TWI742851B - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
TWI742851B
TWI742851B TW109131749A TW109131749A TWI742851B TW I742851 B TWI742851 B TW I742851B TW 109131749 A TW109131749 A TW 109131749A TW 109131749 A TW109131749 A TW 109131749A TW I742851 B TWI742851 B TW I742851B
Authority
TW
Taiwan
Prior art keywords
charging
switch
power converter
discharging
inductor
Prior art date
Application number
TW109131749A
Other languages
Chinese (zh)
Other versions
TW202141911A (en
Inventor
劉國基
白忠龍
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to US17/210,434 priority Critical patent/US11418112B2/en
Application granted granted Critical
Publication of TWI742851B publication Critical patent/TWI742851B/en
Publication of TW202141911A publication Critical patent/TW202141911A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The present invention provides a power converter including: a plurality of capacitors; a plurality of switches correspondingly coupled to the plural capacitors for switching electrical connections of the corresponding capacitors according to corresponding operation signals respectively; at least one charging inductor correspondingly connected to at least one of the plural capacitors in series; and at least one discharging inductor correspondingly connected to at least one of the plural capacitors in series. In a charging process, the plural capacitors are electrically connected to the at least one charging inductor in series between an input voltage and an output voltage by switching the corresponding switches to form a charging path; and in a discharging process, each of the capacitors is electrically connected to the corresponding discharging inductor in series between the output voltage and a ground level by switching the corresponding switches to form a plurality of discharging paths. The charging processes and the discharging processes are arranged alternatively and repeatedly in sequence.

Description

電源轉換器Power converter

本發明係有關於一種電源轉換器,特定而言係有關於一種藉由切換電容與電感之電連接關係而將輸入電壓轉換為輸出電壓之電源轉換器。The present invention relates to a power converter, in particular to a power converter that converts an input voltage into an output voltage by switching the electrical connection relationship between a capacitor and an inductor.

圖1係顯示習知的電源轉換器。於充電操作中,開關Q1、Q3、Q5、Q8、Q9係導通,開關Q2、Q4、Q6、Q7、Q10係不導通,使得電容C1串聯電感L1於輸入電壓VIN及輸出電壓VOUT之間,且電容C2串聯電容C3及電感L2於接地電位及輸出電壓VOUT之間。於放電操作中,開關Q2、Q4、Q6、Q7、Q10係導通,開關Q1、Q3、Q5、Q8、Q9係不導通,使得電感L1串聯電容C1、電容C2於接地電位及輸出電壓VOUT之間,且電感L2串聯電容C3於接地電位及輸出電壓VOUT之間。此習知的電源轉換器之電容需要耐較高的額定電壓,例如電容C1的直流偏壓是輸出電壓的3倍Vc1=3VOUT、電容C2的直流偏壓是輸出電壓的2倍Vc2=2VOUT、電容C3的直流偏壓與輸出電壓相當Vc3=VOUT,因為電容之直流偏壓相對較高,故此習知電源轉換器需要使用具有較大體積的電容。此外,電容的電容值通常會隨著直流偏壓的上升而降低,當輸入電壓的範圍是在36V及76V之間時,電容C1的直流偏壓範圍會是在27V及57V之間,由於直流偏壓的變化範圍較廣,故此習知電源轉換器之電容值變化相當大,其諧振頻率也會隨著電容的變化而改變。如此會造成較大的切換電源損耗並且需要複雜的控制來改變電源轉換效率。再者,此習知電源轉換器之輸入電壓VIN與輸出電壓VOUT之電壓轉換比率僅可為4:1或2:1,並無法進行3:1的電壓轉換比率。Figure 1 shows a conventional power converter. During the charging operation, the switches Q1, Q3, Q5, Q8, and Q9 are turned on, and the switches Q2, Q4, Q6, Q7, and Q10 are not turned on, so that the capacitor C1 is connected in series with the inductor L1 between the input voltage VIN and the output voltage VOUT, and The capacitor C2 is connected in series with the capacitor C3 and the inductor L2 between the ground potential and the output voltage VOUT. In the discharging operation, the switches Q2, Q4, Q6, Q7, Q10 are turned on, and the switches Q1, Q3, Q5, Q8, Q9 are not turned on, so that the inductor L1 is connected in series with the capacitor C1 and the capacitor C2 between the ground potential and the output voltage VOUT , And the inductor L2 is connected in series with the capacitor C3 between the ground potential and the output voltage VOUT. The capacitor of this conventional power converter needs to withstand a higher rated voltage. For example, the DC bias of the capacitor C1 is 3 times the output voltage Vc1=3VOUT, and the DC bias of the capacitor C2 is 2 times the output voltage Vc2=2VOUT, The DC bias voltage of the capacitor C3 is equivalent to the output voltage Vc3=VOUT. Because the DC bias voltage of the capacitor is relatively high, the conventional power converter needs to use a capacitor with a larger volume. In addition, the capacitance value of the capacitor usually decreases with the increase of the DC bias voltage. When the input voltage range is between 36V and 76V, the DC bias voltage range of the capacitor C1 will be between 27V and 57V. The bias voltage has a wide variation range. Therefore, the capacitance value of the conventional power converter varies greatly, and its resonant frequency also changes with the variation of the capacitance. This will cause a large switching power loss and require complex control to change the power conversion efficiency. Furthermore, the voltage conversion ratio between the input voltage VIN and the output voltage VOUT of the conventional power converter can only be 4:1 or 2:1, and a 3:1 voltage conversion ratio cannot be performed.

