TWI783203B - 奈秒脈波產生器電路 - Google Patents

奈秒脈波產生器電路 Download PDF

Info

Publication number
TWI783203B
TWI783203B TW109100609A TW109100609A TWI783203B TW I783203 B TWI783203 B TW I783203B TW 109100609 A TW109100609 A TW 109100609A TW 109100609 A TW109100609 A TW 109100609A TW I783203 B TWI783203 B TW I783203B
Authority
TW
Taiwan
Prior art keywords
pulse generator
switch
voltage
energy recovery
circuit
Prior art date
Application number
TW109100609A
Other languages
English (en)
Other versions
TW202105909A (zh
Inventor
詹姆士R 普拉格
堤摩西 奇巴
肯尼斯E 米勒
伊莉亞 斯洛柏朵夫
摩根 奎利
Original Assignee
美商鷹港科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商鷹港科技股份有限公司 filed Critical 美商鷹港科技股份有限公司
Publication of TW202105909A publication Critical patent/TW202105909A/zh
Application granted granted Critical
Publication of TWI783203B publication Critical patent/TWI783203B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/57Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32348Dielectric barrier discharge
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/042Modifications for accelerating switching by feedback from the output circuit to the control circuit
    • H03K17/0424Modifications for accelerating switching by feedback from the output circuit to the control circuit by the use of a transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0027Measuring means of, e.g. currents through or voltages across the switch

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Generation Of Surge Voltage And Current (AREA)
  • Electronic Switches (AREA)

Abstract

本案提供一種奈秒脈波產生器電路。在一些實施例中,奈秒脈波產生器電路包含高壓電源供應器、奈秒產生器、變壓器及能量回復電路。奈秒脈波產生器電性耦合於高壓電源供應器,並且在高頻下切換來自高壓電源供應器的電壓。變壓器具有初級側及次級側,奈秒產生器電性耦合於電壓器的初級側,以及能量回復電路電性耦合於變壓器的次級側。在一些實施例中,能量回復電路包含電感器耦合於高壓電源供應器、撬棒二極體並聯配置於變壓器的次級側,以及第二二極體串聯配置於電感器,用以配置為將電流從負載傳導至高壓電源供應器。

