TWI809345B - 基板處理方法、半導體裝置之製造方法、基板處理裝置及程式 - Google Patents

基板處理方法、半導體裝置之製造方法、基板處理裝置及程式 Download PDF

Info

Publication number
TWI809345B
TWI809345B TW110100343A TW110100343A TWI809345B TW I809345 B TWI809345 B TW I809345B TW 110100343 A TW110100343 A TW 110100343A TW 110100343 A TW110100343 A TW 110100343A TW I809345 B TWI809345 B TW I809345B
Authority
TW
Taiwan
Prior art keywords
substrate
film
gas
mentioned
supplying
Prior art date
Application number
TW110100343A
Other languages
English (en)
Other versions
TW202137331A (zh
Inventor
鎌倉司
石橋清久
片岡良太
Original Assignee
日商國際電氣股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商國際電氣股份有限公司 filed Critical 日商國際電氣股份有限公司
Publication of TW202137331A publication Critical patent/TW202137331A/zh
Application granted granted Critical
Publication of TWI809345B publication Critical patent/TWI809345B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67178Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers vertical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Element Separation (AREA)

Abstract

本發明之課題在於使形成於基板上之氧化膜之膜質提升。

本發明之解決手段係具有藉由將非同時進行下述步驟之周期進行複數次,而於基板之表面上形成既定膜厚之氧化膜的步驟:(a)藉由對基板供給成膜氣體,形成氮化膜的步驟;與(b)藉由對基板供給氧化氣體,使氮化膜氧化而轉換為氧化膜的步驟;且將由(a)中形成之上述氮化膜與氮化膜之底材的界面起、至上述氮化膜表面為止的最大距離設為2nm以上且4nm以下。