圖2係顯示另一習知的電源轉換器,其為上述習知電源轉換器的交錯式電源轉換器。於第一充電操作中,開關Q1、Q3、Q5、Q8、Q9係導通,開關Q2、Q4、Q6、Q7、Q10係不導通,使得電容C1串聯電感L1於輸入電壓Vin及輸出電壓Vout之間,且電容C2串聯電容C3、電感L2於接地電位及輸出電壓Vout之間。於第一放電操作中,開關Q2、Q4、Q6、Q7、Q10係導通,開關Q1、Q3、Q5、Q8、Q9係不導通,使得電感L1串聯電容C1、電容C2於接地電位及輸出電壓Vout之間,且電感L2串聯電容C3於接地電位及輸出電壓Vout之間。於第二充電操作中,開關Q11、Q13、Q15、Q18、Q19係導通,開關Q12、Q14、Q16、Q17、Q20係不導通,使得電容C4串聯電感L3於輸入電壓Vin及輸出電壓Vout之間,且電容C5串聯電容C6、電感L4於接地電位及輸出電壓Vout之間。於第二放電操作中,開關Q12、Q14、Q16、Q17、Q20係導通,開關Q11、Q13、Q15、Q18、Q19係不導通,使得電感L3串聯電容C4、電容C5於接地電位及輸出電壓Vout之間,且電感L4串聯電容C6於接地電位及輸出電壓Vout之間。第一充電操作與第二放電操作係同時進行,第一放電操作與第二充電操作同時進行。與圖1所示之電源轉換器相同,此習知電源轉換器之電容之直流偏壓較大,故亦需要較高的額定電壓及較大體積的電容。此外,電容值變化量會造成其諧振頻率的改變並導致較高的切換電源損耗。故此習知電源轉換器需要複雜的控制來改變電源轉換效率。FIG. 2 shows another conventional power converter, which is an interleaved power converter of the above-mentioned conventional power converter. In the first charging operation, the switches Q1, Q3, Q5, Q8, and Q9 are turned on, and the switches Q2, Q4, Q6, Q7, and Q10 are not turned on, so that the capacitor C1 is connected in series with the inductor L1 between the input voltage Vin and the output voltage Vout , And the capacitor C2 is connected in series with the capacitor C3 and the inductor L2 between the ground potential and the output voltage Vout. In the first discharging operation, the switches Q2, Q4, Q6, Q7, and Q10 are turned on, and the switches Q1, Q3, Q5, Q8, and Q9 are not turned on, so that the inductor L1 is connected in series with the capacitor C1 and the capacitor C2 at the ground potential and the output voltage Vout The inductor L2 is connected in series with the capacitor C3 between the ground potential and the output voltage Vout. In the second charging operation, the switches Q11, Q13, Q15, Q18, Q19 are turned on, and the switches Q12, Q14, Q16, Q17, Q20 are not turned on, so that the capacitor C4 is connected in series with the inductor L3 between the input voltage Vin and the output voltage Vout , And the capacitor C5 is connected in series with the capacitor C6 and the inductor L4 between the ground potential and the output voltage Vout. In the second discharging operation, the switches Q12, Q14, Q16, Q17, Q20 are turned on, and the switches Q11, Q13, Q15, Q18, Q19 are not turned on, so that the inductor L3 is connected in series with the capacitor C4 and the capacitor C5 at the ground potential and the output voltage Vout Between the ground potential and the output voltage Vout, the inductor L4 is connected in series with the capacitor C6. The first charging operation and the second discharging operation are performed simultaneously, and the first discharging operation and the second charging operation are simultaneously performed. Similar to the power converter shown in FIG. 1, the capacitor of the conventional power converter has a larger DC bias voltage, so a higher rated voltage and a larger-volume capacitor are also required. In addition, the change in the capacitance value will cause a change in its resonant frequency and result in higher switching power loss. Therefore, the conventional power converter requires complicated control to change the power conversion efficiency.

有鑑於此,本發明即針對上述先前技術之不足,提出一種創新的電源轉換器。In view of this, the present invention provides an innovative power converter in view of the above-mentioned shortcomings of the prior art.

於一觀點中,本發明提供一種電源轉換器,用以將一輸入電壓轉換為一輸出電壓,該電源轉換器包含:複數第一電容;複數第一開關,與該複數第一電容對應耦接,分別根據對應之一第一操作訊號,以切換所對應之該第一電容之電連接關係;至少一充電電感,與該複數第一電容中之至少其中之一對應串聯;以及至少一放電電感,與該複數第一電容中之至少其中之一對應串聯;其中,在一第一充電程序中,藉由該複數第一開關的切換,使該複數第一電容與該至少一充電電感彼此串聯於該輸入電壓與該輸出電壓之間,以形成一第一充電路徑;其中,在一第一放電程序中,藉由該複數第一開關的切換,使每一該第一電容與對應之該放電電感串聯於該輸出電壓與一接地電位間,而形成複數第一放電路徑;其中,該第一充電程序與該第一放電程序彼此重複地交錯排序,以將該輸入電壓轉換為該輸出電壓。In one aspect, the present invention provides a power converter for converting an input voltage into an output voltage. The power converter includes: a plurality of first capacitors; a plurality of first switches correspondingly coupled to the plurality of first capacitors , Respectively switch the electrical connection relationship of the corresponding first capacitor according to a corresponding one of the first operating signals; at least one charging inductor connected in series with at least one of the plurality of first capacitors; and at least one discharge inductor , Corresponding to at least one of the plurality of first capacitors in series; wherein, in a first charging procedure, by switching the plurality of first switches, the plurality of first capacitors and the at least one charging inductor are connected in series with each other A first charging path is formed between the input voltage and the output voltage; wherein, in a first discharging process, by switching the plurality of first switches, each of the first capacitors and the corresponding The discharge inductor is connected in series between the output voltage and a ground potential to form a plurality of first discharge paths; wherein, the first charging process and the first discharging process are alternately sequenced repeatedly to convert the input voltage into the output voltage .

於一實施例中,該至少一充電電感為複數充電電感,與該複數第一電容分別對應串聯,且在該第一充電程序中,藉由該複數第一開關的切換,使該複數第一電容與該複數充電電感彼此串聯於該輸入電壓與該輸出電壓之間,以形成該第一充電路徑;其中,在該第一放電程序中,該複數充電電感用以作為該複數放電電感,並藉由該複數第一開關的切換,使該複數放電電感與該複數第一電容分別對應串聯於該輸出電壓與該接地電位之間,以形成該複數第一放電路徑,其中該複數第一放電路徑係彼此並聯。In one embodiment, the at least one charging inductor is a plurality of charging inductors, which are connected in series with the plurality of first capacitors respectively, and in the first charging procedure, the plurality of first switches are switched to make the plurality of first capacitors The capacitor and the complex charging inductance are connected in series with each other between the input voltage and the output voltage to form the first charging path; wherein, in the first discharging procedure, the complex charging inductance is used as the complex discharging inductance, and Through the switching of the plurality of first switches, the plurality of discharge inductors and the plurality of first capacitors are respectively connected in series between the output voltage and the ground potential to form the plurality of first discharge paths, wherein the plurality of first discharges The paths are connected in parallel with each other.

於一實施例中,該至少一充電電感為單一個充電電感,且該至少一放電電感為單一個放電電感,在該第一放電程序中,藉由該複數第一開關的切換,使該複數第一電容彼此並聯後串聯該單一個放電電感。In one embodiment, the at least one charging inductance is a single charging inductance, and the at least one discharging inductance is a single discharging inductance. In the first discharging procedure, the plurality of first switches are switched to make the plurality of After the first capacitors are connected in parallel, the single discharge inductor is connected in series.

於一實施例中,該電源轉換器更包含:複數第二電容;以及複數第二開關,與該複數第二電容對應耦接,分別根據對應之一第二操作訊號,以切換所對應之該第二電容之電連接關係;其中,該至少一充電電感,與該複數第二電容中之至少其中之一對應串聯;其中,該至少一放電電感,與該複數第二電容中之至少其中之一對應串聯;其中,在一第二充電程序中,藉由該複數第二開關的切換,使該複數第二電容與該至少一充電電感彼此串聯於該輸入電壓與該輸出電壓之間,以形成一第二充電路徑;其中,在一第二放電程序中,藉由該複數第二開關的切換,使每一該第二電容與對應之該放電電感串聯於該輸出電壓與一接地電位間,而形成複數第二放電路徑;其中,該第二充電程序與該第二放電程序彼此重複地交錯排序,以將該輸入電壓轉換為該輸出電壓;其中,該電源轉換器於該第一充電程序時,執行該第二放電程序;其中,該電源轉換器於該第一放電程序時,執行該第二充電程序。In one embodiment, the power converter further includes: a plurality of second capacitors; and a plurality of second switches, which are correspondingly coupled to the plurality of second capacitors, and switch the corresponding one according to a corresponding second operation signal. The electrical connection relationship of the second capacitor; wherein the at least one charging inductor is connected in series with at least one of the plurality of second capacitors; wherein, the at least one discharge inductor is connected to at least one of the plurality of second capacitors A corresponding series connection; wherein, in a second charging process, by switching the plurality of second switches, the plurality of second capacitors and the at least one charging inductor are connected in series with each other between the input voltage and the output voltage to A second charging path is formed; wherein, in a second discharging process, through the switching of the plurality of second switches, each of the second capacitors and the corresponding discharge inductance are connected in series between the output voltage and a ground potential , Forming a plurality of second discharging paths; wherein the second charging process and the second discharging process are alternately sequenced repeatedly to convert the input voltage to the output voltage; wherein, the power converter is in the first charging During the process, the second discharging process is executed; wherein, the power converter executes the second charging process during the first discharging process.