Description

奈秒脈波產生器電路
本案是關於一種奈秒脈波產生器電路中之有效能量回復及產生高壓脈波之方法。
產生具有快速上升時間和/或快速下降時間的高壓脈波是具有挑戰性的。例如,為了實現高壓脈波(例如,大於約5千伏特)的快速上升時間及/或快速下降時間(例如,小於約50奈秒),脈波的斜率上升和/或下降必須非常陡峭(例如,大於10-11伏特/秒)。這種陡峭的上升時間及/或下降時間很難產生,尤其是在驅動電容性負載的電路中。使用標準的電性組件以精簡的方式和/或具有可變的脈波寬度、電壓和重複率的脈波和/或在具有電容性負載(例如電漿)的應用中產生此種脈波可為特別困難。
在一些實施例中,一種奈秒脈波產生器電路包含高壓電源供應器、奈秒脈波產生器、變壓器及能量回復電路。奈秒脈波產生器電性耦合於高壓電源供應器且在高頻切換來自高壓電源供應器的電壓;變壓器具有初級側及次級側,奈秒脈波產生器電性耦合於變壓器的初級側,以及能量回復電路電性耦合於變壓器的次級側。在一些實施例中,能量回復電路包含電感器、撬棒二極體以及第二二極體。電感器電性耦合於高壓電源供應器;撬棒二極體並聯 (parallel)配置於變壓器的次級側;以及第二二極體串聯(series)配置於電感器,並用以將電流自負載通過該能量回復電感器傳導至該高壓電源供應器。
在一些實施例中,能量回復電感器包含大於約50微亨利(μH)的電感值。
在一些實施例中,奈秒脈波產生器以大於約100千赫茲(kHz)的頻率切換來自高壓電源供應器的電壓。在一些實施例中,奈秒脈波產生器以大約0kHz至大約500kHz的頻率切換來自高壓電源供應器的電壓。在一些實施例中,奈秒脈波產生器電路為負載提供大於約5千伏特(kV)的電壓。
在一些實施例中,能量回復電路包含開關。在一些實施例中,能量回復電路更包含高壓開關串聯於第二二極體及電感器。在一些實施例中,高壓開關切換大於約5kV的電壓。
在一些實施例中,負載包含電容性負載。在一些實施例中,負載包含電漿沉積室。
在一些實施例中,高壓電源供應器提供具有大於500伏特(V)、750伏特(V)、1千伏特(kV)、1.5千伏特(kV)等的直流(Direct Current;DC)電源的電壓。
在一些實施例中,一種電路包含儲存電容器、切換式電路(switching circuit)、變壓器及能量回復電路。切換式電路耦合於儲存電容器,切換式電路輸出大於1kV電壓及大於1kHz頻率之波形;變壓器具有初級側及次級側,切換式電路可電性耦合於變壓器之初級側;以及能量回復電路電性耦合於變壓器之次級側(例如,通過能量回復二極體)及儲存電容器。在一些實施例中,能量回復電路包含能量回復電感器及第二二極體。能量回復電感器電性 耦合於高壓電源供應器;以及第二二極體用以串聯配置於能量回復電感器,並用以將電流自負載通過能量回復電感器傳導至高壓電源供應器。
在一些實施例中,能量回復電路包含撬棒二極體並聯配置於變壓器的次級側。
在一些實施例中,電感器包含大於約50微亨利的電感值。
在一些實施例中,切換式電路包含奈秒脈波產生器。在一些實施例中,切換式電路包含射頻(RF)驅動器。在一些實施例中,RF驅動器包含半橋驅動器、全橋驅動器、一個或複數高頻固態開關、RF產生器、基於放大器管(amplifier tube)的射頻產生器或基於管(tube)的射頻產生器之其中之一。
在一些實施例中,所述電路更包含偏壓補償電路,偏壓補償電路包含偏壓補償二極體並聯於偏壓補償開關以及DC電源供應器串聯配置於偏壓補償二極體及偏壓補償開關。
在一些實施例中,一種產生高壓脈波的方法包含開路偏壓補償開關於偏壓補償電路,並同時導通脈波產生器開關,偏壓補償電路耦合於變壓器之次級側;導通奈秒脈波產生器的脈波產生器開關以產生脈波,奈秒脈波產生器耦合於變壓器的初級側和DC電源供應器,脈波在變壓器的次級側上具有大於1kV的電壓;開路能量回復開關於能量回復電路,並同時導通脈波產生器開關,能量回復電路耦合於變壓器的次級側及DC電源供應器;暫停少於約100奈秒之時間週期;導通奈秒脈波產生器的脈波產生器開關;以及開路能量回復電路中的能量回復開關,並同時導通脈波產生器開關。
在一些實施例中,能量回復電路包含串聯於能量回復開關之電感器及二極體。
在一些實施例中,能量回復開關包含串聯配置的複數開關並且具有複數分壓電阻器,以使得複數分壓電阻器中之每一分壓電阻器被跨置於複數開關中為相對應的開關上。
在一些實施例中,偏壓補償電路包含偏壓補償二極體並聯於偏壓補償開關以及包含DC電源供應器串聯於偏壓補償二極體和偏壓補償開關。
在一些實施例中,一種產生高壓脈波之方法,包含在脈波的叢發(burst)之前,在通過變壓器與奈秒脈波產生器耦合的偏壓補償電路中開路偏壓補償開關,偏壓補償電路耦合於變壓器的次級側;在脈波的叢發期間,重複開路與導通奈秒脈波產生器的脈波產生器開關以在脈波的叢發期間產生複數脈波,奈秒脈波產生器耦合於變壓器的初級側及DC電源供應器;脈波產生器開關的開路及導通發生於脈波重複頻率大於約1千赫茲時,並且脈波產生器開關的導通在變壓器的次級側產生電壓大於1kV的脈波;在脈波的叢發期間,重複導通與開路在能量回復電路中的能量回復開關,以使在脈波產生器開關開路時能量回復開關導通(close),且當脈波開關導通時能量回復開關開路(open),能量回復電路耦合於變壓器的次級側和DC電源供應器;以及在脈波的叢發之後,在偏壓補償電路中導通偏壓補償開關。
在一些實施例中,所述產生高壓脈波之方法更可進一步包含暫停小於約100微秒的時間週期;在脈波的第二叢發之前,開路偏壓補償開關;在脈波的第二叢發期間,開路及導通脈波產生器開關;在脈波的第二叢發期間,導通及開路能量回復開關;以及在第二叢發之後,導通偏壓補償開關。
在一些實施例中,能量回復電路包含電感器及二極體串聯於能量回復開關。
在一些實施例中,能量回復開關包含串聯配置的複數開關並且具有複數分壓電阻器,以使得複數分壓電阻器中之每一分壓電阻器被跨置於複數開關中為相對應的開關上。
在一些實施例中,偏壓補償電路包含偏壓補償二極體並聯於偏壓補償開關,以及包含DC電源供應器串聯配置於偏壓補償二極體及偏壓補償開關。
在一些實施例中,一種奈秒脈波產生器電路包含高壓電源供應器;奈秒脈波產生器電性耦合於高壓電源供應器,並用以在高頻切換來自高壓電源供應器的電壓;變壓器具有初級側及次級側;以及能量回復電路並聯配置於變壓器之次級側。在一些實施例中,能量回復電路包含開關、電感器、第一二極體及第二二極體。第一二極體串聯配置於開關及電感器,以使得當開關導通時,第一二極體傳導電流自開關至電感器。第二二極體配置以當開關導通時傳導來自開關和第一二極體之間的奈秒脈波產生器電路中的一位置點之電流到高壓電源供應器和奈秒脈波產生器之間的奈秒脈波產生器電路中的一位置點。
在一些實施例中,一種奈秒脈波產生器電路包含高壓電源供應器;奈秒脈波產生器電性耦合於高壓電源供應器,並用以在高頻切換來自高壓電源供應器的電壓;變壓器具有初級側及次級側,奈秒脈波產生器電性耦合於變壓器的初級側;以及能量回復電路電性耦合於變壓器的次級側,且並聯於變壓器的初級側。在一些實施例中,能量回復電路包含電感器電性耦合於高壓電源供應器;撬棒二極體並聯配置於變壓器之次級側;以及第二二極體串聯配置於電感器,並配置成傳導電流自負載至高壓電源供應器。
在一些實施例中,電感器包含小於約1,000奈亨利(nH)的電感值。在一些實施例中,奈秒脈波產生器以大於約100kHz的頻率切換來自高壓電 源供應器的電壓。在一些實施例中,奈秒脈波產生器以大約0kHz至大約500kHz的頻率切換來自高壓電源供應器的電壓。在一些實施例中,奈秒脈波產生器電路提供負載大於約5kV的電壓。在一些實施例中,變壓器的次級側耦合於電容性負載。在一些實施例中,變壓器的次級側耦合於產生或控制電漿的一個或複數電極。在一些實施例中,能量回復電路包含開關。
這些實施例並不是為了限制或限定本發明,而是提供示例以幫助理解本發明,並在實施方式中討論了額外的實施例,以提供進一步的描述。通過檢查本說明書或通過實踐所呈現的一個或複數實施例,可以進一步理解由一個或複數實施例所提供的優點。
在一些實施例中,包含高壓高頻切換式(switching)電路。在一些實施例中,高壓高頻切換式電路包含高壓切換式電源供應器產生電壓大於1kV且頻率大於10kHz(或任何頻率)的脈波;變壓器具有初級側和次級側;輸出端電性耦合於變壓器的次級側;以及初級吸收器(primary sink)電性耦合於變壓器的初級側並並聯於高壓切換式電源供應器,初級吸收器包含至少一個電阻器使耦合於輸出端的負載放電。
在一些實施例中,初級吸收器用以耗散超過大約1千瓦(kW)的平均功率。在一些實施例中,主吸收器用以耗散30瓦(W)-30千瓦(kW)的平均功率。
在一些實施例中,初級吸收器包含至少一個電阻器串聯的至少一個電感器。
在一些實施例中,初級吸收器包含至少一個電阻器串聯的開關。
在一些實施例中,輸出端耦合於主要為是電容性的電漿負載。
在一些實施例中,輸出端耦合於包含介電質阻擋放電(dielectric barrier discharge)的電漿負載。
在一些實施例中,在初級吸收器中之電阻器的電阻值小於約400歐姆。
在一些實施例中,高壓高頻切換式電源供應器提供大於100kW的峰值功率。
在一些實施例中,在初級吸收器中的電阻器包含一個電阻值R及輸出端耦合於一個具有電容值C的負載,使得
Figure 109100609-A0305-02-0011-1
,其中tf是脈波下降時間,且
Figure 109100609-A0305-02-0011-2
在一些實施例中,負載本質上是電容性的,其電容值小於50奈法拉(nF),其中,負載電容值不保持電荷大於1微秒(μs)的時間。
在一些實施例中,負載本質上是電容性的,且高壓高頻切換式電路對負載電容值快速充電電容值並且放電負載電容值。
在一些實施例中,當高壓切換式電源供應器不提供高壓脈波時,輸出端在電極、基板或晶圓上相對於電漿和接地產生大於-2kV的負偏壓。在一些實施例中,偏壓可以為正。
在一些實施例中,輸出端可以產生高壓脈波,高壓脈波具有大於1kV的電壓以及具有大於10kHz的頻率,並且脈波下降時間小於大約400奈秒(ns)、40奈秒(ns)、4奈秒(ns)等。
在一些實施例中,包含高壓高頻切換式電路。在一些示例中,高壓高頻切換式電路包含高壓切換式電源供應器產生具有大於1kV的電壓以及具有大於10kHz的頻率的脈波;變壓器具有初級側和次級側;輸出端電性耦合於變 壓器的次級側;以及初級吸收器電性耦合於變壓器的初級側並且並聯於高壓切換式電源供應器的輸出,初級吸收器包含至少一個電阻器以放電耦合於與變壓器的次級側耦合的輸出端的負載,並且至少一個電感器串聯於至少一個電阻器。
在一些實施例中,初級吸收器包含開關串聯於至少一個電阻器和/或至少一個電感器。
在一些實施例中,輸出可以產生高壓脈波具有大於1kV的電壓以及具有大於10kHz的頻率,並且具有小於約400ns的脈波下降時間。
在一些實施例中,初級吸收器用以耗散超過大約1千瓦的功率。
在一些實施例中,高壓切換式電源供應器包含電源供應器、至少一個開關及升壓變壓器。
在一些實施例中,初級吸收器處理大於10kW的峰值功率。
在一些實施例中,初級吸收器中電阻器的電阻值小於大約400歐姆(ohms)。
在一些實施例中,初級吸收器包含電感器和電阻器,並且其中電感器的電感值L和電阻器的電阻值R被設置為滿足L/R
Figure 109100609-A0305-02-0012-46
tp,tp為脈波的脈波寬度。
在一些實施例中,在初級吸收器中的電阻器包含一個電阻值R,輸出端為耦合於一個具有電容值C的負載,使得
Figure 109100609-A0305-02-0012-3
,其中tf是脈波下降時間,且
Figure 109100609-A0305-02-0012-4
在一些實施例中,高壓切換式電源供應器在電漿中建立電位用於將離子加速到表面中。
在一些實施例中,當高壓切換式電源供應器未提供高壓脈波時,輸出端相對於接地產生來自電極或基板(或晶圓和電漿)的大於-2kV的負電位差。
在一些實施例中,包含高壓高頻切換式電路。在一些實施例中,一種高壓高頻切換式電路包含高壓切換式電源供應器產生具有大於1kV的電壓及具有大於10kHz的頻率的脈波;變壓器具有初級側和次級側;輸出端電性耦合於變壓器的次級側;以及初級吸收器電性耦合於變壓器的初級側並並聯於高壓切換式電源供應器的輸出端,初級吸收器包含至少一個電阻器、至少一個電感器及串聯配置的開關。在一些實施例中,輸出端可產生具有大於1kV的電壓、具有大於10kHz頻率以及具有小於約400ns脈波下降時間的高壓脈波,並且其中輸出端電性耦合於電漿型負載。
在一些實施例中,電漿型負載可被建模為具有小於20nF、10nF、100皮法拉(pF)、10皮法拉(pF)、1皮法拉(pF)、0.5皮法拉(pF)等的電容性元件。
在一些實施例中,電漿型負載被設計為將離子加速於表面。
在一些實施例中,通過高壓高頻切換式電源供應器的作用建立將離子加速到表面的電位。
在一些實施例中,電漿型本質上主要為電容性的。
在一些實施例中,電漿型負載包含介電質阻擋放電。
在一些實施例中,高壓高頻切換式電源供應器提供大於100kW的峰值功率。
在一些實施例中,高壓切換式電源供應器包含電源供應器、至少一個開關及升壓變壓器。
這些實施例並不是為了限制或限定本發明,而是提供示例以幫助理解本發明,並在實施方式中討論了額外的實施例,以提供進一步的描述。通過檢查本說明書或通過實踐所呈現的一個或複數實施例,可以進一步理解由一個或複數實施例所提供的優點。
100:奈秒脈波產生器系統
101:奈秒脈波產生器級
103:引線級
104:直流偏壓電路
105:奈秒脈波產生器
106:負載級
110:能量回復電路
111:能量回復電路
114:無源偏壓補償電路
115:能量回復電感器
120:能量回復二極體
121:位置點
122:位置點
123:位置點
124:位置點
125:位置點
130:二極體
134:有源偏壓補償電路
135:二極體
140:電感器
205:波形
215:波形
220:波形
300:奈秒脈波產生器系統
400:奈秒脈波產生器系統
405:二極體
410:偏壓補償電容器
500:奈秒脈波產生器系統
600:奈秒脈波產生器系統
700:無匹配驅動器系統(無匹配射頻系統)
705:射頻驅動器
710:諧振電路
715:半波整流器
805:波形
810:波形
815:波形
900:空間可變晶圓偏壓系統
915:第一偏壓電容器
921:第二偏壓電容器
925:第一高壓脈波產生器(第一奈秒脈波產生器)
926:第一能量回復電路
930:第二高壓脈波產生器(第二奈秒脈波產生器)
931:第二能量回復電路
935:電漿腔室
950:第一電極
955:第二電極
965:雜散耦合電容值
1000:奈秒脈波產生器系統
1005:奈秒脈波產生器系統
1105:波形
1110:波形
1115:波形
1200:奈秒脈波產生器系統
1205:電容性負載
1305:波形
1310:波形
1400:高壓開關
1405A:開關模組
1405B:開關模組
1405C:開關模組
1405D:開關模組
1410A:開關
1410B:開關
1410C:開關
1410D:開關
1415A:緩衝二極體
1415B:緩衝二極體
1415C:緩衝二極體
1415D:緩衝二極體
1416A:緩衝電阻器
1416B:緩衝電阻器
1416C:緩衝電阻器
1416D:緩衝電阻器
1420A:緩衝電容器
1420B:緩衝電容器
1420C:緩衝電容器
1420D:緩衝電容器
1425A:續流二極體
1425B:續流二極體
1425C:續流二極體
1425D:續流二極體
1430A:驅動器電路
1430B:驅動器電路
1430C:驅動器電路
1430D:驅動器電路
1440A:電源供應器
1440B:電源供應器
1440C:電源供應器
1440D:電源供應器
1445A:光纖觸發器
1445B:光纖觸發器
1445C:光纖觸發器
1445D:光纖觸發器
1450:撬棒二極體
1455:電容器
1460:高壓源
1465:負載
1500:流程
1505:方塊框
1510:方塊框
1515:方塊框
1520:方塊框
1525:方塊框
1530:方塊框
1535:方塊框
1540:方塊框
1545:方塊框
1550:方塊框
1555:方塊框
1560:方塊框
1600:計算系統
1605:匯流排
1610:處理器
1615:輸入裝置
1620:輸出裝置
1625:儲存裝置
1630:通訊子系統
1635:工作記憶體
1640:作業系統
1645:應用程式
1700:空間可變晶圓偏壓系統
1725:第一高壓脈波產生器
1726:第一能量回復電路
1730:第二高壓脈波產生器
1731:第二能量回復電路
1800:射頻驅動器系統
1805:射頻驅動器
1900:奈秒脈波產生器系統
1906:初級吸收器
1915:負載級
2000:奈秒脈波產生器系統
2006:初級吸收器
2100:奈秒脈波產生器系統
2105:奈秒脈波產生器
2106:初級吸收器
2200:奈秒脈波產生器系統
2206:初級吸收器
2305:波形
2310:波形
2400:奈秒脈波產生器系統
2410:偏壓補償電路
2415:負載級
2500:奈秒脈波產生器系統
2600:奈秒脈波產生器系統
2700:奈秒脈波產生器系統
2805:波形
2810:波形
2815:波形
C1:電容器
C2:電容器(電容性負載)
C3:電容器
C5:電容器
C7:電容器(電源供應器)
C8:電容器
C9:電容器
C12:電容器
C15:電容器
D1:二極體
D2:二極體
D3:二極體
D4:二極體
D6:二極體
D7:二極體
D8:二極體
D9:二極體
L1:電感值
L2:電感器
L3:電感器
L4:電感器
L5:電感器
L6:電感器
L9:電感器
R1:電阻器
R2:電阻器
R3:電阻器
R4:電阻器
R5:電阻器
R6:電阻器
R7:電阻器
R8:電阻器
R9:電阻器
R10:電阻器
R11:電阻器
R13:電阻器
V1:電壓源
V5:電壓源
I1:電流源
I2:電流源
T1:變壓器
S1:開關
S2:開關
S3:開關
S4:開關
S5:開關
S6:開關
S7:開關
S8:開關
Sig1:訊號
Sig2:訊號
Sig3+:訊號
Sig3-:訊號
Sig4:訊號
Sig5+:訊號
Sig5-:訊號
Sig6+:訊號
Sig6-:訊號
Sig7+:訊號
Sig7-:訊號
Sig8+:訊號
Sig8-:訊號
當參考附圖閱讀以下實施例時,將能更好地理解本案的特徵和優點。
[圖1]係為具有驅動電容性負載之能量回復電路的奈秒脈波產生器系統之一些實施例的電路示意圖。
[圖2]係為在如圖1所示之電路示意圖中電壓及電流的波形之示例。
[圖3]係為包含具有能量回復開關之能量回復電路的奈秒脈波產生器之奈秒脈波產生器系統之一些實施例的電路示意圖。
[圖4]係為包含具有能量回復電路的無源偏壓補償電路之奈秒脈波產生器系統之一些實施例的電路示意圖。
[圖5]係為包含具有能量回復電路的有源偏壓補償電路之奈秒脈波產生器系統之一些實施例的電路示意圖。
[圖6]係為包含具有能量回復電路的有源偏壓補償電路之奈秒脈波產生器系統之一些實施例的電路示意圖。
[圖7]係為包含RF驅動器、有源偏壓補償電路及能量回復電路之RF驅動器系統之一些實施例的電路示意圖。
[圖8]係為在奈秒脈波產生器系統中電壓及電流之波形圖。
[圖9]係為空間可變晶圓偏壓系統之根據一些實施例之示意圖。
[圖10]係為具有能量回復電路之奈秒脈波產生器系統之一些實施例的電路示意圖。
[圖11]係為在奈秒脈波產生器系統中電壓及電流的波形之示例。
[圖12]係為具有驅動電容性負載之能量回復電路之奈秒脈波產生器系統之一些實施例的電路示意圖。
[圖13]係為在奈秒脈波產生器系統中電壓及電流的波形之示例。
[圖14]係為具有隔離式電源之高壓開關之一些實施例的方塊示意圖。
[圖15]係為一種用於操作具有有源能量回復電路及有源偏壓補償電路的奈秒脈波產生器系統之方法的一些實施例的方塊示意圖。
[圖16]係為用於執行功能性的計算系統以促進實現本案所述實施例之示例。
[圖17]係為空間可變晶圓偏壓系統之一些實施例的示意圖。
[圖18]係為包含RF驅動器、有源偏壓補償電路及能量回復電路的RF驅動器系統的電路示意圖。
[圖19]係為具有初級吸收器的奈秒脈波產生器系統之一些實施例的電路示意圖。
[圖20]係為具有初級吸收器的奈秒脈波產生器系統之一些實施例的電路示意圖。
[圖21]係為具有初級吸收器的奈秒脈波產生器系統之一些實施例的電路示意圖。
[圖22]係為具有初級吸收器的奈秒脈波產生器系統之一些實施例的電路示意圖。
[圖23]係為由奈秒脈波產生器系統產生之波形圖。
[圖24]係為具有初級吸收器、偏壓補償電路及電漿負載的奈秒脈波產生器系統之一些實施例的電路示意圖。
[圖25]係為具有初級吸收器、偏壓補償電路及電漿負載的奈秒脈波產生器系統之一些實施例的電路示意圖。
[圖26]係為具有初級吸收器、偏壓補償電路及電漿負載的奈秒脈波產生器系統之一些實施例的電路示意圖。
[圖27]係為具有初級吸收器、偏壓補償電路及電漿負載的奈秒脈波產生器系統之一些實施例的電路示意圖。
[圖28]係為由奈秒脈波產生器系統產生之波形圖。
一些實施例包含奈秒脈波產生器系統,其使用能量回復電路自負載(例如,電容性負載)提供能量回復。在一些實施例中,奈秒脈波產生器系統可包含高壓高頻奈秒脈波產生器,其可例如驅動電漿沉積系統、電漿蝕刻系統、電漿濺射系統、電子束系統、離子束系統等(負載)。
在一些實施例中,能量回復電路可自負載中回復電荷以給儲能電容器充電。例如,能量回復電路可回復由各種電路元件(包含電容器或電感器)儲存或維持的能量。例如,這些元件可包含通常會耗散或浪費的雜散或寄生電容值或電感值。能量回復電路例如可透過用於對儲能電容器和/或電感器再充電以回復能量。所述能量可被電路利用和/或再利用。
請參照圖1,圖1為奈秒脈波產生器系統100的電路示意圖,包含具有能量回復電路110、變壓器T1、引線級103、DC偏壓電路104、為第二引線級之奈秒脈波產生器105及負載級106的奈秒脈波產生器級101。
在一些實施例中,負載級106可表示為用於半導體處理室的理想或有效電路,例如,電漿沉積系統、半導體製程系統、電漿濺射系統等。電容器C2之電容值例如可表示半導體處理晶圓可放置於其上的靜電夾盤(electrostatic chuck)的電容值。夾盤例如可包含介電質材料(例如,氧化鋁或其他陶瓷材料以及容納介電質材料內的導體)。例如,電容器C1可以具有小電容值(例如,大約10pF、100pF、500pF、1奈法拉(nF)、10奈法拉(nF)、100奈法拉(nF)等)。
電容器C3例如可表示為電漿與晶圓之間的鞘電容值。電阻器R6例如可表示為電漿與晶圓之間的鞘電阻值。電感器L2例如可表示為電漿與晶圓之間的鞘電感值。電流源I2例如可表示為通過鞘的離子電流。例如,電容器C1或電容器C3可具有小電容值(例如,大約10pF、100pF、500pF、1nF、10nF、100nF等)。
電容器C9例如可表示為在腔室壁與晶圓的頂表面之間的電漿的電容值。電阻器R7例如可表示為在腔室壁與晶圓的頂表面之間的電漿的電阻值。電流源I1例如可表示為在電漿中的離子電流。例如,電容器C1或電容器C9可具有小電容值(例如,大約10pF、100pF、500pF,1nF、10nF、100nF等)。
在一些實施例中,電漿電壓可為自接地(ground)至電路位置點123測量得的電壓;晶圓電壓為自接地至電路位置點122測量得的電壓,可表示為晶圓表面的電壓。夾盤電壓為自接地至電路位置點121測量得的電壓。電極電 壓為自接地至標示的電路位置點124(例如在電極上)測量的電壓;以及輸入電壓為自接地至電路位置點125測量得的電壓。
在所述示例中,DC偏壓電路104不包含任何偏壓補償。DC偏壓電路104包含偏移供應電壓源V5例如可以正向及負向之兩者中之任一者偏壓輸出電壓。在一些實施例中,可以調整偏移供應電壓源V5以改變晶圓電壓及夾盤電壓之間的電位。在一些實施例中,偏移供應電壓源V5可具有約±5kV、±4kV、±3kV、±2kV、±1kV等千伏特的電壓。
在一些實施例中,偏壓電容器C12可將DC偏壓電壓自其他電路元件隔離(或分離)。偏壓電容器C12例如可以允許電位從電路的一部分轉移到另一部分。在一些實施例中,所述電位轉移可以確保將晶圓保持在夾盤上適當位置的靜電力維持在電壓閾值以下。電阻器R2可將DC偏壓供應器自奈秒脈波產生器級101的高壓脈波輸出隔離。
偏壓電容器C12例如可以具有小於大約100pF、10pF、1pF、100微法拉(μF)、10微法拉(μF)、1微法拉(μF)等的電容值。電阻器R2例如可以具有高電阻,例如,大約1千歐姆(kOhm)、10千歐姆(kOhm)、100千歐姆(kOhm)、1百萬歐姆(MOhm)、10百萬歐姆(MOhm)、100百萬歐姆(MOhm)等的電阻值。
為第二引線級之奈秒脈波產生器105表示高壓電源系統和負載級106之間的電路元件。電阻器R13例如可表示為自高壓電源系統的輸出端連接至電極(例如,負載級106)的引線或傳輸線的電阻值。電容器C1例如可表示為在引線或傳輸線中的雜散電容值。