Description

基板處理方法、半導體裝置之製造方法、基板處 理裝置及程式
本發明係關於半導體裝置之製造方法、基板處理裝置及程式。
作為半導體裝置之製造步驟的一步驟,有進行包括於基板上形成氮化膜、與藉由使此氮化膜氧化而轉化為氧化膜的氧化膜形成處理(例如參照專利文獻1)
[先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開2010-087167號公報
本發明之目的在於使形成於基板上之氧化膜之膜質提升。
根據本發明之一態樣,提供一種技術,係具有藉由將非同時進行下述步驟之周期進行複數次,而於基板之表面上形成既定膜厚之氧化膜的步驟:(a)藉由對上述基板供給成膜氣體,形成氮化膜的步驟;與 (b)藉由對上述基板供給氧化氣體,使上述氮化膜氧化而轉換為氧化膜的步驟; 將由(a)中形成之上述氮化膜與上述氮化膜之底材的界面起、至上述氮化膜表面為止的最大距離設為2nm以上且4nm以下。
根據本發明,可使形成於基板上之氧化膜之膜質提升。
<本發明之一態樣> 以下主要使用圖1~圖4說明本發明之一態樣。
(1) 基板處理裝置之構成 如圖1所示,處理爐202係具有作為溫度調整器(加熱部)之加熱器207。加熱器207為圓筒形狀,由保持板所支撐而垂直豎立。加熱器207亦具有作為藉由熱使氣體活性化(激發)之活性化機構(激發部)的機能。
於加熱器207內側,與加熱器207呈同心圓狀地配設反應管203。反應管203由例如石英(SiO2 )或碳化矽(SiC)等耐熱性材料所構成,形成為上端閉塞、下端開口的圓筒形狀。於反應管203之下方,與反應管203呈同心圓狀地配設岐管209。岐管209由例如不鏽鋼(SUS)等金屬材料所構成,形成為上端及下端開口的圓筒形狀。於岐管209之上端部,卡合於反應管203之下端部,構成為支撐反應管203。於岐管209與反應管203之間,設有作為密封構件的O型環220a。反應管203係與加熱器207同樣地垂直豎立。主要由反應管203與岐管209構成處理容器(反應容器)。於處理容器之筒中空部形成處理室201。處理室201構成為可收容作為基板之晶圓200。於此處理室201內對晶圓200進行處理。
於處理室201內,作為第1~第3供給部之噴嘴249a~249c係分別設置成貫通岐管209之側壁。將噴嘴249a~249c分別亦稱為第1~第3噴嘴。噴嘴249a~249c分別由石英或SiC等耐熱性材料所構成。於噴嘴249a~249c分別連接氣體供給管232a~232c。噴嘴249a~249c係分別不同之噴嘴,且噴嘴249a、249c分別與噴嘴249b鄰接設置。
於氣體供給管232a~232c,係由氣流之上游側起依序分別設置屬於流量控制器(流量控制部)之質量流量控制器(MFC)241a~241c及屬於開關閥之閥243a~243c。在氣體供給管232a之較閥243a更下游側,分別連接氣體供給管232d、232f。在氣體供給管232b之較閥243b更下游側,分別連接氣體供給管232e、232g。在氣體供給管232c之較閥243c更靠下游側,連接著氣體供給管232h。於氣體供給管232d~232h,由氣流之上游側起依序分別設置MFC 241d~241h及閥243d~243h。氣體供給管232a~232h係由例如SUS等金屬材料所構成。
如圖2所示般,噴嘴249a~249c係在反應管203之內壁與晶圓200之間於俯視時呈圓環狀之空間中,分別設置成由反應管203之內壁下部起沿著上部、朝晶圓200之配列方向上方立起。亦即,噴嘴249a~249c係在晶圓200所配列之晶圓配列區域之側向中、水平包圍晶圓配列區域之區域,沿著晶圓配列區域而分別設置。於俯視下,噴嘴249b係配置成與後述排氣口231a之間中夾著搬入至處理室201內之晶圓200之中心而於一直線上相對向。噴嘴249a、249c係配置成沿著反應管203內壁(晶圓200之外周部)、由兩側挾持著通過噴嘴249b與排氣口231a之中心的直線L。直線L亦通過噴嘴249b與晶圓200中心的直線。亦即,噴嘴249c亦可挾持著直線L而設於噴嘴249a之相反側。噴嘴249a、249c係以直線L作為對稱軸而配置成線對稱。於噴嘴249a~249c之側面,分別設置供給氣體的氣體供給孔250a~250c。氣體供給孔250a~250c分別於俯視下與排氣口231a呈相對向(相對面)而開口,可朝晶圓200供給氣體。氣體供給孔250a~250c係由反應管203之下部起涵括至上部而複數設置。
由氣體供給管232a,係將作為原料(原料氣體)之例如含有構成形成於晶圓200上之膜之主元素的矽(Si)的矽烷系氣體,經由MFC241a、閥243a、噴嘴249a供給至處理室201內。作為矽烷系氣體,可使用例如含有Si及鹵素的氣體、亦即鹵矽烷系氣體。鹵素包括氯(Cl)、氟(F)、溴(Br)、碘(I)等。作為鹵矽烷系氣體,可使用例如含有Si及Cl的氯矽烷系氣體。作為氯矽烷系氣體,可使用例如六氯二矽烷氣體(Si2 Cl6 ,簡稱:HCDS)氣體。HCDS氣體係於一分子中含有2個Si的氣體,於相同條件下,為較後述SiCl4 氣體更容易分解(容易吸附、反應性高)的氣體。為了方便,將具有此種性質之原料氣體亦為第2原料氣體。
由氣體供給管232b,係將作為氮化氣體(氮化劑)之例如含氮(N)氣體,經由MFC 241b、閥243b、噴嘴249b供給至處理室201內。作為含N氣體,可使用例如含有N及氫(H)之氮化氫系氣體。作為氮化氫系氣體,可使用例如氨(NH3 )氣。
由氣體供給管232c,係將作為氧化氣體(氧化劑)之例如含氧(O)氣體,經由MFC 241c、閥243c、噴嘴249c供給至處理室201內。作為含O氣體,可使用例如氧(O2 )氣。
由氣體供給管232d,係將作為原料(原料氣體)之例如含有構成形成於晶圓200上之膜之主元素的矽(Si)的矽烷系氣體,經由MFC 241d、閥243d、氣體供給管232a、噴嘴249a供給至處理室201內。作為矽烷系氣體,可使用例如含有Si及鹵素的氣體、亦即鹵矽烷系氣體。作為鹵矽烷系氣體,可使用例如含有Si及Cl的氯矽烷系氣體。作為氯矽烷系氣體,可使用例如四氯矽烷氣體(SiCl4 ,簡稱:STC)氣體。STC氣體係於一分子中含有1個Si的氣體,於相同條件下,為較上述HCDS氣體更不易分解(不易吸附、反應性低)的氣體。為了方便,將具有此種性質之原料氣體亦稱為第1原料氣體。
由氣體供給管232e,係例如將含H氣體經由MFC241e、閥243e、氣體供給管232b、噴嘴249b供給至處理室201內。含H氣體係其單獨時不具氧化作用,但藉由於特定條件下與含O氣體反應而生成原子狀氧(atomic oxygen、O)等氧化種,將具有使氧化處理效率提升的作用。作為含H氣體,可使用例如氫(H2 )氣。
由氣體供給管232f~232h,將作為惰性氣體之例如氮(N2 )氣,分別經由MFC 241f~241h、閥243f~243h、氣體供給管232a~232c、噴嘴249a~249c供給至處理室201內。N2 氣體係作用為沖洗氣體、載體氣體、稀釋氣體等。
主要由氣體供給管232a、MFC241a、閥243a構成原料氣體供給系統(第2原料氣體供給系統)。主要由氣體供給管232b、MFC 241b、閥243b構成含N氣體供給系統。主要由氣體供給管232c、MFC 241c、閥243c構成含O氣體供給系統。主要由氣體供給管232d、MFC 241d、閥243d構成原料氣體供給系統(第1原料氣體供給系統)。主要由氣體供給管232e、MFC 241e、閥243e構成含H氣體供給系統。主要由氣體供給管232f~232h、MFC 241f~241h、閥243f~243h構成惰性氣體供給系統。
尚且,將原料氣體(第1原料氣體、第2原料氣體)、含N氣體之各者或全部亦稱為成膜氣體,將原料氣體供給系統(第1原料氣體供給系統、第2原料氣體供給系統)、含N氣體供給系統之各者或全部亦稱為成膜氣體供給系統。又,含O氣體、含H氣體之各者或兩者亦稱為氧化氣體,含O氣體供給系統、含H氣體供給系統之各者或兩者亦稱為氧化氣體供給系統。
上述各種供給系統中,任一者或所有之供給系統亦可構成為使閥243a~243h或MFC 241a~241h等集積而成的集積型供給系統248。集積型供給系統248係對氣體供給管232a~232h分別連接,對氣體供給管232a~232h內之各種氣體的供給動作、亦即閥243a~243h之開關動作或MFC 241a~241h進行之流量調整動作等,係構成為由後述控制器121所控制。集積型供給系統248係構成為一體型、或分割型之集積單元,可對氣體供給管232a~232h等依集積單元單位進行裝卸,構成為可依集積單元單位進行集積型供給系統248之維修、交換、增設等。