於一實施例中,該電源轉換器更包含一前端轉換器,其中該前端轉換器具有一前端電感,用以作為該充電電感。In one embodiment, the power converter further includes a front-end converter, wherein the front-end converter has a front-end inductor used as the charging inductor.

於一實施例中,該前端轉換器包含降壓轉換器、升壓轉換器或降壓-升壓轉換器。In one embodiment, the front-end converter includes a buck converter, a boost converter, or a buck-boost converter.

於一實施例中,該第一充電程序具有一第一充電諧振頻率,且該第一放電程序具有一第一放電諧振頻率,且該第一充電諧振頻率與該第一放電諧振頻率相同。In one embodiment, the first charging process has a first charging resonance frequency, and the first discharging process has a first discharging resonance frequency, and the first charging resonance frequency is the same as the first discharging resonance frequency.

於一實施例中,該第二充電程序具有一第二充電諧振頻率,且該第二放電程序具有一第二放電諧振頻率,且該第二充電諧振頻率與該第二放電諧振頻率相同。In one embodiment, the second charging process has a second charging resonance frequency, and the second discharging process has a second discharging resonance frequency, and the second charging resonance frequency is the same as the second discharging resonance frequency.

於一實施例中,該第一充電程序的持續時間等於該第一放電程序的持續時間,以達到柔性切換(soft switching)之零電流切換。In one embodiment, the duration of the first charging procedure is equal to the duration of the first discharging procedure, so as to achieve zero-current switching of soft switching.

於一實施例中,該第二充電程序等於該第二放電程序,以達到柔性切換之零電流切換。In one embodiment, the second charging procedure is equal to the second discharging procedure, so as to achieve zero-current switching of flexible switching.

於一實施例中,藉由調整該第二放電程序的持續時間,以達到柔性切換之零電壓切換。In one embodiment, the duration of the second discharge process is adjusted to achieve flexible switching of zero voltage switching.

於一實施例中,該電源轉換器為雙向電源轉換器。In one embodiment, the power converter is a bidirectional power converter.

於一實施例中,該電源轉換器之該輸入電壓與該輸出電壓之電壓轉換比率為4:1、3:1或2:1。In one embodiment, the voltage conversion ratio of the input voltage to the output voltage of the power converter is 4:1, 3:1, or 2:1.

於一實施例中,該第一充電程序的持續時間與該第一放電程序的持續時間彼此不重疊。In one embodiment, the duration of the first charging process and the duration of the first discharging process do not overlap with each other.

於一實施例中,該第二充電程序的持續時間與該第二放電程序的持續時間彼此不重疊。In one embodiment, the duration of the second charging process and the duration of the second discharging process do not overlap with each other.

於一實施例中,該電源轉換器可更包含一控制器,其耦接至該複數第一開關或該複數第二開關,用以產生該第一操作訊號或該第二操作訊號。In one embodiment, the power converter may further include a controller coupled to the plurality of first switches or the plurality of second switches for generating the first operation signal or the second operation signal.

本發明之一優點在於本發明可減少電感數量、使用較小體積的電容就可達到諧振電容。One of the advantages of the present invention is that the present invention can reduce the number of inductances and use a smaller-volume capacitor to achieve resonant capacitance.

本發明之另一優點在於本發明可降低電壓應力、具有較佳的動態負載暫態響應、具有較佳的電流電壓平衡、具有穩定的諧振頻率。Another advantage of the present invention is that the present invention can reduce voltage stress, has better dynamic load transient response, has better current and voltage balance, and has a stable resonance frequency.

本發明之又一優點在於本發明較容易控制以達到具有零電流切換(ZCS)或零電壓切換(ZVS)的柔性切換,並可更具彈性地調變電壓轉換比率,且具有較廣的輸入電壓應用範圍,並可將輸出電壓控制在較先前技術更為精確的範圍內。Another advantage of the present invention is that the present invention is easier to control to achieve flexible switching with zero current switching (ZCS) or zero voltage switching (ZVS), and can adjust the voltage conversion ratio more flexibly, and has a wider input Voltage application range, and the output voltage can be controlled in a more accurate range than the previous technology.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。Detailed descriptions are given below by specific embodiments, so that it will be easier to understand the purpose, technical content, features, and effects of the present invention.

本發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。The drawings in the present invention are all schematic, and are mainly intended to show the coupling relationship between the circuits and the relationship between the signal waveforms. As for the circuits, signal waveforms, and frequencies, they are not drawn to scale.

圖3係根據本發明之一實施例顯示一電源轉換器之電路示意圖。如圖3所示,本發明之電源轉換器30包含第一電容C1、第一電容C2、第一電容C3、第一開關Q1、第一開關Q2、第一開關Q3、第一開關Q4、第一開關Q5、第一開關Q6、第一開關Q7、第一開關Q8、第一開關Q9、第一開關Q10、充電電感L1、充電電感L2以及充電電感L3。第一開關Q1-Q3分別與對應之第一電容C1-C3串聯,而第一電容C1-C3分別與對應之充電電感L1-L3串聯。應注意者為,本發明之電源轉換器中的電容數量並不限於本實施例的三個,亦可為二個或四個以上,且電感數量亦不限於本實施例的三個,亦可為二個或四個以上,本實施例所顯示之元件數量僅用以說明本發明並不用限制本發明。FIG. 3 is a schematic diagram showing a circuit of a power converter according to an embodiment of the present invention. As shown in FIG. 3, the power converter 30 of the present invention includes a first capacitor C1, a first capacitor C2, a first capacitor C3, a first switch Q1, a first switch Q2, a first switch Q3, a first switch Q4, and a first switch Q4. A switch Q5, a first switch Q6, a first switch Q7, a first switch Q8, a first switch Q9, a first switch Q10, a charging inductor L1, a charging inductor L2, and a charging inductor L3. The first switches Q1-Q3 are respectively connected in series with the corresponding first capacitors C1-C3, and the first capacitors C1-C3 are respectively connected in series with the corresponding charging inductors L1-L3. It should be noted that the number of capacitors in the power converter of the present invention is not limited to three in this embodiment, but can be two or more than four, and the number of inductances is not limited to three in this embodiment. There are two or more than four, and the number of elements shown in this embodiment is only used to illustrate the present invention and does not limit the present invention.