在一些實施例中,奈秒脈波產生器級101可以產生具有高脈波電壓(例如,電壓大於1kV、10kV、20kV、50kV、100kV等)的脈波、高頻率(頻率大於1kHz、10kHz、100kHz、200kHz、500kHz、1百萬赫茲(MHz)等)、快速上升時間(例如,上升時間小於約1ns、10ns、50ns、100ns、250ns、500ns、1,000ns等)、快速下降時間(例如,下降時間小於約1ns、10ns、50ns、100ns、250ns、500ns、1,000ns等)和/或短脈波寬度(例如,脈波寬度小於約1,000ns、500ns、250ns、100ns、20ns等)。
例如,奈秒脈波產生器級101可包含如美國專利申請序號14/542,487標題為“高壓奈秒脈波產生器”中描述的全部或任何部分的任何裝置,其專利申請案之說明書併入本案,或者任何於美國專利申請序號14/635,991標題為“電化隔離式輸出可變脈波產生器接露”中描述的全部或任何部分的任何裝置,其專利申請案之說明書併入本案,或者於美國專利申請序號14/798,154標題為“具有可變脈波寬度及脈波重複頻率的高壓奈秒脈波產生器”中描述的全部或任何部分的任何裝置,其專利申請案之說明書併入本案。
在一些實施例中,奈秒脈波產生器級101可包含以任何多種方式耦合在一起的一個或複數奈秒脈波產生器。
在一些實施例中,奈秒脈波產生器級101可包含提供由開關S6切換的恆定DC電壓的DC電源供應器,並且將切換的功率提供給變壓器T1。DC電源供應器可包含電壓源V5和儲能電容器C7。如果變壓器T1的匝數比為1:10,則變壓器可在為負載之電容器C1上產生10kV。
在一些實施例中,如果負載電容值(例如,電容器C3之電容值和電容器C9之電容值)相較之下比儲能電容器C7的電容值小,則在變壓器輸入端 可出現倍壓。例如,如果儲能電容器C7提供500V,則可在變壓器T1的輸入端測量到1kV。
例如開關S6可包含一個或複數固態開關,例如絕緣柵雙極電晶體(IGBT)、金屬氧化物半導體場效電晶體(MOSFET)、碳化矽金屬氧化物半導體場效電晶體(SiC MOSFET)、SiC接面電晶體(junction transistor)、場效電晶體(FETs)、SiC開關、氮化鎵(GaN)開關及光電導開關等。可基於自標記為訊號Sig6+及訊號Sig6-之控制器的訊號切換開關S6。
在一些實施例中,奈秒脈波產生器級101可包含與緩衝二極體D4並聯之緩衝電阻器R3及緩衝電容器C5的緩衝電路。緩衝電路還可包含雜散電感值。在一些實施例中,緩衝電阻器R3和/或緩衝二極體D4可設置在開關S6的集極與變壓器T1之初級繞組(winding)之間。緩衝二極體D4可用於緩衝切換中的任何過電壓。大的和/或快速的電容器C5可以耦合在開關S6的射極側。續流二極體(freewheeling diode)D2也可耦合於開關S1的射極側。可以包含圖中未示出的各種其他組件。一個或複數開關和/或電路可以並聯或串聯配置。
在一些實施例中,開關S6可以切換得很快以至於切換後的電壓可永遠不會處於全電壓(full voltage)(例如,儲能電容器C7和/或電壓源V5的電壓)。在一些實施例中,閘極電阻器耦合於開關S6可被設置為具有短暫啟動(short turn on)脈波。
在一些實施例中,奈秒脈波產生器級101可包含續流二極體D2。在一些實施例中,續流二極體D2可以與電感性負載結合使用,以確保在開關S6打開之後可以允許儲存在電感性負載中的能量耗散,藉由允許電流持續地沿相 同方向流過電感器,使能量在電路的電阻元件中耗散。如果不包含續流二極體D2,則這可導致例如開關S6上產生較大的反向電壓。
在一些實施例中,奈秒脈波產生器級101可包含電感器L1之雜散電感值和/或電阻器R1之雜散電阻值。例如,電感器L1之雜散電感值可以小於大約10奈亨利(nH)、100nH、1,000nH、10,000nH等。例如,電阻器R1的雜散電阻值可以小於大約1歐姆(Ohm)、100毫歐姆(mOhm)、10毫歐姆(mOhm)等。
在一些實施例中,能量回復電路110可以電性耦合於變壓器的次級側和/或與儲能電容器C7。能量回復電路110例如可包含跨變壓器T1之次級側的二極體130(例如,撬棒二極體)。能量回復電路110例如可包含能量回復二極體120和能量回復電感器115(串聯配置),其可以允許電流自變壓器T1之次級側流動以對儲能電容器C7充電。能量回復二極體120和能量回復電感器115可電性連接於變壓器T1的次級側和儲能電容器C7。在一些實施例中,能量回復電路110可包含二極體130和/或電感器140電性耦合於變壓器T1的次級側。電感器140可表示為雜散電感值和/或可包含變壓器T1的雜散電感值。
在一些實施例中,能量回復電感器115可包含任何類型的電感器,例如,鐵氧體電感器(ferrite inductor)或空心電感器(air core inductor)。在一些實施例中,能量回復電感器115可具有大於約10微亨利(μH)、50微亨利(μH)、100微亨利(μH)、500微亨利(μH)等的電感值。在一些實施例中,能量回復電感器115可具有約1μH至約100mH的電感值。
當奈秒脈波產生器啟動時,電流可充電負載級106(例如,充電電容器C3、電容器C2或電容器C9)。當變壓器T1之次級側上的電壓升高到高於 儲能電容器C7上的充電電壓時,例如,一些電流可以流過能量回復電感器115。當奈秒脈波產生器關閉時,電流可從負載級106中的電容器(例如,電容器C1)流過能量回復電感器115,以對儲能電容器C7充電直到能量回復電感器115兩端的電壓為零為止。二極體130可以防止負載級106內的電容器與負載級106或DC偏壓電路104中的電感值一起振鈴(ringing)。
能量回復二極體120可以例如防止電荷從儲能電容器C7流至負載級106內的電容器。
可以選擇能量回復電感器115的值以控制電流下降的時間。在一些實施例中,能量回復電感器115可具有在1μH-600μH之間的電感值。在一些實施例中,能量回復電感器115可具有大於50μH的電感值。在一些實施例中,能量回復電感器115可具有小於約50μH、100μH,150μH、200μH、250μH、300μH、350μH、350μH、400μH、450μH、500μH等的電感值。
例如,如果儲能電容器C7提供500V,則將在變壓器T1的輸入端測量到1kV電壓(例如,於如上所述之倍壓)。當開關S6開路時,變壓器T1處的1kV可被分配在能量回復電路110的組件之間。如果適當地選擇值(例如,電感器L3的電感值小於能量回復電感器115的電感值),則能量回復二極體120和能量回復電感器115兩端的電壓可以大於500V。電流然後可流過能量回復二極體120和/或充電儲能電容器C7。電流也可以流過二極體D3和電感器L6。一旦儲能電容器C7充電,電流就不再流過二極體D3和能量回復電感器115。
在一些實施例中,能量回復電路110可例如以快速的時間刻度(例如1ns、10ns、50ns、100ns、250ns、500ns、1,000ns等時間刻度)自負載級106轉移能量(或轉移電荷)。能量回復電路的雜散電阻值可以很低,以確保負 載級106兩端的脈波具有快速的下降時間tf。能量回復電路110的雜散電阻值例如可以具有小於約1Ohm、100mOhm、10mOhm等的電阻值。在一些實施例中,來自負載級106的能量的電阻性耗散可以是低的,例如小於約60%、70%、80%或90%等。
如圖1所示的任何數量的組件可為必需的也可為不必需的,例如,二極體135或二極體130或電感器140。
在一些實施例中,可在電壓源V1和能量回復電路110連接電壓源V1和/或儲能電容器C7之位置點之間放置二極體。所述二極體例如可用以允許電流從電壓源V1流至儲能電容器C7,但可不允許電流從能量回復電路流至儲能電容器C7。
圖2示例了如圖1所示在奈秒脈波產生器系統100之電壓和電流的波形。波形205表示在奈秒脈波產生器系統100中標記為位置點124(例如在電極上)測量到的進入負載級106的電壓。波形220表示在標記為位置點122(例如在晶圓上)的電壓。波形215表示流過能量回復電感器115的電流。波形215示出了當奈秒脈波產生器級101啟動時(例如,如淺藍色上升波形所示)流過能量回復電感器115的電流。當奈秒脈波產生器級101關閉時,通過能量回復電感器115的電流在下降之前繼續上升到最大值。當能量回復電感器115兩端的電壓變為零時,電流應停止流過能量回復電感器115。然而在所述示例中,奈秒脈波產生器級101在能量回復電感器115兩端的電壓為零之前再次啟動。
在一些實施例中,如圖1所示中標記為位置點121處的電位為負,然而夾盤電位(chucking potential)也可為正。
如圖3所示為包含具有能量回復開關S5之能量回復電路111的奈秒脈波產生器級101之奈秒脈波產生器系統300之一些實施例的電路示意圖。開關S5可基於自標記為訊號Sig5+及訊號Sig5-之控制器的訊號被切換。
在圖3中,有源的能量回復電路111可包含能量回復開關S5,可以用於控制流過能量回復電感器115的電流。在一些實施例中,能量回復開關S5可包含設置在能量回復開關兩端的續流二極體。能量回復開關S5例如可與能量回復電感器115串聯設置。在一些實施例中,可基於來自切換式輸入電壓源V5的訊號來開路和導通能量回復開關S5。在一些實施例中,當開關S1開路和/或不再脈動以允許電流從負載級106流回高壓負載電容器C7時,切換式輸入電壓源V5可以導通能量回復開關。在一些實施例中,當開關S1導通和/或脈動以限制電流流向高壓負載電容器C7時,開關輸入電壓源V5可以開路能量回復開關。
圖3中的能量回復開關S5串聯於能量回復二極體120和能量回復電感器115,並且被設置在變壓器T1的次級側與能量回復二極體120和能量回復電感器115兩者之間。在一些實施例中,能量回復二極體120和能量回復電感器115兩者都可以設置在能量回復開關S5和變壓器T1的次級側之間。在一些實施例中,能量回復開關S5可以被設置在能量回復二極體120和能量回復電感器115之間。能量回復二極體120、能量回復電感器115和能量回復開關S5可以任何順序配置。
能量回復開關S5例如可包含例如高壓開關1400的高壓開關。
在一些實施例中,當能量回復開關S5開路時,負載級106可由奈秒脈波產生器級101充電。例如以快速的時間刻度(例如,小於約1ns、10ns、 50ns、100ns、250ns、500ns、1,000ns等)從負載級106移除電荷可為有益的。為了自負載級106移除電荷,可導通能量回復開關S5。
如圖4所示為根據包含具有能量回復電路110的無源偏壓補償電路114之奈秒脈波產生器系統400之一些實施例的電路示意圖。
在所述示例中,無源偏壓補償電路114是無源偏壓補償電路並且可包含偏壓補償二極體405和偏壓補償電容器410。偏壓補償二極體405可串聯設置於偏移供應電壓源V5。偏壓補償電容器410可配置在偏移供應電壓源V5和電阻器R2之任一者或兩者上。偏壓補償電容器410可以具有小於100nF至100μF的電容值,例如,大約100μF、50μF、25μF、10μF、2μF、500nF、200nF等。
在一些實施例中,偏壓補償二極體405可以在10Hz與500kHz之間的頻率傳導在10安培(A)與1千安培(kA)之間的電流。
在一些實施例中,偏壓電容器C12可允許奈秒脈波產生器級101的輸出端(例如,在標記為位置點125)與電極上的電壓(例如,在標記為位置點124)之間的電壓偏移。在操作中,電極在叢發(burst)過程中(例如,叢發可包含複數脈波)可處於-2kV的直流電壓,而奈秒脈波產生器的輸出在脈衝期間為+6kV和在脈波之間為0kV之間交替。
偏壓電容器C12,例如為100nF、10nF、1nF、100μF、10μF、1μF等。電阻器R2例如可具有高電阻值,例如大約1kOhm、10kOhm、100kOhm、1MOhm、10MOhm、100MOhm等的電阻值。
在一些實施例中,偏壓補償電容器410和偏壓補償二極體405可允許奈秒脈波產生器級101的輸出(例如,在標記為位置點125)與電極上的電壓(例如,在標記為位置點124)之間的電壓偏移在每個叢發開始時建立,從而達 到所需的平衡狀態。例如,在每個叢發開始,在複數脈波(例如,大約5-100個脈波)過程中,電荷從電容器C12轉移到偏壓補償電容器410中,從而在電路中建立正確的電壓。
在一些實施例中,脈波重複頻率(例如,叢發內的脈波的頻率)可介於200kHz和800MHz之間例如2MHz、13.56MHz、27MHz、60MHz和80MHz等。在一些實施例中,叢發重複頻率(例如,叢發的頻率)可以是大約10kHz、50Hz、100kHz、500kHz、1MHz等,例如400kHz。
能量回復電路110可包含或可不包含如圖3所示的能量回復開關。
如圖5所示為包含具有能量回復電路110的有源偏壓補償電路134之奈秒脈波產生器系統500之一些實施例的電路示意圖。
有源偏壓補償電路134可以包含本領域中已知的任何偏壓和/或偏壓補償電路。例如,有源偏壓補償電路134可包含在美國專利申請序號16/523,840標題為“奈秒脈波產生器偏壓補償”中描述的任何偏壓和/或偏壓補償電路,其專利申請案之說明書併入本案。
在一些實施例中,如圖5所示的奈秒脈波產生器系統500的有源偏壓補償電路134可以包含偏壓電容器C7、阻隔(blocking)電容器C12、阻隔二極體D8、偏壓補償開關S8(例如,高壓開關)、偏移供應電壓源V5、電阻器R2之電阻值和/或電阻器R4之電阻值。在一些實施例中,開關S8例如可以包含高壓開關,例如如圖14所示的高壓開關1400。可以基於來自標記為訊號Sig8+和訊號Sig8-之控制器的訊號來切換偏壓補償開關S8。
在一些實施例中,偏移供應電壓源V5可包含DC電壓源,可偏壓正向或負向之任一輸出電壓。在一些實施例中,電容器C12可將偏移供應電壓源 V5自其他電路元件隔離/分離。在一些實施例中,有源偏壓補償電路134可允許功率從電路的一部分的電位轉移到另一部分。在一些實施例中,可以使用有源偏壓補償電路134在處理晶圓和靜電夾盤之間保持恆定的夾持力(chucking force)。例如,電阻器R2之電阻值可以保護/隔離來自驅動器的DC偏壓供應器。作為另一示例,電阻器R2之電阻值可以用於確保為DC供應器之電壓源V5不會出現過電流故障。
在一些實施例中,當奈秒脈波產生器級101不主動產生大於10kHz的脈波或提供脈波的叢發時可開路偏壓補償開關S8,而當奈秒脈波產生器級101不脈動時導通。當導通時,偏壓補償開關S8可例如允許電流流向阻隔二極體D8阻止的方向。短路所述電流可允許晶圓和夾盤之間的偏壓小於2kV,其可在可接受的公差範圍內。
在一些實施例中,負載級106可耦合於有源偏壓補償電路134。在一些實施例中,能量回復電路110可包含或可不包含如圖3所示的能量回復開關。
如圖6所示為包含具有有源能量回復電路111的有源偏壓補償電路134之奈秒脈波產生器系統600之一些實施例的電路示意圖。
如圖7所示為包含射頻驅動器705、有源偏壓補償電路134及能量回復電路110之無匹配驅動器系統700之一些實施例的電路示意圖。
在所述示例中,無匹配驅動器系統700可包含RF驅動器705而不是奈秒脈波產生器級101。RF驅動器705例如可以是半橋驅動器或全橋驅動器。RF驅動器705可包含可以是DC電壓源的電壓源V1(例如,電容性源、交流-直流(AC-DC)轉換器等)。在一些實施例中,RF驅動器705可包含四個開關為開關S1、S2、S3和開關S4。在一些實施例中,RF驅動器705可包含串聯或並聯的複 數開關S1、S2、S3和開關S4。開關S1、S2、S3和開關S4例如可包含任何類型的固態開關,例如IGBTs、MOSFETs、SiC MOSFETs、SiC接面電晶體、場效電晶體(FETs)、SiC開關、GaN開關及光電導開關等。開關S1、S2、S3和開關S4可以在高頻切換和/或可產生高壓脈波。這些頻率可例如包含大約400kHz、0.5MHz、2.0MHz、4.0MHz、13.56MHz、27.12MHz、40.68MHz、50MHz等的頻率。
開關S1、S2、S3和開關S4中的每個開關可並聯耦合於相應的二極體D1、D2、D3和二極體D4,並且可以包含由電感器L1、L2、L3和電感器L4表示的雜散電感值。在一些實施例中,電感器L1、L2、L3和電感器L4的電感值可以相等。在一些實施例中,電感器L1、L2、L3和電感器L4的電感值可以小於大約50nH、100nH、150nH、500nH、1,000nH等。開關(開關S1、S2、S3或開關S4)和相應的二極體(二極體D1、D2、D3或二極體D4)可串聯耦合於相應的電感器(電感器L1、L2、L3或電感器L4)。電感器L3和電感器L4接地。電感器L1連接於開關S4和諧振電路710。並且電感器L2連接於開關S3和諧振電路710的相對側。
開關S1、S2、S3和開關S4可包含高壓開關,例如,如圖14中所示的高壓開關1400。
在一些實施例中,RF驅動器705可耦合於諧振電路710。諧振電路710可包含諧振電感器L5和/或諧振電容器C2耦合於變壓器T1。諧振電路710可包含電阻器R5之諧振電阻值,例如,可包含RF驅動器705和諧振電路710之間的任何引線的雜散電阻值和/或諧振電路710內的任何組件,例如變壓器T1、電容器C2和/或電感器L5。在一些實施例中,電阻器R5之諧振電阻值僅包含導線、走線或電路元件的雜散電阻值。雖然其他電路元件的電感值和/或電容值可以影響驅 動頻率,但可以透過選擇諧振電感器L5和/或諧振電容器C2主要為設置驅動頻率。鑑於雜散電感值或雜散電容值,可以需要進一步的改進和/或調整以產生適當的驅動頻率。除此之外,透過改變電感器L5和/或電容器C2,可以調整變壓器T1兩端的上升時間,提供如下:
Figure 109100609-A0305-02-0029-5
在一些實施例中,電感器L5的大電感值可導致較慢或較短的上升時間。這些值也可以影響叢發包絡。如圖17所示,每個叢發可包含暫態脈波和穩態脈波。可透過電感器L5和/或系統的Q值設置每個叢發的暫態脈波,直到在穩態脈波期間達到滿電壓為止。
如果RF驅動器705中的開關以諧振頻率f resonant 切換,則變壓器T1處的輸出電壓將被放大。在一些實施例中,諧振頻率可以是大約400kHz、0.5MHz、2.0MHz、4.0MHz、13.56MHz、27.12MHz、40.68MHz、50MHz等。
在一些實施例中,諧振電容器C2可以包括變壓器T1的雜散電容值和/或物理性電容器。在一些實施例中,諧振電容器C2可以具有大約10μF、1μF、100nF、10nF等的電容值。在一些實施例中,諧振電感器L5可以包含變壓器T1的雜散電感值和/或物理電性感器器。在一些實施例中,諧振電感器L5可以具有大約50nH、100nH、150nH、500nH、1,000nH等的電感值。在一些實施例中,諧振電阻器R5可以具有大約10ohms、25ohms、50ohms、100ohms、150ohms、500ohms等的電阻值。
在一些實施例中,諧振電阻器R5可以表示物理性電路內的導線、走線和/或變壓器繞組的雜散電阻值。在一些實施例中,諧振電阻器R5可以具有 大約10毫歐姆(mohms)、50毫歐姆(mohms)、100毫歐姆(mohms)、200毫歐姆(mohms)、500毫歐姆(mohms)等的電阻值。
在一些實施例中,變壓器T1可包含如美國專利申請序號為15/365,094標題為“高壓變壓器”中公開的變壓器,其專利申請案之說明書併入本案。在一些實施例中,可透過改變開關S1、S2、S3和/或開關S4的佔空比(duty cycle)(例如,開關「接通」時間或開關導通的時間)來改變諧振電路710的輸出電壓。例如,佔空比越長,輸出電壓越高;佔空比越短,輸出電壓越低。在一些實施例中,可透過調整RF驅動器705中切換的佔空比來改變或調整諧振電路710的輸出電壓。
例如,可透過改變訊號Sig1的佔空比來調整開關的佔空比,其開路和導通開關S1。改變訊號Sig2的佔空比,其開路和導通開關S6;改變訊號Sig3的佔空比,其開路和導通開關S3;改變訊號Sig4的佔空比,其開路和導通開關S4。例如,透過調整開關S1、S2、S3或開關S4的佔空比可控制諧振電路710的輸出電壓。
在一些實施例中,諧振電路710中的每個開關S1、S2、S3或開關S4可以獨立地或與一個或複數其他開關結合地被切換。例如,訊號Sig1可以是與訊號Sig3相同的訊號。作為另一示例,訊號Sig2可以是與訊號Sig4相同的訊號。作為另一示例,每個訊號可以是獨立的,並且可以獨立地或分別地控制每個開關S1、S2、S3或開關S4。
在一些實施例中,諧振電路710可耦合於半波整流器715,可包含阻隔二極體D7。
有源偏壓補償電路134可包含結合如圖5所描述的有源偏壓補償電路。
無匹配驅動器系統700不包含傳統的匹配網路,例如,50ohm匹配網路或外部匹配網路或獨立匹配網路。在一些實施例中,無匹配驅動器系統700不需要50ohm匹配網路來調整施加到晶圓室的切換功率。在一些實施例中,無匹配驅動器系統700可包含不具有傳統匹配網路的可變輸出阻抗RF產生器。這可允許快速改變由電漿腔室汲取的功率。通常,匹配網路的這種調整可至少需要100μs-200μs。在一些實施例中,功率變化可以在一個或兩個RF週期內發生,例如在400kHz時為2.5μs-5.0μs。
在所述示例中,能量回復電路110可位在變壓器T1的次級側上或電耦合於變壓器T1的次級側。能量回復電路110例如可包含跨變壓器T1的次級側的二極體130(例如,撬棒二極體)。能量回復電路110例如可包含能量回復二極體120和能量回復電感器115(串聯配置),其可使電流從變壓器T1的次級側流向儲能電容器C7以充電,並允許電流流向負載級106。能量回復二極體120和能量回復電感器115可電性連接於變壓器T1的次級側並且耦合於儲能電容器C7。在一些實施例中,能量回復電路110可包含二極體130和/或電感器140電性耦合於變壓器T1之次級側。能量回復電感器115可表示雜散電感值和/或可包含變壓器T1的雜散電感值。
當奈秒脈波產生器啟動時,電流可對負載級106中的電容器充電(例如,對電容器C3、電容器C2或電容器C9充電)。當變壓器T1的次級側上的電壓升高高於儲能電容器C7上的充電電壓之上時,例如,一些電流可以流過能量回復電感器115。當奈秒脈波產生器關閉時,電流可以從負載級106中的電容 器(例如,電容器C1)流過能量回復電感器115,以對儲能電容器C7充電,直到能量回復電感器115兩端的電壓為零為止。二極體130可防止負載級106內的電容器因負載級106或有源偏壓補償電路134中的電感值而振鈴。
能量回復二極體120可例如防止電荷從能儲能電容器C7流至負載級106內的電容器。
可選擇能量回復電感器115的值以控制電流下降時間。在一些實施例中,能量回復電感器115可具有在1μH至500μH之間的電感值。
在一些實施例中,能量回復電路110可包含開關可用於控制通過能量回復電感器115的電流。例如,所述開關可串聯設置於能量回復電感器115。在一些實施例中,當開關S1開路和/或不再脈動時開關可以導通,以允許電流從負載級106流回到儲能電容器C7。
能量回復電路110中的開關例如可包含例如如圖14中所示的高壓開關1400的高壓開關。
如圖8所示為在無匹配驅動器系統700的電壓和電流的波形。波形805表示在標記為在晶圓上的位置點124(例如在電極上)測得的電壓。波形810表示在進入負載級106標記為位置點122(例如在晶圓上)測得的電壓。波形815表示通過能量回復二極體120的電流。
如圖9所示為根據空間可變晶圓偏壓系統900之一些實施例之示意圖。空間可變晶圓偏壓系統900可包含第一高壓脈波產生器925耦合於第一能量回復電路926和第二高壓脈波產生器930耦合於與電漿腔室935耦合的第二能量回復電路。第一能量回復電路926和第二能量回復電路931中的任一者或兩者都可以包含能量回復電路110或有源能量回復電路111的全部或一些組件。
在所述示例中,第一高壓脈波產生器925耦合於第一能量回復電路926和第一偏壓電容器915,和/或第二高壓脈波產生器930耦合於第二能量回復電路931和第二偏壓電容器921。
第一電極950和第二電極955可以設置在電漿腔室935中。在所述示例中,第一電極950是盤形的並且設置在第二電極955的中心孔內。第一高壓脈波產生器925電性耦合於第一電極950,第二高壓脈波產生器930電性耦合於第二電極955。在一些實施例中,雜散耦合電容值965可以存在於第一高壓脈波產生器925和第二高壓脈波產生器930之間。雜散耦合電容值965例如可以小於約100pF、約1nF、約10nF等。
在一些實施例中,第一高壓脈波產生器925和第二高壓脈波產生器930中的任一者或兩者可以耦合於偏壓電路,例如DC偏壓電路104、無源偏壓補償電路114或有源偏壓補償電路134。
在一些實施例中,第一奈秒脈波產生器925中的儲能電容器C7可以耦合於第一DC電源供應器,並且第二奈秒脈波產生器930中的儲能電容器C7可以耦合於第二DC電源供應器。
在一些實施例中,第一奈秒脈波產生器925中的儲能電容器C7和第二奈秒脈波產生器930中的儲能電容器C7可以耦合於單一DC電源供應器。
