1) where: f is the scanning frequency of the microelectromechanical mirror; A is the laser beam passing through the micro After the electromechanical mirror, the maximum scanning angle of one side. Therefore, at the same time interval ~, the corresponding reflection angle changes with time to a sine function (Sinusoidal), that is, at the same time interval Δ♦ the angle of reflection changes to: 4 rush) = ^. (also (2^/ 々1)_(2^/々2)), and has a nonlinear relationship with time, that is, when the reflected light is projected at different angles to the target, the distance between the spots generated during the same time interval is Not the same and may increase or decrease over time. For example, when the pendulum consumption of the MEMS mirror is at the peaks and troughs of the thief, the amount of change will increase or decrease with time, which is different from the conventional multi-mirror=degree rotation. It is impossible to correct the angular disproportion generated by the microelectromechanical mirror, and the laser light projected on the imaging surface will produce a non-equal rate. 7 M348010 A scanning phenomenon that produces an imaging deviation on the imaging surface. Therefore, for MEMS

射鏡所構成的雷射掃描裝置’簡稱為微機電雷射掃描裝置(MgMS LSU) ’其特性為雷射光線經由微機電反射鏡掃描後’形成等時間 間隔不等角度的掃描光線’因此發展可使用於微機電雷射掃描裝 置的扭鏡片以修正掃描光線,使可在目標物上正確成像,將為迫 切所需。 【新型内容】 • 本創作之目的在於提供一種微機電雷射掃描裝置之二片式fe 鏡片,該二片式fe鏡片由微機電反射鏡依序起算,係由一正屈光 度新月形且凸面在微機電反射鏡侧之第一鏡片及一正屈光度新月 形且凸面在微機電反射鏡側之第二鏡片所構成,可將微機電反射 鏡所反射之掃描光線於目標物上正碱像,而達成雷射掃瞒裝置 所要求之線性掃描效果。 、本創作之另一目的在於提供一種微機電雷射掃描裝置之二片 式扭鏡片,係用以縮小投射在目標物上光點(sp〇t)之面積,而達成 鲁提高解析度之效果。 本創作之再一目的在於提供一種微機電雷射掃描裝置之二片 式扭鏡片’可畸變修正因掃描光線偏離光軸,而造成於主掃描方 向及副掃^方向之偏移增加,使成像於感光鼓之光點變形成類擴 圓形之問題’並使每—成像光點大小得以均勻化,*達成提升解 像品質(resolution quality)之功效。 因此,本創作微機電雷射掃描裝置之二片$历鏡片,適用於 至> 包3冑發射雷射光束之絲以共振左右獅將光源發射之 雷射光束反射成為掃描光線之微機電反射鏡,以在目標物上成 M348010 f,對於雷射印表機而言,此目標物常為感光鼓(drum),即,待成 ^之光點經由光源發出雷射光束,經由微機電反射鏡左右掃描, 微機電反射鏡反射雷射絲形雜描紐,掃減_由本創作 f -片式ίθ鏡歸正歧與赌後,於感光鼓上形成光點(sp〇t), ^於感光鼓塗有光_,可感騎粉使其 資料列印出。 本創作之二#式ie鏡#包含由微機電反射驗序起算之一第A laser scanning device consisting of a mirror is simply referred to as a microelectromechanical laser scanning device (MgMS LSU). Its characteristic is that the laser beam is scanned by a microelectromechanical mirror to form a scanning light with an unequal angle at equal intervals. It would be highly desirable to use a twisted lens for a microelectromechanical laser scanning device to correct the scanning light so that it can be imaged correctly on the target. [New content] • The purpose of this creation is to provide a two-piece fe lens for a microelectromechanical laser scanning device. The two-piece fe lens is sequentially calculated by a microelectromechanical mirror, and is a positive diopter crescent and convex surface. The first lens on the side of the microelectromechanical mirror and the second lens with a positive diopter crescent and a convex surface on the side of the microelectromechanical mirror can scan the light reflected by the microelectromechanical mirror on the target And achieve the linear scanning effect required by the laser broom. Another object of the present invention is to provide a two-piece twist lens of a microelectromechanical laser scanning device, which is used to reduce the area of a spot on a target object, thereby achieving an effect of improving the resolution. . A further object of the present invention is to provide a two-piece torsion lens of a microelectromechanical laser scanning device. The distortion correction is caused by the deviation of the scanning light from the optical axis, resulting in an increase in the deviation between the main scanning direction and the sub-sweeping direction. The problem of expanding the circular shape at the light spot of the photosensitive drum' and making the size of each imaging spot uniform, and achieving the effect of improving the resolution quality. Therefore, the two-dimensional lens of the micro-electromechanical laser scanning device is suitable for the beam of the laser beam emitted by the beam to reflect the micro-electromechanical reflection of the laser beam emitted by the light source. Mirror to form M348010 f on the target. For laser printers, this target is often a drum, that is, the spot to be emitted emits a laser beam through the light source, via micro-electromechanical reflection. Mirror left and right scanning, MEMS mirror reflection laser wire-shaped miscellaneous strokes, sweeping and subtracting _ by this creation f-chip ίθ mirror into positive and gambling, forming a light spot on the photosensitive drum (sp〇t), ^ The photosensitive drum is coated with light _, which can be sensed by riding the powder to print out the data. The second of this creation #式爱镜# contains one of the first counting of microelectromechanical reflection

:鏡片及—第二鏡片,其中第—鏡片具有-第-光學面及-第二 先學面’該第—絲面與該第二光學面,在主掃财向至少有一 =光學面為非球面所構成,係主要將呈簡諧運動之微機電反射 =,在成像面上光關距由原來隨時間增加而遞減或遞增的非等 ,修正為等速率掃描,使雷射光束於成像面之投射 、、“掃描。第二鏡片具有一第三光學面及一第四光學面,該a lens and a second lens, wherein the first lens has a -th optical surface and a second first surface, the first silk surface and the second optical surface, at least one of the main sweeping areas is an optical surface The spherical surface is composed of a micro-electromechanical reflection that is mainly a simple harmonic motion = the optical distance on the imaging surface is reduced or incremented from the original time, and is corrected to an equal-rate scanning, so that the laser beam is on the imaging surface. Projecting, "scanning. The second lens has a third optical surface and a fourth optical surface.

Sit與該第四光學面’在主掃描方向至少有—個光學面為 △成’ ^要扣均自化触光線於主掃描方向及副掃描 ΐ偏移轴而造成域光鼓上形成成像偏差,並將第-鏡片 之掃描光線修正聚光於目標物上。 【實施方式】 ^圖1 ’為本創作微機電雷射掃描裝置之二片式抅鏡片 ^學路#之示意圖。本創作微機電雷射掃描裝置之二片式历 ^ t一具有一第一光學面131a及一第二光學面131b之第一鏡 與/具有一第三光學面132a及一第四光學面132b之第二 ,片i32係:適用於微機電雷射掃猫裝置。圖+,微機電雷射掃描 裝置主要包含—雷射統11、—微機電反射鏡1G、-枉面鏡16田、 9 M348010 二光電感測器14a、14b ’及一用以感光之目標物。在圖中,目標 物係以用感光鼓(drum) 15來實施。雷射光源η所產生之光束in 通過柱面鏡16後’投射到微機電反射鏡10上。而微機電反射鏡 10以共振左右擺動之方式’將光束111反射成掃猫光線113a、 113b、114a、114b、115a、115b。其中掃瞒光線 、113b、114a、The Sit and the fourth optical surface 'have at least one optical surface in the main scanning direction as Δ'. The self-aligning light is applied to the main scanning direction and the sub-scanning offset axis to form an imaging deviation on the field light drum. And illuminating the scanning light of the first lens on the target. [Embodiment] FIG. 1 is a schematic diagram of a two-piece 抅 lens ^ Xuelu # of the MEMS laser scanning device. The first mirror of the MEMS laser scanning device has a first optical surface 131a and a second optical surface 131b and/or has a third optical surface 132a and a fourth optical surface 132b. Second, the film i32 series: suitable for micro-electromechanical laser sweeping cat device. Figure +, MEMS laser scanning device mainly includes - laser system 11, - microelectromechanical mirror 1G, - 枉 mirror 16 field, 9 M348010 two optical detector 14a, 14b ' and a target for sensitization . In the figure, the target system is implemented by a photosensitive drum 15. The beam in, produced by the laser source η, passes through the cylindrical mirror 16 and is projected onto the microelectromechanical mirror 10. The microelectromechanical mirror 10 reflects the light beam 111 into the brush light 113a, 113b, 114a, 114b, 115a, 115b in such a manner that the resonance swings left and right. Among them, broom light, 113b, 114a,