如圖3所示,第一開關Q5之一端耦接至第一開關Q1與第一電容C1之間的節點,第一開關Q6之一端耦接至第一開關Q2與第一電容C2之間的節點,而第一開關Q7之一端耦接至第一開關Q3與第一電容C3之間的節點。第一開關Q8之一端耦接至充電電感L1與第一開關Q2之間的節點,第一開關Q9之一端耦接至充電電感L2與第一開關Q3之間的節點,而第一開關Q10之一端耦接至充電電感L3與第一開關Q4之間的節點。如圖3所示,第一開關Q5-Q7之另一端則共同耦接至輸出電壓Vout。第一開關Q8-Q10之另一端係共同耦接至接地電位。第一開關Q4耦接於充電電感L3與輸出電壓Vout之間,第一開關Q1之一端耦接至輸入電壓Vin。As shown in FIG. 3, one end of the first switch Q5 is coupled to the node between the first switch Q1 and the first capacitor C1, and one end of the first switch Q6 is coupled to the node between the first switch Q2 and the first capacitor C2. Node, and one end of the first switch Q7 is coupled to the node between the first switch Q3 and the first capacitor C3. One end of the first switch Q8 is coupled to the node between the charging inductor L1 and the first switch Q2, one end of the first switch Q9 is coupled to the node between the charging inductor L2 and the first switch Q3, and the first switch Q10 One end is coupled to the node between the charging inductor L3 and the first switch Q4. As shown in FIG. 3, the other ends of the first switches Q5-Q7 are commonly coupled to the output voltage Vout. The other ends of the first switches Q8-Q10 are commonly coupled to the ground potential. The first switch Q4 is coupled between the charging inductor L3 and the output voltage Vout, and one end of the first switch Q1 is coupled to the input voltage Vin.

第一開關Q1-Q10可根據對應之操作訊號,切換所對應之第一電容C1-C3與充電電感L1-L3之電連接關係。在一第一充電程序中,第一開關Q1-Q4係為導通,第一開關Q5-Q10係為不導通,使得第一電容C1-C3與充電電感L1-L3彼此串聯於輸入電壓Vin與輸出電壓Vout之間,以形成一第一充電路徑。在一第一放電程序中,充電電感L1-L3可作為放電電感L1-L3,第一開關Q5-Q10係導通,第一開關Q1-Q4係不導通,使第一電容C1與對應之放電電感L1串聯於輸出電壓Vout與接地電位間,第一電容C2與對應之放電電感L2串聯於輸出電壓Vout與接地電位間,第一電容C3與對應之放電電感L3串聯於輸出電壓Vout與接地電位間,而形成複數第一放電路徑。應注意者為,上述第一充電程序與上述第一放電程序係於不同的時間段交錯進行,而非同時進行。其中,第一充電程序與第一放電程序彼此重複地交錯排序,以將輸入電壓Vin轉換為輸出電壓Vout。於本實施例中,每個第一電容C1、C2、C3的直流偏壓均為Vo,故本實施例中的第一電容C1、C2、C3需要耐較低的額定電壓,故可使用較小體積的電容器。The first switch Q1-Q10 can switch the electrical connection relationship between the corresponding first capacitor C1-C3 and the charging inductor L1-L3 according to the corresponding operation signal. In a first charging procedure, the first switches Q1-Q4 are turned on, and the first switches Q5-Q10 are not turned on, so that the first capacitors C1-C3 and the charging inductors L1-L3 are connected in series with the input voltage Vin and the output Between the voltages Vout to form a first charging path. In a first discharging procedure, the charging inductors L1-L3 can be used as the discharging inductors L1-L3, the first switches Q5-Q10 are turned on, and the first switches Q1-Q4 are not turned on, so that the first capacitor C1 and the corresponding discharge inductor L1 is connected in series between the output voltage Vout and the ground potential, the first capacitor C2 and the corresponding discharge inductance L2 are connected in series between the output voltage Vout and the ground potential, and the first capacitor C3 and the corresponding discharge inductance L3 are connected in series between the output voltage Vout and the ground potential , And form a plurality of first discharge paths. It should be noted that the above-mentioned first charging process and the above-mentioned first discharging process are performed staggered in different time periods, rather than being performed at the same time. Wherein, the first charging process and the first discharging process are alternately sequenced repeatedly to convert the input voltage Vin into the output voltage Vout. In this embodiment, the DC bias voltage of each of the first capacitors C1, C2, C3 is Vo. Therefore, the first capacitors C1, C2, C3 in this embodiment need to withstand lower rated voltages, so they can be used. Small size capacitor.

於一實施例中,上述第一充電程序的持續時間大致上為特定比例之工作週期(duty cycle),例如但不限於大致上為百分之五十之工作週期;藉此,第一開關可於流經第 一開關的電流在其正半波相對較低位準的時點切換,以達成柔性切換。在一種較佳的實施例中,可達到零電流切換(zero current switch, ZCS)。In one embodiment, the duration of the first charging process is substantially a duty cycle of a specific proportion, such as but not limited to a duty cycle of substantially fifty percent; thereby, the first switch can be The current flowing through the first switch is switched at a relatively low level of the positive half-wave, so as to achieve flexible switching. In a preferred embodiment, zero current switch (ZCS) can be achieved.

此外需說明的是:因電路零件的本身之寄生效應或是零件間相互的匹配不一定為理想,因此,雖然欲使第一充電程序的持續時間等於第一放電程序的持續時間(也就是第一充電程序的持續時間為百分之五十之工作週期),以達到柔性切換(soft switching)之零電流切換。但實際可能並無法準確地為百分之五十之工作週期,而僅是接近百分之五十之工作週期,亦即,根據本發明,可接受由於電路的不理想性而使第一充電程序的持續時間與百分之五十之工作週期間具有一定程度的誤差,此即前述之放電至「大致上」為為百分之五十之工作週期之意,本文中其他提到「大致上」之處亦同。In addition, it should be noted that the parasitic effects of the circuit components or the matching between the components are not necessarily ideal. Therefore, although it is desired to make the duration of the first charging procedure equal to the duration of the first discharging procedure (that is, the first discharging procedure) The duration of a charging process is 50% of the duty cycle) to achieve zero current switching of soft switching. However, it may not be accurate to the 50% duty cycle, but only close to the 50% duty cycle. That is, according to the present invention, it is acceptable to make the first charge due to the imperfections of the circuit. There is a certain degree of error between the duration of the program and 50% of the work cycle. This means that the aforementioned discharge to "approximately" means 50% of the work cycle. Other references in this article are "approximately" The same applies to "up".

於一實施例中,上述特定比例係與諧振頻率相關。於一實施例中,上述第一充電程序具有一第一充電諧振頻率,上述第一放電程序具有一第一放電諧振頻率。於一較佳實施例中,上述第一充電諧振頻率與上述第一放電諧振頻率相同。In one embodiment, the aforementioned specific ratio is related to the resonance frequency. In one embodiment, the first charging process has a first resonant frequency of charging, and the first discharging process has a first resonant frequency of discharging. In a preferred embodiment, the first charging resonance frequency is the same as the first discharging resonance frequency.