於反應管203之側壁下方,設有對處理室201內之環境進行排氣的排氣口231a。如圖2所示,排氣口231a係於俯視下設置於挾持著晶圓200而與噴嘴249a~249c(氣體供給孔250a~250c)相對向(相對面)的位置。排氣口231a係由反應管203之側壁下部起沿著上部、亦即沿著晶圓配列區域設置。於排氣口231a連接著排氣管231。排氣管231係經由檢測處理室201內壓力之作為壓力檢測器(壓力檢測部)的壓力感測器245及作為壓力調整器(壓力調整部)之APC(Auto Pressure Controller,自動壓力控制器)閥244,連接作為真空排氣裝置的真空泵246。APC閥244係構成為藉由依使真空泵246作動之狀態開關閥,而可進行處理室201內之真空排氣或真空排氣停止,進而依使真空泵246作動之狀態,根據藉由壓力感測器245所檢測出之壓力資訊進行閥開度調節,而可調整處理室201內之壓力。主要由排氣管231、APC閥244、壓力感測器245構成排氣系統。真空泵246亦可認為包含於排氣系統中。
於岐管209下方,設有可將岐管209下端開口氣密地閉塞之作為爐口蓋體的密封蓋219。密封蓋219由例如SUS等金屬材料所構成,並形成為圓盤狀。於密封蓋219上面,設有與岐管209下端抵接之作為密封構件的O型環220b。於密封蓋219下方,設置使後述晶舟217旋轉的旋轉機構267。旋轉機構267之旋轉軸255係貫通密封蓋219而連接至晶舟217。旋轉機構267係構成為藉由使晶舟217旋轉而使晶圓200旋轉。密封蓋219係構成為藉由設置於反應管203外部之作為升降機構的晶舟升降器115而於垂直方向升降。晶舟升降器115係構成為藉由使密封蓋219升降,而將晶圓200於處理室201內外進行搬入及搬出(搬送)的搬送裝置(搬送機構)。於歧管209下方,設置在使密封蓋219下降並將晶舟217由處理室201內搬出的狀態下,可將歧管209之下端開口氣密地閉塞之作為爐口蓋體的擋門219s。擋門219s由例如SUS等金屬材料所構成,並形成為圓盤狀。於擋門219s上面,設有與岐管209下端抵接之作為密封構件的O型環220c。擋門219s之開關動作(升降動作或旋動動作等)係由擋門開關機構115s所控制。
作為基板支撐具之晶舟217係構成為使複數片、例如25~200片晶圓200以水平姿勢、且以彼此的中心對齊之狀態,於垂直方向上整齊排列而多段地支撐,亦即,隔著間隔而配列。晶舟217係由例如石英或SiC等耐熱性材料所構成。於晶舟217之下部係使例如以石英或SiC等耐熱性材料所構成之隔熱板218多段地支撐著。
於反應管203內,設置有作為溫度檢測器之溫度感測器263。根據藉由溫度感測器263檢測出之溫度資訊而調整對加熱器207之通電狀況,使處理室201內之溫度成為所需之溫度分布。溫度感測器263係沿著反應管203的內壁設置。
如圖3所示般,屬於控制部(控制手段)之控制器121係構成為具備CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶裝置121c、I/O埠121d的電腦。RAM 121b、記憶裝置121c、I/O埠121d係構成為經由內部匯流排121e而可與CPU 121a進行資料交換。控制器121係連接有例如構成為觸控面板等之輸入輸出裝置122。
記憶裝置121c係由例如快閃記憶體、HDD(Hard Disk Drive)等所構成。於記憶裝置121c內可讀取地儲存有控制基板處理裝置之動作的控制程式,或記載有後述基板處理之手續或條件等的製程配方(recipe)等。製程配方係以將後述基板處理中各手續藉控制器121執行,而可獲得既定之結果之方式組合者,作為程式而執行。以下,作為製程配方或控制程式等的總稱,亦簡稱為程式。又,有時亦將製程配方簡稱為配方。本說明書中於使用程式一詞的情況,係指僅含配方單體的情況、僅含控制程式單體的情況、或含有此二者之情況。RAM 121b係構成為使藉由CPU 121a讀出之程式或數據等暫時地保存之記憶區域(工作區域)。
I/O埠121d係連接於上述MFC 241a~241h、閥243a~243h、壓力感測器245、APC閥244、真空泵246、溫度感測器263、加熱器207、旋轉機構267、晶舟升降器115、擋門開關機構115s等。
CPU 121a係構成為自記憶裝置121c讀取控制程式並執行,且配合自輸入輸出裝置122之操作指令之輸入等由記憶裝置121c讀取配方。CPU 121a係構成為依照讀取之配方的內容,控制利用MFC 241a~241h之各種氣體之流量調整動作、閥243a~243h的開關動作、APC閥244之開關動作及基於壓力感測器245而利用APC閥244進行之壓力調整動作、真空泵246的啟動及停止、基於溫度感測器263之加熱器207的溫度調整動作、由旋轉機構267進行之晶舟217旋轉及旋轉速度調節動作、利用晶舟升降機115之晶舟217的升降動作、利用擋門開關機構115s之擋門219s的開關動作等。
控制器121係可藉由將由外部記憶裝置123所儲存之上述程式安裝到電腦中而構成。外部記憶裝置123係包含例如HDD等磁碟、CD等光碟、MO等磁光碟、USB記憶體等半導體記憶體等。記憶裝置121c或外部記憶裝置123係構成為可被電腦讀取之記錄媒體。以下,作為此等之總稱,簡稱為記錄媒體。本說明書中於使用記錄媒體一詞的情況,係指僅含記憶裝置121c單體的情況、僅含外部記憶裝置123單體的情況、或含有此二者之情況。尚且,對電腦之程式提供,亦可不使用外部記憶裝置123,而使用網路或專用線路等通訊手段進行。
(2) 基板處理步驟 作為使用上述基板處理裝置、半導體裝置的製造步驟之一步驟,針對於作為基板之晶圓200上形成既定膜厚之氧化膜的處理時序例進行說明。主要使用圖4(a)~圖4(d)、圖5進行說明。以下的說明中,構成基板處理裝置之各部的動作係藉由控制器121所控制。
本態樣之處理時序中,係藉由將下述步驟非同時進行之周期進行複數次(n2 次,n2 為2以上之整數),而於晶圓200之表面上形成既定膜厚之SiO膜; 對晶圓200供給作為成膜氣體的屬於原料氣體之HCDS氣體、屬於氮化氣體之NH3 氣體,而形成氮化矽膜(SiN膜)作為氮化膜的步驟(氮化膜形成);與 藉由對晶圓200供給作為氧化氣體的O2 氣體、H2 氣體,使SiN膜氧化而轉換為作為氧化膜之氧化矽膜(SiO膜)的步驟(氧化膜形成)。
尚且,本態樣之處理序時中,係將包含下述步驟的組合(set)既定次數(n1 次,n1 為1以上之整數); 於氮化膜形成中,對晶圓200供給HCDS氣體的步驟;與對晶圓200供給NH3 氣體的步驟。
又,本態樣之處理時序中,係 於氧化膜形成中,對晶圓200同時供給O2 氣體與H2 氣體。
又,本態樣之處理時序中, 將氮化膜形成中形成之SiN膜與此SiN膜之底材的界面起、至SiN膜表面為止的最大距離X設為2nm以上且4nm以下。
於此,上述最大距離X並不侷限於相當於在平坦底材上形成之SiN膜之厚度T的尺寸,亦有大於此厚度T的情形。之所以如此,係因為於成為SiN膜底材之晶圓200的表面,事先形成溝或柱等凹凸構造,故如圖5所示般,有設置著非平坦部(第1角部)的情況。此時,形成於此底材上的SiN膜,成為具有以第1角部為起因而形成之非平坦部(第2角部)。在底材具有第1角部的情形,上述之最大距離X成為相當於自第1角部至第2角部之距離(圖5中由X表示)的尺寸。亦即,於具有角部之底材上形成了SiN膜時之上述最大距離X,係大於在不具有角部之平坦底材上所形成之SiN膜的厚度(圖5中由T表示),例如成為厚度T之1.4倍左右之尺寸的情形。
本說明書中,為了方便,將上述處理時序表示如以下。以下變形例等之說明中亦使用相同表記。
[(HCDS→NH3 )n1 →O2 +H2 ]n2 ⇒SiO
本說明書中於使用「晶圓」一詞的情況,係有意指晶圓本身的情況、或意指晶圓與其表面所形成之既定之層或膜等之積層體的情況。本說明書中於使用「晶圓表面」一詞的情況,係有意指晶圓本身之表面的情況、或指晶圓上所形成之既定之層等之表面的情況。本說明書中於記載了「於晶圓上形成既定之層」的情況,係代表於晶圓本身之表面上直接形成既定之層的情況、或代表對晶圓上所形成之層等之上形成既定之層的情況。本說明書中使用「基板」一詞的情況,亦與使用「晶圓」一詞的情況具有相同意義。