114b、llh、115b在X方向之投影稱之為副掃描方向(—scanning direction) ’在Y方向之投影稱之為主掃描方向(main scanning direction),而微機電反射鏡10掃描角度為ec。 請參照圖1及圖2,其中圖2為一微機電反射鏡掃描角度㊀ 與時間t之關係圖。由於微機電反射鏡1〇呈—簡譜運動,其運動 角度隨時間呈一正弦變化,因此掃瞄光線之射出角度與時間為非 線性關係。如圖示中的波峰a-a,及波谷b_b,,其擺動角度明顧小於 波段a-b * a,_b,’而此角速度不均等的現象容易造成掃描光線在 感光鼓15上產生成像偏差。因此,光電感測器丨如、141?係嗖置 於微機電反射鏡10最大掃描角度地之内,其夹角為±θρ,#^光 束由圖2之波峰處開始被微機電反射鏡1〇所反射,此時相^於 1之掃描光線115a ;當光電感測n 14a _卿描光束的日^候: 表不微機電反射鏡Π)係職到+θρ肢,此時相當於圖」 光線114a,當微機電反射鏡10掃描角度變化如圖: 掃描光線咖位置;此時雷射麵11將她動而發出 、先束111 ’而掃描至圖2的b點時,此時相當於掃# 位置為止(相當±θη角度内由雷射光光⑴13b =電反_黯纽猶,如城段a,.b,==);=微 動而^發出雷射光束m ;如此完成—個週期㈣切11被驅 請參照圖1及圖3,其中圖3為通過第—鏡片及第二鏡片之择 M348010 描光線之光學路徑圖。其令,±θη為有效掃描 鏡10之轉動角度進入瑜時,雷射光源U :胃微機電反射 經由微機電反射鏡Η)反射為掃瞄光線,當: ⑶時受第-鏡請之第—光學面咖與第二光 =第13 = 射,將微機電反射鏡10所反射之距離與時間成 = 麵_姐。咖光線^ 第-鏡片⑶鮮二鏡片132後,藉由第一光學面⑶ 學面131b、第三光學面132a、細光學面咖之光學性質 掃描光線聚焦於感光鼓15上,而於感光鼓15上形成—列 15 ",喊遠細 其中,dl為微機電反射鏡1〇至第一光學面之間距、汜 為第-光學面131a至第二光學面131b之間距、泊為第二光學面 131b至第三光學面132a之間距哺為第三光學面伽至第四光 學面132b之間距、d5為第四絲面咖域級15之間距、 R1為第-光學面131a之曲率半徑(c職㈣、Μ為第二光學面 1=之曲率半徑、r3為第三光學面略之曲率半徑及則為第四 光學面132b之曲率半徑。 月參‘、、、圖4 ’為掃描光線投射在感光鼓上後光點面積(_ 麵)隨投射位置之不同而變化之示意圖。當掃晦光線收沿光軸 方向透過第-鏡片131及第二鏡片132後投射在感光鼓15時因 入射於第鏡片131及第二鏡# 132之角度為零,於主掃描方向 所產生之偏移率是零’因此成像於感光鼓15上之光點^為一類 圓形。當掃描光線咖及脱透過第一鏡片131及第二鏡片132 後而投射在感級15時,因人射於第—鏡片131及第二鏡片 與光軸所形成之夾角不為零,於主掃描方向所產生之偏移率不為 11The projection of 114b, 11h, 115b in the X direction is referred to as the "scanning direction". The projection in the Y direction is referred to as the main scanning direction, and the microelectromechanical mirror 10 is scanned at the angle ec. Please refer to FIG. 1 and FIG. 2, wherein FIG. 2 is a relationship between a scanning angle of a microelectromechanical mirror and a time t. Since the microelectromechanical mirror has a 简-spectral motion, its motion angle changes sinusoidally with time, so the angle of incidence of the scanning ray is non-linear with time. As shown in the figure, the peak a-a and the trough b_b have a swing angle which is smaller than the wavelength band a-b*a, _b, and the angular velocity unevenness is likely to cause the scanning light to cause an imaging deviation on the photosensitive drum 15. Therefore, the photodetector, for example, the 141? system is placed within the maximum scanning angle of the microelectromechanical mirror 10, the angle of which is ± θρ, and the beam of the #^ beam is started by the peak of Fig. 2 by the microelectromechanical mirror 1 〇 反射 , , , , , , , , 反射 反射 扫描 扫描 扫描 扫描 115 115 扫描 扫描 扫描 扫描 115 115 115 115 115 115 115 115 扫描 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 Light 114a, when the scanning angle of the microelectromechanical mirror 10 changes as shown in the figure: scanning the light coffee position; at this time, the laser surface 11 will be emitted by her, and the first beam 111' is scanned to the point b of Fig. 2, at this time At the position of the sweep # (approximately ± θη angle by the laser light (1) 13b = electric reverse _ 黯 New York, such as the city section a,. b, ==); = micro-motion and ^ emit the laser beam m; so complete - The cycle (4) cut 11 is driven by referring to FIG. 1 and FIG. 3, wherein FIG. 3 is an optical path diagram of the light taken through the M338010 of the first lens and the second lens. Therefore, ±θη is the angle of rotation of the effective scanning mirror 10 into the yoga time, and the laser source U: the gastric microelectromechanical reflection is reflected by the microelectromechanical mirror 为) as the scanning light, when: (3) is subject to the first mirror - Optical face and second light = 13th shot, the distance reflected by the microelectromechanical mirror 10 is time = face _ sister. After the first lens (3) of the second lens 132, the first optical surface (3) of the first optical surface (3), the third optical surface 132a, and the optical properties of the fine optical surface are used to scan the light onto the photosensitive drum 15, and the photosensitive drum is used. 15 is formed - column 15 ", shouting far, where dl is the distance between the microelectromechanical mirror 1〇 to the first optical surface, 汜 is the distance between the first optical surface 131a and the second optical surface 131b, and the second is The distance between the optical surface 131b and the third optical surface 132a is the distance between the third optical surface gamma and the fourth optical surface 132b, d5 is the distance between the fourth silk surface level 15, and R1 is the radius of curvature of the first optical surface 131a. (c job (4), Μ is the radius of curvature of the second optical surface 1=, r3 is the radius of curvature of the third optical surface, and the radius of curvature of the fourth optical surface 132b. The month reference ', ,, and 4' are scans A schematic diagram of the area of the light spot (_ surface) as a function of the projected position after the light is projected on the photosensitive drum. When the light of the broom is transmitted through the first lens 131 and the second lens 132 along the optical axis, the light is projected onto the photosensitive drum 15 Since the angles incident on the first lens 131 and the second mirror #132 are zero, the main scanning direction is produced. The offset rate is zero. Therefore, the spot formed on the photosensitive drum 15 is a circular shape. When the light is scanned and the first lens 131 and the second lens 132 are detached and projected on the level 15, the person The angle formed by the first lens 131 and the second lens and the optical axis is not zero, and the offset rate generated in the main scanning direction is not 11

Z =——^ (Cx)X2+(C3;)72 r 1 + yl^~(l +Kx)(Cx)2X2 -(1 + Ky)(Cy)2Y^ + Ar~Ap^2+(} + Ap)Y2 J + +(i+^)f2]3+cj(1_^)x2+(i+c^^^ Dr [(1 ~DP)X2 +(l + £, )y215 (2) ,、中’ Z為鏡片上任-點以光軸方向至Q點切平面的距離 M348010 零’而造成於主掃描方向之投影長度較掃描光線llla所形成的光 點為大;此情形在副掃插方向也相肖,偏離掃描光線llla之掃描 光線所形成的光點,也雜A ;所以成像域紐15上之光點 2b、2c為一類橢圓形,且2b、2c之面積大於2&。其中,⑽與 SbO為微機電反射鏡1〇反射面上掃猫光線的光點在主掃描方向^ 方向)及副掃描方向(X方向)之長度、Ga與Gb為掃猫光線之高斯 光束(Gaussian Beams)於光強度為135%處在γ方向及χ方向之光 束半徑,如圓5所示,圖5中僅顯示γ方向的光束半徑之說明。 /縱上所述,本創作之二片式β鏡>{可將微機電反射鏡ι〇反射 之掃描光、線,將冑斯絲讀絲線餅崎變(di_㈣修正,及 將時間肖速度之關雜斜間麟之襲。在 ^方向.光線在X方向與γ方向之光束半徑經過历鏡片、: jr疋的放鱗,於絲面上產生光點,以提供符合需求的解 為達成上述功效,本創作二片式扭鏡片在第—鏡片131 Γ32光t131a或第二光學面132a及第二鏡片132的第三光學面 面曲予面132b ’在主掃财向或卿财向,可使用球 球面曲面設計,若使用非球面曲面設計 面係以下列曲面方程式: 网 檢像曲面方程式(Anamorphic equation^) 12 M348010 (SAG),與分別為χ方向及γ方向之曲率(curvature);心與a 刀別為X方向及γ方向之圓錐係數(C〇nic coefficjent); a、a、q 與分別為旋轉對稱(rotationally symmetric portion)之四次、六 人八*與十次幂之圓錐變形係數(deformation from the conic);Z =——^ (Cx)X2+(C3;)72 r 1 + yl^~(l +Kx)(Cx)2X2 -(1 + Ky)(Cy)2Y^ + Ar~Ap^2+(} + Ap)Y2 J + +(i+^)f2]3+cj(1_^)x2+(i+c^^^ Dr [(1 ~DP)X2 +(l + £, )y215 (2) , ,中中' Z is the distance from the optical axis direction to the Q-point tangent plane on the lens, and the projection length in the main scanning direction is larger than the light spot formed by the scanning light llla; this case is also in the direction of the sub-sweeping direction. Xiao, the spot formed by the scanning light that deviates from the scanning light llla is also miscellaneous A; therefore, the light spots 2b, 2c on the imaging field 15 are elliptical, and the area of 2b, 2c is larger than 2&; SbO is the length of the spot of the micro-electromechanical mirror that sweeps the cat's light on the reflective surface in the main scanning direction ^ direction and the sub-scanning direction (X direction), and Ga and Gb are the Gaussian Beams of the cat's rays. The light intensity is 135% of the beam radius in the γ direction and the χ direction, as indicated by the circle 5, and only the description of the beam radius in the γ direction is shown in FIG. / Vertically, the two-piece β-mirror of this creation>{The scanning light and the line that can reflect the microelectromechanical mirror ι〇, the 胄斯丝读丝线饼, (di_(四) correction, and the time XI speed In the direction of the cross, the beam radius of the light in the X direction and the γ direction passes through the lens, jr疋 scales, and produces a light spot on the surface of the wire to provide a solution that meets the demand. In the above-mentioned effect, the two-piece twisted lens of the present invention is in the first optical lens or the second optical surface 132a of the first lens 131 Γ 32 light t131a or the second optical surface 132a and the second optical surface 132. Ball spherical surface design can be used. If an aspheric surface is used, the surface equation is the following equation: Anamorphic equation^ 12 M348010 (SAG), and the curvature of the χ direction and the γ direction, respectively; The heart and the a knife are the conical coefficients of the X direction and the γ direction (C〇nic coefficjent); a, a, q and the cones of the rotationally symmetric portion four times, six persons eight* and ten powers respectively Deformation coefficient (deformation from the conic);

Ap 與 % 分別非旋轉對稱(non-rotationally symmetric components)之分別為四次、六次、八次、十次幂之圓錐變形係數 (deformation from the conic);當 c = w 心且 * = 5 = ^ =乃=〇 - 則簡化為單一非球面。 . 2 ·%_像曲面方程式(T〇ric equation) Z = 丄—(Cxy)X2 i + ^-(Cxy)2X2Ap and % are non-rotationally symmetric components, respectively, four, six, eight, ten power deformation deformation coefficient (deformation from the conic); when c = w heart and * = 5 = ^ = is = 〇 - is simplified to a single aspheric surface. . 2 ·%_T曲面ric equation Z = 丄—(Cxy)X2 i + ^-(Cxy)2X2