在一些實施例中,第一奈秒脈波產生器925和第二奈秒脈波產生器930兩者都可以耦合於相同的儲能電容器,其可耦合於DC電源供應器。
在一些實施例中,開關S6可以對於不同於開關S7的時間週期被開啟。開關導通的時間量可以對應於施加到相應電極的電壓。為了向不同的電極提供不同的電壓,每個開關可以對於不同的時間週期被開啟。
第一奈秒脈波產生器925和第二奈秒脈波產生器930中的任一者或兩者可以包含無源偏壓補償電路114、有源偏壓補償電路134或DC偏壓電路104。
如圖10所示為根據具有能量回復電路110的奈秒脈波產生器系統1000的一些實施例的電路示意圖。在所述示例中,奈秒脈波產生器系統1005類似於奈秒脈波產生器系統100,其中奈秒脈波產生器級101切換儲能電容器C7的另一極性。當開關S6開路時,電容器C1上的電荷流過能量回復電路110到達高壓儲能電容器C7,並且可以使高壓儲能電容器C7充電。當電容器C1上的電荷少於高壓的儲能電容器C7上的電荷時,電流停止流過能量回復電路110。在一些實施例中,DC偏壓電路104可以被無源偏壓補償電路114或有源偏壓補償電路134代替。在一些實施例中,能量回復電路110可以被有源能量回復電路111代替。
在一些實施例中,包含奈秒脈波產生器(或複數開關),其切換電壓源V1和/或電容器C7的接地側(參見例如圖1)或正側(參見例如圖10)。可以使用任何一種配置。如圖所示一種配置可以被另一種配置代替。
圖11示出了如圖10所示的奈秒脈波產生器系統1000內的電壓和電流的波形。波形1105表示通過能量回復電感器115的電流。波形1110表示進入負載級106標記為位置點124上(例如在電極上)測得的電壓。波形1115表示在標記為位置點122上(例如在晶圓上)測得的晶圓電壓。如圖所示當脈波關閉時,電流流過能量回復電感器115,其充電高壓儲能電容器C7。在所述特定示例中,電容性負載為500pF,以及能量回復電感器115為10μH。
如圖12所示為根據具有能量回復電路110驅動電容性負載1205的奈秒脈波產生器系統1200的一些實施例的電路示意圖。在所述示例中,奈秒脈 波產生器系統1200與無DC偏壓電路104的奈秒脈波產生器系統100類似,並且驅動電容性負載1205。電容性負載1205可包含任何類型的負載,例如電漿負載、複數柵格(grids)、複數電極等。
圖13示例如圖12所示的奈秒脈波產生器系統1200內的電壓和電流的波形。波形1305表示電容性負載1205處的電壓。以及波形1310表示流過能量回復電感器115的電流。如圖所示,當脈波關閉時,電流流過能量回復電感器115以對高壓儲能電容器C7充電。在所述特定示例中,負載電容器C1為500pF,以及能量回復電感器115為10μH。
如圖14所示為根據具有隔離式電源之高壓開關1400之一些實施例的方塊示意圖。高壓開關1400可以包含複數開關模組1405(全部地或單獨地開關模組,以及單獨地開關模組1405A、開關模組1405B、開關模組1405C和開關模組1405D),其可以以快速的上升時間和/或高頻和/或以可變的脈波寬度來切換來自高壓源1460的電壓。每個開關模組1405A、1405B、1405C、1405D可包含例如固態開關之類的開關1410A、1410B、1410C、1410D。
在一些實施例中,開關1410A、1410B、1410C、1410D可以電性耦合於閘極驅動器電路1430A、1430B、1430C、1430D,所述閘極驅動器電路1430A、1430B、1430C、1430D可包含電源供應器1440A、1440B、1440C、1440D和/或隔離式光纖觸發器1445A、1445B、1445C、1445D(也稱為閘極觸發器或開關觸發器)。例如,開關1410A、1410B、1410C、1410D可包含集極(collector)、射極(emitter)和閘極(gate)(或者汲極(drain)、源極(source)和閘極),並且電源供應器1440A、1440B、1440C、1440D可以經由閘極驅動器電路1430A、1430B、1430C、1430D來驅動開關1410A、1410B、1410C、1410D的閘極。閘極 驅動器電路1430A、1430B、1430C、1430D可以例如自高壓開關1400的其他組件隔離。
在一些實施例中,可以使用例如隔離變壓器(isolation transformer)來隔離式電源供應器1440A、1440B、1440C、1440D。隔離變壓器可以包含低電容值變壓器。隔離變壓器的低電容值可以例如允許電源供應器1440A、1440B、1440C、1440D在快速時間刻度上充電而無需大量電流。隔離變壓器可以具有小於例如大約100pF的電容值。作為另一個例子,隔離變壓器可以具有小於大約30pF-100pF的電容。在一些實施例中,隔離變壓器可以提供高達1kV、5kV、10kV、25kV、50kV等的電壓隔離(voltage isolation)。
在一些實施例中,隔離變壓器可以具有低雜散電容值。例如,隔離變壓器的雜散電容值可小於約1,000pF、100pF、10pF等。在一些實施例中,低電容值可以使與低壓組件(例如,輸入控制電源的來源)的電性耦合最小化和/或可以減少電磁干擾(EMI)的產生(例如,產生電性雜訊)。在一些實施例中,隔離變壓器的變壓器雜散電容值可以包含初級繞組和次級繞組之間測得的電容值。
在一些實施例中,隔離變壓器可以是DC-DC轉換器或AC-DC變壓器。在一些實施例中,變壓器例如可包含110V AC變壓器。無論如何,隔離變壓器可提供來自高壓開關1400中其他組件的隔離式電源。在一些實施例中,隔離可為電化的(galvanic),使得隔離變壓器的初級側上沒有導體穿過或接觸隔離變壓器的次級側上的任何導體。
在一些實施例中,變壓器可以包含初級繞組,其可以緊密地纏繞或包裹在變壓器芯(transformer core)上。在一些實施例中,初級繞組可包含包 裹在變壓器芯周圍的導電片。在一些實施例中,初級繞組可包含一個或複數個繞組。
在一些實施例中,次級繞組可以盡可能地遠離芯纏繞。例如,包含次級繞組的繞組束可以繞過在變壓器芯的孔的中心。在一些實施例中,次級繞組可包含一個或複數繞組。在一些實施例中,包含次級繞組的導線束可包含例如圓形或正方形的橫截面以最小化雜散電容值。在一些實施例中,絕緣體(例如,油或空氣)可以設置在初級繞組、次級繞組或變壓器芯之間。
在一些實施例中,保持次級繞組遠離變壓器芯可具有一些益處。例如可以減小隔離變壓器的初級側和隔離變壓器的次級側之間的雜散電容值。作為另一示例,其可以允許隔離變壓器的初級側與隔離變壓器的次級側之間的高壓間隔(standoff),使得在操作期間不形成電暈和/或擊穿。
在一些實施例中,隔離變壓器的初級側(例如,初級繞組)和隔離變壓器的次級側(例如,次級繞組)之間的間距可以是大約0.1英寸(”)、0.5”、1”、5”或10”。在一些實施例中,隔離變壓器芯與隔離變壓器的次級側(例如,次級繞組)之間的一般間距可以是大約0.1”、0.5”、1”、5”或10”。在一些實施例中,繞組之間的間隔可以填充可能的最低介電質材料,例如真空、空氣、任何絕緣氣體或液體、或相對介電常數小於3的固體材料。
在一些實施例中,電源供應器1440A、1440B、1440C、1440D可包含可提供高電壓間隔(隔離)或具有低電容值(例如,小於大約1,000pF、100pF、10pF等)的任何類型的電源供應器。在一些實施例中,控制電源可以在60Hz提供120V AC或240V AC。
在一些實施例中,每個電源供應器1440A、1440B、1440C、1440D可以電感性電性耦合於單一控制電源。例如,電源供應器1440A可經由第一變壓器電性耦合於電源;電源供應器1440B可以經由第二變壓器電性耦合於電源;電源供應器1440C可以經由第三變壓器電性耦合於電源;以及電源供應器1440D可以經由第四變壓器電性耦合於電源。例如,可使用任何類型的變壓器以可以在各種電源供應器之間提供電壓隔離。
在一些實施例中,第一變壓器、第二變壓器、第三變壓器和第四變壓器可包含圍繞單一變壓器芯的不同次級繞組。例如,第一變壓器可包含第一次級繞組,第二變壓器可包含第二次級繞組,第三變壓器可包含第三次級繞組,並且第四變壓器可包含第四次級繞組。每個所述次級繞組都可纏繞在單一變壓器芯上。在一些實施例中,第一次級繞組、第二次級繞組、第三次級繞組、第四次級繞組或初級繞組可包含纏繞在變壓器芯上的單一繞組或複數繞組。
在一些實施例中,電源供應器1440A、電源供應器1440B、電源供應器1440C和/或電源供應器1440D可不共享返回參考接地(return reference ground)或局部接地(local ground)
隔離式光纖觸發器1445A、1445B、1445C、1445D例如也可自高壓開關1400的其他組件隔離。隔離式光纖觸發器1445A、1445B、1445C、1445D可包含光纖接收器允許每個開關模組1405A、1405B、1405C、1405D相對於其他開關模組1405A、1405B、1405C、1405D和/或高壓開關1400的其他組件浮接,和/或例如在允許對每個開關模組1405A、1405B、1405C、1405D的閘極進行主動控制時。
在一些實施例中,例如,每個開關模組1405A、1405B、1405C、1405D的返回參考接地或局部接地或共同接地(common grounds)可以彼此隔離,例如,使用隔離變壓器。
每個開關模組1405A、1405B、1405C、1405D自共同接地的電隔離例如可允許將複數開關串聯配置用以於累積高壓切換。在一些實施例中,可允許或設計一些延遲在開關模組時序中。例如,每個開關模組1405A、1405B、1405C、1405D可以用以或額定切換1kV,每個開關模組可彼此電性隔離,和/或在由緩衝電容器的電容值和/或開關的額定電壓定義的時間週期內,導通每個開關模組1405A、1405B、1405C、1405D的時序可不需要完全對準。
在一些實施例中,電性隔離可以提供許多優點。例如,一可能的優點為可包含最小化開關切換抖動和/或允許任意開關時序。例如,每個開關1410A、1410B、1410C、1410D可具有小於約500ns、50ns、20ns、5ns等的切換過渡抖動。
在一些實施例中,兩個組件(或電路)之間的電性隔離可意味著兩個組件之間的電阻值極高和/或可意味著兩個組件之間的電容值很小。
每個開關1410A、1410B、1410C、1410D可包含任何類型的固態開關裝置,例如,IGBT、MOSFET、SiC MOSFET、SiC接面電晶體、FET、SiC開關、GaN開關、GaN開關及光電導開關等。開關1410A、1410B、1410C、1410D例如能夠以高頻率(例如,大於1kHz)、高速度(例如,重複率大於約500)和/或快速上升時間(例如,上升時間小於約25ns)和/或長脈波長度(例如,大於約10ms)來切換高電壓(例如,大於約1kV的電壓)。在一些實施例中,每個 開關可以分別額定(rated)用於切換1,200V-1,700V,但組合時可以切換大於4,800V-6,800V(對於四個開關)。可以使用具有各種其他額定電壓的開關。
使用大量的低電壓開關而不是少許高電壓開關可擁有一些優點。例如,低電壓開關通常具有更好的效能:低電壓開關可以比高電壓開關更快地切換、可以具有更快的過渡時間和/或可以更有效地切換。然而,例如開關的數量越多,對切換時序精度的要求就越大。
如圖14所示的高壓開關1400包含四個開關模組1405A、1405B、1405C、1405D。儘管在所述圖中示出四個,但是可以使用任何數量的開關模組1405A、1405B、1405C、1405D,例如,2個、8個、12個、16個、20個、24個等。例如,如果每個開關模組1405A、1405B、1405C、1405D中的每個開關的額定電壓為1200V,並且使用了16個開關,則高壓開關可以切換至最高19.2kV。作為另一示例,如果每個開關模組1405A、1405B、1405C、1405D中的每個開關的額定電壓為1700V,並且使用了16個開關,則高壓開關可以切換高達27.2kV。
在一些實施例中,高壓開關1400可以切換大於5kV、10kV、14kV、20kV、25kV等的電壓。
在一些實施例中,高壓開關1400可包含快速電容器1455。例如,快速電容器1455可包含一個或複數串聯和/或並聯設置的電容器。這些電容器可例如包含一個或複數聚丙烯(polypropylene)電容器。快速電容器1455可以儲存來自高壓源1460的能量。
在一些實施例中,快速電容器1455可具有低電容值。在一些實施例中,快速電容器1455可以具有大約1μF、大約5μF、大約1μF與大約5μF之間、大約100nF與大約1,000nF之間的電容值等。
在一些實施例中,高壓開關1400可以包含或可以不包含撬棒二極體1450。撬棒二極體1450可包含串聯或並聯配置的複數二極體,例如,對於驅動電感性負載是有益的。在一些實施例中,撬棒二極體1450可以包含一個或複數肖特基(Schottky)二極體,例如碳化矽肖特基(silicon carbide Schottky)二極體。撬棒二極體1450可例如感測來自高壓開關的切換電壓是否高於某個閾值。如果是高於某個閾值,則撬棒二極體1450可以使從開關模組到接地的電源短路。例如,撬棒二極體可允許交流電路徑耗散切換後之電感性負載中儲存的能量。例如,這可防止較大的電感性電壓尖峰(spikes)。在一些實施例中,撬棒二極體1450可以具有低電感值,例如1nH、10nH、100nH等。在一些實施例中,撬棒二極體1450可具有低電容值,例如100pF、1nF,10nF,100nF等。
在一些實施例中,例如當負載1465主要是電阻性時,可以不使用撬棒二極體1450。
在一些實施例中,每個閘極驅動器電路1430A、1430B、1430C、1430D可產生小於約1000ns、100ns、10.0ns、5.0ns、3.0ns、1.0ns等的抖動。在一些實施例中,每個開關1410A、1410B、1410C、1410D可以具有最小的接通時間(例如,小於約10μs、1μs、500ns、100ns、50ns、10ns、5ns等)和最大的接通時間(例如大於25s、10s、5s、1s、500ms等)。
在一些實施例中,在操作期間,每個高壓開關可在彼此的1ns內接通和/或斷開。
在一些實施例中,每個開關模組1405A、1405B、1405C、1405D可具有相同或實質上相同(±5%)的雜散電感值。雜散電感值可以包含開關模組1405A、1405B、1405C、1405D中與電感器不相關的任何電感值,例如引線、二 極體、電阻器、開關1410A、1410B、1410C、1410D和/或電路板走線等中的電感值。每個開關模組1405A、1405B、1405C、1405D內的雜散電感值可包含低電感值,例如電感值小於約300nH、100nH、10nH、1nH等。每個開關模組1405A、1405B、1405C、1405D之間的雜散電感值可包含低電感值,例如,電感值小於300nH、100nH、10nH、1nH等。
在一些實施例中,每個開關模組1405A、1405B、1405C、1405D可具有相同或實質上相同(±5%)的雜散電容值。雜散電容值可以包含開關模組1405A、1405B、1405C、1405D中與電容器不相關的任何電容值,例如引線、二極體、電阻器、開關1410A、1410B、1410C、1410D和/或電路板走線等中的電容值。每個開關模組1405A、1405B、1405C、1405D內的雜散電容值可包含低電容值,例如小於約1,000pF、100pF、10pF等。每個開關模組1405A、1405B、1405C、1405D之間的雜散電容值包含低電容值,例如小於約1,000pF、100pF、10pF等。
可以例如利用無源緩衝電路(例如,緩衝二極體1415A、1415B、1415C、1415D、緩衝電容器1420A、1420B、1420C、1420D、和/或續流二極體1425A、1425B、1425C、1425D)來解決電壓共享中的缺陷。例如,每個開關1410A、1410B、1410C、1410D開啟或關閉之間的時序上的小差異或是電感值或電容值的差異可導致電壓尖峰。這些尖峰可以通過各種緩衝電路(例如,緩衝二極體1415A、1415B、1415C、1415D、緩衝電容器1420A、1420B、1420C、1420D和/或續流二極體1425A、1425B、1425C、1425D)來減輕。
緩衝電路例如可以包含緩衝二極體1415A、1415B、1415C、1415D、緩衝電容器1420A、1420B、1420C、1420D、緩衝電阻器1416A、1416B、 1416C、1416D和/或續流二極體1425A、1425B、1425C、1425D。在一些實施例中,緩衝電路可以與開關1410A、1410B、1410C、1410D並聯配置在一起。在一些實施例中,緩衝電容器1420A、1420B、1420C、1420D可具有低電容值,例如小於約100pF的電容值。
在一些實施例中,高壓開關1400可以電性耦合於負載1465或包含負載1465(例如,電阻性或電容性或電感性負載)。負載1465例如可以具有從50ohms到500ohms的電阻值。替代地或附加地,負載1465可以是電感性負載或電容性負載。
在一些實施例中,能量回復電路110或有源能量回復電路111可以減少高壓奈秒脈波產生器系統的能量消耗,和/或以與沒有能量回復電路的系統相同的能量輸出效能來驅動給定負載所需的電壓。例如,對於與沒有能量回復電路的系統相同的能量輸出效能,能量消耗可以降低多達10%、15%、20%、25%、30%、40%、45%、50%等或更多。
在一些實施例中,二極體130、二極體135和/或能量回復二極體120可以包含高壓二極體。
如圖15所示為根據用於操作具有有源能量回復電路及有源偏壓補償電路的奈秒脈波產生器系統的流程1500的一些實施例的方塊示意圖。流程1500可以包含附加的方塊框。流程1500中所示的方塊框可以被移除、替換、跳過或以任何順序執行。
例如,可以使用具有有源能量回復電路111和有源偏壓補償電路134或類似電路的奈秒脈波產生器系統600來執行流程1500。
在一些實施例中,奈秒脈波產生器可用於產生複數叢發,其中每個叢發包含複數脈波。可以透過開啟和關閉奈秒脈波產生器的開關來產生脈波。每個脈波的脈波寬度例如可以在10秒到10奈秒之間變化。脈波頻率例如可以從10kHz到1MHz變化,例如400kHz。每個叢發可以包含一組數量的脈波。每個叢發可以具有叢發寬度,其定義了完成複數脈波的時間。
流程1500可以從方塊框1505開始,將計數器n設置為初始化為1。計數器n計算給定叢發中的脈波數量。
在方塊框1510中,可以開路偏壓補償開關(例如,開關S8)。
在方塊框1515中,可以導通奈秒脈波產生器開關(例如,開關S6)。
在方塊框1520中,可以開路能量回復開關(例如,開關S5)。
在一些實施例中,方塊框1510、1515和方塊框1520可實質上同時發生或在10ns或100ns等時間內發生。在一些實施例中,方塊框1515和方塊框1520可以實質上同時發生。
在方塊框1525中,流程1500可以暫停(例如,脈波)一段定義每個脈波的脈波寬度的時間週期。在一些實施例中,脈波的脈波寬度可以透過定義將負載充電到特定電壓的時間量來定義負載(例如,電容性負載)處的脈波電壓。例如,由脈波產生的電容性負載下的輸出電壓可取決於奈秒脈波產生器開關導通的時間量,因此取決於脈波為電容性負載充電的時間量。因此如果所述奈秒脈波產生器正在向產生一些電壓環的電感器和/或電容器中脈動,在脈波負載的輸出電壓可由電壓暫停時間週期直至達到奈秒脈波產生器的最大輸出電壓,或者由奈秒脈波產生器的最大輸出電壓的某個倍數來定義。例如,電壓暫 停可約為10ns-500ns,或者約為50ns至約200ns,或者約為500ns、73.75ns、27ns、16ns或12.5ns。
在方塊框1530中,可以開路奈秒脈波產生器開關(例如,開關S6)。
在方塊框1535中,可以導通能量回復開關(例如,開關S5)。
在一些實施例中,方塊框1530和方塊框1535可實質上同時發生。
在方塊框1540中,可以確定計數器n是否等於期望的脈波數量N。雖然叢發中的脈波數量沒有限制,但是期望的脈波數量N例如可以為5-1,000。在一些實施例中,脈波可以連續運行。因此,N可幾乎是無限的。如果計數器n不等於期望的脈波數量N(即,在叢發中已經少於期望的脈波數量),則流程1500執行到方塊框1545。
在方塊框1545中,流程1500可以暫停一段時間週期(例如,脈波暫停),所述時間週期可以部分地定義脈波頻率。例如,脈波暫停時間週期可以小於500ns、250ns、100ns、50ns、10ns、5ns等。例如,脈波暫停時間週期可包含任何時間週期。
在方塊框1550中,計數器n遞增,並且流程1500的部分可以透過重複執行到方塊框1515以創造附加脈波。在方塊框1540中,如果計數器n等於期望的脈波數量N(即,已經創造期望的脈波數量),則流程1500執行到方塊框1555。在方塊框1555中,偏壓補償開關(例如,開關S8)可以被導通。
在方塊框1560中,流程1500暫停定義叢發之間的時間量的時間週期(例如叢發暫停)。叢發暫停時間週期可以例如小至1ms或長至20秒。例如,脈波暫停可以包含2.5微秒(200Hz的脈波頻率)和100ms之間的時間週期。作為 另一個示例,脈波暫停可以從10ms到數小時。可以使用任何其他時間週期。在所述時間週期過去後,流程1500可以返回到方塊框1505,其中計數器n被初始化,並且可以重複流程1500以創造具有附加脈波的附加叢發。
當奈秒脈波產生器開關導通時、能量回復開關開路時,以及偏壓補償開關開路時,可在電路位置點124產生高壓脈波(例如,大於1kV)。
在一些實施例中,脈波暫停時間週期可以小於叢發暫停時間週期。
在一些實施例中,可以從流程1500中去除方塊框1520和方塊框1535。在所述的實施例中,當不使用能量回復開關時,奈秒脈波產生器開關導通而偏壓補償開關開路,則可在電路位置點124處產生高電壓脈波(例如,大於1kV)。
在一些實施例中,流程1500的方塊框可以使用如圖16所示的計算系統1600之類的控制器(或處理器)來執行。控制器例如可以經由訊號Sig6+和訊號Sig6-與開關S6通訊,經由訊號Sig8+和訊號Sig8-與偏壓補償開關S8通訊,和/或經由訊號Sig5+和訊號Sig5-與能量回復開關S5通訊。控制器可提供開路和導通奈秒脈波產生器開關、能量回復開關和/或偏壓補償開關的訊號。
如圖16所示的計算系統1600可以用於執行本發明的任何實施例。例如,計算系統1600可以用於執行流程1500。作為另一示例,計算系統1600可以用於執行本案描述的任何計算、識別和/或判定。計算系統1600包含可以經由匯流排(bus)1605電性耦合(或者可以適當地以其他方式進行通訊)的硬件元件。硬件元件可以包含一個或複數處理器1610,包含但不限於一個或複數通用處理器和/或一個或複數專用處理器(例如數位訊號處理晶片、圖形加速晶片 和/或類似物);一個或複數輸入裝置1615,其可以包含但不限於滑鼠、鍵盤和/或類似裝置;以及一個或複數輸出裝置1620,其可以包含但不限於顯示裝置、印表機和/或類似裝置。
計算系統1600可以進一步包含一個或複數儲存裝置1625(和/或與之通訊),其可以包含但不限於本地和/或網路可存取儲存,和/或可以包含但不限於磁碟驅動器、驅動器陣列、光學儲存裝置,固態儲存裝置(例如隨機存取記憶體(RAM)和/或唯讀記憶體(ROM)),它們可以進行編程、快取更新和/或等等。計算系統1600還可以包含通訊子系統1630,其可包含但不限於數據機(modem)、網卡(無線或有線)、紅外線通訊裝置、無線通訊裝置和/或晶片組(例如藍牙裝置、802.6裝置、Wi-Fi裝置、WiMax裝置、蜂巢通訊設施等)和/或類似物。通訊子系統1630可以允許與網路(例如如下描述的網路,僅舉一個例子)和/或本案描述的任何其他裝置交換數據。在一些實施例中,如上所述,計算系統1600將進一步包含工作記憶體1635,其可以包含RAM或ROM裝置。
計算系統1600還可以包含被示為當前位於工作記憶體1635內的軟體元件,包含作業系統1640和/或其他程式碼,例如一個或複數應用程式1645,其可以包含本發明的計算機程式,如本案所描述,和/或可以被設計為實現本發明的方法和/或配置本發明的系統。例如,關於以上討論的一個或複數方法描述的程序可以被實現為可由計算機(和/或計算機內的處理器)執行的程式碼和/或指令。這些指令和/或程式碼的集合可以儲存在可讀計算機儲存介質上,例如上述一個或複數儲存裝置1625。
在一些情況下,儲存介質可以被合併在計算系統1600內或與計算系統1600通訊。在其他實施例中,儲存介質可與計算系統1600分開(例如,可 移除介質,例如光碟等),和/或以安裝包的形式提供,使得儲存介質可用於對儲存有指令/程式碼的通用計算機進行編程。這些指令可以採取可執行程式碼的形式,其可以透過計算系統1600執行和/或可以採取源程式碼和/或可安裝程式碼的形式,其當在計算系統1600上編譯和/或安裝時(例如,使用各種通常可用的編譯器、安裝程式,壓縮/解壓縮實用程式等),採取可執行程式碼的形式。