(晶圓充填、晶舟裝載) 將複數片之晶圓200裝填(晶圓充填)於晶舟217時,藉由擋門開關機構115s移動擋門219s,使岐管209之下端開口開放(擋門開啟)。其後,如圖1所示般,支持著複數片之晶圓200的晶舟217,係藉由晶舟升降機115被上舉並搬入至處理室201內(晶舟裝載)。於此狀態下,密封蓋219係經由O型環220b使岐管209之下端成為密封之狀態。
(壓力調整及溫度調整) 以使處理室201內、亦即晶圓200存在之空間成為所需壓力(真空度)之方式,藉由真空泵246進行真空排氣(減壓排氣)。此時,處理室201內之壓力係藉由壓力感測器245所測定,根據所測定之壓力資訊回饋控制APC閥244。又,以使處理室201內之晶圓200成為所需處理溫度之方式,藉由加熱器207加熱。此時,依處理室201內成為所需溫度分佈之方式,根據溫度感測器263所檢測出之溫度資訊,回饋控制對加熱器207的通電程度。又,藉由旋轉機構267開始晶圓200之旋轉。處理室201內之排氣、晶圓200之加熱及旋轉之任一者,係至少在對晶圓200之處理結束前之期間持續進行。
(氮化膜形成) 其後,依序實行以下步驟1、2。
[步驟1] 於步驟1,對處理室201內之晶圓200供給HCDS氣體。
具體而言,打開閥243a,使HCDS氣體流通至氣體供給管232a內。HCDS氣體係藉由MFC 241a進行流量調整,經由噴嘴249a供給至處理室201內,並由排氣口231a排氣。此時,對晶圓200供給HCDS氣體(HCDS氣體供給)。此時,亦可打開閥243f~243h,分別經由噴嘴249a~249c對處理室201內供給N2 氣體。
作為本步驟之處理條件,可例示: HCDS氣體供給流量:0.10~2slm、較佳0.1~1slm N2 氣體供給流量(每氣體供給管):0~10slm 各氣體供給時間:1~120秒、較佳1~60秒 處理溫度:400~800℃、較佳600~700℃ 處理壓力:1~2666Pa、較佳67~1333Pa。
又,本說明書中之「1~2666Pa」般之數值範圍的表記,意指下限值及上限值涵括於其範圍內。因此,例如「1~2666Pa」意指「1Pa以上且2666Pa以下」。其他數值範圍亦相同。
藉由於上述處理條件下對晶圓200供給HCDS氣體,可於作為底材之晶圓200之最表面上形成含有Cl之含Si層。含有Cl之含Si層係對於晶圓200之最表面,藉由HCDS之物理吸附或化學吸附、HCDS之一部分經分解之物質(以下稱為Six Cly )之化學吸附、因HCDS熱分解所造成之Si堆積等所形成。含有Cl之含Si層可為HCDS或Six Cly 之吸附層(物理吸附層或化學吸附層),亦可為含有Cl之Si堆積層。本說明書中,亦將含有Cl之含Si層簡為含Si層。
形成了含Si層後,關閉閥243a,停止對處理室201內之HCDS氣體供給。然後,對處理室201內進行真空排氣,將殘留於處理室201內之氣體等由處理室201內排除(沖洗)。此時,打開閥243f~243h,對處理室201內供給N2 氣體。N2 氣體作用為沖洗氣體。
作為原料氣體,除了HCDS氣體之外,可使用單氯矽烷(SiH3 Cl,簡稱:MCS)氣體、二氯矽烷(SiH2 Cl2 ,簡稱:DCS)氣體、三氯矽烷(SiHCl3 ,簡稱:TCS)氣體,STC氣體、八氯三矽烷(Si3 Cl8 ,簡稱:OCTS)氣體等之氯矽烷系氣體,或四氟矽烷(SiF4 )氣體等之氟矽烷系氣體,或四溴矽烷(SiBr4 )氣體等之溴矽烷系氣體,四碘矽烷(SiI4 )氣體等之碘矽烷系氣體。
作為惰性氣體,除了N2 氣體之外,可使用Ar氣體、He氣體、Ne氣體、Xe氣體等稀有氣體。此點於後述各步驟中亦相同。
[步驟2] 結束步驟1後,對處理室201內之晶圓200、亦即形成於晶圓200上之含Si層供給NH3 氣體。
具體而言,打開閥243b,使NH3 氣體流通至氣體供給管232b內。NH3 氣體係藉由MFC 241b進行流量調整,經由噴嘴249b供給至處理室201內,並由排氣口231a排氣。此時,對晶圓200供給NH3 氣體(NH3 氣體供給)。此時,亦可打開閥243f~243h,分別經由噴嘴249a~249c對處理室201內供給N2 氣體。
作為本步驟之處理條件,可例示: NH3 氣體供給流量:0.1~10slm NH3 氣體供給時間:1~120秒、較佳1~60秒 處理壓力:1~4000Pa、較佳1~3000Pa。 其他處理條件設為與步驟1之處理條件相同之處理條件。
藉由於上述處理條件下對晶圓200供給NH3 氣體,可使形成於晶圓200上之含Si層之至少一部分氮化(改質)。其結果,於作為底材之晶圓200之最表面上,形成氮化矽層(SiN層)作為含Si及N之層。於形成SiN層時,含Si層所含之Cl等雜質係於藉由NH3 氣體對含Si層進行改質反應的過程中,構成至少含有Cl之氣體狀物質,由處理室201內被排出。藉此,相較於在步驟1所形成之含Si層,SiN層成為Cl等雜質較少的層。
形成了SiN層後,關閉閥243b,停止對處理室201內之NH3 氣體供給。然後,藉由與步驟1之沖洗相同的處理手續,將殘留於處理室201內之氣體等由處理室201內排除(沖洗)。
作為氮化氣體,除了NH3 氣體之外,可使用例如二氮烯(N2 H2 )氣體、聯胺(N2 H4 )氣體、N3 H8 氣體等氮化氫系氣體。
[組合之既定次數實施] 藉由將使上述步驟1、2非同時、亦即未同期進行的組合進行既定次數(n1 次,n1 為1以上之整數),如圖4(a)所示,可以晶圓200之表面作為底材,形成後述既定厚度之SiN膜。上述周期較佳係重複複數次。亦即,較佳係使每1周期所形成之SiN層之厚度較所需膜厚薄,重複上述周期複數次,直到藉積層SiN層所形成之SiN膜之厚度成為所需厚度為止。
尚且,於形成氮化膜時,依上述最大距離X成為2nm以上且4nm以下之範圍內之既定尺寸的方式,設定組合之實施次數(組合數)n1
若上述最大距離X未滿2nm,則使非同時進行氮化膜形成與氧化膜形成之後述周期的重複次數(周期數)n2 增加,而有基板處理之生產性降低的情形。藉由將上述最大距離X設為2nm以上之尺寸,可使非同時進行氮化膜形成與氧化膜形成之後述周期數n2 適當減少,可提升基板處理之生產性。
又,若上述最大距離X超過4nm,則於後述氧化膜形成中使SiN膜轉換為SiO膜時,有轉換後之膜中殘留N的情形。尤其在晶圓200表面具有第1角部的情形,於SiN膜中之第1角部附近容易發生N殘留。藉由將上述最大距離X設為4nm以下之尺寸, 可於在後述氧化膜形成時將SiN膜轉換為SiO膜時,抑制N殘留於轉換後之膜中的情形。
於氮化膜形成時,藉由將上述組合數n1 設為例如10~30次之範圍內,可使最大距離X成為上述範圍內之既定尺寸。
(氧化膜形成) 於形成既定厚度之SiN膜後,對處理室201內之晶圓200、亦即形成於晶圓200上之SiN膜供給O2 氣體及H2 氣體。
具體而言,打開閥243c、243e,使O2 氣體、H2 氣體分別流通至氣體供給管232c、232e內。於氣體供給管232c、232e內流通之O2 氣體、H2 氣體係分別藉由MFC 241c、241e進行流量調整,經由噴嘴249c、249b供給至處理室201內。O2 氣體與H2 氣體係於處理室201內混合並反應,其後,由排氣口231a排氣。此時,對晶圓200,供給含有因O2 氣體與H2 氣體之反應所生成之原子狀氧等之氧的不含水(H2 O)的氧化種(O2 氣體+H2 氣體供給)。此時,亦可打開閥243f~243h,分別經由噴嘴249a~249c對處理室201內供給N2 氣體。
作為本步驟之處理條件,可例示: O2 氣體供給流量:0.1~10slm H2 氣體供給流量:0.1~10slm 各氣體供給時間:1~120秒、較佳1~60秒 處理壓力:1~2000Pa、較佳1~1000Pa。 其他處理條件設為與步驟1之處理條件相同之處理條件。
藉由於上述條件下對晶圓200供給O2 氣體、H2 氣體,可利用原子狀氧等之氧化種所具有的強氧化力,使形成於晶圓200上之SiN膜氧化,而使O攝入至膜中。又,可使SiN膜中所含之N由膜中脫離。藉此,如圖4(b)所示般,可使氮化膜形成中於晶圓200上所形成的SiN膜轉換為SiO膜。如上述,於氮化膜形成中,將上述最大距離X設為2~4nm範圍內的尺寸。藉此,可使上述SiN膜之氧化、及N由SiN膜中之脫離等反應,遍及SiN膜之厚度方向全體進行。例如,可使形成於晶圓200上之SiO膜與此SiO膜之底材的界面確實氧化,可抑制此界面附近之N殘留。其結果,可使藉由將SiN膜氧化所得之SiO膜成為幾乎或完全不含N、高純度且緻密的SiO膜。
在SiN膜對SiO膜的轉換結束後,關閉閥243c、243e,停止對處理室201內之O2 氣體、H2 氣體供給。然後,藉由與步驟1之沖洗相同的處理手續,將殘留於處理室201內之氣體等由處理室201內排除(沖洗)。