Cxy = -L . 一 (1/Cx)-Zy 7„- (Cy)Y2 一 +町+5, + π + v1。 (3) 其中’Z為鏡片上任一點以光軸方向至0點切平面的距離 (SAG); c水分別γ方向與χ方向之曲率(⑽a_; κ為γ • ^向之圓錐係數(C〇niccoe_ent) ; n歧A。為四次、六 人、八次、十次冪之係數(4th〜1〇th 〇rder c〇efficie刪她腿細 from the conic),當 Cjr=Cj;且^: 則簡化為單一球 面。 為能使掃描光線在目標物上之雜面场持等掃描速度,舉 ’在兩個姻的時㈣隔内,維持_光點關距相等; 門,二2二片式㊉鏡片可將掃描光線113a至掃描光,線113b之 正1 鏡片131及第二鏡片132進行掃描光線出射角之修 ^使相同的時間間隔的兩掃描光線,經出射角度修正後,於成 的感光鼓15上形成的兩個光點的距離相等。更進一步,當雷射 13 M348010 光束111經由微機電反射鏡10反射後,其高斯光束半徑(^與Gb 較大,如果此掃描光線經過微機電反射鏡1〇與感光鼓15之距離 後,南斯光束半徑Ga與Gb將更大,不符合實用解析度要求;本 創作之二片式fB鏡片進—步可將微機電反射鏡職射的掃描光線 113a至掃描光線113b之間形成Ga與Gb較小的高斯光束,進行 聚焦於成像的感光鼓15上產生較小的光點;再者,本創作之二片 式ίθ鏡片更可將成像在感光鼓15上的光點大小均勻化(限制:一 付合解析度要求的範圍内),以得最佳的解析效果。 本創作之二片式扭鏡片包含,由微機電反射鏡10依序起算, 為一第一鏡片131及第二鏡片132’第一鏡片131為一正屈光度新 月形且凸面在微機電反射鏡1〇侧之鏡片及第二鏡片為一正屈光度 新月形且凸面在微機電反射鏡1〇侧之鏡片所構成,其中第一鏡片 131具有第-光學面131a及第二光學面mb,係將微機電反射鏡 10反射之肖度與賴雜賴狀掃描紐光點轉換成距離與時 間為線性關係之掃描光線光點;其中第二鏡片132具有第三光學 面132a及第四光學面132b,係將第一鏡片131之掃描光線修正聚 光於目標物上;藉由該二片式扭鏡片將微機電反射鏡1〇反射之掃 描光線於感光鼓15上成像;其中,第一光學面131a、第二光學面 131b、第二光學面132a及第四光學面132b在主掃描方向至少有 一個為非球面所構成之光學面、第一光學面131a、第二光學面 131b、第二光學面132a及第四光學面i32b在副掃描方向可至少 有一個為非球面所構成之光學面或在副掃描方向均使用球面所構 成之光學面。更進一步,在第一鏡片131及第二鏡片132構成上, 在光學效果上,本創作之二片式扭鏡片,在主掃描方向進一 足式(4)〜式(5)條件: 14 M348010 (4) (5) ⑹ ⑺ 0.1<^llA±A<〇.8 /(i)r 0.2 <-^_<〇.8 /(2片 或,在主掃描方向滿足式(6) 〇.i</rf.((^+^)<〇.6 •/⑴少 Ά2)γ 且在副掃描方向滿足式(7) o-3<l(t_i:)+(^:'i')/rfl<o·8Cxy = -L . One (1/Cx)-Zy 7„- (Cy)Y2 One + chord +5, + π + v1 (3) where 'Z is the plane on the lens from the optical axis direction to 0 o'clock Distance (SAG); c water γ direction and χ direction curvature ((10) a_; κ is γ • ^ cone coefficient (C〇niccoe_ent); n A A. for four, six, eight, ten times The coefficient of power (4th~1〇th 〇rder c〇efficie deletes her leg from the conic), when Cjr=Cj; and ^: is simplified to a single sphere. To make the scanning field on the target Hold the scanning speed, and hold 'in the two marriages (four) interval, maintain _ light point clearance is equal; door, two 22 two-piece ten lens can scan light 113a to scan light, line 113b positive 1 lens 131 And the second lens 132 performs scanning light emission angle correction so that the two scanning rays of the same time interval are corrected by the exit angle, and the distances of the two light spots formed on the formed photosensitive drum 15 are equal. Further, when Laser 13 M348010 After the beam 111 is reflected by the microelectromechanical mirror 10, its Gaussian beam radius (^ and Gb is large, if this scanning light passes through the microelectromechanical mirror 1〇 After the distance from the photosensitive drum 15, the Nans beam radius Ga and Gb will be larger, which does not meet the requirements of practical resolution; the two-piece fB lens of the present invention can scan the light 113a of the microelectromechanical mirror. A Gaussian beam having a small Ga and Gb is formed between the scanning light beams 113b, and a small spot is generated on the photosensitive drum 15 that is focused on the image forming. Further, the two-piece ίθ lens of the present invention can be imaged on the photosensitive drum 15 The size of the spot is uniform (limit: within the range required by the resolution) for the best analytical effect. The two-piece twisted lens of this creation includes, starting from the microelectromechanical mirror 10, The first lens 131 and the second lens 132' are in a positive diopter shape and the convex surface is on the side of the microelectromechanical mirror 1 and the second lens is a positive diopter crescent and the convex surface is in the micro electromechanical The mirror 1 is formed on the side of the lens, wherein the first lens 131 has a first optical surface 131a and a second optical surface mb, which converts the reflection of the microelectromechanical mirror 10 into a scanning point of the scanning light. Scanning light with a linear relationship between time and time The second lens 132 has a third optical surface 132a and a fourth optical surface 132b for correcting the scanning light of the first lens 131 on the target; the micro-electromechanical reflection is performed by the two-piece twist lens The scanning light reflected by the mirror 1 is imaged on the photosensitive drum 15; wherein the first optical surface 131a, the second optical surface 131b, the second optical surface 132a and the fourth optical surface 132b are at least one aspherical in the main scanning direction. The optical surface, the first optical surface 131a, the second optical surface 131b, the second optical surface 132a, and the fourth optical surface i32b may be at least one optical surface formed by aspherical surfaces in the sub-scanning direction or in the sub-scanning direction. Use the optical surface formed by the spherical surface. Further, in the composition of the first lens 131 and the second lens 132, in terms of optical effect, the two-piece twist lens of the present invention is advanced in the main scanning direction (4) to (5) conditions: 14 M348010 ( 4) (5) (6) (7) 0.1<^llA±A<〇.8 /(i)r 0.2 <-^_<〇.8 / (2 slices or, in the main scanning direction, satisfies equation (6) 〇. i</rf.((^+^)<〇.6 •/(1) less than 2)γ and satisfying equation (7) o-3<l(t_i:)+(^:'i') in the sub-scanning direction /rfl<o·8

其中,為第一鏡片131在主掃描方向之焦距、f(2)Y為第二 鏡片132在主掃描方向之焦距、山為θ=〇。第一鏡片ι31目標物侧 光學面至第二鏡片132微機電反射鏡1〇侧光學面之距離、山為 θ=0°第二鏡片132厚度、山為0=0。第二鏡片132目標物侧光學面 至目&物之距離,fsx為二片式扭鏡片在副掃猫方向之複合焦距 (combination focal length)、fsY為二片式扭鏡片在主掃描方向之複 合焦距、Rix第i光學面在副掃描方向的曲率半徑;〜為第i光學 面在主掃描方向的曲率半徑;叫1與叫2為第一鏡片131與第二鏡 片 132 之折射率(refraction index)。 再者,本創作之二片式扭鏡片所形成的光點均一性,可以掃 描光線在感級15上之光束大小的最域與最小制比值 示,即滿足式(8): 〇.8<^ = £ώ^Λ) max(H) (8) 更進步,本創作之二片式历鏡片所开》成的解析度可使用 W為微賊反魏1〇反射面上掃喊_光點轉描在感 15上光點最大值的比顯u為微機狀射賴反射面上1 線的光點經掃描在感光鼓丨5上光點最小值的比值為表示,即;滿 15 M348010 足式(9)及(10) <0.10 max^, -Sa) (9) (10) -—(sb0-saQ) <0.10 min(^ -Sa) (SbQ -sa0) 其t,sa與sb域光鼓15上彻先線 方向及X方向之長度、δ為感光鼓15^ 们无點在丫Here, the focal length of the first lens 131 in the main scanning direction, f(2)Y is the focal length of the second lens 132 in the main scanning direction, and the mountain is θ = 〇. The distance from the target side of the first lens ι31 to the optical surface of the second lens 132 microelectromechanical mirror 1 、 side, the mountain is θ = 0°, the thickness of the second lens 132, and the mountain is 0 = 0. The distance between the target side optical surface of the second lens 132 and the object, fsx is the combination focal length of the two-piece twisted lens in the direction of the secondary sweeping cat, and the fsY is the two-piece twisted lens in the main scanning direction. Composite focal length, radius of curvature of the i-th optical surface of the Rix in the sub-scanning direction; ~ is the radius of curvature of the i-th optical surface in the main scanning direction; and 1 and 2 are the refractive indices of the first lens 131 and the second lens 132 (refraction) Index). Furthermore, the uniformity of the spot formed by the two-piece twisted lens of the present invention can be displayed by scanning the most specific and minimum ratio of the beam size of the light on the sense level 15, that is, satisfying the formula (8): 〇.8< ^ = £ώ^Λ) max(H) (8) More progress, the resolution of the two-piece lens of this creation can be used to sweep the thief on the surface of the thief. The ratio of the maximum value of the spot on the sensation 15 is the ratio of the spot of the 1 line of the micro-radiation-reflecting surface to the minimum value of the spot on the photosensitive drum 5, that is, 15 M348010 Equations (9) and (10) <0.10 max^, -Sa) (9) (10) - (sb0-saQ) <0.10 min(^ -Sa) (SbQ -sa0) Its t, sa and sb The length of the first-line direction and the X-direction of the optical drum 15 is δ, which is the photosensitive drum 15^

值、η為微機f反機1G ^。, 射面上㈣光線的絲與感光鼓15 ^之,’· SaG與SbQ為微機電反射鏡1()反射面上獅光線的 光點在主掃描方向及副掃描方向之長度。 一為使本辦更加_詳實,_舉難實補並配合下 不,將本創作之結構及其技術特徵詳述如後: +本創作以下所揭示之實施例,乃秋對本創作微機電雷射 描裝置之二片式ίθ鏡片之主要構成元件而作說明,因此本創作以 下所揭示之實施例雖是應用於一微機電雷射掃描装置中,但就— 般具有微機電雷射掃描裝置而言’除了本創作所揭示之二片式扭 鏡片外,其他結構乃屬一般通知之技術,因此一般在此領域中熟 悉此項技藝之人士瞭解,本創作所揭示微機電雷射掃描裝置之^ 片式历鏡片之構成元件並不限制於以下所揭示之實施例結構,也 就是該微機電雷射掃描裝置之二片式历鏡片之各構成元件是可以 進行許多改變、修改、甚至等效變更的,例如··第一鏡片131及 第二鏡片132之曲率半徑設計或面型設計、材質選用、間距調整 等並不限制。 <第一實施例> 鏡 凊參照第3圖及第6圖,其中第6圖係為本創作通過第— 16 M348010 片及第一鏡片之掃描光線之實施例之光學路徑圖。本實施例之二 鏡片之第—鏡請及—第二鏡片132,其中第—鏡片仙 ”、、屈光度新月形且凸面在微機電反射鏡10侧之鏡片,其中第二 ί—正屈光度新月形且凸面在微機電反射鏡1G侧鏡片所 構成’在第-鏡片131第一光學面131a與第二光學面⑶二 鏡片132第三光學自⑽與細^學面⑽均係 用式(2)為鱗面公式設計。其絲與非_紐如表一及表 表一、第一實施例之ίθ光學特性The value, η is the microcomputer f counter 1G ^. On the surface (4) the filament of the light and the photosensitive drum 15^', SaG and SbQ are the lengths of the ray light spot on the reflecting surface of the microelectromechanical mirror 1() in the main scanning direction and the sub-scanning direction. In order to make this office more _ detailed, _ difficult to make up and cooperate with the next, the structure and technical features of this creation are detailed as follows: + The following examples disclosed in this creation, is the autumn of this creation micro-electromechanical mine The main constituent elements of the two-piece ίθ lens of the imaging device are described. Therefore, the embodiments disclosed below are applied to a microelectromechanical laser scanning device, but generally have a microelectromechanical laser scanning device. In addition to the two-piece twisted lens disclosed in the present application, other structures are generally notified techniques, and thus those skilled in the art are generally aware of the microelectromechanical laser scanning device disclosed in the present application. ^ The constituent elements of the chip-type lens are not limited to the structure of the embodiment disclosed below, that is, the constituent elements of the two-piece lens of the MEMS laser scanning device are capable of many changes, modifications, and even equivalents. For example, the curvature radius design or the surface design, the material selection, the pitch adjustment, and the like of the first lens 131 and the second lens 132 are not limited. <First Embodiment> Mirror 凊 Referring to Figs. 3 and 6, wherein Fig. 6 is an optical path diagram of an embodiment in which the scanning light of the first 16 M348010 piece and the first lens is created. In the second embodiment of the lens, the first lens and the second lens 132, wherein the first lens is a lens, the diopter is crescent-shaped and the convex surface is on the side of the microelectromechanical mirror 10, wherein the second illuminating power is new The moon-shaped and convex surface is formed on the 1G side lens of the microelectromechanical mirror. The first optical surface 131a and the second optical surface (3) of the first lens 131 are formed by the third optical lens (10) and the thin surface (10). 2) Designed for the scale formula. The silk and non-news are as shown in Table 1 and Table 1. The optical characteristics of the first embodiment