如圖17所示為根據空間可變晶圓偏壓系統1700的一些實施例的示意圖。空間可變晶圓偏壓系統1700可以包含第一高壓脈波產生器1725、第二高壓脈波產生器1730、第一能量回復電路1726和第二能量回復電路1731。第一能量回復電路1726和第二能量回復電路1731兩者均耦合於單一儲能電容器C7。在一些實施例中,每個第一能量回復電路1726或第二能量回復電路1731可包含一個或複數二極體和/或電感器耦合於每個變壓器的次級側。在一些實施例中,第一能量回復電路1726或第二能量回復電路1731可包含開關(例如,如上所述),以允許電流在每個脈波之後流過能量回復電路。
圖18是根據包括RF驅動器1805、有源偏壓補償電路134和能量回復電路110的RF驅動器系統1800的一些實施例的電路示意圖。在所述示例中,RF驅動器系統1800類似於無匹配RF系統700,其中RF驅動器705和諧振電路710由RF驅動器1805代替。如圖7中所示的RF驅動器705包含全波整流器和諧振電路710,其由RF驅動器1805代替。
在一些實施例中,RF驅動器1805可以包含複數高頻固態開關、RF產生器、基於放大器管(amplifier tube)的RF產生器或基於管(tube)的RF產生器。
RF驅動器系統1800可以不包含傳統的匹配網路,例如50ohm的匹配網路或外部匹配網路或獨立的匹配網路。在一些實施例中,RF驅動器系統1800不需要50ohm的匹配網路來調整施加到晶圓室的切換功率。不具有傳統匹配網路的RF產生器可以快速改變電漿腔室汲取的功率。通常,匹配網路的這種調整可至少需要100μs-200μs。在一些實施例中,功率變化可以在一個或兩個RF週期內發生,例如在400kHz為2.5μs-5.0μs。
在一些實施例中,RF驅動器1805可以在大約400kHz、0.5MHz、2.0MHz、4.0MHz、13.56MHz、27.12MHz、40.68MHz、50MHz等的頻率操作。
第一奈秒脈波產生器1725和第二奈秒脈波產生器1730中之任一者或兩者可包含無源偏壓補償電路114、有源偏壓補償電路134或DC偏壓電路104。
如圖19所示為根據奈秒脈波產生器系統1900的一些實施例的電路圖。奈秒脈波產生器系統1900包含奈秒脈波產生器105、初級吸收器1906、變壓器T1和負載級1915。
在一些實施例中,奈秒脈波產生器105可以產生具有高脈波電壓(例如,大於1kV、10kV、20kV、50kV、100kV等的電壓)、高頻(例如,大於1kHz、10kHz、100kHz、200kHz、500kHz、1MHz等的頻率)、快速上升時間(例如,上升時間小於約1ns、10ns、50ns、100ns、250ns、500ns、1,000ns等)、快速下降時間(例如,下降時間小於約1ns、10ns、50ns、100ns、250ns、500ns、1,000ns等)和/或短脈波寬度(例如,脈波寬度小於約1,000ns、500ns、250ns、100ns、20ns等)。
例如,奈秒脈波產生器105可以包含在美國專利申請序號14/542,487標題為“高壓奈秒脈波產生器”中描述的所有或任何部分的裝置描述,其專利申請案之說明書併入本案,或是在美國專利申請序號14/635,991標題為“電化隔離式輸出可變脈波產生器接露”中描述的所有或任何部分的裝置描述,其專利申請案之說明書併入本案,或在美國專利申請序號14/798,154標題為“具有可變脈波寬度和脈波重複頻率的高壓奈秒脈波產生器”中描述的所有或任何部分的裝置描述,其專利申請案之說明書併入本案。
在一些實施例中,奈秒脈波產生器105包含開關S1耦合於電源供應器C7(例如,儲能電容器可以耦合於電源供應器),其可以提供由開關S1切換的恆定DC電壓,並將切換後的功率提供給變壓器T1。開關S1例如可包含一個或複數固態開關,例如IGBT、MOSFET、SiC MOSFET、SiC接面電晶體、FETs、SiC開關、GaN開關、光電導開關等。在一些實施例中,可以利用短暫啟動脈波來設置耦合於開關S1的閘極電阻器。
在一些實施例中,電阻器R8和/或電阻器R5可以表示奈秒脈波產生器105內的雜散電阻值。在一些實施例中,電感器L3和/或電感器L1可以表示奈秒脈波產生器105內的雜散電感值。
在一些實施例中,奈秒脈波產生器105可以包含緩衝電路包含緩衝電阻器R1和緩衝電感器L3,其兩者可以與緩衝二極體D2並聯配置。緩衝電路還可包含緩衝電容器C5。在一些實施例中,可以將緩衝電阻器R1和緩衝電感器L3和/或緩衝二極體D2設置在開關S1的集極與變壓器T1的初級繞組之間。緩衝二極體D2可用於消除切換中的任何過電壓。大的和/或快速的電容器C5可以耦合於 開關S1的射極側。續流二極體D1也可以耦合於開關S1的射極側。可包含圖中未示出的各種其他組件。
在一些實施例中,續流二極體D1可以與電感性負載結合使用,以以確保在開路開關S1之後允許儲存在電感器中的能量耗散,藉由允許電流持續地沿相同方向流過電感器並使能量耗散在電路的電阻元件中。如果不使用如前所述,可導致例如在開關S1上產生較大的反向電壓。
在一些實施例中,初級吸收器1906可以與開關S1(和緩衝電路)並聯設置。初級吸收器1906例如可以包含串聯配置的吸收器二極體D6、電阻器R2和吸收器電感器L6。在一些實施例中,電阻器R2可以包含一個或複數具有約100ohms電阻值的電阻器。在一些實施例中,吸收電感器L6可包含一個或複數具有約100μH電感值得電感器。在一些實施例中,電阻器R2可包含並聯和/或串聯配置的複數電阻器。在一些實施例中,吸收電感器L6可包含並聯和/或串聯配置的複數電感器。
在一些實施例中,吸收二極體D6可以配置成允許電流從變壓器T1流至接地。
在一些實施例中,吸收二極體D6、電阻器R2和吸收電感器L6並聯配置於變壓器T1。
在一些實施例中,電阻器R2和吸收電感器L6設置在變壓器T1的初級側。
使用初級吸收器以在具有快速的上升/下降時間和/或短的脈波寬度的高頻下實現高壓脈波可限制電阻性輸出級(例如,電阻器R2和電感器L6)中電路元件的選擇。可以選擇初級吸收器來處理高平均功率、高峰值功率、快 速上升時間和/或快速下降時間。例如,平均額定功率可大於約10W、50W、100W、0.5kW、1.0kW、10kW、25kW等,峰值額定功率可大於約1kW、10kW、100kW、1MW等,和/或上升和下降時間可少於1000ns、100ns、10ns或1ns。
高平均功率和/或峰值功率需求可由於需要快速耗散負載級1915中儲存的能量,和/或需要高頻耗散。例如,如果負載級1915本質上是電容性的(如圖1所示,具有電容C12),1nF電容值需要在20ns內放電,並且如果初級吸收器可是純電阻性的(例如,電感器L6的最小值),則初級吸收器電阻值可約為12.5mOhms。如果在20kV時施加到負載的高壓脈波為100ns,則在100ns脈波寬度(例如E=tpVp 2/R)期間,每個脈波將耗散約2焦耳(J)的能量,另外還有額外0.2J儲存的能量將自1nF電容性負載汲取(例如E=½tpCVs 2),其中tp為脈衝寬度、V為脈衝電壓、R2為初級灌電流的電阻值、C為負載的電容值、Vp為初級電壓、Vs為變壓器次級側的電壓,以及E是能量。如果以10kHz的頻率運作,則每個脈波的總能量耗散為2.2J,可導致進入初級吸收器的平均功率耗散為22kW。脈波期間初級吸收器中的峰值功率耗散可約為20百萬瓦(MW),並且可以根據功率=V2/R計算得出。
例如,高頻率和高電壓操作,加上對初級吸收器中的電阻值的需求很小,例如,可導致在初級吸收器中出現高峰值功率和高平均功率中任一者或兩者耗散的示例。用於電晶體-電晶體邏輯(TTL)型電子電路和/或數據擷取型電路(例如5伏特左右)的標準下拉電阻器的平均功率和峰值功率耗散通常遠低於1W。
在一些實施例中,例如,初級吸收器1906耗散的功率與負載級1915耗散的總功率之比例可以是10%、20%、30%或更大。在標準的低壓電子電路中,下拉電阻器耗散的功率少於功率消耗的1%,並且通常要少更多。
快速上升時間和/或快速下降時間需求可同時限制初級吸收器內的允許雜散電感值和/或雜散電容值兩者。在上述的示例中,對於要在20ns左右放電的1nF電容性負載,初級吸收器中的串聯雜散電感值可小於約1,000nH、500nH、300nH、100nH、30nH等。在一些實施例中,L6/R2<tf。在一些實施例中,如果初級吸收器的L/R時間不會由於其雜散電容值而浪費大量的額外能量,例如小於儲存在負載電容值中電容性能量的10%,則初級吸收器的雜散電容值可小於100pF。由於其較高的功率耗散需求,初級吸收器在物理上可傾向變大,因此實現所述低雜散電感值和雜散電容值兩者都可具有挑戰性的。所述設計通常需要使用大量離散組件(例如電阻器)進行大量的並聯和串聯操作,組件緊密地組合在一起,和/或者與任何接地面的間距都可大量增加雜散電容值。
在一些實施例中,負載級1915可以包含介電質阻擋放電裝置。介電質阻擋放電中的負載級1915可以主要是電容性的。在一些實施例中,可以將負載建模為純電容性負載CL,例如,像是介電質阻擋放電一樣。例如,當電源供應器P被接通時,電容性負載CL可以被充電,當電源供應器P未被接通時,電容性負載CL上的電荷可以透過電阻器R被汲取(drained)。另外,由於高電壓和/或高頻和/或快速的下降時間要求,初級吸收器可以需要快速從電容性負載CL放電大量電荷,其在低壓應用中(例如,標準5V邏輯電平(logic levels)和/或低壓數據脈波產生器)可以不是這種情況。
例如,典型的介電質阻擋放電裝置可以具有約10pF的電容值和/或可以以約20ns的上升時間和/或約20ns的下降時間被驅動至約20kV。在一些實施例中,期望的脈波寬度可以是80ns長。為了使下降時間與上升時間匹配,可以使用電阻器R2約為12.5Ohms來產生期望的下降時間。可以使用電路元件電阻器R2的各種其他值,取決於負載和/或其他電路元件和/或要求上升時間、下降時間和/或脈波寬度等。
在一些實施例中,對於類似電容性的負載或具有有效電容值C(例如,電容器C12之電容值)的負載,特徵脈波下降時間可以被指定為tf,並且脈波上升時間可以被指定為tr。在一些實施例中,上升時間tr可以透過驅動電源供應器的細節來設置。在一些實施例中,其中
Figure 109100609-A0305-02-0054-36
,透過選擇電阻器R2可以使脈波下降時間tf與脈波上升時間tr近似匹配。在一些實施例中,可以特別地選擇電阻器R2以提供脈波上升時間tr和脈波下降時間tf之間的特定關係。這與下拉電阻器的概念不同,下拉電阻器的概念通常選擇一個下拉電阻器,以在更長的時間範圍內以較低的功率電平傳輸/耗散電壓/電荷。在一些實施例中,電阻器R2可以專門用作替代下拉開關,以在脈波上升時間tr和脈衝下降時間tf之間建立特定的關係。
在一些實施例中,可以從P=V2/R中找到在具有脈波寬度時間tp和驅動電壓V的脈波期間在電阻器R2中耗散的功率。由於下降時間tf與電阻值R成正比(例如
Figure 109100609-A0305-02-0054-38
),隨著下降時間tf的需求降低,電阻值R的需求也降低,並且功率P消耗在電阻器R2中根據P=V2C/tf增加。因此,電阻器R2可被設計為確保適當的下降時間tf,但仍能夠處理高功率,例如大於約1.0kW或100kW的功率。在一些實施例中,電阻器可以處理平均功率需求以及峰值功率需求。快速 下降時間tf的需求導致低電阻值和隨之而來的高功率耗散為挑戰,所述挑戰可使初級吸收器以不期望的方式快速地從電容性負載C2移除電荷。在一些實施例中,電阻器R可以包含具有低電阻值並且仍然具有高平均額定功率和峰值額定功率的電阻器。
在一些實施例中,電阻器R2可以包含串聯和/或並聯的電阻器堆疊,其共同具有所需的電阻值和額定功率。在一些實施例中,電阻器R2可以包含電阻值小於大約2,000ohms、500ohms、250ohms、100ohms、50ohms、25ohms、10ohms、1ohms、0.5ohms、0.25ohms等的電阻值,且平均額定功率大於約0.5kW、1.0kW、10kW、25kW等,並且峰值額定功率大於約1kW、10kW、100kW、1MW等。
使用上述的示例,在tp=80ns、V=500kV和電阻器R2 12.5千歐姆(kOhms)的條件下,一旦負載中的電容值完全充電,施加到負載的每個脈波可耗散16毫焦耳(mJ)。一旦脈波關閉,來自負載的電荷將透過電阻器R2耗散。如果在100kHz運作,則電阻器R2可耗散1.6kW。如果已選擇電阻器R2產生10ns的時間tf,則電阻器R2中的功率耗散為3.2kW。在一些實施例中,高電壓脈波寬度可以延伸到500ns。在500ns且tf=20ns時,電阻器R2將耗散10kW。
在一些實施例中,如果電阻器R2中耗散的功率超過負載級1915消耗的功率的10%或20%,則可以認為電阻器R2中消耗的功率較大。
當需要快速下降時間tf時,功率耗散可以很大,例如大約佔總功率耗散的三分之一。如果電阻器R2例如為包含電阻器串聯的吸收電感器L6,則吸收電感器L6可以例如在存在電壓V時減少流入電阻器R的功率,和/或將下降時間加快到超過RC衰減所設置的下降時間。
例如,時間常數L6/R2可以設置為近似脈波寬度時間tp,例如,L6/R2
Figure 109100609-A0305-02-0056-41
tp。例如,所述可以減少能量耗散和/或縮短下降時間tf(例如,減小時間tf)。在一些實施例中,假設欲匹配時間tf與時間tr,R2
Figure 109100609-A0305-02-0056-42
C/tf
Figure 109100609-A0305-02-0056-44
C/tr。在本申請案、接露和/或專利申請範圍中,符號「
Figure 109100609-A0305-02-0056-45
」表示在十分之一以內。
在一些實施例中,變壓器T1可以是奈秒脈波產生器105的一部分。
圖20為根據奈秒脈波產生器系統2000的一些實施例的電路圖示意圖。奈秒脈波產生器系統2000包含奈秒脈波產生器105、初級吸收器2006、變壓器T1和負載級1915。
在一些實施例中,初級吸收器2006可以包含吸收器開關S2來代替吸收器二極體D6,或是除了吸收器二極體D6之外還可以包含吸收開關S2。在一些實施例中,吸收開關S2可以與吸收電感器L6和/或吸收電阻器R2串聯配置。
在一些實施例中,例如當負載電容器C2要透過吸收電阻器R2和/或吸收電感器L6轉出時,吸收開關S2可以導通。例如,吸收開關S2可以在每個脈波之後接通和/或斷開以從負載電容器C2中轉出電荷。例如,在每個脈波期間,吸收開關S2可以開路。在每個脈波結束時,吸收開關S2可以導通以將負載電容值轉存到電阻器R2中。例如,當開關S1開路時吸收開關S2可導通,和/或當開關S1導通時吸收開關S2可開路。
在一些實施例中,吸收開關S2可以包含如圖14中所述的高壓開關1400。
如圖21所示是根據奈秒脈波產生器系統2100的一些實施例的電路示意圖。奈秒脈波產生器系統2100包含奈秒脈波產生器2105、初級吸收器2106、變壓器T1和負載級1915。
在一些實施例中,奈秒脈波產生器2105可以包含設置在吸收開關S2和初級吸收器2106之間的二極體D9。二極體D9可配置成允許電流通過開關S1流向變壓器T1,並限制電流從變壓器T1流向開關S1。
除了吸收二極體D6之外,初級吸收器2106可以包含初級吸收器1906的組件。在一些實施例中,初級吸收器2106可以包含吸收二極體D6和/或吸收開關S2。
如圖22所示是根據奈秒脈波產生器系統2200的一些實施例的電路示意圖。奈秒脈波產生器系統2200包含奈秒脈波產生器105、初級吸收器2206、變壓器T1和負載級1915。
在一些實施例中,初級吸收器2206可以包含吸收開關S2和吸收二極體D6。在一些實施例中,吸收開關S2可以與吸收電感器L6和/或吸收電阻器R2串聯配置。在一些實施例中,在吸收開關S2兩端可包含撬棒二極體D8。
在一些實施例中,例如當負載電容器C2之電容值要通過吸收電阻器R2和/或吸收電感器L6轉出時,吸收開關S2可以導通。例如,吸收開關S2可以在每個脈波之後接通和/或斷開以從負載電容器C2中轉出電荷。例如,在每個脈波期間,吸收開關S2可以開路。在每個脈波的結尾,吸收開關S2可以導通以將負載電容值轉存到電阻器R2中。例如,當開關S1開路時吸收開關S2可導通,和/或當開關S1導通時吸收開關S2可開路。
如圖23所示為在變壓器T1之輸入端的電壓的波形2305以及示出了如圖21所使用之奈秒脈波產生器系統2100在負載級1915處的電壓的波形2310。
如圖24所示為根據奈秒脈波產生器系統2400的一些實施例。奈秒脈波產生器系統2400包含奈秒脈波產生器105、初級吸收器1906、變壓器T1、偏壓補償電路2410和負載級2415。
在一些實施例中,偏壓補償電路2410可以包含高壓開關S3,所述高壓開關S3耦合跨接在偏壓補償二極體D8兩端並且串聯配置於為偏移電源供應器之電壓源V1和偏壓補償電阻器R9。在一些實施例中,高壓開關S3可包含串聯設置以共同開路和導通高壓的複數開關。例如,高壓開關S3可包含如圖14所描述的高壓開關1400。在一些實施例中,可以基於訊號Sig3+和訊號Sig3-來開路和導通高壓開關S3。
高壓開關S3可串聯耦合於電感器L9和電阻器R11中的任一者或兩者。電感器L9可限制通過高壓開關S3的峰值電流。電感器L9例如可以具有小於大約100μH的電感值,例如大約250μH、100μH、50μH、25μH、10μH、5μH、1μH等。電阻器R11例如可將功率耗散轉移到初級吸收器。電阻器R11的電阻值例如可以具有小於大約1000ohms、500ohms、250ohms、100ohms、50ohms、10ohms等的電阻值。
在一些實施例中,高壓開關S3可包含緩衝電路。緩衝電路可以包含電阻器R9、緩衝二極體D8、緩衝電容器C15和緩衝電阻器R10。
在一些實施例中,電阻器R8可表示為偏移電壓供應器之電壓源V1的雜散電阻值。電阻器R8例如可以具有高電阻值,例如約10千歐姆(kOhm)、100千歐姆(kOhm)、1百萬歐姆(MOhm)、10百萬歐姆(MOhm)、100百萬歐姆(MOhm)、1十億歐姆(GOhm)等的電阻值。
在一些實施例中,偏壓補償電容器C8可以具有小於100nF至100μF的電容值,例如,大約100μF、50μF、25μF、10μF、2μF、500nF、200nF等。
在一些實施例中,偏壓補償電容器C8及偏壓補償二極體D8可以允許奈秒脈波產生器105的輸出端(例如,在標記為位置點125)與電極上(例如,在標記為位置點124)的電壓之間的電壓偏移在每個叢發的開始處建立,從而達到所需的平衡狀態。例如,在每個叢發的開始,在複數脈波(例如,大約5-100)的過程中,電荷自電容器C12轉移到電容器C8,從而在電路中建立正確的電壓。
在一些實施例中,偏壓電容器C12可以允許奈秒脈波產生器105的輸出端(例如,在標記為位置點125)與電極上(例如,在標記為位置點124)的電壓之間的電壓偏移。在操作中,電極例如可以在叢發期間處於-2kV的DC電壓,而奈秒脈波產生器的輸出在脈衝期間為+6kV和在脈波之間為0kV之間交替。
偏壓電容器C12例如可以具有大約100nF、10nF、1nF、100μF、10μF、1μF等的電容值。電阻器R9例如可以具有高電阻值,例如大約1kOhm、10kOhm、100kOhm、1MOhm、10MOhm、100MOhm等的電阻值。
偏壓補償電路2410可包含任意數量的其他元件或以任意數量的方式配置。
在一些實施例中,高壓開關S3可以在奈秒脈波產生器105脈動時開路並且在奈秒脈波產生器105不脈動時導通。例如,當高壓開關S3導通時,電流可以在偏壓補償二極體D8兩端短路。短路該電流可以允許晶圓與夾盤之間的偏壓小於2kV(或另一個電壓值),其可以在可接受的公差範圍內。在一些實 施例中,偏壓補償二極體D8可以以介於10Hz與10kHz之間的頻率傳導介於10A與1kA之間的電流。
在一些實施例中,高壓開關S3可以包含如圖14所示中描述的高壓開關1400。
在一些實施例中,負載級2415可以表示用於半導體處理室的理想化或有效電路,例如,電漿沉積系統、半導體製造系統、電漿濺射系統等。例如,電容器C2之電容值可以表示為可將晶圓放置其上之夾盤的電容值。夾盤例如可包含介電質材料。例如,電容器C1可具有小的電容值(例如,大約10pF、100pF、500pF、1nF、10nF、100nF等)。
電容器C3例如可以表示電漿與晶圓之間的鞘電容值。電阻器R6例如可表示電漿與晶圓之間的鞘電阻值。電感器L2例如可以表示電漿與晶圓之間的鞘電感值。電流源I2例如可以表示通過鞘的離子電流。例如,電容器C1或電容器C3可以具有小的電容值(例如,大約10pF、100pF、500pF、1nF、10nF、100nF等)。
電容器C9例如可以表示腔室壁與晶圓的頂表面之間的電漿內的電容值。電阻器R7例如可以表示腔室壁與晶圓的頂表面之間的電漿內的電阻值。電流源I1例如可以表示電漿中的離子電流。例如,電容器C1或電容器C9可以具有小的電容值(例如,大約10pF、100pF、500pF、1nF、10nF、100nF等)。
如在本案所使用的,電漿電壓為從接地到電路位置點123測得的電壓;晶圓電壓為從接地到電路位置點122測得的電壓,可以表示晶圓表面的電壓;夾盤電壓是從接地到電路位置點121的電壓;電極電壓是從接地到電路位置點124測得的電壓;以及輸入電壓是從接地到電路位置點125測得的電壓。
如圖25所示為根據奈秒脈波產生器系統2500的一些實施例。奈秒脈波產生器系統2500包含奈秒脈波產生器105、初級吸收器2006、變壓器T1、偏壓補償電路2410和負載級2415。
如圖26所示為根據奈秒脈波產生器系統2600的一些實施例。奈秒脈波產生器系統2600包含奈秒脈波產生器2105、初級吸收器1906、變壓器T1、偏壓補償電路2410和負載級2415。
如圖27所示為根據奈秒脈波產生器系統2700的一些實施例。奈秒脈波產生器系統2700包含奈秒脈波產生器105、初級接收器2206、變壓器T1、偏壓補償電路2410和負載級2415。
如圖28所示為使用奈秒脈波產生器系統2700在變壓器T1輸入端的電壓的波形2805、在夾盤(標記為位置點121)處的電壓的波形2810,以及使用奈秒脈波產生器系統2700在晶圓(標記為位置點122)的電壓波的形2815。
在一些實施例中,夾盤電位顯示為負,然而,夾盤電位也可為正。
在一些實施例中,初級吸收器1906、初級吸收器2006或初級吸收器2206可降低高壓奈秒脈波產生器系統的能量消耗和/或驅動給定負載所需的電壓。例如,能量消耗可以減少多達10%、15%、20%、25%、30%、40%、45%、50%等或更多。
在一些實施例中,二極體D9和/或二極體D6可包含高壓二極體。
除非另有說明,否則名稱「實質上」是指在參考值的5%或10%以內或是製造容差的範圍內。除非另有說明,否則名稱「約」、「大約」是指在參考值的5%或10%以內或是製造容差的範圍內。
術語「或」是包含性的(inclusive)。
本案闡述了許多具體細節以提供對所要求保護的發明標的能夠透徹理解。然而,本領域通常知識者可以理解本專利保護標的在不具有這些具體細節的情況下仍是可以實踐的。在其他情況下,未詳細描述本領域通常知識者已知的方法、裝置或系統,以免模糊所要求專利保護標的。
本案公開方法之實施例可在前述運算設備的操作中執行。上述示例中顯示的方法區塊的順序可以更改-例如,可以對區塊進行重新排序、組合和/或分為子區塊。某些區塊或過程可以並行執行。
本案中「適應於」或「用以」的使用意味著開放且包容性的語言,其不排除設備適於或用以執行附加任務或流程。另外,「基於」的使用意味著開放和包容性,因為「基於」一個或多個所述條件或值的過程、流程、計算或其他動作,可以在實踐中為被基於附加條件或超出記載所述的價值。這裡包括的標題、列表和編號僅是為了便於解釋而並非限縮本案。
雖然已經於實施例與發明內容詳細描述了本專利標的,但是應當理解,本領域通常知識者在獲得前述內容並理解後,可以容易地產生對這些實施方案的改變、變化和等同物。因此,應該理解的是,本案內容是出於示例而非限制的目的,並且不排除包括對本案的修改、變化或添加,這對於本領域通常知識者來說是顯而易見的。
100:奈秒脈波產生器系統
101:奈秒脈波產生器級
103:引線級
104:直流偏壓電路
105:奈秒脈波產生器
106:負載級
110:能量回復電路
115:能量回復電感器
120:能量回復二極體
121:位置點
122:位置點
123:位置點
124:位置點
125:位置點
130:二極體
135:二極體
140:電感器
C1:電容器
C2:電容器
C3:電容器
C5:電容器
C7:電容器
C9:電容器
C12:電容器
L1:電感值
L2:電感器
L3:電感器
L6:電感器
D2:二極體
D3:二極體
D4:二極體
R1:電阻器
R2:電阻器
R3:電阻器
R6:電阻器
R7:電阻器
R13:電阻器
T1:變壓器
I1:電流源
I2:電流源
V1:電壓源
V5:電壓源
S6:開關
Sig6+:訊號
Sig6-:訊號