於一實施例中,上述電源轉換器30可為雙向電源轉換器。所謂雙向電源轉換器,係指輸入端(提供輸入電壓Vin)與輸出端(提供輸出電壓Vout)的角色對調,意即在如圖3所示的實施例中,電源轉換器30可將輸出電壓Vout轉換為輸入電壓Vin。於一實施例中,上述電源轉換器30之輸入電壓Vin與輸出電壓Vout之電壓轉換比率可為4:1、3:1或2:1。應注意者為,本實施例係為4:1的電源轉換器,然而藉由控制第一開關Q1-Q10的不導通或導通可將本實施例的電源轉換器改為3:1的電源轉換器,例如將第一開關Q7永遠導通,並將第一開關Q4及Q10永遠不導通,則可改為3:1的電源轉換器,改為2:1的電源轉換器的方式亦同。於一實施例中,第一電容C1與第一電感L1的諧振頻率為f r1=

Figure 02_image001
,第一電容C2與第一電感L2的諧振頻率為f r2=
Figure 02_image003
,第一電容C3與第一電感L3的諧振頻率為f r3=
Figure 02_image005
,假設C1=C2=C3=Cr,L1=L2=L3=Lr,則圖3所示之電源轉換器30之第一充電諧振頻率及第一放電諧振頻率為f r=
Figure 02_image007
。於一實施例中,C1、C2、C3的電容值也可互相不同,L1、L2、L3的電感值也可互相不同,只要L1C1=L2C2=L3C3即可。 In one embodiment, the aforementioned power converter 30 may be a bidirectional power converter. The so-called two-way power converter refers to the role of the input terminal (providing the input voltage Vin) and the output terminal (providing the output voltage Vout) are reversed, which means that in the embodiment shown in FIG. 3, the power converter 30 can change the output voltage Vout is converted to input voltage Vin. In one embodiment, the voltage conversion ratio between the input voltage Vin and the output voltage Vout of the power converter 30 may be 4:1, 3:1, or 2:1. It should be noted that this embodiment is a 4:1 power converter, but by controlling the non-conduction or conduction of the first switches Q1-Q10, the power converter of this embodiment can be changed to a 3:1 power conversion. For example, if the first switch Q7 is always turned on, and the first switches Q4 and Q10 are never turned on, it can be changed to a 3:1 power converter or a 2:1 power converter. In one embodiment, the resonance frequency of the first capacitor C1 and the first inductor L1 is f r1 =
Figure 02_image001
, The resonant frequency of the first capacitor C2 and the first inductor L2 is f r2 =
Figure 02_image003
, The resonance frequency of the first capacitor C3 and the first inductor L3 is f r3 =
Figure 02_image005
, Assuming C1=C2=C3=Cr, L1=L2=L3=Lr, the first charging resonance frequency and the first discharging resonance frequency of the power converter 30 shown in FIG. 3 are f r =
Figure 02_image007
. In an embodiment, the capacitance values of C1, C2, and C3 can also be different from each other, and the inductance values of L1, L2, and L3 can also be different from each other, as long as L1C1=L2C2=L3C3.

圖4A係根據本發明之另一實施例顯示一電源轉換器之電路示意圖;圖4B顯示圖4A所示之電源轉換器中,相關訊號之訊號波形示意圖。本實施例與前一實施例不同在於本實施例係多個電容共用一充電電感或一放電電感,藉此無論電容數量為多少,都只需要一個充電電感及一個放電電感,可進一步減少電感的數量。如圖4A所示,本發明之電源轉換器40包含第一電容C1、第一電容C2、第一電容C3、第一開關Q1、第一開關Q2、第一開關Q3、第一開關Q4、第一開關Q5、第一開關Q6、第一開關Q7、第一開關Q8、第一開關Q9、第一開關Q10、充電電感L1、放電電感L2。第一開關Q1-Q3分別與對應之第一電容C1-C3串聯,而第一開關Q4與充電電感L1串聯。應注意者為,本發明之電源轉換器中的電容數量並不限於本實施例的三個,亦可為二個或四個以上,本實施例所顯示之元件數量僅用以說明本發明並不用限制本發明。4A is a schematic diagram showing a circuit of a power converter according to another embodiment of the present invention; FIG. 4B is a schematic diagram showing signal waveforms of related signals in the power converter shown in FIG. 4A. This embodiment is different from the previous embodiment in that multiple capacitors share a charging inductance or a discharging inductance, so that no matter how many capacitors there are, only one charging inductance and one discharging inductance are needed, which can further reduce the inductance. quantity. As shown in FIG. 4A, the power converter 40 of the present invention includes a first capacitor C1, a first capacitor C2, a first capacitor C3, a first switch Q1, a first switch Q2, a first switch Q3, a first switch Q4, and a first switch Q4. A switch Q5, a first switch Q6, a first switch Q7, a first switch Q8, a first switch Q9, a first switch Q10, a charging inductor L1, a discharging inductor L2. The first switches Q1-Q3 are respectively connected in series with the corresponding first capacitors C1-C3, and the first switch Q4 is connected in series with the charging inductor L1. It should be noted that the number of capacitors in the power converter of the present invention is not limited to three in this embodiment, and can be two or more than four. The number of components shown in this embodiment is only used to illustrate the combination of the present invention. The invention is not limited.

如圖4A所示,第一開關Q5之一端耦接至第一開關Q1與第一電容C1之間的節點,第一開關Q6之一端耦接至第一開關Q2與第一電容C2之間的節點,而第一開關Q7之一端耦接至第一開關Q3與第一電容C3之間的節點。第一開關Q8之一端耦接至第一電容C1與第一開關Q2之間的節點,第一開關Q9之一端耦接至第一電容C2與第一開關Q3之間的節點,而第一開關Q10之一端耦接至第一電容C3與第一開關Q4之間的節點。如圖4A所示,第一開關Q5-Q7之另一端共同電連接至一節點後,串聯至放電電感L2。第一開關Q8-Q10之另一端係共同耦接至接地電位。充電電感L1及放電電感L2的另一端係共同耦接至輸出電壓Vout,第一開關Q1之另一端耦接至輸入電壓Vin。As shown in FIG. 4A, one end of the first switch Q5 is coupled to the node between the first switch Q1 and the first capacitor C1, and one end of the first switch Q6 is coupled to the node between the first switch Q2 and the first capacitor C2. Node, and one end of the first switch Q7 is coupled to the node between the first switch Q3 and the first capacitor C3. One end of the first switch Q8 is coupled to the node between the first capacitor C1 and the first switch Q2, one end of the first switch Q9 is coupled to the node between the first capacitor C2 and the first switch Q3, and the first switch One end of Q10 is coupled to the node between the first capacitor C3 and the first switch Q4. As shown in FIG. 4A, after the other ends of the first switches Q5-Q7 are electrically connected to a node, they are connected in series to the discharge inductor L2. The other ends of the first switches Q8-Q10 are commonly coupled to the ground potential. The other end of the charging inductor L1 and the discharging inductor L2 are commonly coupled to the output voltage Vout, and the other end of the first switch Q1 is coupled to the input voltage Vin.

第一開關Q1-Q10可根據對應之操作訊號,切換所對應之第一電容C1-C3與充電電感L1及放電電感L2之電連接關係。在一第一充電程序中,第一開關Q1-Q4係為導通,第一開關Q5-Q10係為不導通,使得第一電容C1-C3彼此串聯後與充電電感L1串聯於輸入電壓Vin與輸出電壓Vout之間,以形成一第一充電路徑。在一第一放電程序中,第一開關Q5-Q10係導通,第一開關Q1-Q4係不導通,使第一電容C1、第一電容C2及第一電容C3彼此並聯後串聯放電電感L2,而形成複數第一放電路徑。應注意者為,上述第一充電程序與上述第一放電程序係於不同的時間段交錯進行,而非同時進行。於本實施例中,每個第一電容C1、C2、C3的直流偏壓均為Vo,故本實施例中的第一電容C1、C2、C3需要耐較低的額定電壓,故可使用較小體積的電容器。The first switch Q1-Q10 can switch the electrical connection relationship between the corresponding first capacitor C1-C3 and the charging inductor L1 and the discharging inductor L2 according to the corresponding operation signal. In a first charging procedure, the first switches Q1-Q4 are turned on, and the first switches Q5-Q10 are not turned on, so that the first capacitors C1-C3 are connected in series with each other and the charging inductor L1 is connected in series with the input voltage Vin and the output Between the voltages Vout to form a first charging path. In a first discharging procedure, the first switches Q5-Q10 are turned on, and the first switches Q1-Q4 are not turned on, so that the first capacitor C1, the first capacitor C2, and the first capacitor C3 are connected in parallel to each other, and then the discharge inductor L2 is connected in series. A plurality of first discharge paths are formed. It should be noted that the above-mentioned first charging process and the above-mentioned first discharging process are performed staggered in different time periods, rather than being performed at the same time. In this embodiment, the DC bias voltage of each of the first capacitors C1, C2, C3 is Vo. Therefore, the first capacitors C1, C2, C3 in this embodiment need to withstand lower rated voltages, so they can be used. Small size capacitor.