光學面 (optical surface、 MEMS反射面RC lens 1 RKAnamorphic^ Rlx* Rly* R2(Anamorphic、 R2x* R2y* lens 2 R3(Anamorphic) R3x* R3y* R4(Anamorphic) R4x* R4y* 曲率半徑(mm) d厚度(mm) curvature) (thickness') 72.94 98.92 -14.86 400.00 37.60 80.62 46.52 200.00 21.07 nd折射率 (refraction index) 1 1.527 10.00 15.00 1.527 12.00 105.91 感光鼓idrum')R5 °〇 〇 〇n 求面 · ^ 17 M348010 表二、第一實施例之光學面非球面參數 橫像曲面方兹式係數(Anamoinhic equation coefficent) ®(optical Ky®她次幂係& 6th次幂係數8th次冪係數麵次幂係數 surface) (Conic Order Order 〇rder 〇rder -Coefficent) Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient (DR) 2.6932E 00 -3.3334E-07 4.6894E-10 0.0000E+00 0.0000E+00 U5 巧+2 -1-5496E-06 1.7196E-09 0.0000E+00 O.OOOOE+OO "9-25,inc+A? '7-0393E*07 2.0284E-11 0.0000E+00 0.0000E+00 ---7-4199E-01-7.3237E-08 6.1226E-11 ft nnn〇F+nn η ηοηηκ+ηηOptical surface, MEMS reflective surface RC lens 1 RKAnamorphic^ Rlx* Rly* R2 (Anamorphic, R2x* R2y* lens 2 R3 (Anamorphic) R3x* R3y* R4 (Anamorphic) R4x* R4y* Curvature radius (mm) d Thickness (mm) curvature) (thickness') 72.94 98.92 -14.86 400.00 37.60 80.62 46.52 200.00 21.07 nd refractive index (refraction index) 1 1.527 10.00 15.00 1.527 12.00 105.91 Photosensitive drum idrum')R5 °〇〇〇n face · ^ 17 M348010 Table 2, Anamoinhic equation coefficent of the optical aspherical parameter of the first embodiment (optical Ky® her power system & 6th power coefficient 8th power coefficient surface power coefficient surface (Conic Order Order 〇rder 〇rder -Coefficent) Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient (DR) 2.6932E 00 -3.3334E-07 4.6894E-10 0.0000E+00 0.0000E+00 U5 +2 -1-5496E-06 1.7196E-09 0.0000E+00 O.OOOOE+OO "9-25,inc+A? '7-0393E*07 2.0284E-11 0.0000E+00 0.0000E+00 - --7-4199E-01-7.3237E-08 6.1226E-11 ft nnn〇F+nn η ηοηηκ+ηη

Rl* R2* R3* R4*Rl* R2* R3* R4*

1 3 4 RRR R 錐係數次幂係數6th次幂係數8th次幂係數腦次幕係數 f T *、 η 1 . Order Order Coefficient(BP) Coefficient (CP) Coefficient (DP) -1.4092E+00 3.0655E-01 0.0000£+00 ^^ -1.4859E+00 4.3924E-01 0.0000E+00 -1.0000E+01 -1.2834E-01 O.OOOOE+OO 2.6997E+Q1 L911QE+00 0.0000E+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO π ππππτ?+ηπ O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO n nnnnp-u^n 經由此所構成的二片式ίθ鏡片之光學面,f(i)Y=246 44、 247.59、fsX=21.735、fsY=128.30 (mm)可將掃描光線轉換成距離與 時間為線性之掃描光線光點,並將微機電反射鏡1〇上光點 Sa0=12.9〇bm)、SbQ=4618.85〇tm)掃描成為掃描光線,在感光鼓15 上進行聚焦,形成較小的光點6,並滿足式(4)〜式(10)之條件,如 表:感光豉15上以中心軸Z轴在γ方向距離中心轴γ距離(mm) _的光點之*斯絲餘(μΙη),如表四;且本實關之光點分布圖 如圖7所示。圖中,單位圓直徑為〇 〇5mm。 18 M348010 表三、第一實施例滿足條件表1 3 4 RRR R Cone coefficient Power factor 6th Power factor 8th Power coefficient Brain sub-curve coefficient f T *, η 1. Order Order Coefficient(BP) Coefficient (CP) Coefficient (DP) -1.4092E+00 3.0655E -01 0.0000£+00 ^^ -1.4859E+00 4.3924E-01 0.0000E+00 -1.0000E+01 -1.2834E-01 O.OOOOE+OO 2.6997E+Q1 L911QE+00 0.0000E+00 O.OOOOE +OO O.OOOOE+OO O.OOOOE+OO π ππππτ?+ηπ O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO n nnnnp-u^n The optics of the two-piece ίθ lens Face, f(i)Y=246 44, 247.59, fsX=21.735, fsY=128.30 (mm) converts the scanning light into a scanning light spot whose distance is linear with time, and illuminates the microelectromechanical mirror The point Sa0=12.9〇bm), SbQ=4618.85〇tm) is scanned into a scanning light, and is focused on the photosensitive drum 15, forming a smaller spot 6 and satisfying the conditions of the formulas (4) to (10), such as Table: Photosensitive cymbal 15 on the central axis Z axis in the γ direction from the central axis γ distance (mm) _ of the light point of the * Si Siyu (μΙη), as shown in Table 4; and the actual light point distribution map as shown in Figure 7 Show. In the figure, the unit circle diameter is 〇 〇 5 mm. 18 M348010 Table 3, the first embodiment meets the condition table

d5 /(i)yD5 /(i)y

A. f(2)Y 主掃描方向 fsrA. f(2)Y main scanning direction fsr

^ηά\ -1) , (nd2 "Ο f\)y fO^ηά\ -1) , (nd2 "Ο f\)y fO

虽1J掃描方向_ -^-) + (-— _ ~)fsX 6_ mm{Sb-Sa) mMSh-Sa) _max(Sb-Sa) max (Sb0.Sa0) 一 minOVD 0.5393 0.4278 0.5475 0.1919 0.8170 0.0628 0.0513 表四、第一實施例感光鼓上光點高斯光束直徑的最大值 Y -108.540 -95.803 -83.471 -95.803 -59.572 -47.757 -35.911 -23.997 0.000Although 1J scanning direction _ -^-) + (-- _ ~) fsX 6_ mm{Sb-Sa) mMSh-Sa) _max(Sb-Sa) max (Sb0.Sa0) one minOVD 0.5393 0.4278 0.5475 0.1919 0.8170 0.0628 0.0513 4. The maximum value of the Gaussian beam diameter of the light spot on the photosensitive drum of the first embodiment Y -108.540 -95.803 -83.471 -95.803 -59.572 -47.757 -35.911 -23.997 0.000

Max(2Ga,2Gb) 6.86E-03 8.19E-03 7.15E-03 6.80E-03 5.20E-03 4.89E-03 6.10E-03 6.85E-03 5.62E-03 <第二實施例> 本實施例之二片式ίθ鏡片之第一鏡片131及一第二鏡片 132 ’其中第一鏡片131a為正屈光度新月形且凸面在微機電反射 鏡側之鏡片’其中第二鏡片132為一正屈光度新月形且凸面在 微機電反射鏡KH則鏡片所構成,在第一鏡片131第一光學面 =j學面㈣、第二鏡片132第三光學面咖與第四光學面 非_參^^^="^(2)鱗-錢謂。其光學特性與 19 M348010 表五、第二實施例之fQ光學特性Max(2Ga, 2Gb) 6.86E-03 8.19E-03 7.15E-03 6.80E-03 5.20E-03 4.89E-03 6.10E-03 6.85E-03 5.62E-03 <Second Embodiment> The first lens 131 and the second lens 132' of the two-piece ίθ lens of the present embodiment, wherein the first lens 131a is a positive diopter crescent and the lens is convex on the side of the microelectromechanical mirror, wherein the second lens 132 is a The positive diopter crescent shape and the convex surface are formed by the lens in the microelectromechanical mirror KH, the first optical surface of the first lens 131 = j face (four), the second lens 132, the third optical face and the fourth optical face are not _ ^^^="^(2) Scale-money. Its optical characteristics and 19 M348010 Table 5, fQ optical characteristics of the second embodiment

光,面 曲率半徑(mm) d厚度(mm) nd折射率(optical surface) (curvature)_(thickness)__^refraction index) MEMS反射面R 〇〇 30.00 1 lens 1 1.6071 RliAnamorohic') Rlx* 334.26 10.00 Rly* 98.03 R2iAnamorohic) R2x* -20.34 20.00 R2y* 150.00 lens 2 1.6071 R3 CAnamorohic') R3x* 38.27 12.00 R3y* 62.21 R4fAnamorDhic) R4x* 46.80 109.56 R4y* 144.48 威糸鼓idrum')R5 〇〇 0.00 *表示非球面 表六、第二實施例之光學面非球面參數 __橫像曲面方程式係數(Anamorphic equation coefficent)_ 光學面(optical Ky圓錐係數 4th次幂係數 6Λ次幂係數.8th次幂係數10Λ次幂係數 surface) (Conic Order Order Order Order -Coefficent)-Coefficient (AR) Coefficient (BR) Coefficient CCR) Coefficient CDR) Rl* R2* R3* R4* 9.5512E-01 -5.0740E-07 8.9112E+00 -1.4968E-06 -3.4100E+00 7.8884E-07 3.4584E+00 9.6985E-08 5.8969E-10 1.0107E-09 -5.3330E-11 -1.4384E-10 O.OOOOE+OO 0.0000E+00 0.0000E+00 O.OOOOE+OO 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00Light, surface radius of curvature (mm) d thickness (mm) nd refractive index (curvature)_(thickness)__^refraction index) MEMS reflective surface R 〇〇30.00 1 lens 1 1.6071 RliAnamorohic') Rlx* 334.26 10.00 Rly* 98.03 R2iAnamorohic) R2x* -20.34 20.00 R2y* 150.00 lens 2 1.6071 R3 CAnamorohic') R3x* 38.27 12.00 R3y* 62.21 R4fAnamorDhic) R4x* 46.80 109.56 R4y* 144.48 Deterrent drum idrum')R5 〇〇0.00 * indicates aspheric Table 6 and the optical aspherical parameters of the second embodiment __Anamorphic equation coefficent _ optical surface (optical Ky conic coefficient 4th power coefficient 6 Λ power factor. 8th power coefficient 10 Λ power factor (Conic Order Order Order -Coefficent)-Coefficient (AR) Coefficient (BR) Coefficient CCR) Coefficient CDR) Rl* R2* R3* R4* 9.5512E-01 -5.0740E-07 8.9112E+00 -1.4968E -06 -3.4100E+00 7.8884E-07 3.4584E+00 9.6985E-08 5.8969E-10 1.0107E-09 -5.3330E-11 -1.4384E-10 O.OOOOE+OO 0.0000E+00 0.0000E+00 O.OOOOE+OO 0.0000E+00 0.0000E+00 0.0000E+00 0.0000 E+00