Claims (9)

  1. 一種奈秒脈波產生器電路,包含:一高壓電源供應器;一奈秒脈波產生器,電性耦合於該高壓電源供應器,並在高頻切換來自該高壓電源供應器的電壓;一變壓器,具有一初級側及一次級側,該奈秒脈波產生器電性耦合於該變壓器之該初級側;及一能量回復電路,電性耦合於該變壓器之該次級側,且電性耦合於該高壓電源供應器,該能量回復電路包含:一能量回復電感器,電性耦合於該高壓電源供應器;一撬棒二極體,並聯配置於該變壓器之該次級側;一電阻值,小於約1Ohm;及一第二二極體,串聯配置於該能量回復電感器,並配置成將來自一負載之電流通過該能量回復電感器傳導至該高壓電源供應器;其中,該奈秒脈波產生器係以200kHz和800MHz之間的一脈波重複頻率切換來自該高壓電源供應器的電壓;以及其中,該奈秒脈波產生器係以小於250ns之快速上升時間及小於250ns之快速下降時間切換來自該高壓電源供應器的電壓。
  2. 如請求項1所述之奈秒脈波產生器電路,其中,該能量回復電感器包含大於實質上為50微亨利的電感值。
  3. 如請求項1所述之奈秒脈波產生器電路,其中,該奈秒脈波產生器以實質上為400千赫茲的該脈波重複頻率切換來自該高壓電源供應器的電壓。
  4. 如請求項1所述之奈秒脈波產生器電路,其中,該奈秒脈波產生器電路提供大於5千伏特的電壓至該負載。
  5. 如請求項1所述之奈秒脈波產生器電路,其中,該負載包含一電容性負載。
  6. 如請求項1所述之奈秒脈波產生器電路,其中,該負載包含一電漿沉積室。
  7. 如請求項1所述之奈秒脈波產生器電路,其中,該能量回復電路更包含一高壓開關串聯於該第二二極體及該能量回復電感器。
  8. 如請求項7所述之奈秒脈波產生器電路,其中,該高壓開關切換大於5千伏特之電壓。
  9. 如請求項1所述之奈秒脈波產生器電路,其中,該高壓電源供應器提供具有大於1千伏特電壓的直流電源。
TW109100609A 2019-01-08 2020-01-08 奈秒脈波產生器電路 TWI783203B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962789526P 2019-01-08 2019-01-08
US201962789523P 2019-01-08 2019-01-08
US62/789,523 2019-01-08
US62/789,526 2019-01-08