於一實施例中,上述第一充電程序的持續時間大致上為特定比例之工作週期(duty cycle),例如但不限於大致上為百分之五十之工作週期;藉此,第一開關可於流經第 一開關的電流在其正半波相對較低位準的時點切換,以達成柔性切換。在一種較佳的實施例中,可達到零電流切換(zero current switch, ZCS)。In one embodiment, the duration of the first charging process is substantially a duty cycle of a specific proportion, such as but not limited to a duty cycle of substantially fifty percent; thereby, the first switch can be The current flowing through the first switch is switched at a relatively low level of the positive half-wave, so as to achieve flexible switching. In a preferred embodiment, zero current switch (ZCS) can be achieved.

於一實施例中,上述第一充電程序的持續時間小於特定比例之工作週期一段第一預設期間,例如但不限於小於百分之五十之工作週期一段第一預設期間;藉此提前不導通第一開關Q1-Q4後仍維持有微小的電流,流經充電電感L1,因此,即可將第一開關Q10中,儲存於其中之寄生電容的累積電荷透過第一開關Q4之寄生二極體帶走,而降低第一開關Q10的跨壓,以達到柔性切換。在一種較佳的實施例中,調整第一預設期間,而達到零電壓切換。In one embodiment, the duration of the first charging process is less than a specific proportion of the duty cycle for a first predetermined period, such as but not limited to a first predetermined period of less than 50% of the duty cycle; thereby After the first switch Q1-Q4 is not turned on, there is still a small current flowing through the charging inductor L1. Therefore, the accumulated charge of the parasitic capacitance stored in the first switch Q10 can be transmitted through the parasitic second of the first switch Q4. The pole body is taken away, and the cross voltage of the first switch Q10 is reduced to achieve flexible switching. In a preferred embodiment, the first predetermined period is adjusted to achieve zero voltage switching.

於一實施例中,相對地,上述第一放電程序的持續時間大於特定比例之工作週期一段第二預設期間,例如但不限於大於百分之五十之工作週期一段第二預設期間;藉此,延後不導通第一開關Q5-Q10後放電電感L2的負電流會通過第一開關Q5的寄生二極體而對第一開關Q1的寄生電容進行充電,而降低第一開關Q1的跨壓,以達到柔性切換。在一種較佳的實施例中,調整第二預設期間,而達到零電壓切換。於其他實施例中,可視實際需求提前或延後不導通開關的時點,而達成柔性切換之零電壓切換。In one embodiment, relatively, the duration of the first discharge process is greater than a specific proportion of the duty cycle for a second predetermined period, for example, but not limited to, a work period greater than 50% for a second predetermined period; Thereby, after the first switch Q5-Q10 is not turned on, the negative current of the discharge inductor L2 will charge the parasitic capacitance of the first switch Q1 through the parasitic diode of the first switch Q5, thereby reducing the capacitance of the first switch Q1. Cross pressure to achieve flexible switching. In a preferred embodiment, the second predetermined period is adjusted to achieve zero voltage switching. In other embodiments, the time point of the non-conduction switch can be advanced or delayed according to actual needs, so as to achieve the zero-voltage switching of flexible switching.

於一實施例中,上述特定比例係與諧振頻率相關。於一實施例中,上述第一充電程序具有一第一充電諧振頻率,上述第一放電程序具有一第一放電諧振頻率。於一較佳實施例中,上述第一充電諧振頻率與上述第一放電諧振頻率相同。In one embodiment, the aforementioned specific ratio is related to the resonance frequency. In one embodiment, the first charging process has a first resonant frequency of charging, and the first discharging process has a first resonant frequency of discharging. In a preferred embodiment, the first charging resonance frequency is the same as the first discharging resonance frequency.

於一實施例中,上述電源轉換器40可為雙向電源轉換器。於一實施例中,上述電源轉換器40之輸入電壓Vin與輸出電壓Vout之電壓轉換比率可為4:1、3:1或2:1。於一實施例中,第一充電諧振頻率為f r4=

Figure 02_image009
,第一放電諧振頻率為f r5=
Figure 02_image011
,若欲使f r4=f r5且假設C1=C2=C3,則L1與L2的電感值需符合L2=
Figure 02_image013
L1。 In one embodiment, the aforementioned power converter 40 may be a bidirectional power converter. In one embodiment, the voltage conversion ratio between the input voltage Vin and the output voltage Vout of the power converter 40 may be 4:1, 3:1, or 2:1. In one embodiment, the first resonant frequency of charging is fr4 =
Figure 02_image009
, The first discharge resonance frequency is f r5 =
Figure 02_image011
, If you want to make f r4 = f r5 and suppose C1=C2=C3, then the inductance values of L1 and L2 must conform to L2=
Figure 02_image013
L1.

於一實施例中,第一充電程序的持續時間與該第一放電程序的持續時間彼此不重疊。於一實施例中,該第二充電程序的持續時間與該第二放電程序的持續時間彼此不重疊。In one embodiment, the duration of the first charging process and the duration of the first discharging process do not overlap with each other. In one embodiment, the duration of the second charging process and the duration of the second discharging process do not overlap with each other.

圖4B顯示圖4A所示之電源轉換器中,相關訊號之訊號波形示意圖。輸出電壓Vout、輸出電流Io、充電電感電流IL1、放電電感電流IL2、第一電容C1直流偏壓Vc1、第一電容C1電流Ic1、第一開關Q7電流IS7以及第一開關Q9電流IS9如圖4B所示。在本實施例中,第一充電諧振頻率與第一放電諧振頻率相等且第一充電程序的持續時間大致上為百分之五十之工作週期。FIG. 4B shows a schematic diagram of signal waveforms of related signals in the power converter shown in FIG. 4A. The output voltage Vout, output current Io, charging inductor current IL1, discharging inductor current IL2, first capacitor C1 DC bias voltage Vc1, first capacitor C1 current Ic1, first switch Q7 current IS7, and first switch Q9 current IS9 are shown in Figure 4B Shown. In this embodiment, the first charging resonant frequency is equal to the first discharging resonant frequency, and the duration of the first charging process is approximately 50% of the duty cycle.