Kx圓錐係數4th次幂係數 6th次幂係數8th次幂係數l〇th次幂係數 (Conic Order Order Order Order C〇effi^»!)_Coefficient (AP) Coefficient (BP) Coefficient rrP^ Coefficient (DP) -2.6995E+02 4.9030E-01 O.OOOOE+OO 0.0000E+00 0.0000E+00 -1.0237E+00 4.8240E-01 0.0000E+00 0.0000E+00 0.0000E+00Kx conic coefficient 4th power coefficient 6th power coefficient 8th power coefficient l〇th power factor (Conic Order Order Order Order C〇effi^»!)_Coefficient (AP) Coefficient (BP) Coefficient rrP^ Coefficient (DP) - 2.6995E+02 4.9030E-01 O.OOOOE+OO 0.0000E+00 0.0000E+00 -1.0237E+00 4.8240E-01 0.0000E+00 0.0000E+00 0.0000E+00

-7.0333E+00 -1.7722E-01 0.0000E+00 0.0000E+00 0 OOOOE+OO __lOQOOE+01_2.2029E+00 0.0000E+00 〇.〇〇〇〇p+nn ηηηηηκ+ηη 經由此所構成的二片式fB鏡片,f(l)Y= 442.09、f(2)Y= 173.53、fsX=40.302、fsY=-480 (mm)可將掃描光線轉換成距離與時 間為線性之掃描光線光點,並將微機電反射鏡10上光點 Sa0=12.902(pm)、Sb0=4618.85(pm)掃描成為掃描光線,在感光鼓 20 M348010 :聚焦,形成較小的光點8,並滿足(4)〜式⑽之條件,如 2 J光鼓15中"軸z軸在γ方向距離中心軸γ距離 Ώ 8所回斯光束錄(㈣,如表人;且本實關之光點分布圖如 圖8所不。圖中,單位圓直徑為0.05mm。 表七 、弟一實施例滿足條件表 + + ds-7.0333E+00 -1.7722E-01 0.0000E+00 0.0000E+00 0 OOOOE+OO __lOQOOE+01_2.2029E+00 0.0000E+00 〇.〇〇〇〇p+nn ηηηηηκ+ηη Two-piece fB lens, f(l)Y= 442.09, f(2)Y=173.53, fsX=40.302, fsY=-480 (mm) converts the scanning light into a scanning light spot whose distance is linear with time. And scanning the light spot Sa0=12.902 (pm) and Sb0=4618.85 (pm) on the microelectromechanical mirror 10 into scanning light, focusing on the photosensitive drum 20 M348010: forming a small spot 8 and satisfying (4)~ The condition of equation (10), such as 2 J light drum 15 " axis z axis in the γ direction from the central axis γ distance Ώ 8 back to the beam record ((four), as shown; and the actual light point distribution map as shown in Figure 8 No. In the figure, the unit circle diameter is 0.05 mm. Table VII, the first embodiment meets the condition table + + ds

主掃描方向 0.3202 0.6316 f(^)y f(2)y 副掃描方向(----L RU R2x δ_ mm(Sb:Sj w- 0.6397 0.1866 nnMain scanning direction 0.3202 0.6316 f(^)y f(2)y Sub-scanning direction (----L RU R2x δ_ mm(Sb:Sj w- 0.6397 0.1866 nn

max(Sb -Sa) = max^J 【(Ho) ~^s7~ 0.8255 0.0482 0.0383 表八、第二實施例感光鼓上光點高斯光束直徑的最大值 Y Max(2Ga, 2Gb) -107.459 -94.257 -82.422 -94.257 -59.721 8.95E-03 7.75E-03 9.11E-03 -48.240 -36.499 -24.498 0.000 <第三實施例> 本實施例之二片式历鏡片之第一鏡片131及一第二鏡片 132 ’其中第-鏡片131a為正屈光度新月形且凸面在微機電反射 鏡1〇側之鏡片,其中第二鏡片⑶為一正屈光度新月形且凸面在 21 M348010 微機電反射鏡10侧鏡片所構成,在第_鏡片131第一光學面i3ia 與第二光學面mb、第二鏡片132第三光學面132a與第四光學面 132b均係為非球面’㈣式(2)為麵面公式設計。其光學特性 與非球面參數如表九及表十。 表九、第三實施例之ίθ光學特性 光學面 曲率半徑(mm) d厚度(mm) 以折射率 MEMS及鼾而R oo ------—…__(retraction maexj 23.10 i lens 1 i CA R1 (Anamorphic) 1. Rlx* 466.88 10.00 Rly* 71.79 R2iAnamorohic、 R2x* -14.68 14.27 R2y* 100.00 lens 2 1.6071 R3 (Anamorphic) R3x* 27.25 10.00 R3y* 67.01 R4fAnamorphic') R4x* 27.77 109.87 R4y* 180.68 感光鼓(¢1111111)115 OO 0.00 *表示非球面 表十、第三實施例之光學面非球面參數 光學面(optical Ky圓錐係數 4th次冪係數 6th次幂係數8th次幂係數10th次幂係數 surface) (Conic Order Order Order Order ----Coefficent) Coefficient (AR) Coefficient iBR) Coefficient (CR) Coefficient (DR) Rl* 5.4374E-01 -3.6958E-07 7.3690E-10 0.0000E+00 0.0000E+00 R2* 3.2792E+00 -1.6096E-06 1.9163E-09 0.0000E+00 O.OOOOE+OO R3* -4.9866E+00 1.3901E-05 3.5936E-11 0.0000E+00 O.OOOOE+OO R4* 1.1025E+01 9.0997E-08 -7.0192E-11 O.OOOOE+OO 0.0000E+00 ..橫像曲面方程式係數(Anamorphic equation coefficent)Max(Sb -Sa) = max^J [(Ho) ~^s7~ 0.8255 0.0482 0.0383 Table 8. The maximum value of the Gaussian beam diameter on the photosensitive drum of the second embodiment Y Max(2Ga, 2Gb) -107.459 -94.257 -82.422 -94.257 -59.721 8.95E-03 7.75E-03 9.11E-03 -48.240 -36.499 -24.498 0.000 <Third Embodiment> The first lens 131 and one of the two-piece calendar lens of the present embodiment The second lens 132' wherein the first lens 131a is a positive diopter crescent and has a convex surface on the side of the microelectromechanical mirror 1 , wherein the second lens (3) is a positive diopter crescent and the convex surface is 21 M348010 microelectromechanical mirror 10 The side lens is configured such that the first optical surface i3ia and the second optical surface mb of the first lens 131 and the third optical surface 132a and the fourth optical surface 132b of the second lens 132 are aspherical surfaces (4) (2) Face formula design. Its optical characteristics and aspherical parameters are shown in Tables 9 and 10. Table IX, θθ optical characteristics of the third embodiment optical surface curvature radius (mm) d thickness (mm) with refractive index MEMS and R and R oo -------...__(retraction maexj 23.10 i lens 1 i CA R1 (Anamorphic) 1. Rlx* 466.88 10.00 Rly* 71.79 R2iAnamorohic, R2x* -14.68 14.27 R2y* 100.00 lens 2 1.6071 R3 (Anamorphic) R3x* 27.25 10.00 R3y* 67.01 R4fAnamorphic') R4x* 27.77 109.87 R4y* 180.68 Photosensitive drum ( ¢1111111)115 OO 0.00 * indicates an aspheric surface ten, optical surface aspherical parameter optical surface of the third embodiment (optical Ky conic coefficient 4th power coefficient 6th power coefficient 8th power factor 10th power coefficient surface) (Conic Order Order Order Order ----Coefficent) Coefficient (AR) Coefficient iBR) Coefficient (CR) Coefficient (DR) Rl* 5.4374E-01 -3.6958E-07 7.3690E-10 0.0000E+00 0.0000E+00 R2* 3.2792E+00 -1.6096E-06 1.9163E-09 0.0000E+00 O.OOOOE+OO R3* -4.9866E+00 1.3901E-05 3.5936E-11 0.0000E+00 O.OOOOE+OO R4* 1.1025E +01 9.0997E-08 -7.0192E-11 O.OOOOE+OO 0.0000E+00 .. Lateral surface equation coefficient (Anamorphic Equation coefficent)

Kx圓錐係數 4th次幂係數 6Λ次冪係數 8th次冪係數 10Λ次幂係數 (Conic Order Order Order OrderKx Cone Coefficient 4th Power Coefficient 6Λ Power Coefficient 8th Power Coefficient 10Λ Power Coefficient (Conic Order Order Order Order

Coefficent) Coefficient (AP) Coefficient (BP) Coefficient (CP) Coefficient (DP)Coefficent) Coefficient (AP) Coefficient (BP) Coefficient (CP) Coefficient (DP)

* * * * 1^34 R R R R* * * * 1^34 R R R R

-8.7340E+01 2.7406E-01 O.OOOOE+OO 0.0000E+00 O.OOOOE+OO-8.7340E+01 2.7406E-01 O.OOOOE+OO 0.0000E+00 O.OOOOE+OO

-1.0492E+00 5.3703E-01 0.0000E+00 0.0000E+00 O.OOOOE+OO-1.0492E+00 5.3703E-01 0.0000E+00 0.0000E+00 O.OOOOE+OO

-7.1015E+00 -9.3537E-01 0.0000E+00 0.0000E+00 O.OOOOE+OO-7.1015E+00 -9.3537E-01 0.0000E+00 0.0000E+00 O.OOOOE+OO

1.0000E+01 2.0970E-H)0 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 22 M348010 f、、莖由此所構成的二片式伤鏡片,W=420.884、f(2)Y= 172712 Γ ΓΓ/γ129·254 (mm)可將掃描光線轉換成距離與時間為線 ,之知描光線光點,並將微機電反射鏡1G上光點m 掃描成為掃描光線,在感光鼓1S上進行聚隹)妒 成較小的光點1G ’並滿明)〜式⑽之條件,如表十―;感、^ 15中^轴Z軸在γ方向距離中心軸γ距離㈣的光點之高‘1.0000E+01 2.0970EH)0 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 22 M348010 f, the two-piece wound lens formed by the stem, W=420.884, f(2)Y= 172712 Γ ΓΓ / γ 129 · 254 (mm) can convert the scanning light into a line of distance and time, and know the light spot, and scan the spot of the microelectromechanical mirror 1G into scanning light, on the photosensitive drum 1S For the convergence of the small spot 1G 'and the full light point ~ ~ (10) conditions, as shown in Table 10 -; sense, ^ 15 in the ^ axis Z axis in the γ direction from the central axis γ distance (four) of the spot high'

徑(μιη),如表十二;本實施例之光點分布圖如圖&所示 中,單位圓直徑為〇.〇5mm。The diameter (μιη) is as shown in Table 12; the light spot distribution map of this embodiment is shown in Fig. &; the unit circle diameter is 〇.〇5 mm.