Publications (2)

Publication Number Publication Date
TW202105909A TW202105909A (zh) 2021-02-01
TWI783203B true TWI783203B (zh) 2022-11-11

Family

ID=71404796

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111138507A TW202308306A (zh) 2019-01-08 2020-01-08 產生高壓脈波之方法
TW109100609A TWI783203B (zh) 2019-01-08 2020-01-08 奈秒脈波產生器電路

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111138507A TW202308306A (zh) 2019-01-08 2020-01-08 產生高壓脈波之方法

Country Status (6)

Country Link
US (2) US10796887B2 (zh)
JP (2) JP7320608B2 (zh)
KR (2) KR20210111841A (zh)
CN (1) CN113906677A (zh)
TW (2) TW202308306A (zh)
WO (1) WO2020146436A1 (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892140B2 (en) 2018-07-27 2021-01-12 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US10020800B2 (en) 2013-11-14 2018-07-10 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser with variable pulse width and pulse repetition frequency
US10978955B2 (en) 2014-02-28 2021-04-13 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US11539352B2 (en) 2013-11-14 2022-12-27 Eagle Harbor Technologies, Inc. Transformer resonant converter
US9960763B2 (en) 2013-11-14 2018-05-01 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser
US10483089B2 (en) 2014-02-28 2019-11-19 Eagle Harbor Technologies, Inc. High voltage resistive output stage circuit
US11004660B2 (en) 2018-11-30 2021-05-11 Eagle Harbor Technologies, Inc. Variable output impedance RF generator
US11430635B2 (en) 2018-07-27 2022-08-30 Eagle Harbor Technologies, Inc. Precise plasma control system
CN115378264A (zh) 2017-02-07 2022-11-22 鹰港科技有限公司 变压器谐振转换器
JP6902167B2 (ja) 2017-08-25 2021-07-14 イーグル ハーバー テクノロジーズ, インク.Eagle Harbor Technologies, Inc. ナノ秒パルスを使用する任意波形の発生
US10636626B2 (en) 2018-01-25 2020-04-28 Applied Materials, Inc. Dogbone inlet cone profile for remote plasma oxidation chamber
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
US11532457B2 (en) 2018-07-27 2022-12-20 Eagle Harbor Technologies, Inc. Precise plasma control system
US11302518B2 (en) 2018-07-27 2022-04-12 Eagle Harbor Technologies, Inc. Efficient energy recovery in a nanosecond pulser circuit
US11222767B2 (en) * 2018-07-27 2022-01-11 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
WO2020033931A1 (en) 2018-08-10 2020-02-13 Eagle Harbor Technologies, Inc. Plasma sheath control for rf plasma reactors
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US10796887B2 (en) 2019-01-08 2020-10-06 Eagle Harbor Technologies, Inc. Efficient nanosecond pulser with source and sink capability for plasma control applications
JP7451540B2 (ja) 2019-01-22 2024-03-18 アプライド マテリアルズ インコーポレイテッド パルス状電圧波形を制御するためのフィードバックループ
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
TWI778449B (zh) 2019-11-15 2022-09-21 美商鷹港科技股份有限公司 高電壓脈衝電路
US11527383B2 (en) 2019-12-24 2022-12-13 Eagle Harbor Technologies, Inc. Nanosecond pulser RF isolation for plasma systems
US11967484B2 (en) 2020-07-09 2024-04-23 Eagle Harbor Technologies, Inc. Ion current droop compensation
US11462389B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Pulsed-voltage hardware assembly for use in a plasma processing system
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
EP4268369A1 (en) * 2020-12-22 2023-11-01 Opticept Technologies AB High voltage pulse generator unit
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US20220399185A1 (en) 2021-06-09 2022-12-15 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11776788B2 (en) 2021-06-28 2023-10-03 Applied Materials, Inc. Pulsed voltage boost for substrate processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623171A (en) * 1989-09-14 1997-04-22 Hitachi Metals, Ltd. High-voltage pulse generating circuit and electrostatic recipitator containing it
US6362604B1 (en) * 1998-09-28 2002-03-26 Alpha-Omega Power Technologies, L.L.C. Electrostatic precipitator slow pulse generating circuit
US6728284B1 (en) * 1993-06-08 2004-04-27 The United States Of America As Represented By The United States Department Of Energy High power solid state laser modulator
WO2005041389A1 (ja) * 2003-10-28 2005-05-06 Ngk Insulators, Ltd. パルス発生回路
US7307362B1 (en) * 2002-02-06 2007-12-11 Joseph Yampolsky Solid-state microsecond capacitance charger for high voltage and pulsed power
US20100259956A1 (en) * 2009-04-11 2010-10-14 Innosys, Inc. Dimmable Power Supply