作為氧化氣體,除了O2 氣體+H2 氣體之外,可使用氧(O2 )氣、氧電漿(O2 )、臭氧(O3 )氣體、O3 氣體+H2 氣體、水蒸氣(H2 O)、過氧化氫(H2 O2 )氣體等。
[周期之重複] 其後,藉由再次依序進行上述氮化膜形成、氧化膜形成,如圖4(c)所示,以形成於晶圓200上之SiO膜為底材而形成SiN膜,如圖4(d)所示,可將以SiO膜為底材所形成之SiN膜轉換為SiO膜。如此,藉由重複使氮化膜形成、氧化膜形成非同時、亦即非同期且交替進行的周期複數次(n2 次,n2 為2以上之整數),可於晶圓200上形成所需厚度之SiO膜。此膜成為幾乎或完全不含N、高純度且緻密的SiO膜,並成為絕緣特性等之特性優越的膜。又,藉由重複非同時進行氮化膜形成、氧化膜形成之周期複數次而形成的此SiO膜,係相較於藉由依序各進行1次氮化膜形成、氧化膜形成而形成的相同厚度之SiO膜,其成為膜應力較小的膜。
(後沖洗及大氣壓恢復) 完成於晶圓200上之SiO膜形成後,由噴嘴249a~249c之各者將作為沖洗氣體之N2 氣體供給至處理室201內,並由排氣口231a排氣。藉此,沖洗處理室201內,將殘留於處理室201內之氣體或反應副產物由處理室201去除(後沖洗)。其後,將處理室201內之環境置換為惰性氣體(惰性氣體置換),處理室201內之壓力恢復為常壓(大氣壓恢復)。
(晶舟卸載、晶圓卸除) 其後,藉由晶舟升降機115使密封蓋219下降,使岐管209之下端開口。然後,將處理完畢之晶圓200依被晶舟217支持之狀態從岐管209之下端搬出至反應管203的外部(晶舟卸載)。晶舟卸載後,使擋門219s移動,將岐管209之下端開口經由O型環220c藉由擋門219s密封(擋門關閉)。處理完畢之晶圓200被搬出至反應管203之外部後,由晶舟217取出(晶圓卸除)。
(3)本態樣之效果 根據本態樣,可獲得以下所示之一種或複數種效果。
(a)於氮化膜形成中,藉由將上述最大距離X設為2~4nm之範圍內的尺寸,可使藉由重複非同時進行氮化膜形成、氧化膜形成之周期複數次而於晶圓200上形成的SiO膜,作成為幾乎或完全不含N、高純度且絕緣特性高的SiO膜。
(b)於氮化膜形成中,藉由使用氧化力較大之O2 氣體+H2 氣體作為氧化氣體,可使藉由重複非同時進行氮化膜形成、氧化膜形成之周期複數次而於晶圓200上形成的SiO膜,作成為幾乎或完全不含N、高純度且絕緣特性高的SiO膜。又,於氧化膜形成中,可有效率地進行SiN膜對SiO膜的轉換,可提高基板處理之生產性。
(c)於氮化膜形成中,藉由將上述最大距離X設為2~4nm範圍內的尺寸,可於氧化膜形成中,有效率地進行SiN膜對SiO膜的轉換,可提高基板處理之生產性。
(d) 藉由重複非同時進行氮化膜形成、氧化膜形成之周期複數次,可使形成於晶圓200上之SiO膜成為內部應力較少的膜。藉此,可避免形成於晶圓200表面之柱等凹凸構造的變形等。
(e)上述效果係在使用HCDS氣體以外之原料氣體的情況、或使用NH3 氣體以外之氮化氣體的情況、或使用O2 氣體+H2 氣體以外之氧化氣體的情況、使用N2 氣體以外之惰性氣體的情況,亦可同樣獲得。
(4)變形例 本態樣之基板處理時序可如以下所示變形例般進行變更。此等變形例可任意組合。在未特別說明之前提下,各變形例之各步驟中的處理手續、處理條件可設為與上述基板處理時序之各步驟中的處理手續、處理條件相同。
(變形例1) 亦可使第1周期中之氮化膜形成的組合數n1 、與第2周期以後之氮化膜形成的組合數n1 相異,使氮化膜形成中所形成之SiN膜之厚度於第1周期、及第2周期以後為不同。
例如,亦可使第1周期中之氮化膜形成的組合數n1 較第2周期以後之氮化膜形成的組合數n1 減少,使第1周期中於氮化膜形成中所形成之SiN膜之厚度較第2周期以後於氮化膜形成中所形成之SiN膜之厚度更薄。
例如,亦可將第1周期中於氮化膜形成中所形成之SiN膜之厚度設為1~2nm範圍內之厚度,將第2周期以後於氮化膜形成中所形成之SiN膜之厚度設為3~4nm範圍內之厚度。
根據本變形例,可獲得與藉由上述態樣所得效果相同的效果。
又,根據本變形例,藉由將第1周期中於氮化膜形成中所形成之SiN膜之厚度設為較第2周期以後於氮化膜形成中所形成之SiN膜之厚度薄,於第1周期中進行氧化膜形成時,可促進SiN膜之氧化。藉此,可更加抑制藉由進行氧化膜形成所得之SiO膜、與此SiO膜之底材的界面附近的N殘留,並可促進此界面的清淨化,例如可減低界面之缺陷、減低漏電路徑等界面最佳化。其結果,可減低漏電流。又,由於第1周期中於氮化膜形成中所形成之成為氧化對象的SiN膜較薄,故可適當降低第1周期中之氧化膜形成時的氧化力,藉此,可抑制屬於底材之晶圓200的表面氧化。
又,根據本變形例,藉由將第2周期以後(例如第2周期)於氮化膜形成中所形成之SiN膜,設為較第1周期中於氮化膜形成中所形成之SiN膜之厚度更厚,可於第2周期以後減少周期數n2 。又,可於第2周期以後提高使SiN膜氧化時之氧化力。藉由此等,可縮短氧化時間,可提升生產性。
(變形例2) 亦可使於氧化膜形成中使SiN膜氧化的條件,設為於第1周期、與第2周期以後為相異。具體而言,亦可使第1周期中於氧化膜形成時使SiN膜氧化時之晶圓200溫度(處理溫度)、晶圓200存在之空間之壓力(處理壓力)、氧化氣體之供給時間、及氧化氣體供給流量中之至少任一者,分別不同於第2周期以後於氧化膜形成時使SiN膜氧化時之其條件或其等條件。
例如,亦可將第1周期中於氧化膜形成時使SiN膜氧化的條件,設為其氧化力較第2周期以後於氧化膜形成時使SiN膜氧化的條件小。
具體而言,亦可將第1周期中於氧化膜形成時使SiN膜氧化時的晶圓200溫度,設為較第2周期以後於氧化膜形成時使SiN膜氧化時之晶圓200溫度低。例如,將第1周期中於氧化膜形成時使SiN膜氧化時之晶圓200溫度設為500~600℃範圍內的溫度,將第2周期以後於氧化膜形成時使SiN膜氧化時之晶圓200溫度設為650~750℃範圍內的溫度。
又,亦可將第1周期中於氧化膜形成時使SiN膜氧化時的晶圓200所存在之空間之壓力,設為較第2周期以後於氧化膜形成時使SiN膜氧化時之晶圓200所存在之空間之壓力高。例如,將第1周期中於氧化膜形成時使SiN膜氧化時之晶圓200所存在之空間之壓力設為665~1333Pa範圍內的壓力,將第2周期以後於氧化膜形成時使SiN膜氧化時之晶圓200所存在之空間之壓力設為1~133Pa範圍內的壓力。
又,亦可將第1周期中於氧化膜形成時使SiN膜氧化時的氧化氣體供給時間,設為較第2周期以後於氧化膜形成時使SiN膜氧化時之氧化氣體供給時間短。例如,將第1周期中於氧化膜形成時使SiN膜氧化時之氧化氣體供給時間設為1~30秒範圍內的時間,將第2周期以後於氧化膜形成時使SiN膜氧化時之氧化氣體供給時間設為30~60秒範圍內的時間。
又,亦可將第1周期中於氧化膜形成時使SiN膜氧化時的氧化氣體供給流量,設為較第2周期以後於氧化膜形成時使SiN膜氧化時之氧化氣體供給流量小。例如,亦可將第1周期中於氧化膜形成時使SiN膜氧化時之O2 氣體、H2 氣體之供給流量分別設為500sccm,將第2周期以後於氧化膜形成時使SiN膜氧化時之O2 氣體、H2氣體之供給流量分別設為2000sccm。
根據本變形例,可獲得與藉由上述態樣所得效果相同的效果。
又,根據本變形例,可於第1周期中使氧化力適當降低,抑制屬於底材之晶圓200的表面氧化。又,可於第2周期以後使氧化力適當增加、縮短氧化時間、提升基板處理之生產性。又,於第1周期所形成之SiO膜係具有於第2周期以後抑制氧對晶圓200之擴散的氧化阻隔層的作用。因此,即使在第2周期以後提高了氧化力的情況,仍可抑制屬於底材之晶圓200的表面氧化。
(變形例3) 亦可將非同時進行氮化膜形成、氧化膜形成之周期進行3次以上。
例如,在進行周期3次的情況,亦可如變形例1般,使於氮化膜形成中所形成之SiN膜之厚度,在第1周期、第2周期以後(例如第2周期及/或第3周期)中為相異。
例如,亦可將第1周期中於氮化膜形成中所形成之SiN膜之厚度,設為較第2周期以後(例如第2周期及/或第3周期)於氮化膜形成中所形成之SiN膜之厚度薄。例如,將第1周期中於氮化膜形成中所形成之SiN膜之厚度設為1~2nm,將第2周期中於氮化膜形成中所形成之SiN膜之厚度設為3~4nm,將第3周期中於氮化膜形成中所形成之SiN膜之厚度設為3~4nm。
例如,在進行周期3次的情況,亦可如變形例2般,使於氧化膜形成時使SiN膜氧化的條件,在第1周期、第2周期以後(例如第2周期及/或第3周期)中為相異。