表Η•—、第三實施例滿足條株表 ά^Λ- ά^Λ- d5 /(l)r ds /(2)r 主掃描方向Table Η•—, the third embodiment satisfies the list of the ά^Λ- ά^Λ- d5 /(l)r ds /(2)r main scanning direction

fsYfsY

Xndl ~1) 副掃描方向(y--~)· | (nd2 ~ !) /(2)/ K3x KAx δ = ^JmaxXndl ~1) Sub-scanning direction (y--~)· | (nd2 ~ !) /(2)/ K3x KAx δ = ^Jmax

minQVD max^ -Sa) _ maxQVD=(n) _ min(^-Se) i^bO '^a〇) 0.3187 0.6361 0.6398 0.0860 0.8174 0.0670 0.0501 表十二、第三實施例感光鼓上光點高斯光束直徑的最大值 Y -108.051 -94.880 -82.684 -94.880 -59.373 -47.760 -36.016 -24.118 0.000minQVD max^ -Sa) _ maxQVD=(n) _ min(^-Se) i^bO '^a〇) 0.3187 0.6361 0.6398 0.0860 0.8174 0.0670 0.0501 Table 12, Gaussian beam diameter of the light spot on the photosensitive drum of the third embodiment The maximum value of Y -108.051 -94.880 -82.684 -94.880 -59.373 -47.760 -36.016 -24.118 0.000

Max(2Ga, 2Gb) 9.41E-03 8.98E-03 9.21E-03 9.01E-03 6.77E-03 8.32E-03 9,21E-03 9.66E-03 8.04E-03 <第四實施例> 本實施例之二片式ίθ鏡片之第一鏡片131及一第二鏡片 23 M348010 132 ’其中第一鏡#131a為正屈光度新月形且凸面在微機電反射 鏡1〇側之鏡>} ’其中第二鏡# 132為一正屈光度新月形且凸面在 微機電反射鏡10側鏡片所構成,在第一鏡片131第一光學面咖 與第一光學面131卜第三鏡片132第三絲面⑽與第四光學面 ⑽均係轉球面’使用式(2)為麵面公式設計。絲學特性與 非球面參數如表十三及表十四。Max(2Ga, 2Gb) 9.41E-03 8.98E-03 9.21E-03 9.01E-03 6.77E-03 8.32E-03 9,21E-03 9.66E-03 8.04E-03 <Fourth Embodiment> The first lens 131 and the second lens 23 M348010 132 of the two-piece ίθ lens of the present embodiment, wherein the first mirror #131a is a positive diopter crescent and the convex surface is on the side of the microelectromechanical mirror 1 &> } ' wherein the second mirror # 132 is a positive diopter crescent and the convex surface is formed on the microelectromechanical mirror 10 side lens, the first optical surface of the first lens 131 and the first optical surface 131 the third lens 132 The three-filament surface (10) and the fourth optical surface (10) are both spherical surfaces. The equation (2) is designed as a surface formula. The silky and aspherical parameters are shown in Tables 13 and 14.

表十三、第四實施例之fe光學牿祕 光學面 曲率半徑(mm) (optical surface) (curvature) d厚度 (thickness、 nd折射率 MEMSSMift R 〇〇 21.3s 1 lens 1 RlfAnamomhic'» Rlx* 100.37 10.00 l.DZ/ Rly* 102.06 R2fAnamorphic) R2x* -16.68 15.00 R2y* 494.58 lens 2 _ R3rAnamorohic) R3x* 27.81 10.00 1.527 R3y* 83.13 R4rAnamorphic) R4x* 48.11 107.56 R4y* 感半.鼓idrum)R5 * 主 =J|= 1七 213.63 OO 〇-〇n 24 M348010 表十四、第四實施例之光學面非球面參數 光學面(optical surface) _ 橫像曲面方程式係數(Anamorphic equation coefficent) 3圓錐係$~S次幂係數~~冗次幂係數- (Conic Order 〇rderTable 13 and the fourth embodiment of the optical optical surface curvature radius (mm) (optical surface) (curvature) d thickness (thickness, nd refractive index MEMSSMift R 〇〇 21.3s 1 lens 1 RlfAnamomhic'» Rlx* 100.37 10.00 l.DZ/ Rly* 102.06 R2fAnamorphic) R2x* -16.68 15.00 R2y* 494.58 lens 2 _ R3rAnamorohic) R3x* 27.81 10.00 1.527 R3y* 83.13 R4rAnamorphic) R4x* 48.11 107.56 R4y* Half. Drum idrum) R5 * Master = J |= 1七213.63 OO 〇-〇n 24 M348010 Table 14, the optical surface aspherical parameter optical surface of the fourth embodiment _ Anamorphic equation coefficent 3 cone system $~S times Power Coefficient ~~ Redundant Power Coefficient - (Conic Order 〇rder

Coefficenf)Coefficenf)

Rl* R2* R3* R4* 1.8244E+00 -1.0000E+01 -8.7057E+00 8.5239E-01 她次幂係數 10th次幂係數 . Order Order Efficient (BR) Coefficient (CR) Coefficient (DR) i ^nl〇E'°7 5-7420E-10 0.0000E+00 O.OOOOE+OO -1.5806E-06 1.9968E-09 -8.7614E-07 7.7638E-11 9^192E-08 -8.5S22E-12Rl* R2* R3* R4* 1.8244E+00 -1.0000E+01 -8.7057E+00 8.5239E-01 Her power factor 10th power factor. Order Order Efficient (BR) Coefficient (CR) Coefficient (DR) i ^nl〇E'°7 5-7420E-10 0.0000E+00 O.OOOOE+OO -1.5806E-06 1.9968E-09 -8.7614E-07 7.7638E-11 9^192E-08 -8.5S22E-12

0.0000E+00 0.0000E+00 O.OOOOE+OO O.OOOOE+OO 0.0000E+000.0000E+00 0.0000E+00 O.OOOOE+OO O.OOOOE+OO 0.0000E+00

Rl* R2* R3* R4* 係數 ^〇Tl+Q| SLent(PP) -1.1909E+00 -7.5687E+00 1.0000E+01Rl* R2* R3* R4* Coefficients ^〇Tl+Q| SLent(PP) -1.1909E+00 -7.5687E+00 1.0000E+01

9.8456E-02 4.6430E-01 -3.6162E-01 2.2819E+0Q9.8456E-02 4.6430E-01 -3.6162E-01 2.2819E+0Q

0.0000E+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 0.0000E+00 O.OOOOE+OO O.OOOOE+OO 0.0000E+000.0000E+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 0.0000E+00 O.OOOOE+OO O.OOOOE+OO 0.0000E+00

O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 經由此所構成的二片式扭鏡片,f(i)Y=241 788、^=251 443、 fsx 23.607、fsY=128.23 (mm)可將掃描光線轉換成距離與時間為線 性之掃描光線光點,並將微機電反射鏡1〇上光點 12.902(μιη)、SbG=4618.85bm)掃描成為掃描光線,在感光鼓15上 進仃聚焦,形成較小的光點12,並滿足(4)〜式(丨⑺之條件,如表十 五;感光鼓15中心轴Z轴在Y方向距離中心軸γ距離(mm)的光O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO The two-piece twist lens formed by this, f(i)Y=241 788, ^=251 443, fsx 23.607, fsY= 128.23 (mm) can convert the scanning light into a scanning light spot whose distance and time are linear, and scan the microelectromechanical mirror 1 〇 upper spot 12.902 (μιη), SbG=4618.85bm) into scanning light, in the photosensitive drum 15 is focused on the upper side to form a smaller spot 12, and satisfies the condition of (4)~((7), as shown in Table 15; the central axis of the photosensitive drum 15 is the y distance (mm) from the central axis in the Y direction Light

點之高斯絲餘㈣,如針六;且本實施例之光點分布圖如 圖10所示。圖中,單位圓直徑為0.05mm。 25 M348010 表十五、第四實施例滿足條件表 0.5482 0.4277 0.5482 0.4282 0.8341 0.0518 0.0432 '(2)y + + d5The Gaussian remainder (four) of the point, such as the needle six; and the light spot distribution map of this embodiment is as shown in FIG. In the figure, the unit circle has a diameter of 0.05 mm. 25 M348010 Table 15. The fourth embodiment satisfies the condition table 0.5482 0.4277 0.5482 0.4282 0.8341 0.0518 0.0432 '(2)y + + d5

f(W d5 々2)r 主掃描方向 副掃描方向(_f(W d5 々2)r Main scanning direction Sub-scanning direction (_

3 — minU) max(5A -Sa) max^ -Sa) /max y q \ \^bO '^a〇) :minU) (Ho) 表十六、第四實施例感光鼓上光點高斯光束直徑的最大值 Y -108.540 -95.836 -83.523 -95.836 -59.598 -47.760 -35.900 -23.983 0.0003 — minU) max(5A -Sa) max^ -Sa) /max yq \ \^bO '^a〇) :minU) (Ho) Table 16. The Gaussian beam diameter of the light spot on the photosensitive drum of the fourth embodiment Maximum value Y -108.540 -95.836 -83.523 -95.836 -59.598 -47.760 -35.900 -23.983 0.000