圖5係根據本發明之再另一實施例顯示一電源轉換器之電路示意圖。本實施例與圖4之實施例的不同在於本實施例的充電電感可移至輸入電壓Vin與第一電容C1之間,且係利用前端轉換器501內之前端電感作為充電電感L1,藉此可更進一步減少電感的數量。再者,由於前端轉換器501內具有開關,故前端轉換器501內的開關亦可作為第一開關Q1。如圖5所示,本發明之電源轉換器50包含第一電容C1、第一電容C2、第一電容C3、第一開關Q1、第一開關Q2、第一開關Q3、第一開關Q4、第一開關Q5、第一開關Q6、第一開關Q7、第一開關Q8、第一開關Q9、第一開關Q10、充電電感L1、放電電感L2。第一電容C1-C3分別與對應之第一開關Q2-Q4串聯,而第一開關Q1與充電電感L1串聯。應注意者為,本發明之電源轉換器中的電容數量並不限於本實施例的三個,亦可為二個或四個以上,本實施例所顯示之元件數量僅用以說明本發明並不用限制本發明。FIG. 5 is a schematic diagram showing a circuit of a power converter according to still another embodiment of the present invention. The difference between this embodiment and the embodiment of FIG. 4 is that the charging inductor of this embodiment can be moved between the input voltage Vin and the first capacitor C1, and the front-end inductor in the front-end converter 501 is used as the charging inductor L1, thereby The number of inductances can be further reduced. Furthermore, since the front-end converter 501 has a switch, the switch in the front-end converter 501 can also be used as the first switch Q1. As shown in FIG. 5, the power converter 50 of the present invention includes a first capacitor C1, a first capacitor C2, a first capacitor C3, a first switch Q1, a first switch Q2, a first switch Q3, a first switch Q4, and a first switch Q4. A switch Q5, a first switch Q6, a first switch Q7, a first switch Q8, a first switch Q9, a first switch Q10, a charging inductor L1, a discharging inductor L2. The first capacitors C1-C3 are respectively connected in series with the corresponding first switches Q2-Q4, and the first switch Q1 is connected in series with the charging inductor L1. It should be noted that the number of capacitors in the power converter of the present invention is not limited to three in this embodiment, and can be two or more than four. The number of components shown in this embodiment is only used to illustrate the combination of the present invention. The invention is not limited.

如圖5所示,第一開關Q5之一端耦接至充電電感L1與第一電容C1之間的節點,第一開關Q6之一端耦接至第一開關Q2與第一電容C2之間的節點,而第一開關Q7之一端耦接至第一開關Q3與第一電容C3之間的節點。第一開關Q8之一端耦接至第一電容C1與第一開關Q2之間的節點,第一開關Q9之一端耦接至第一電容C2與第一開關Q3之間的節點,而第一開關Q10之一端耦接至第一電容C3與第一開關Q4之間的節點。如圖5所示,第一開關Q5-Q7之另一端並接後串聯至放電電感L2,第一開關Q8-Q10之另一端則係共同耦接至接地電位。放電電感L2的另一端係耦接至輸出電壓Vout,第一開關Q1之另一端耦接至輸入電壓Vin,充電電感L1之另一端耦接第一電容C1。As shown in FIG. 5, one end of the first switch Q5 is coupled to the node between the charging inductor L1 and the first capacitor C1, and one end of the first switch Q6 is coupled to the node between the first switch Q2 and the first capacitor C2 , And one end of the first switch Q7 is coupled to the node between the first switch Q3 and the first capacitor C3. One end of the first switch Q8 is coupled to the node between the first capacitor C1 and the first switch Q2, one end of the first switch Q9 is coupled to the node between the first capacitor C2 and the first switch Q3, and the first switch One end of Q10 is coupled to the node between the first capacitor C3 and the first switch Q4. As shown in FIG. 5, the other ends of the first switches Q5-Q7 are connected in parallel and then connected in series to the discharge inductor L2, and the other ends of the first switches Q8-Q10 are commonly coupled to the ground potential. The other end of the discharge inductor L2 is coupled to the output voltage Vout, the other end of the first switch Q1 is coupled to the input voltage Vin, and the other end of the charging inductor L1 is coupled to the first capacitor C1.

第一開關Q1-Q10可根據對應之操作訊號,切換所對應之第一電容C1-C3與充電電感L1及放電電感L2之電連接關係。在一第一充電程序中,第一開關Q1-Q4係為導通,第一開關Q5-Q10係為不導通,使得第一電容C1-C3彼此串聯後與充電電感L1串聯於輸入電壓Vin與輸出電壓Vout之間,以形成一第一充電路徑。在一第一放電程序中,第一開關Q5-Q10係導通,第一開關Q1-Q4係不導通,使第一電容C1、第一電容C2及第一電容C3彼此並聯後串聯放電電感L2,而形成複數第一放電路徑。應注意者為,上述第一充電程序與上述第一放電程序係於不同的時間段交錯進行,而非同時進行。於本實施例中,每個第一電容C1、C2、C3的直流偏壓均為Vo,故本實施例中的第一電容C1、C2、C3需要耐較低的額定電壓,故可使用較小體積的電容器。The first switch Q1-Q10 can switch the electrical connection relationship between the corresponding first capacitor C1-C3 and the charging inductor L1 and the discharging inductor L2 according to the corresponding operation signal. In a first charging procedure, the first switches Q1-Q4 are turned on, and the first switches Q5-Q10 are not turned on, so that the first capacitors C1-C3 are connected in series with each other and the charging inductor L1 is connected in series with the input voltage Vin and the output Between the voltages Vout to form a first charging path. In a first discharging procedure, the first switches Q5-Q10 are turned on, and the first switches Q1-Q4 are not turned on, so that the first capacitor C1, the first capacitor C2, and the first capacitor C3 are connected in parallel to each other, and then the discharge inductor L2 is connected in series. A plurality of first discharge paths are formed. It should be noted that the above-mentioned first charging process and the above-mentioned first discharging process are performed staggered in different time periods, rather than being performed at the same time. In this embodiment, the DC bias voltage of each of the first capacitors C1, C2, C3 is Vo. Therefore, the first capacitors C1, C2, C3 in this embodiment need to withstand lower rated voltages, so they can be used. Small size capacitor.

於一實施例中,上述第一充電程序的持續時間大致上為特定比例之工作週期(duty cycle),例如但不限於大致上為百分之五十之工作週期;藉此,第一開關可於流經第一開關的電流在其正半波相對較低位準的時點切換,以達成柔性切換。在一種較佳的實施例中,可達到零電流切換(zero current switch, ZCS)。In one embodiment, the duration of the first charging process is substantially a duty cycle of a specific proportion, such as but not limited to a duty cycle of substantially fifty percent; thereby, the first switch can be The current flowing through the first switch is switched at a relatively low level of the positive half-wave, so as to achieve flexible switching. In a preferred embodiment, zero current switch (ZCS) can be achieved.

於一實施例中,上述特定比例係與諧振頻率相關。於一實施例中,上述第一充電程序具有一第一充電諧振頻率,上述第一放電程序具有一第一放電諧振頻率。於一較佳實施例中,上述第一充電諧振頻率與上述第一放電諧振頻率相同。In one embodiment, the aforementioned specific ratio is related to the resonance frequency. In one embodiment, the first charging process has a first resonant frequency of charging, and the first discharging process has a first resonant frequency of discharging. In a preferred embodiment, the first charging resonance frequency is the same as the first discharging resonance frequency.