例如,亦可將第1周期中於氧化膜形成時使SiN膜氧化的條件,設為使氧化力較第2周期以後(例如第2周期及/或第3周期)於氧化膜形成時使SiN膜氧化的條件小。
具體而言,例如亦可將第1周期中於氧化膜形成時使SiN膜氧化時的晶圓200溫度,設為較第2周期以後(例如第2周期及/或第3周期)於氧化膜形成時使SiN膜氧化時之晶圓200溫度低。例如,將第1周期中於氧化膜形成時使SiN膜氧化時之晶圓200溫度設為500~600℃範圍內的溫度,將第2周期以後(例如第2周期及/或第3周期)於氧化膜形成時使SiN膜氧化時之晶圓200溫度設為650~750℃範圍內的溫度。
又,亦可將第1周期中於氧化膜形成時使SiN膜氧化時的晶圓200所存在之空間之壓力,設為較第2周期以後(例如第2周期及/或第3周期)於氧化膜形成時使SiN膜氧化時之晶圓200所存在之空間之壓力高。例如,將第1周期中於氧化膜形成時使SiN膜氧化時之晶圓200所存在之空間之壓力設為665~1333Pa範圍內的壓力,將第2周期以後(例如第2周期及/或第3周期)於氧化膜形成時使SiN膜氧化時之晶圓200所存在之空間之壓力設為1~133Pa範圍內的壓力。
又,亦可將第1周期中於氧化膜形成時使SiN膜氧化時的氧化氣體供給時間,設為較第2周期以後(例如第2周期及/或第3周期)於氧化膜形成時使SiN膜氧化時之氧化氣體供給時間短。例如,將第1周期中於氧化膜形成時使SiN膜氧化時之氧化氣體供給時間設為1~30秒範圍內的時間,將第2周期以後(例如第2周期及/或第3周期)於氧化膜形成時使SiN膜氧化時之氧化氣體供給時間設為30~60秒範圍內的時間。
又,亦可將第1周期中於氧化膜形成時使SiN膜氧化時的氧化氣體供給流量,設為較第2周期以後(例如第2周期及/或第3周期)於氧化膜形成時使SiN膜氧化時之氧化氣體供給流量小。例如,亦可將第1周期中於氧化膜形成時使SiN膜氧化時之O2 氣體、H2 氣體之供給流量分別設為500sccm,將第2周期以後(例如第2周期及/或第3周期)於氧化膜形成時使SiN膜氧化時之O2 氣體、H2氣體之供給流量分別設為2000sccm。
根據本變形例,可獲得與藉由上述態樣或變形例1、2所得效果相同的效果。
(變形例4) 如以下所示處理時序般,亦可於氮化膜形成時,將包含下述步驟的組合進行既定次數(n1 次,n1 為1以上之整數):對晶圓200供給作為第1原料氣體之STC氣體的步驟;對晶圓200供給作為第2原料氣體之HCDS氣體的步驟;與對晶圓200供給作為氮化氣體之NH3 氣體的步驟。供給STC氣體之步驟及供給HCDS氣體之步驟的處理條件,可分別設為與上述態樣之步驟1之處理條件相同。又,藉由將STC氣體之供給時間設為HCDS氣體之供給時間以上、較佳係將STC氣體之供給時間設為較HCDS氣體之供給時間長,可更充分地獲得後述效果。供給NH3 氣體之步驟的處理條件,可設為與上述態樣之步驟2之處理條件相同。
[(STC→HCDS→NH3 )n1 →O2 + H2 ]n2 ⇒SiO
根據本變形例,可獲得與上述態樣相同的效果。
又,根據本變形例,可使形成於晶圓200上之SiN膜、亦即使此膜氧化而得之SiO膜的步階覆蓋特性提升。可認為此係由於1分子中含有1個Si的STC氣體係較1分子中具有2個Si之HCDS氣體,於同一條件下較不易分解(不易吸附、反應性低)所致。又,藉由使用2種之原料氣體,可使氮化膜形成時之周期速率(每1周期所形成之SiN層厚度),較使用1種原料氣體時更大,可提高基板處理之生產性。
<本發明之其他態樣> 以上具體說明了本發明態樣。然而,本發明並不限定於上述態樣,在不脫離其要旨之範圍內可進行各種變更。
例如,上述態樣中,係說明了將氮化膜形成及氧化膜形成於同一處理室201內(原地,in-situ)進行的例。然而,亦可將氮化膜形成及氧化膜形成於不同處理室內(異地,ex-situ)進行。若依原地進行一連串處理,則可使晶圓200不致於途中曝露於大氣,使晶圓200於置於真空下一貫地進行處理,可穩定進行基板處理。又,若將一部分處理依異地進行,則可將各別之處理室內溫度事先設定於例如各處理之處理溫度或接近其之溫度,可縮短溫度調整所需的時間、提高生產效率。
各處理所使用之配方,較佳係配合處理內容而個別準備,經由電信通路或外部記憶裝置123事先儲存於記憶裝置121c內。然後,較佳係於開始各處理時,CPU121a由儲存於記憶裝置121c內之複數配方中,配合處理內容適當選擇適合的配方。藉此,可藉由1台基板處理裝置而再現性佳地形成各種膜種類、組成比、膜質、膜厚的膜。又,可減低操作員的負擔、避免操作錯誤,並可迅速地開始各處理。
上述配方並不限定於新穎作成的情況,例如亦可藉由將已安裝於基板處理裝置之既存配方變更而準備。於變更配方的情況,可將變更後之配方經由電信通路或記錄有該配方之記錄媒體,安裝至基板處理裝置。又,亦可操作既存基板處理裝置所具備之輸出入裝置122,對基板處理裝置中已安裝之既存配方進行直接變更。
上述態樣中,係針對一次處理複數片基板之批次式基板處理裝置形成膜的例子進行了說明。本發明並不限定於上述態樣,例如亦可適合應用於使用一次處理1片或數片基板之單片式基板處理裝置而形成膜的情況。又,上述態樣中,針對使用具有熱壁型處理爐之基板處理裝置形成膜的例子進行了說明。本發明並不限定於上述態樣,亦適合應用於使用具有冷壁型處理爐之基板處理裝置形成膜的情況。
於使用此等基板處理裝置之情況,亦可依與上述態樣相同之處理手續、處理條件進行各處理,可獲得與上述態樣相同之效果。
上述態樣可適當組合使用。此時之處理手續、處理條件可設為例如與上述態樣之處理手續、處理條件相同。 [實施例]
作為樣本1~4,藉由上述態樣之處理時序,於具有角部之底材上形成既定膜厚之SiO膜。於任一樣本中,各步驟的處理條件係設為與上述態樣記載之處理條件範圍內的共通條件。由氮化膜形成中所形成之SiN膜與SiN膜之底材的界面起、至氮化膜表面為止的最大距離X,依樣本1~4之順序設為未滿2nm、2nm、4nm、超過4nm。
成膜處理結束後,調查形成於晶圓上之膜的組成,結果相對於在樣本4之膜中於角部之界面附近確認到N殘留,於樣本1~3之膜中並未確認到N殘留。又,確認到相對於樣本2~4之膜形成速率為實用性程度,樣本1之膜形成速率過低而非實用。亦即,可知藉由將最大距離X設為2~4nm範圍內之尺寸,可於使SiO膜之形成速率成為實用程度之下,同時抑制SiO膜中之N殘留。
115:晶舟升降器 115s:擋門開關機構 121:控制器 121a:CPU 121b:RAM 121c:記憶裝置 121d:I/O埠 121e:內部匯流排 122:輸出入裝置 123:外部記憶裝置 200:晶圓(基板) 201:處理室 202:處理爐 203:反應管 207:加熱器 209:岐管 217:晶舟 218:隔熱板 219:密封蓋 219s:擋門 220a,220b,220c:O型環 231:排氣管 231a:排氣口 232a,232b,232c,232d,232e,232f,232g,232h:氣體供給管 241a,241b,241c,241d,241e,241f,241g,241h:質量流量控制器(MFC) 243a,243b,243c,243d,243e,243f,243g,243h:閥 244:APC閥 245:壓力感測器 246:真空泵 248:集積型供給系統 249a,249b,249c:噴嘴 250a,250b,250c:氣體供給孔 255:旋轉軸 263:溫度感測器 267:旋轉機構 L:直線
圖1係本發明一態樣中適合使用之基板處理裝置之縱型處理爐的概略構成圖,以縱剖面圖顯示處理爐202部分的圖。 圖2係本發明一態樣中適合使用之基板處理裝置之縱型處理爐的概略構成圖,以圖1之A-A線剖面圖顯示處理爐202部分的圖。 圖3係本發明一態樣中適合使用之基板處理裝置之控制器121的概略構成圖,以方塊圖顯示控制器121之控制系統的圖。 圖4(a)為以晶圓200之表面作為底材形成氮化矽膜後之晶圓200表面的剖面部分放大圖;圖4(b)為以晶圓200之表面作為底材形成氮化矽膜、並將此氮化矽膜轉換為氧化矽膜後之晶圓200表面的剖面部分放大圖;圖4(c)為以形成於晶圓200上之氧化矽膜作為底材形成氮化矽膜後之晶圓200表面的剖面部分放大圖;圖4(d)為以氧化矽膜作為底材形成氮化矽膜、並將此氮化矽膜轉換為氧化矽膜後之晶圓200表面的剖面部分放大圖。 圖5係具備:具有第1角部之底材、與具有起因於第1角部而形成之第2角部的氮化矽膜;的積層構造體之表面的剖面部分放大圖。
200:晶圓(基板)