Max(2Ga,2Gb) 9.35E-03 8.17E-03 4.93E-03 5.22E-Q3 8.17E-03 9.92E-03 1.07E-02 1.06E-02 7.39E-03 <第五實施例> 本實施例之二片式ίθ鏡片之第一鏡片131及一第二鏡片 132,其中第一鏡片131a為正屈光度新月形且凸面在微機電反射 鏡10側之鏡片’其中第二鏡片132為一正屈光度新月形且凸面在 微機電反射鏡1〇纖片所構成,在第—鏡片131第—光學面 131a,使用式(3)為非球面公式設計,在第一鏡片13 : =b、第二鏡片132第三光學面132a與第四光學面132b係為非 3七為非球面公式設計。其光學特性與非球面參數如 26 M348010 表十七、第五實施例之扭光學特性 光學面 曲率半徑(mm) (optical surface) (curvature') d厚度(mm) (thickness) nd折射率 (refraction index) MEMS反射面R oo 21.39 1 lens 1 1.527 R1 (Y Toroid) Rlx 109.75 10.00 Rly* 99.68 R2fAnamorohic) R2x* -16.76 15.00 R2y* 400.00 lens 2 1.527 R3iAnamorphic) R3x* 27.49 10.00 R3y* 79.67 R4iAnamorohic、 R4x* 48.85 107.64 R4y* 200.00 感糸鼓idrum)R5 氺主二P dk设工 OO 0.00Max(2Ga, 2Gb) 9.35E-03 8.17E-03 4.93E-03 5.22E-Q3 8.17E-03 9.92E-03 1.07E-02 1.06E-02 7.39E-03 <Fifth Embodiment> The first lens 131 and the second lens 132 of the two-piece ίθ lens of the embodiment, wherein the first lens 131a is a lens having a positive refractive power crescent shape and a convex surface on the side of the microelectromechanical mirror 10, wherein the second lens 132 is A positive refracting crescent shape and a convex surface formed by a microelectromechanical mirror 1 〇 fiber sheet, in the first optical surface 131a of the first lens 131, using the formula (3) as an aspherical formula design, in the first lens 13 : = b The second optical surface 132a and the fourth optical surface 132b of the second lens 132 are designed to be aspherical. Its optical characteristics and aspherical parameters such as 26 M348010 Table 17. The torsional optical properties of the fifth embodiment. Optical surface curvature radius (mm) (curvature') d thickness (mm) (thickness) nd refractive index (refraction Index) MEMS reflective surface R oo 21.39 1 lens 1 1.527 R1 (Y Toroid) Rlx 109.75 10.00 Rly* 99.68 R2fAnamorohic) R2x* -16.76 15.00 R2y* 400.00 lens 2 1.527 R3iAnamorphic) R3x* 27.49 10.00 R3y* 79.67 R4iAnamorohic, R4x* 48.85 107.64 R4y* 200.00 糸 drum idrum) R5 氺 main two P dk set OO 0.00

表十八、第五實施例之光學面非球面參數 光學面(optica surface) 環像曲面方程式係數Toric equation Coefficient Ky®錐係數 (Conic Coefficent) 她次幂係數 6th次幂係數 8th次幂係數 Order Order Order Coefficient (B4) Coefficient (B6) Coefficient (B8) l〇th次幂係數 Order Coefficient Rl* 6.9114E+00 -2.9590E-06 •2.2680E-09 0.0000E+00 0.0000E+00 橫像曲面方程式係數(Anamorphic equation coefficent) 光學面(optical Ky圓錐係數 4th次幂係數 6th次冪係數 8th次冪係數 10th次幂係數 surface) (Conic Order Order Order Order Coefficent) Coefficient CAR) Coefficient iBR^ Coefficient TCR^ Coefficient R2* -5.4061E+00 -1.5754E-06 2.0020E-09 0.0000E+00 0.0000E+00 R3* -8.1703E+00 •7.7701E-07 6.8357E-11 0.0000E+00 0.0000E+00 R4* -8.0871E-02 9.5004E-08 -2.6909E-12 0.0000E+00 0.0000E+00 来學ftioDtical Kx®雜係數 4th次幂係數 6th次幂係數 8th次冪係數 l〇th次幂係數 (Conic Order Order Order Order Coefficent) Coefficient (AP) Coefficient Coefficient (CP) Coefficient (DP) R2* •1.1601E+00 4.6121E-01 0.0000E 十 00 0.0000E+00 0.0000E+00 R3* -7.1828E+00 -3.7458E-01 0.0000E+00 0.0000E+00 0.0000E+00 R4* 1.0000E+01 2.2675E+00 0.0000E+00 0.0000E+00 0.0000E 十 00 經由此所構成的二片式ίθ鏡片,f(1)Y=420.884、f(2)Y= 172.712、 fsX=22.667、fsY=129.254 (mm)可將掃描光線轉換成距離與時間為線 27 M348010 12 902二先線光點’並將微機電反射鏡1〇上光點 .㈣、Sb0=4618,848_)掃描成為掃描光線,在感光鼓i5 上進行聚焦’形絲小的絲12,並滿足(4)〜式⑽之條件, 十九’感W 15上朴雄Z軸在γ方向距離中心轴γ距離( =光點之S斯光束直徑㈣,如表二十;且本實補之光點分布 圖如圖11所示。圖中,單位圓直徑為〇.〇5mm。 表十九、第五實施例滿足條件表Table 18, the optical surface aspherical parameter optical surface (optica surface) of the fifth embodiment Toric equation Coefficient Ky® cone coefficient (Conic Coefficent) Her power coefficient 6th power coefficient 8th power coefficient Order Order Order Coefficient (B4) Coefficient (B6) Coefficient (B8) l〇th power factor Order Coefficient Rl* 6.9114E+00 -2.9590E-06 •2.2680E-09 0.0000E+00 0.0000E+00 Horizontal image surface coefficient (Anamorphic equation coefficent) Optical surface (optical Ky conic coefficient 4th power coefficient 6th power coefficient 8th power coefficient 10th power coefficient surface) (Conic Order Order Order Coefficent) Coefficient CAR) Coefficient iBR^ Coefficient TCR^ Coefficient R2* -5.4061E+00 -1.5754E-06 2.0020E-09 0.0000E+00 0.0000E+00 R3* -8.1703E+00 •7.7701E-07 6.8357E-11 0.0000E+00 0.0000E+00 R4* -8.0871 E-02 9.5004E-08 -2.6909E-12 0.0000E+00 0.0000E+00 Learn ftioDtical Kx® Hybrid Coefficient 4th Power Coefficient 6th Power Coefficient 8th Power Coefficient l〇th Power Coefficient (Conic Order Order Order Order Coefficent Coefficient (AP) Coefficient Coefficient (CP) Coefficient (DP) R2* • 1.1601E+00 4.6121E-01 0.0000E Ten 00 0.0000E+00 0.0000E+00 R3* -7.1828E+00 -3.7458E-01 0.0000 E+00 0.0000E+00 0.0000E+00 R4* 1.0000E+01 2.2675E+00 0.0000E+00 0.0000E+00 0.0000E 00 The two-piece ίθ lens formed by this, f(1)Y= 420.884, f(2)Y= 172.712, fsX=22.667, fsY=129.254 (mm) converts the scanning light into a distance and time as the line 27 M348010 12 902 two first line spot 'and the microelectromechanical mirror 1 Light spot. (4), Sb0=4618, 848_) Scanning becomes scanning light, focusing on the photosensitive drum i5's small wire 12, and satisfying the condition of (4)~(10), 19' sense W 15 The male Z axis is γ distance from the central axis in the γ direction (= S s beam diameter of the light spot (4), as shown in Table XX; and the light spot distribution map of this actual complement is shown in FIG. In the figure, the unit circle diameter is 〇.〇5mm. Table 19, the fifth embodiment satisfies the condition table

r{l)Y d5 J(2)Y主掃描方向 副掃描方向(~ί· f{\)y f{2)y _) + (^--ΊΓ~)Λαγ η,r{l)Y d5 J(2)Y main scanning direction Sub-scanning direction (~ί· f{\)y f{2)y _) + (^--ΊΓ~)Λαγ η,

Ru Rj kR3x R4x minH) _max(^·^)(n) =miH) 0.5328 0.4408 0.5486 0.4469 0.8346 0.0510 0.0426 表二十、第 、第五實施例感光豉上光點鬲斯光束直徑的最大值 Y -108.528 -95.772 -83.458 -95.772 -59^579 ----- λ, nr -ou. '47.760 -35.910 -23.995 0.000Ru Rj kR3x R4x minH) _max(^·^)(n) =miH) 0.5328 0.4408 0.5486 0.4469 0.8346 0.0510 0.0426 Table 20, the fifth embodiment, the fifth embodiment, the maximum value of the diameter of the light beam on the photosensitive spot, Y -108.528 -95.772 -83.458 -95.772 -59^579 ----- λ, nr -ou. '47.760 -35.910 -23.995 0.000

Max(2Ga, 2Gb) 9.99E-03 8.27E-03 5.03E-03 5.69E-03 8.84F..n^ ι _ ----------------- 1.14E-02 1.12E-02 7.64E-03 藉由上述之實施例說明,本創作至少可達下列功效: 藉由本創作之二以历鏡狀設置,可將呈簡諸運動之微機 電反射鏡在雜©上光點’由原來隨咖増加*遞減或遞增的 28 M348010 非等速率掃描現象,修 投射作等速率掃描,使成2=掃描使雷射光束於成像面之 等。 ;目払物上形成之兩相鄰光點間距相 W 鏡片之設置’可崎變修正於主掃描方 得=:知描光線,使聚焦於成像的目標物上之光點 ()f由本創作之二片式β鏡片之 向及副掃描方向掃描弁績,枯W變修正於主知描方 勻化。 财田先線使成像在目標物上的光點大小均 (3) 以上所述僅為本創作的較佳 =rr:刚内可對其進行丄== 至等效變更,但都將落入本創作的保護範圍内。 【圖式簡單說明】 圖1為本創作二収之光學路徑之示意圖; 圖2為-微機電反射鏡掃描角度θ與時間t之關係圖; 圖3為通過第-鏡片及第二鏡片掃 說明圖; 之林路徑圖及符號 圖4=:在感光鼓上後’光點面積隨投射位置之不同 圖5為光束之高斯分佈與光強度之關係圖; 圖6為本創作通過第-鏡狀第二鏡片之掃描光線之實施例之光 29 M348010 學路徑圖; 圖7為第一實施例之光點示意圖; 圖8為第二實施例之光點示意圖; 圖9為第三實施例之光點示意圖; 圖10為第四實施例之光點示意圖;以及 圖11為第五實施例之光點示意圖。 【主要元件符號說明】 10 :微機電反射鏡; 11 :雷射光源; 111 :光束; 113a、113b、113c、114a、114b、115a、115b :掃瞄光線; 131 :第一鏡片; 132 :第二鏡片; 14a、14b :光電感測器; 15 :感光鼓; 16 :柱面鏡; 2、 2a、2b、2c :光點;以及 3. 有效掃描視窗。 30Max(2Ga, 2Gb) 9.99E-03 8.27E-03 5.03E-03 5.69E-03 8.84F..n^ ι _ ----------------- 1.14E- 02 1.12E-02 7.64E-03 By the above description of the embodiment, the creation can at least achieve the following effects: By means of the second creation of the present invention, the microelectromechanical mirrors in the form of movements can be used. The glazing point is a 28 M348010 non-equal rate scanning phenomenon that is decremented or incremented by the crepe. The projection is performed for equal-rate scanning, so that 2 = scanning causes the laser beam to be on the imaging plane. The distance between the two adjacent spots formed on the object is the setting of the lens. The setting of the lens can be corrected by the main scanning. =: The light is visible, so that the spot on the target is focused. In the direction of the two-piece β-lens and the scanning direction in the sub-scanning direction, the dry W-change is corrected in the master-known square. The Caitian Xianxian makes the spot size on the target image (3). The above is only the best = rr of this creation: it can be 丄== to the equivalent change, but all will fall into Within the scope of this creation. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of an optical path of a second acquisition; FIG. 2 is a diagram showing a relationship between a scanning angle θ of a microelectromechanical mirror and a time t; FIG. 3 is a description of a first lens and a second lens. Figure; Forest path diagram and symbol diagram 4 =: After the photosensitive drum, 'the spot area varies with the projection position. Figure 5 shows the relationship between the Gaussian distribution of the beam and the light intensity. Figure 6 shows the creation through the first mirror. FIG. 7 is a schematic diagram of a light spot of the first embodiment; FIG. 8 is a light spot of the second embodiment; FIG. 9 is a light of the third embodiment; Figure 10 is a schematic view of a light spot of a fourth embodiment; and Figure 11 is a schematic view of a light spot of the fifth embodiment. [Main component symbol description] 10: Microelectromechanical mirror; 11: Laser light source; 111: Light beam; 113a, 113b, 113c, 114a, 114b, 115a, 115b: Scanning light; 131: First lens; 132: Two lenses; 14a, 14b: photo-electrical detector; 15: photosensitive drum; 16: cylindrical mirror; 2, 2a, 2b, 2c: light spot; and 3. effective scanning window. 30