Family Cites Families (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070589A (en) 1976-10-29 1978-01-24 The Singer Company High speed-high voltage switching with low power consumption
US4438331A (en) * 1981-12-02 1984-03-20 Power Spectra, Inc. Bulk semiconductor switch
US4504895A (en) 1982-11-03 1985-03-12 General Electric Company Regulated dc-dc converter using a resonating transformer
GB2164513A (en) 1984-09-01 1986-03-19 Marconi Co Ltd A pulse generator
US4885074A (en) 1987-02-24 1989-12-05 International Business Machines Corporation Plasma reactor having segmented electrodes
JPH0316189A (ja) 1989-03-30 1991-01-24 Hitachi Metals Ltd 高電圧パルス発生回路およびこれを用いた放電励起レーザならびに加速器
US4924191A (en) 1989-04-18 1990-05-08 Erbtec Engineering, Inc. Amplifier having digital bias control apparatus
US4992919A (en) 1989-12-29 1991-02-12 Lee Chu Quon Parallel resonant converter with zero voltage switching
US5118969A (en) 1990-02-09 1992-06-02 General Atomics Multiple pulse generator using saturable inductor
US5140510A (en) 1991-03-04 1992-08-18 Motorola, Inc. Constant frequency power converter
FR2674385A1 (fr) 1991-03-22 1992-09-25 Alsthom Gec Dispositif d'isolement galvanique pour signaux electriques continus ou susceptibles de comporter une composante continue.
US5325021A (en) 1992-04-09 1994-06-28 Clemson University Radio-frequency powered glow discharge device and method with high voltage interface
US5418707A (en) 1992-04-13 1995-05-23 The United States Of America As Represented By The United States Department Of Energy High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs
US6369576B1 (en) 1992-07-08 2002-04-09 Texas Instruments Incorporated Battery pack with monitoring function for use in a battery charging system
JP3366058B2 (ja) 1992-10-07 2003-01-14 浩 坂本 電源装置
US5313481A (en) 1993-09-29 1994-05-17 The United States Of America As Represented By The United States Department Of Energy Copper laser modulator driving assembly including a magnetic compression laser
US5392043A (en) 1993-10-04 1995-02-21 General Electric Company Double-rate sampled signal integrator
US5451846A (en) 1993-12-14 1995-09-19 Aeg Automation Systems Corporation Low current compensation control for thyristor armature power supply
CA2186899C (en) 1995-02-17 2010-04-20 Daniel L. Birx Pulse power generating circuit with energy recovery
US5656123A (en) 1995-06-07 1997-08-12 Varian Associates, Inc. Dual-frequency capacitively-coupled plasma reactor for materials processing
WO1997013266A2 (en) 1995-06-19 1997-04-10 The University Of Tennessee Research Corporation Discharge methods and electrodes for generating plasmas at one atmosphere of pressure, and materials treated therewith
JP3373704B2 (ja) 1995-08-25 2003-02-04 三菱電機株式会社 絶縁ゲートトランジスタ駆動回路
JPH09129621A (ja) 1995-09-28 1997-05-16 Applied Materials Inc パルス波形バイアス電力
US6253704B1 (en) 1995-10-13 2001-07-03 Mattson Technology, Inc. Apparatus and method for pulsed plasma processing of a semiconductor substrate
AU7328696A (en) 1995-11-15 1997-06-05 Vladimir M. Efanov Pulse generating circuits using drift step recovery devices
IT1289479B1 (it) 1996-01-26 1998-10-15 Schlafhorst & Co W Disposizione circuitale di trasformazione di tensione per la alimentazione energetica di un utilizzatore elettrico di elevata
US5968377A (en) 1996-05-24 1999-10-19 Sekisui Chemical Co., Ltd. Treatment method in glow-discharge plasma and apparatus thereof
US6865423B2 (en) 1996-06-13 2005-03-08 The Victoria University Of Manchester Stimulation of muscles
US5836943A (en) 1996-08-23 1998-11-17 Team Medical, L.L.C. Electrosurgical generator
US5930125A (en) 1996-08-28 1999-07-27 Siemens Medical Systems, Inc. Compact solid state klystron power supply
SE9604814D0 (sv) 1996-12-20 1996-12-20 Scanditronix Medical Ab Power modulator
DE69727965T3 (de) 1996-12-20 2012-08-02 Scandinova Systems Ab Leistungsmodulator
DE69841671D1 (de) * 1997-02-20 2010-07-01 Shibaura Mechatronics Corp Stromversorgungseinheit für sputtervorrichtung
CN1103655C (zh) 1997-10-15 2003-03-26 东京电子株式会社 应用等离子体密度梯度来产生粒子流的装置和方法
CA2415986A1 (en) 1998-06-03 1999-12-09 Neurocontrol Corporation Percutaneous intramuscular stimulation system
GB2341288B (en) 1998-06-23 2003-12-10 Eev Ltd Switching arrangement
US6066901A (en) 1998-09-17 2000-05-23 First Point Scientific, Inc. Modulator for generating high voltage pulses
US6738275B1 (en) 1999-11-10 2004-05-18 Electromed Internationale Ltee. High-voltage x-ray generator
US6674836B2 (en) 2000-01-17 2004-01-06 Kabushiki Kaisha Toshiba X-ray computer tomography apparatus
JP2001238470A (ja) 2000-02-21 2001-08-31 Ngk Insulators Ltd パルス電力発生用スイッチ回路
US6205074B1 (en) 2000-02-29 2001-03-20 Advanced Micro Devices, Inc. Temperature-compensated bias generator
US6233161B1 (en) * 2000-03-02 2001-05-15 Power Integrations, Inc. Switched mode power supply responsive to voltage across energy transfer element
US6480399B2 (en) * 2000-03-02 2002-11-12 Power Integrations, Inc. Switched mode power supply responsive to current derived from voltage across energy transfer element input
US6831377B2 (en) 2000-05-03 2004-12-14 University Of Southern California Repetitive power pulse generator with fast rising pulse
KR100394171B1 (ko) 2000-05-30 2003-08-09 고범종 전력증폭기의 출력단 보호회로
US6483731B1 (en) 2000-07-31 2002-11-19 Vanner, Inc. Alexander topology resonance energy conversion and inversion circuit utilizing a series capacitance multi-voltage resonance section
US7223676B2 (en) 2002-06-05 2007-05-29 Applied Materials, Inc. Very low temperature CVD process with independently variable conformality, stress and composition of the CVD layer
US6939434B2 (en) 2000-08-11 2005-09-06 Applied Materials, Inc. Externally excited torroidal plasma source with magnetic control of ion distribution
US7037813B2 (en) 2000-08-11 2006-05-02 Applied Materials, Inc. Plasma immersion ion implantation process using a capacitively coupled plasma source having low dissociation and low minimum plasma voltage
US6359542B1 (en) 2000-08-25 2002-03-19 Motorola, Inc. Securement for transformer core utilized in a transformer power supply module and method to assemble same
JP4612947B2 (ja) 2000-09-29 2011-01-12 日立プラズマディスプレイ株式会社 容量性負荷駆動回路およびそれを用いたプラズマディスプレイ装置
JP4565773B2 (ja) 2001-05-31 2010-10-20 日本碍子株式会社 高電圧パルス発生回路
US6529387B2 (en) 2001-06-06 2003-03-04 Siemens Medical Solutions Usa. Inc. Unified power architecture
GB2378065B (en) 2001-06-15 2004-09-15 Marconi Applied Technologies High voltage switching apparatus
EP1278294B9 (en) 2001-07-16 2010-09-01 CPAutomation S.A. An electrical power supply suitable in particular for dc plasma processing
US6741120B1 (en) 2001-08-07 2004-05-25 Globespanvirata, Inc. Low power active filter and method
EP1427996B1 (de) 2001-09-19 2010-11-17 Micro-Epsilon Messtechnik GmbH & Co. KG Schaltung zur messung von wegstrecken
US6855906B2 (en) 2001-10-16 2005-02-15 Adam Alexander Brailove Induction plasma reactor
WO2003034383A2 (en) 2001-10-19 2003-04-24 Clare Micronix Integrated Systems, Inc. Drive circuit for adaptive control of precharge current and method therefor
TWI282658B (en) 2001-10-23 2007-06-11 Delta Electronics Inc A parallel connection system of DC/AC voltage converter
US6741484B2 (en) 2002-01-04 2004-05-25 Scandinova Ab Power modulator having at least one pulse generating module; multiple cores; and primary windings parallel-connected such that each pulse generating module drives all cores
US6768621B2 (en) 2002-01-18 2004-07-27 Solectria Corporation Contactor feedback and precharge/discharge circuit
US6975098B2 (en) 2002-01-31 2005-12-13 Vlt, Inc. Factorized power architecture with point of load sine amplitude converters
JP2010182698A (ja) 2002-04-10 2010-08-19 Cymer Inc 極紫外線光源
US7354501B2 (en) * 2002-05-17 2008-04-08 Applied Materials, Inc. Upper chamber for high density plasma CVD
US7477529B2 (en) * 2002-11-01 2009-01-13 Honeywell International Inc. High-voltage power supply
US7425203B2 (en) 2002-11-15 2008-09-16 Hill-Rom Services, Inc. Oscillatory chest wall compression device with improved air pulse generator with improved user interface
US20040178752A1 (en) 2002-12-13 2004-09-16 International Rectifier Corporation Gate driver ASIC for an automotive starter/alternator
JP2004222485A (ja) 2002-12-27 2004-08-05 Sony Corp スイッチング電源回路
DE10306809A1 (de) 2003-02-18 2004-09-02 Siemens Ag Betrieb einer Halbbrücke, insbesondere einer Feldeffekttransistor-Halbbrücke
FR2852748B1 (fr) 2003-03-18 2005-06-03 Hacheur serie a commutation synchrone et faibles pertes
KR100547265B1 (ko) 2003-03-31 2006-01-26 모승기 변조 기능을 갖는 펄스 자기 자극 생성 장치 및 방법
US7305065B2 (en) 2003-05-15 2007-12-04 Hitachi Medical Corporation X-ray generator with voltage doubler
US7247218B2 (en) 2003-05-16 2007-07-24 Applied Materials, Inc. Plasma density, energy and etch rate measurements at bias power input and real time feedback control of plasma source and bias power
JP4392746B2 (ja) 2003-05-23 2010-01-06 株式会社日立メディコ X線高電圧装置
EP1515430A1 (en) 2003-09-15 2005-03-16 IEE INTERNATIONAL ELECTRONICS &amp; ENGINEERING S.A. Mixer for the conversion of radio frequency signals into baseband signals
US7062310B2 (en) 2003-10-06 2006-06-13 Tyco Electronics Corporation Catheter tip electrode assembly and method for fabricating same
WO2005038874A2 (en) 2003-10-14 2005-04-28 Imago Scientific Instruments Corporation Short duration variable amplitude high voltage pulse generator
GB2409115B (en) 2003-12-09 2006-11-01 Nujira Ltd Transformer based voltage supply
US7379309B2 (en) 2004-01-14 2008-05-27 Vanner, Inc. High-frequency DC-DC converter control
US7180082B1 (en) 2004-02-19 2007-02-20 The United States Of America As Represented By The United States Department Of Energy Method for plasma formation for extreme ultraviolet lithography-theta pinch
JP2005250279A (ja) 2004-03-05 2005-09-15 Fujinon Corp リモコン雲台装置
US7492138B2 (en) 2004-04-06 2009-02-17 International Rectifier Corporation Synchronous rectifier circuits and method for utilizing common source inductance of the synchronous FET
JP2005303099A (ja) 2004-04-14 2005-10-27 Hitachi High-Technologies Corp プラズマ処理装置およびプラズマ処理方法
US7396746B2 (en) 2004-05-24 2008-07-08 Varian Semiconductor Equipment Associates, Inc. Methods for stable and repeatable ion implantation
US7307475B2 (en) * 2004-05-28 2007-12-11 Ixys Corporation RF generator with voltage regulator
US7307375B2 (en) 2004-07-09 2007-12-11 Energetiq Technology Inc. Inductively-driven plasma light source
US7948185B2 (en) 2004-07-09 2011-05-24 Energetiq Technology Inc. Inductively-driven plasma light source
JP2006042410A (ja) 2004-07-22 2006-02-09 Toshiba Corp スナバ装置
WO2006015125A2 (en) 2004-07-28 2006-02-09 BOARD OF REGENTS OF THE UNIVERSITY & COMMUNITY COLLEGE SYSTEM OF NEVADA on Behalf OF THE UNIVERSITY OF NEVADA Electrode-less discharge extreme ultraviolet light source
KR100649508B1 (ko) 2005-02-02 2006-11-27 권오영 하이브리드 전원시스템
EP1864313B1 (de) 2005-03-24 2012-12-19 Oerlikon Trading AG, Trübbach Vakuumplasmagenerator
CN101156503A (zh) 2005-04-04 2008-04-02 松下电器产业株式会社 等离子体处理方法和***
US7767433B2 (en) 2005-04-22 2010-08-03 University Of Southern California High voltage nanosecond pulse generator using fast recovery diodes for cell electro-manipulation
EP1878107B1 (en) 2005-04-26 2012-08-15 Koninklijke Philips Electronics N.V. Resonant dc/dc converter with zero current switching
CN101053283A (zh) 2005-05-13 2007-10-10 松下电器产业株式会社 电介质阻挡放电灯点灯装置
US7989987B2 (en) 2005-06-08 2011-08-02 Mcdonald Kenneth Fox Photon initiated marxed modulators
US20070114981A1 (en) 2005-11-21 2007-05-24 Square D Company Switching power supply system with pre-regulator for circuit or personnel protection devices
CA2635629A1 (en) 2006-01-23 2007-07-26 Audera International Sales Inc. Power supply for limited power sources and audio amplifier using power supply
DE102006024938B3 (de) 2006-05-23 2007-08-30 Ltb Lasertechnik Berlin Gmbh Hochleistungsschaltmodul und Verfahren zur Erzeugung von Schaltsynchronität bei einem Hochleistungsschaltmodul
US7439716B2 (en) 2006-09-12 2008-10-21 Semiconductor Components Industries, L.L.C. DC-DC converter and method
KR100820171B1 (ko) 2006-11-02 2008-04-07 한국전기연구원 반도체 스위치를 이용한 펄스전원장치
WO2008118393A1 (en) 2007-03-23 2008-10-02 University Of Southern California Compact subnanosecond high voltage pulse generation system for cell electro-manipulation
EP2097920B1 (de) 2007-07-23 2017-08-09 TRUMPF Hüttinger GmbH + Co. KG Plasmaversorgungseinrichtung
US7817396B2 (en) 2007-10-25 2010-10-19 General Electric Company High efficiency and high bandwidth plasma generator system for flow control and noise reduction
US8754589B2 (en) 2008-04-14 2014-06-17 Digtial Lumens Incorporated Power management unit with temperature protection
EP2294693B1 (en) 2008-05-23 2018-08-08 University of Southern California Nanosecond pulse generator
WO2009146439A1 (en) 2008-05-30 2009-12-03 Colorado State University Research Foundation System, method and apparatus for generating plasma
JP4561886B2 (ja) 2008-06-27 2010-10-13 ソニー株式会社 電力伝送装置、給電装置及び受電装置
ATE550670T1 (de) 2008-07-11 2012-04-15 Lem Liaisons Electron Mec Sensor für eine hochspannungsumgebung
US8259476B2 (en) 2008-07-29 2012-09-04 Shmuel Ben-Yaakov Self-adjusting switched-capacitor converter with multiple target voltages and target voltage ratios
US8436602B2 (en) 2008-08-15 2013-05-07 Technology Reasearch Corporation Voltage compensation circuit
EP2376188A1 (en) 2008-12-19 2011-10-19 Neurodan A/S Bursts of electrical pulses in the treatment of pelvic disorders by electrical nerve stimulation
CN101534071B (zh) 2009-04-09 2012-10-24 复旦大学 全固态高压纳秒脉冲电源
US11615941B2 (en) 2009-05-01 2023-03-28 Advanced Energy Industries, Inc. System, method, and apparatus for controlling ion energy distribution in plasma processing systems
US9435029B2 (en) 2010-08-29 2016-09-06 Advanced Energy Industries, Inc. Wafer chucking system for advanced plasma ion energy processing systems
US9287092B2 (en) 2009-05-01 2016-03-15 Advanced Energy Industries, Inc. Method and apparatus for controlling ion energy distribution
US9767988B2 (en) 2010-08-29 2017-09-19 Advanced Energy Industries, Inc. Method of controlling the switched mode ion energy distribution system
US9287086B2 (en) 2010-04-26 2016-03-15 Advanced Energy Industries, Inc. System, method and apparatus for controlling ion energy distribution
US8199545B2 (en) 2009-05-05 2012-06-12 Hamilton Sundstrand Corporation Power-conversion control system including sliding mode controller and cycloconverter
CN102460357B (zh) 2009-05-29 2016-04-27 3M创新有限公司 高速多点触控触摸装置及其控制器
US8222936B2 (en) 2009-09-13 2012-07-17 International Business Machines Corporation Phase and frequency detector with output proportional to frequency difference
US8450985B2 (en) * 2009-09-16 2013-05-28 Solarbridge Technologies, Inc. Energy recovery circuit
CA2779747C (en) * 2009-11-16 2017-11-07 Dh Technologies Development Pte. Ltd. Apparatus for providing power to a multipole in a mass spectrometer
JP2011114429A (ja) 2009-11-25 2011-06-09 Ngk Insulators Ltd パルス発生回路
JP2011151643A (ja) 2010-01-22 2011-08-04 Ngk Insulators Ltd パルス発生回路
US8481905B2 (en) 2010-02-17 2013-07-09 Accuflux Inc. Shadow band assembly for use with a pyranometer and a shadow band pyranometer incorporating same
US8861681B2 (en) 2010-12-17 2014-10-14 General Electric Company Method and system for active resonant voltage switching
US8552902B2 (en) 2011-05-04 2013-10-08 Sabertek Methods and apparatus for suppression of low-frequency noise and drift in wireless sensors or receivers
GB2492597B (en) 2011-07-08 2016-04-06 E2V Tech Uk Ltd Transformer with an inverter system and an inverter system comprising the transformer
KR20130011812A (ko) 2011-07-22 2013-01-30 엘에스산전 주식회사 Igbt 구동 방법
TWI581304B (zh) 2011-07-27 2017-05-01 日立全球先端科技股份有限公司 Plasma etching apparatus and dry etching method
US8531822B2 (en) 2011-07-29 2013-09-10 Hamilton Sundstrand Corporation Cooling and controlling electronics
US8879190B1 (en) 2011-08-08 2014-11-04 Marvell International Ltd. Method and apparatus for initial self-servo writing
GB2494116B (en) * 2011-08-26 2013-08-07 Global Inkjet Systems Ltd Method of driving a capacitive load and drive circuit therefor
JP2013069602A (ja) 2011-09-26 2013-04-18 Tokyo Electron Ltd マイクロ波処理装置および被処理体の処理方法
EP2587518B1 (en) * 2011-10-31 2018-12-19 IHI Hauzer Techno Coating B.V. Apparatus and Method for depositing Hydrogen-free ta C Layers on Workpieces and Workpiece
GB2496163B (en) 2011-11-03 2015-11-11 Enecsys Ltd Transformer construction
US8963377B2 (en) 2012-01-09 2015-02-24 Eagle Harbor Technologies Inc. Efficient IGBT switching
PL2677652T3 (pl) 2012-02-23 2017-04-28 Kyosan Electric Mfg. Co., Ltd. Falownik prądu i sposób sterowania falownikiem prądu
TWI579751B (zh) 2012-03-16 2017-04-21 原相科技股份有限公司 可偵測位移之光學觸控裝置及光學觸控方法
US9088207B2 (en) 2012-06-04 2015-07-21 Stangenes Industries, Inc. Long pulse droop compensator
JP5534365B2 (ja) 2012-06-18 2014-06-25 株式会社京三製作所 高周波電力供給装置、及び反射波電力制御方法
US10112251B2 (en) 2012-07-23 2018-10-30 Illinois Tool Works Inc. Method and apparatus for providing welding type power
JP2014036502A (ja) 2012-08-08 2014-02-24 Ngk Insulators Ltd パルス発生回路
WO2014036000A1 (en) 2012-08-28 2014-03-06 Advanced Energy Industries, Inc. Wide dynamic range ion energy bias control; fast ion energy switching; ion energy control and a pulsed bias supply; and a virtual front panel
US20140077611A1 (en) 2012-09-14 2014-03-20 Henry Todd Young Capacitor bank, laminated bus, and power supply apparatus
US20140109886A1 (en) 2012-10-22 2014-04-24 Transient Plasma Systems, Inc. Pulsed power systems and methods
US9535440B2 (en) 2012-10-30 2017-01-03 Samsung Display Co., Ltd. DC-DC converter and organic light emitting display device using the same
US9067788B1 (en) 2012-11-01 2015-06-30 Rick B. Spielman Apparatus for highly efficient cold-plasma ozone production
KR101444734B1 (ko) 2012-11-26 2014-09-26 한국전기연구원 능동 전압 드룹 제어형 펄스 전원 시스템
US8773184B1 (en) 2013-03-13 2014-07-08 Futurewei Technologies, Inc. Fully integrated differential LC PLL with switched capacitor loop filter
US20140263181A1 (en) 2013-03-15 2014-09-18 Jaeyoung Park Method and apparatus for generating highly repetitive pulsed plasmas
US9495563B2 (en) 2013-06-04 2016-11-15 Eagle Harbor Technologies, Inc. Analog integrator system and method
CN103458600B (zh) 2013-07-31 2016-07-13 华中科技大学 一种产生大气压弥散放电非平衡等离子体的***
US9655221B2 (en) 2013-08-19 2017-05-16 Eagle Harbor Technologies, Inc. High frequency, repetitive, compact toroid-generation for radiation production
LT2866354T (lt) 2013-10-25 2019-10-10 Vito Nv (Vlaamse Instelling Voor Technologisch Onderzoek Nv) Būdas ir sistema energijos bei duomenų impulsams perduoti per magistralę
US10892140B2 (en) 2018-07-27 2021-01-12 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US11539352B2 (en) 2013-11-14 2022-12-27 Eagle Harbor Technologies, Inc. Transformer resonant converter
US10020800B2 (en) 2013-11-14 2018-07-10 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser with variable pulse width and pulse repetition frequency
US10978955B2 (en) 2014-02-28 2021-04-13 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
US9960763B2 (en) 2013-11-14 2018-05-01 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser
JP5983587B2 (ja) 2013-12-04 2016-08-31 Tdk株式会社 電子回路装置
US20160220670A1 (en) 2013-12-04 2016-08-04 EP Technologies LLC Boosting the efficacy of dna-based vaccines with non-thermal dbd plasma
DE102013227188A1 (de) 2013-12-27 2015-07-02 Federal-Mogul Wiesbaden Gmbh Selbstschmierende thermoplastische Schichten mit Zusatz von PTFE mit polymodalem Molekulargewicht
US10790816B2 (en) 2014-01-27 2020-09-29 Eagle Harbor Technologies, Inc. Solid-state replacement for tube-based modulators
WO2015131199A1 (en) 2014-02-28 2015-09-03 Eagle Harbor Technologies, Inc. Galvanically isolated output variable pulse generator disclosure
US10483089B2 (en) 2014-02-28 2019-11-19 Eagle Harbor Technologies, Inc. High voltage resistive output stage circuit
US9525274B2 (en) 2014-04-29 2016-12-20 Federal-Mogul Ignition Company Distribution of corona igniter power signal
WO2015174123A1 (ja) 2014-05-15 2015-11-19 三菱電機株式会社 電力変換装置
CN104065253B (zh) 2014-06-25 2017-12-19 台达电子企业管理(上海)有限公司 电力变换装置、驱动装置及驱动方法
WO2016007960A1 (en) 2014-07-11 2016-01-14 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser with variable pulse width and pulse repetition frequency
RS63672B1 (sr) 2014-10-30 2022-11-30 Tae Technologies Inc Sistemi za formiranje i održavanje frc visokih performansi
US9084334B1 (en) 2014-11-10 2015-07-14 Illinois Tool Works Inc. Balanced barrier discharge neutralization in variable pressure environments
US9525412B2 (en) 2015-02-18 2016-12-20 Reno Technologies, Inc. Switching circuit
US9306533B1 (en) 2015-02-20 2016-04-05 Reno Technologies, Inc. RF impedance matching network
RU2589240C1 (ru) 2015-04-20 2016-07-10 Михаил Владимирович Ефанов Генератор импульсов
US11542927B2 (en) 2015-05-04 2023-01-03 Eagle Harbor Technologies, Inc. Low pressure dielectric barrier discharge plasma thruster
US10650308B2 (en) 2015-09-23 2020-05-12 Politecnico Di Milano Electronic neuromorphic system, synaptic circuit with resistive switching memory and method of performing spike-timing dependent plasticity
US10284018B2 (en) 2015-10-30 2019-05-07 Shenzhen Yichong Wirless Power Technology Co. Ltd System, apparatus and method for adaptive tuning for wireless power transfer
CN115410804A (zh) 2015-11-30 2022-11-29 鹰港科技有限公司 高压变压器
US11482404B2 (en) 2015-12-21 2022-10-25 Ionquest Corp. Electrically and magnetically enhanced ionized physical vapor deposition unbalanced sputtering source
WO2018186901A1 (en) 2017-04-07 2018-10-11 IonQuest LLC High power resonance pulse ac hedp sputtering source and method for material processing
JP6510679B2 (ja) * 2016-01-22 2019-05-08 Sppテクノロジーズ株式会社 プラズマ制御装置
US11004660B2 (en) 2018-11-30 2021-05-11 Eagle Harbor Technologies, Inc. Variable output impedance RF generator
US10320373B2 (en) 2016-10-11 2019-06-11 Eagle Harbor Technologies, Inc. RF production using nonlinear semiconductor junction capacitance
US9947517B1 (en) 2016-12-16 2018-04-17 Applied Materials, Inc. Adjustable extended electrode for edge uniformity control
US10373804B2 (en) 2017-02-03 2019-08-06 Applied Materials, Inc. System for tunable workpiece biasing in a plasma reactor
CN115378264A (zh) 2017-02-07 2022-11-22 鹰港科技有限公司 变压器谐振转换器
EP3832691A1 (en) 2017-03-31 2021-06-09 Eagle Harbor Technologies, Inc. Method of plasma processing a substrate and plasma processing chamber
WO2018203153A1 (en) * 2017-04-30 2018-11-08 King Abdullah University Of Science And Technology Auto-driven plasma actuator for transition from deflagration to detonation combustion regime and method
JP6902167B2 (ja) 2017-08-25 2021-07-14 イーグル ハーバー テクノロジーズ, インク.Eagle Harbor Technologies, Inc. ナノ秒パルスを使用する任意波形の発生
US20190088518A1 (en) * 2017-09-20 2019-03-21 Applied Materials, Inc. Substrate support with cooled and conducting pins
WO2019099937A1 (en) 2017-11-17 2019-05-23 Advanced Energy Industries, Inc. Improved application of modulating supplies in a plasma processing system
NL2020126B1 (en) * 2017-12-19 2019-06-26 Plasmacure B V EMC control for pulsed high voltage source of a plasma device for medical treatment
WO2019143473A1 (en) 2018-01-22 2019-07-25 Applied Materials, Inc. Processing with powered edge ring
JP7061918B2 (ja) 2018-04-23 2022-05-02 東京エレクトロン株式会社 プラズマエッチング方法及びプラズマ処理装置
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
US10607814B2 (en) 2018-08-10 2020-03-31 Eagle Harbor Technologies, Inc. High voltage switch with isolated power
US10796887B2 (en) 2019-01-08 2020-10-06 Eagle Harbor Technologies, Inc. Efficient nanosecond pulser with source and sink capability for plasma control applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623171A (en) * 1989-09-14 1997-04-22 Hitachi Metals, Ltd. High-voltage pulse generating circuit and electrostatic recipitator containing it
US6728284B1 (en) * 1993-06-08 2004-04-27 The United States Of America As Represented By The United States Department Of Energy High power solid state laser modulator
US6362604B1 (en) * 1998-09-28 2002-03-26 Alpha-Omega Power Technologies, L.L.C. Electrostatic precipitator slow pulse generating circuit
US7307362B1 (en) * 2002-02-06 2007-12-11 Joseph Yampolsky Solid-state microsecond capacitance charger for high voltage and pulsed power
WO2005041389A1 (ja) * 2003-10-28 2005-05-06 Ngk Insulators, Ltd. パルス発生回路
US20100259956A1 (en) * 2009-04-11 2010-10-14 Innosys, Inc. Dimmable Power Supply

Also Published As

Publication number Publication date
JP2022516965A (ja) 2022-03-03
US20200219702A1 (en) 2020-07-09
US20210013011A1 (en) 2021-01-14
JP7320608B2 (ja) 2023-08-03
TW202105909A (zh) 2021-02-01
WO2020146436A1 (en) 2020-07-16
JP2023145583A (ja) 2023-10-11
KR20240028538A (ko) 2024-03-05
KR20210111841A (ko) 2021-09-13
WO2020146436A9 (en) 2020-09-17
US10796887B2 (en) 2020-10-06
US11646176B2 (en) 2023-05-09
CN113906677A (zh) 2022-01-07
TW202308306A (zh) 2023-02-16

Similar Documents

Publication Publication Date Title
TWI783203B (zh) 奈秒脈波產生器電路
KR102572562B1 (ko) 나노초 펄서 바이어스 보상
KR102614364B1 (ko) 나노세컨드 펄서 바이어스 보상 및 수정
US11631573B2 (en) High voltage resistive output stage circuit
US10978955B2 (en) Nanosecond pulser bias compensation
US11222767B2 (en) Nanosecond pulser bias compensation
KR102499709B1 (ko) RF 플라즈마 반응기용 플라즈마 시스(sheath) 제어
CN114762251A (zh) 具有能量恢复的非线性传输线高电压脉冲锐化
CN117200759A (zh) 高压电阻性输出级电路
TWI810604B (zh) 電源、半導體處理系統及具離子電流下垂補償之脈衝產生器
JP2023093562A (ja) 精密プラズマ制御システム
CN116636144A (zh) 离子电流下降补偿
CN112514254A (zh) 空间可变晶圆偏置功率***