Claims (28)

  1. 一種基板處理方法,係具有藉由將非同時進行下述步驟之周期進行複數次,而於基板之表面上形成既定膜厚之氧化膜的步驟:(a)藉由對上述基板供給成膜氣體,形成氮化膜的步驟;與(b)藉由對上述基板供給氧化氣體,使上述氮化膜氧化而轉換為第1氧化膜的步驟;其中,將(a)中形成之上述氮化膜之厚度,設為於第1周期、與第2周期以後為相異。
  2. 如請求項1之基板處理方法,其中,於(a)中,進行包含下述步驟的組合既定次數:對上述基板供給作為上述成膜氣體之原料氣體的步驟;與對上述基板供給作為上述成膜氣體之氮化氣體的步驟;將第1周期之組合數設為與第2周期以後之組合數相異。
  3. 如請求項1之基板處理方法,其中,將第1周期中於(a)中所形成之上述氮化膜之厚度,設為較第2周期以後於(a)中所形成之上述氮化膜之厚度薄。
  4. 如請求項1之基板處理方法,其中,於(a)中,進行包含下述步驟的組合既定次數:對上述基板供給作為上述成膜氣體之原料氣體的步驟;與對上述基板供給作為上述成膜氣體之氮化氣體的步驟;將第1周期之組合數設為較第2周期以後之組合數少。
  5. 一種基板處理方法,係具有藉由將非同時進行下述步驟之周期進行複數次,而於基板之表面上形成既定膜厚之氧化膜的步驟:(a)藉由對上述基板供給成膜氣體,形成氮化膜的步驟;與 (b)藉由對上述基板供給氧化氣體,使上述氮化膜氧化而轉換為第1氧化膜的步驟;其中,將(b)中使上述氮化膜氧化的條件,設為於第1周期、與第2周期以後為相異。
  6. 如請求項5之基板處理方法,其中,使第1周期中於(b)時使上述氮化膜氧化時之上述基板之溫度、上述基板所存在之空間之壓力、上述氧化氣體之供給時間、及上述氧化氣體供給流量中之至少任一者,分別不同於第2周期以後於(b)時使上述氮化膜氧化時之該條件或該等條件。
  7. 如請求項5之基板處理方法,其中,將第1周期中於(b)時使上述氮化膜氧化的條件,設為氧化力較第2周期以後於(b)時使上述氮化膜氧化的條件小。
  8. 如請求項5之基板處理方法,其中,將第1周期中於(b)時使上述氮化膜氧化時之上述基板之溫度,設為較第2周期以後於(b)時使上述氮化膜氧化時之上述基板之溫度低。
  9. 如請求項5之基板處理方法,其中,將第1周期中於(b)時使上述氮化膜氧化時的上述基板所存在之空間之壓力,設為較第2周期以後於(b)時使上述氮化膜氧化時之上述基板所存在之空間之壓力高。
  10. 如請求項5之基板處理方法,其中,將第1周期中於(b)時使上述氮化膜氧化時的上述氧化氣體之供給時間,設為較第2周期以後於(b)時使上述氮化膜氧化時的上述氧化氣體之供給時間短。
  11. 如請求項5之基板處理方法,其中,將第1周期中於(b) 時使上述氮化膜氧化時的上述氧化氣體之供給流量,設為較第2周期以後於(b)時使上述氮化膜氧化時的上述氧化氣體之供給流量小。
  12. 如請求項1至11中任一項之基板處理方法,其中,於(a)中,進行包含下述步驟的組合既定次數:對上述基板供給作為上述成膜氣體之第1原料氣體的步驟;對上述基板供給作為上述成膜氣體之第2原料氣體的步驟;與對上述基板供給作為上述成膜氣體之氮化氣體的步驟。
  13. 一種基板處理方法,係具有藉由將非同時進行下述步驟之周期進行複數次,而於基板之表面上形成既定膜厚之氧化膜的步驟:(a)藉由對上述基板供給成膜氣體,形成氮化膜的步驟;與(b)藉由對上述基板供給氧化氣體,使上述氮化膜氧化而轉換為第1氧化膜的步驟;於(a)中,進行包含下述步驟的組合既定次數:作為對上述基板之上述成膜氣體,供應於同一條件下較第2原料氣體不易分解的第1原料氣體之步驟;作為對上述基板之上述成膜氣體,供應上述第2原料氣體之步驟;與作為對上述基板之上述成膜氣體,供應氮化氣體之步驟。
  14. 一種基板處理方法,係具有藉由將非同時進行下述步驟之周期進行複數次,而於基板之表面上形成既定膜厚之氧化膜的步驟:(a)藉由對上述基板供給成膜氣體,形成氮化膜的步驟;與(b)藉由對上述基板供給氧化氣體,使上述氮化膜氧化而轉換為第1氧化膜的步驟;於(a)中,進行包含下述步驟的組合既定次數:作為對上述基板之上述 成膜氣體,供應1分子中含有1個Si之第1原料氣體之步驟;作為對上述基板之上述成膜氣體,供應1分子中含有2個以上的Si之第2原料氣體之步驟;與作為對上述基板之上述成膜氣體,供應氮化氣體之步驟。
  15. 如請求項1之基板處理方法,其中,於同一處理室內進行(a)及(b)。
  16. 如請求項1之基板處理方法,其中,於不同處理室內進行(a)及(b)。
  17. 一種半導體裝置之製造方法,係具有藉由將非同時進行下述步驟之周期進行複數次,而於基板之表面上形成既定膜厚之氧化膜的步驟:(a)藉由對上述基板供給成膜氣體,形成氮化膜的步驟;與(b)藉由對上述基板供給氧化氣體,使上述氮化膜氧化而轉換為第1氧化膜的步驟;其中,將(a)中形成之上述氮化膜之厚度,設為於第1周期、與第2周期以後為相異。
  18. 一種半導體裝置之製造方法,係具有藉由將非同時進行下述步驟之周期進行複數次,而於基板之表面上形成既定膜厚之氧化膜的步驟:(a)藉由對上述基板供給成膜氣體,形成氮化膜的步驟;與(b)藉由對上述基板供給氧化氣體,使上述氮化膜氧化而轉換為第1氧化膜的步驟;其中,將(b)中使上述氮化膜氧化的條件,設為於第1周期、與第2周期以後 為相異。
  19. 一種半導體裝置之製造方法,係具有藉由將非同時進行下述步驟之周期進行複數次,而於基板之表面上形成既定膜厚之氧化膜的步驟:(a)藉由對上述基板供給成膜氣體,形成氮化膜的步驟;與(b)藉由對上述基板供給氧化氣體,使上述氮化膜氧化而轉換為第1氧化膜的步驟;於(a)中,進行包含下述步驟的組合既定次數:作為對上述基板之上述成膜氣體,供應於同一條件下較第2原料氣體不易分解的第1原料氣體之步驟;作為對上述基板之上述成膜氣體,供應上述第2原料氣體之步驟;與作為對上述基板之上述成膜氣體,供應氮化氣體之步驟。
  20. 一種半導體裝置之製造方法,係具有藉由將非同時進行下述步驟之周期進行複數次,而於基板之表面上形成既定膜厚之氧化膜的步驟:(a)藉由對上述基板供給成膜氣體,形成氮化膜的步驟;與(b)藉由對上述基板供給氧化氣體,使上述氮化膜氧化而轉換為第1氧化膜的步驟;於(a)中,進行包含下述步驟的組合既定次數:作為對上述基板之上述成膜氣體,供應1分子中含有1個Si之第1原料氣體之步驟;作為對上述基板之上述成膜氣體,供應1分子中含有2個以上的Si之第2原料氣體之步驟;與作為對上述基板之上述成膜氣體,供應氮化氣體之步驟。
  21. 一種基板處理裝置,係具有: 對基板進行處理之處理室;對上述處理室內之基板供給成膜氣體的成膜氣體供給系統;對上述處理室內之基板供給氧化氣體的氧化氣體供給系統;及控制部,係構成為可控制上述成膜氣體供給系統及上述氧化氣體供給系統,俾進行於上述處理室內藉由將非同時進行下述處理之周期進行複數次,而於上述基板之表面上形成既定膜厚之氧化膜的處理:(a)藉由對基板供給上述成膜氣體,形成氮化膜的處理;與(b)藉由對上述基板供給上述氧化氣體,使上述氮化膜氧化而轉換為第1氧化膜的處理;且將(a)中形成之上述氮化膜之厚度,設為於第1周期、與第2周期以後為相異。
  22. 一種基板處理裝置,係具有:對基板進行處理之處理室;對上述處理室內之基板供給成膜氣體的成膜氣體供給系統;對上述處理室內之基板供給氧化氣體的氧化氣體供給系統;及控制部,係構成為可控制上述成膜氣體供給系統及上述氧化氣體供給系統,俾進行於上述處理室內藉由將非同時進行下述處理之周期進行複數次,而於上述基板之表面上形成既定膜厚之氧化膜的處理:(a)藉由對基板供給上述成膜氣體,形成氮化膜的處理;與(b)藉由對上述基板供給上述氧化氣體,使上述氮化膜氧化而轉換為第1氧化膜的處理;且將(b)中使上述氮化膜氧化的條件,設為於第1周期、與第2周期以後為相異。
  23. 一種基板處理裝置,係具有:對基板進行處理之處理室;對上述處理室內之基板供給成膜氣體的成膜氣體供給系統; 對上述處理室內之基板供給氧化氣體的氧化氣體供給系統;及控制部,係構成為可控制上述成膜氣體供給系統及上述氧化氣體供給系統,俾進行於上述處理室內藉由將非同時進行下述處理之周期進行複數次,而於上述基板之表面上形成既定膜厚之氧化膜的處理:(a)藉由對基板供給上述成膜氣體,形成氮化膜的處理;與(b)藉由對上述基板供給上述氧化氣體,使上述氮化膜氧化而轉換為第1氧化膜的處理;且於(a)中,進行包含下述處理的組合既定次數:作為對上述基板之上述成膜氣體,供應於同一條件下較第2原料氣體不易分解的第1原料氣體之處理;作為對上述基板之上述成膜氣體,供應上述第2原料氣體之處理;與作為對上述基板之上述成膜氣體,供應氮化氣體之處理。
  24. 一種基板處理裝置,係具有:對基板進行處理之處理室;對上述處理室內之基板供給成膜氣體的成膜氣體供給系統;對上述處理室內之基板供給氧化氣體的氧化氣體供給系統;及控制部,係構成為可控制上述成膜氣體供給系統及上述氧化氣體供給系統,俾進行於上述處理室內藉由將非同時進行下述處理之周期進行複數次,而於上述基板之表面上形成既定膜厚之氧化膜的處理:(a)藉由對基板供給上述成膜氣體,形成氮化膜的處理;與(b)藉由對上述基板供給上述氧化氣體,使上述氮化膜氧化而轉換為第1氧化膜的處理;且於(a)中,進行包含下述處理的組合既定次數:作為對上述基板之上述成膜氣體,供應1分子中含有1個Si之第1原料氣體之處理;作為對上述基板之上述成膜氣體,供應1分子中含有2個以上的Si之第2原料氣體之處 理;與作為對上述基板之上述成膜氣體,供應氮化氣體之處理。
  25. 一種藉由電腦使基板處理裝置實行下述手續之程式:藉由將非同時進行下述手續之周期進行複數次,而於基板之表面上形成既定膜厚之氧化膜的手續:(a)藉由對上述基板供給成膜氣體,形成氮化膜的手續;與(b)藉由對上述基板供給氧化氣體,使上述氮化膜氧化而轉換為第1氧化膜的手續;以及將(a)中形成之上述氮化膜之厚度,設為於第1周期、與第2周期以後為相異的手續。
  26. 一種藉由電腦使基板處理裝置實行下述手續之程式:藉由將非同時進行下述手續之周期進行複數次,而於基板之表面上形成既定膜厚之氧化膜的手續:(a)藉由對上述基板供給成膜氣體,形成氮化膜的手續;與(b)藉由對上述基板供給氧化氣體,使上述氮化膜氧化而轉換為第1氧化膜的手續;以及將(b)中使上述氮化膜氧化的條件,設為於第1周期、與第2周期以後為相異的手續。
  27. 一種藉由電腦使基板處理裝置實行下述手續之程式:藉由將非同時進行下述手續之周期進行複數次,而於基板之表面上形成既定膜厚之氧化膜的手續:(a)藉由對上述基板供給成膜氣體,形成氮化膜的手續;與(b)藉由對上述基板供給氧化氣體,使上述氮化膜氧化而轉換為第1氧化膜的手續;以及於(a)中,進行包含下述手續的組合既定次數:作為對上述基板之上述成膜氣體,供應於同一條件下較第2原料氣體不易分解的第1原料氣體 之手續;作為對上述基板之上述成膜氣體,供應上述第2原料氣體之手續;與作為對上述基板之上述成膜氣體,供應氮化氣體之手續。
  28. 一種藉由電腦使基板處理裝置實行下述手續之程式:藉由將非同時進行下述手續之周期進行複數次,而於基板之表面上形成既定膜厚之氧化膜的手續:(a)藉由對上述基板供給成膜氣體,形成氮化膜的手續;與(b)藉由對上述基板供給氧化氣體,使上述氮化膜氧化而轉換為第1氧化膜的手續;以及且於(a)中,進行包含下述手續的組合既定次數:作為對上述基板之上述成膜氣體,供應1分子中含有1個Si之第1原料氣體之手續;作為對上述基板之上述成膜氣體,供應1分子中含有2個以上的Si之第2原料氣體之手續;與作為對上述基板之上述成膜氣體,供應氮化氣體之手續。
TW110100343A 2020-01-09 2021-01-06 基板處理方法、半導體裝置之製造方法、基板處理裝置及程式 TWI809345B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-002063 2020-01-09
JP2020002063A JP7182572B2 (ja) 2020-01-09 2020-01-09 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム

Publications (2)

Publication Number Publication Date
TW202137331A TW202137331A (zh) 2021-10-01
TWI809345B true TWI809345B (zh) 2023-07-21

Family

ID=76709495

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110100343A TWI809345B (zh) 2020-01-09 2021-01-06 基板處理方法、半導體裝置之製造方法、基板處理裝置及程式

Country Status (6)

Country Link
US (1) US11728162B2 (zh)
JP (1) JP7182572B2 (zh)
KR (1) KR102458130B1 (zh)
CN (1) CN113113284B (zh)
SG (1) SG10202100223TA (zh)
TW (1) TWI809345B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251637A (ja) * 1992-03-05 1993-09-28 Oki Electric Ind Co Ltd 半導体装置およびその製造方法
JP2010050425A (ja) * 2007-12-26 2010-03-04 Hitachi Kokusai Electric Inc 半導体装置の製造方法および基板処理装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177330A (ja) * 1984-09-25 1986-04-19 Oki Electric Ind Co Ltd 半導体素子絶縁膜の形成方法
JP4672697B2 (ja) 1999-01-08 2011-04-20 株式会社東芝 半導体装置の製造方法
JP4947922B2 (ja) * 2005-05-23 2012-06-06 東京エレクトロン株式会社 成膜方法およびコンピュータにより読み取り可能な記憶媒体
JP2010087167A (ja) * 2008-09-30 2010-04-15 Hitachi Kokusai Electric Inc 半導体装置の製造方法
US20100227476A1 (en) * 2009-03-04 2010-09-09 Peck John D Atomic layer deposition processes
JP2011034995A (ja) * 2009-07-29 2011-02-17 Elpida Memory Inc 半導体装置の製造方法及び半導体装置
JP5467007B2 (ja) 2009-09-30 2014-04-09 株式会社日立国際電気 半導体装置の製造方法および基板処理装置
JP5683388B2 (ja) 2010-08-19 2015-03-11 株式会社日立国際電気 半導体装置の製造方法、基板処理方法及び基板処理装置
JP6199570B2 (ja) * 2013-02-07 2017-09-20 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6091940B2 (ja) * 2013-03-11 2017-03-08 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP6192147B2 (ja) 2014-08-22 2017-09-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP6086934B2 (ja) * 2015-01-14 2017-03-01 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
SG10201607880PA (en) 2015-09-25 2017-04-27 Tokyo Electron Ltd METHOD FOR FORMING TiON FILM
JP6594804B2 (ja) 2016-03-11 2019-10-23 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
SG11202100062VA (en) * 2018-07-05 2021-02-25 Kokusai Electric Corp Method of manufacturing semiconductor device, substrate processing apparatus, and program
TWI834919B (zh) * 2019-10-16 2024-03-11 荷蘭商Asm Ip私人控股有限公司 氧化矽之拓撲選擇性膜形成之方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251637A (ja) * 1992-03-05 1993-09-28 Oki Electric Ind Co Ltd 半導体装置およびその製造方法
JP2010050425A (ja) * 2007-12-26 2010-03-04 Hitachi Kokusai Electric Inc 半導体装置の製造方法および基板処理装置

Also Published As

Publication number Publication date
US11728162B2 (en) 2023-08-15
JP2021111679A (ja) 2021-08-02
SG10202100223TA (en) 2021-08-30
CN113113284B (zh) 2024-03-29
CN113113284A (zh) 2021-07-13
KR20210090112A (ko) 2021-07-19
US20210217608A1 (en) 2021-07-15
TW202137331A (zh) 2021-10-01
KR102458130B1 (ko) 2022-10-24
JP7182572B2 (ja) 2022-12-02

Similar Documents

Publication Publication Date Title
TWI819348B (zh) 半導體裝置之製造方法、基板處理方法、基板處理裝置及程式
TWI756612B (zh) 半導體裝置之製造方法、基板處理方法、基板處理裝置及程式
TWI839807B (zh) 基板處理方法、半導體裝置之製造方法、基板處理裝置及程式
KR102422162B1 (ko) 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치, 및 프로그램
KR20220002139A (ko) 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치, 및 프로그램
JP7149407B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
KR102578026B1 (ko) 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
TWI829035B (zh) 半導體裝置的製造方法、基板處理方法、程式及基板處理裝置
JP7328293B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理システム、およびプログラム
KR102224294B1 (ko) 반도체 장치의 제조 방법, 표면 처리 방법, 기판 처리 장치, 및 프로그램
TWI809345B (zh) 基板處理方法、半導體裝置之製造方法、基板處理裝置及程式
TWI840648B (zh) 基板處理方法、半導體裝置之製造方法、基板處理裝置及程式
JP7305013B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP7135190B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
JP7349033B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
WO2024038602A1 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
TW202338991A (zh) 基板處理方法、半導體裝置之製造方法、程式及基板處理裝置