Claims (1)

M348010 九、申請專利範圍: 1. 種微機電雷射掃描裝置之二片式相 Φ 撼4+—壯里斗AUi 兩 -兄 ^、係適用於一微機 St - = =掃描裝置至少包含—用以發射光 =機電 = 右擺 ’由麵電反射鏡依上:^^ 凸面在該微機電反射鏡侧之第一鏡片及一正屈光度新月H 面在該微機電反射鏡侧之第二鏡片所構成,其中該第一鏡片且有 -第一光學面及—第二光學面,該第—光學面與該第二光學面, 在主掃描方向至少有-個光學面為非球面所構成,係將該微機電 反射鏡反射之減與時_雜關叙掃描統絲轉換成距 離與時間為線性關係之掃描光線光點;其中該第二鏡片具有一第 ^光學面及-第四光學面’該第三絲面触第四光學面,在主 掃描方向至少有-個光學面為非球面所構成,係將該第一鏡片之 掃描光線修正聚光於該目標物上;藉由該二片式β鏡片將該微 機電反射鏡反射之掃描光線於該目標物上成像。 2.如申請專利範圍第1項所述之微機電雷射掃描裝置之二片式历 鏡片,在主掃描方向進一步滿足下列條件: 0.1< ^,+ ^4+^ <〇8 ; /(l)y 0.2<A-<〇.8 ; f(2)Y 其中,f(1}Y為該第一鏡片在主掃描方向之焦距、f(2)Y為該第 二鏡片在主掃描方向之焦距、d3為θ=0。該第一鏡片目標物侧光 學面至該第二鏡片微機電反射鏡侧光學面之距離、山為θ=〇。該 第二鏡片厚度、山為θ=0。該第二鏡片目標物侧光學面至該目標 31 M348010 物之距離。 3.如申凊專利細第1項所述之微機電雷射掃描裳置之二片式扭 鏡片’進一步滿足下列條件: 在主掃描方向滿足 凡—D (〜2~1)、 0.1 < fsr fd)y Λ )< 0.6 2)少 在副掃描方向滿足 0.3 < <0.8 * 其中,$收與f(2)Y為該第一鏡片及該第二鏡片在主掃描方向 之焦距、fsX為二片式扭鏡片在副掃描方向之複合焦距、心為二 片+式扭鏡#在主掃描方向之複合紐、〜為第丨光學面在副掃 t田方向的曲率半彳niy為第i光學面在主掃描方向的曲率半徑、 ndl與1½分別為該第一鏡片與該第二鏡片之折射率。 申睛專利範圍第!項所述之微機電雷射掃描裝置之二片式扭 兄片,其巾最大光雜最小光點大小的比值滿足: -Sn). φ msK(Sb.Sa) 掃俨&絲鼓上㈣光線軸的任-個光點在主 =:副掃描方向之長度,該感光鼓上最小光點與最大 5·2請專利範圍第1項所述之微機電雷射掃描裳置之二片式扭 兄,其中在該目標物上最大光點的比值i在f 光點的比值分別滿足 U該叫物上取小 (H〇) -<0.10 <0.10 ; η ^^jrSa) ™η (〜Α〇) 32 M348010 ^ 為該微機電反射鏡反射面上_光線的光 點在主糾方向朗細方向之長度、&與μ-感光鼓上掃 祕光線形成的任一個光點在主掃描方向及副掃插方向之長卢、 Tlmax為該微機電反射鏡反射面上掃猫光線的光點經掃描在該目 才示物上最大光點的比值、T]min為该微機電反射鏡反射面上掃猫光 線的光點經掃描在該目標物上最小光點的比值。M348010 IX. Patent application scope: 1. Two-phase phase Φ of MEMS laser scanning device Φ4+—Zhuang Lidou AUi Two-brothers ^, suitable for a microcomputer St - = = scanning device at least - use The emitted light = electromechanical = right pendulum' is supported by the surface electric mirror: ^^ the first lens with convex surface on the side of the microelectromechanical mirror and a second lens with a positive refractive power crescent H side on the side of the microelectromechanical mirror The first lens has a first optical surface and a second optical surface, and the first optical surface and the second optical surface are formed by at least one optical surface being aspherical in the main scanning direction. Converting the microelectromechanical mirror reflection minus the time-scanning scanning filament into a scanning light spot whose distance is linear with time; wherein the second lens has a second optical surface and a fourth optical surface The third silk surface touches the fourth optical surface, and at least one optical surface is aspherical in the main scanning direction, and the scanning light of the first lens is corrected and condensed on the target; Sliced beta lens reflects the scanning light of the microelectromechanical mirror Imaging on the target. 2. The two-piece calendar lens of the microelectromechanical laser scanning device according to claim 1, wherein the following conditions are further satisfied in the main scanning direction: 0.1 < ^, + ^4 + ^ < 〇 8 ; (l) y 0.2 <A-<〇.8; f(2)Y where f(1}Y is the focal length of the first lens in the main scanning direction, f(2)Y is the second lens The focal length of the main scanning direction, d3 is θ = 0. The distance from the optical surface of the first lens target side to the optical surface of the second lens microelectromechanical mirror side, the mountain is θ = 〇. The thickness of the second lens, the mountain is θ = 0. The distance from the optical side of the second lens target side to the target 31 M348010. 3. The two-piece twist lens of the microelectromechanical laser scanning skirt as described in the claim 1 of the patent The following conditions are satisfied: In the main scanning direction, where -D (~2~1), 0.1 < fsr fd)y Λ ) < 0.6 2) less than 0.3 in the sub-scanning direction; <0.8 * And f(2)Y is the focal length of the first lens and the second lens in the main scanning direction, fsX is the composite focal length of the two-piece twisted lens in the sub-scanning direction, and the heart is a two-piece +-type twist mirror #在主The composite of the scanning direction, the curvature of the second optical surface of the second optical surface in the direction of the sub-scanning field, the radius of curvature of the i-th optical surface in the main scanning direction, ndl and 11⁄2 are the first lens and the second lens, respectively. Refractive index. Shenfei patent range! The two-piece twisted rotor piece of the microelectromechanical laser scanning device described in the item has a ratio of the maximum light-to-light minimum spot size of the towel: -Sn). φ msK(Sb.Sa) broom & silk drum (4) Any one of the light axis is in the length of the main =: sub-scanning direction, and the minimum spot on the photosensitive drum and the maximum of 5.2 are the two-chip type of microelectromechanical laser scanning according to the first item of the patent scope. Twisting brother, wherein the ratio i of the maximum spot on the target is equal to the ratio of the f spot to the U, respectively, and the object is small (H〇) - <0.10 <0.10; η ^^jrSa) TMη ( ~Α〇) 32 M348010 ^ is the length of the light spot of the MEMS light on the reflective surface of the MEMS mirror in the direction of the main correction direction, & and any spot formed by the sweeping light on the μ-photosensitive drum The scanning direction and the length of the sub-sweeping direction, Tlmax is the ratio of the spot of the sweeping cat light on the reflecting surface of the microelectromechanical mirror, and the maximum spot on the object, T]min is the microelectromechanical reflection The ratio of the spot of the sweeping cat's light on the mirror's reflective surface to the minimum spot on the target. 3333
TW97213978U 2008-08-05 2008-08-05 Two optical elements fθ lens of MEMS laser scanning unit 6 TWM348010U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW97213978U TWM348010U (en) 2008-08-05 2008-08-05 Two optical elements fθ lens of MEMS laser scanning unit 6
JP2009001550U JP3150871U (en) 2008-08-05 2009-03-17 Two-piece fθ lens for microelectromechanical system laser beam scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97213978U TWM348010U (en) 2008-08-05 2008-08-05 Two optical elements fθ lens of MEMS laser scanning unit 6

Publications (1)

Publication Number Publication Date
TWM348010U true TWM348010U (en) 2009-01-01

Family

ID=44370910

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97213978U TWM348010U (en) 2008-08-05 2008-08-05 Two optical elements fθ lens of MEMS laser scanning unit 6

Country Status (1)

Country Link
TW (1) TWM348010U (en)

Similar Documents

Publication Publication Date Title
JP5094318B2 (en) Optical scanning device and image forming apparatus using the same
TW201007210A (en) Two optical elements fθ lens of MEMS laser scanning unit 4
JP5950884B2 (en) Optical scanning method and optical scanning device
TW201007208A (en) Two optical elements fθ lens of MEMS laser scanning unit 3
TWI377433B (en) Two f-θ lens used for micro-electro mechanical system(mems) laser scanning unit
TWI363698B (en) Two optical elements fθ lens of short focal distance for laser scanning unit
TW201015113A (en) Two optical elements fθ lens of MEMS laser scanning unit 9
TWM348010U (en) Two optical elements fθ lens of MEMS laser scanning unit 6
TW201007209A (en) Two optical elements fθ lens of MEMS laser scanning unit 7
TWI343329B (en) Two optical elements fθ lens of mems laser scanning unit 6
TW200530619A (en) Optical scanner and image forming apparatus
JP2000267030A (en) Optical scanning device
TWI343327B (en) Two optical elements fθlens of mems laser scanning unit 5
TWM348012U (en) Two optical elements fθ lens of MEMS laser scanning unit 7
TW201100863A (en) Two optical elements f θ lens of short focal distance for laser scanning unit
TWI343328B (en) Two optical elements fθlens of mems laser scanning unit 2
TWM345250U (en) Single f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit
TWM346805U (en) Two optical elements f θ lens of MEMS laser scanning
TWM348011U (en) Two optical elements fθ lens of MEMS laser scanning unit 3
TWM357614U (en) Two optical elements f-θ lens of MEMS laser scanning
TW201013222A (en) Two optical elements fθ lens of MEMS laser scanning unit 8
TWM345249U (en) Two f-θ lens used for micro-electro mechanical system(MEMS) laser scanning unit
TWM357615U (en) Two optical elements f-θ lens of MEMS laser scanning
CN201293873Y (en) Two-slice type fTheta lens for micro-electromechanical laser scanning apparatus
CN201293870Y (en) Two-slice type fTheta lens for micro-electromechanical laser scanning apparatus