於一實施例中,上述電源轉換器50可為雙向電源轉換器。於一實施例中,上述電源轉換器50之輸入電壓Vin與輸出電壓Vout之電壓轉換比率可為4:1、3:1或2:1。於一實施例中,上述前端轉換器501用以將輸入電壓Vin轉換為電壓V1,其包含但不限於如圖12A-12J所示之降壓轉換器、升壓轉換器、反壓轉換器、升降壓轉換器及升反壓轉換器。In one embodiment, the aforementioned power converter 50 may be a bidirectional power converter. In one embodiment, the voltage conversion ratio between the input voltage Vin and the output voltage Vout of the power converter 50 may be 4:1, 3:1, or 2:1. In one embodiment, the aforementioned front-end converter 501 is used to convert the input voltage Vin into a voltage V1, which includes, but is not limited to, a buck converter, a boost converter, a back-voltage converter, as shown in FIGS. 12A-12J. Buck-boost converter and boost-back-boost converter.

圖6係根據本發明之又另一實施例顯示一電源轉換器之電路示意圖。本實施例的電源轉換器為交錯式(interleaved)電源轉換器。如圖6所示,本發明之電源轉換器60包含第一電容C1、第一電容C2、第一電容C3、第二電容C4、第二電容C5、第二電容C6、第一開關Q1、第一開關Q2、第一開關Q3、第一開關Q4、第一開關Q5、第一開關Q6、第一開關Q7、第一開關Q8、第一開關Q9、第一開關Q10、第二開關Q11、第二開關Q12、第二開關Q13、第二開關Q14、第二開關Q15、第二開關Q16、第二開關Q17、第二開關Q18、第二開關Q19、第二開關Q20、充電電感L1、放電電感L2。第一開關Q1-Q3分別與對應之第一電容C1-C3串聯,而第一開關Q4與充電電感L1耦接,第二開關Q11-Q13分別與對應之第二電容C4-C6串聯,而第二開關Q14與充電電感L1耦接。應注意者為,本發明之電源轉換器中的電容數量並不限於本實施例的六個,亦可為四個或六個以上,本實施例所顯示之元件數量僅用以說明本發明並不用限制本發明。FIG. 6 is a circuit diagram of a power converter according to still another embodiment of the present invention. The power converter of this embodiment is an interleaved power converter. As shown in FIG. 6, the power converter 60 of the present invention includes a first capacitor C1, a first capacitor C2, a first capacitor C3, a second capacitor C4, a second capacitor C5, a second capacitor C6, a first switch Q1, and a second capacitor C5. A switch Q2, a first switch Q3, a first switch Q4, a first switch Q5, a first switch Q6, a first switch Q7, a first switch Q8, a first switch Q9, a first switch Q10, a second switch Q11, and a The second switch Q12, the second switch Q13, the second switch Q14, the second switch Q15, the second switch Q16, the second switch Q17, the second switch Q18, the second switch Q19, the second switch Q20, the charging inductor L1, the discharging inductor L2. The first switches Q1-Q3 are respectively connected in series with the corresponding first capacitors C1-C3, the first switch Q4 is coupled with the charging inductor L1, the second switches Q11-Q13 are respectively connected in series with the corresponding second capacitors C4-C6, and the first switch Q4 is connected in series with the corresponding second capacitors C4-C6. The second switch Q14 is coupled to the charging inductor L1. It should be noted that the number of capacitors in the power converter of the present invention is not limited to six in this embodiment, and can be four or more than six. The number of components shown in this embodiment is only used to illustrate the combination of the present invention. The invention is not limited.

如圖6所示,第一開關Q5之一端耦接至第一開關Q1與第一電容C1之間的節點,第一開關Q6之一端耦接至第一開關Q2與第一電容C2之間的節點,而第一開關Q7之一端耦接至第一開關Q3與第一電容C3之間的節點。第一開關Q8之一端耦接至第一電容C1與第一開關Q2之間的節點,第一開關Q9之一端耦接至第一電容C2與第一開關Q3之間的節點,而第一開關Q10之一端耦接至第一電容C3與第一開關Q4之間的節點。如圖6所示,第一開關Q5-Q7之另一端共同電連接至一節點後,串聯至放電電感L2,第一開關Q8-Q10之另一端係共同耦接至接地電位。充電電感L1及放電電感L2的另一端係共同耦接至輸出電壓Vout,第一開關Q1之另一端耦接至輸入電壓Vin。As shown in FIG. 6, one end of the first switch Q5 is coupled to the node between the first switch Q1 and the first capacitor C1, and one end of the first switch Q6 is coupled to the node between the first switch Q2 and the first capacitor C2. Node, and one end of the first switch Q7 is coupled to the node between the first switch Q3 and the first capacitor C3. One end of the first switch Q8 is coupled to the node between the first capacitor C1 and the first switch Q2, one end of the first switch Q9 is coupled to the node between the first capacitor C2 and the first switch Q3, and the first switch One end of Q10 is coupled to the node between the first capacitor C3 and the first switch Q4. As shown in FIG. 6, after the other ends of the first switches Q5-Q7 are commonly electrically connected to a node, they are connected in series to the discharge inductor L2, and the other ends of the first switches Q8-Q10 are commonly coupled to the ground potential. The other end of the charging inductor L1 and the discharging inductor L2 are commonly coupled to the output voltage Vout, and the other end of the first switch Q1 is coupled to the input voltage Vin.

請繼續參照圖6,第二開關Q1之一端5耦接至第二開關Q11與第二電容C4之間的節點,第二開關Q16之一端耦接至第二開關Q12與第二電容C5之間的節點,而第二開關Q17之一端耦接至第二開關Q13與第二電容C6之間的節點。第二開關Q18之一端耦接至第二電容C4與第二開關Q12之間的節點,第二開關Q19之一端耦接至第二電容C5與第二開關Q13之間的節點,而第二開關Q20之一端耦接至第二電容C6與第二開關Q14之間的節點。第二開關Q15-Q17之另一端共同電連接至一節點後,串聯至放電電感L2。第二開關Q18-Q20之另一端係共同耦接至接地電位。第二開關Q11之另一端耦接至輸入電壓Vin。Please continue to refer to FIG. 6, one end 5 of the second switch Q1 is coupled to the node between the second switch Q11 and the second capacitor C4, and one end of the second switch Q16 is coupled between the second switch Q12 and the second capacitor C5 , And one end of the second switch Q17 is coupled to the node between the second switch Q13 and the second capacitor C6. One end of the second switch Q18 is coupled to the node between the second capacitor C4 and the second switch Q12, one end of the second switch Q19 is coupled to the node between the second capacitor C5 and the second switch Q13, and the second switch One end of Q20 is coupled to the node between the second capacitor C6 and the second switch Q14. After the other ends of the second switches Q15-Q17 are electrically connected to a node together, they are connected in series to the discharge inductor L2. The other ends of the second switches Q18-Q20 are commonly coupled to the ground potential. The other end of the second switch Q11 is coupled to the input voltage Vin.

第一開關Q1-Q10及第二開關Q11-Q20可根據對應之操作訊號,切換所對應之第一電容C1-C3、第二電容C4-C6與充電電感L1及放電電感L2之電連接關係。在一第一充電程序中,第一開關Q1-Q4係為導通,第一開關Q5-Q10係為不導通,使得第一電容C1-C3彼此串聯後與充電電感L1串聯於輸入電壓Vin與輸出電壓Vout之間,以形成一第一充電路徑。在一第一放電程序中,第一開關Q5-Q10係導通,第一開關Q1-Q4係不導通,使第一電容C1、第一電容C2及第一電容C3彼此並聯後串聯放電電感L2,而形成複數第一放電路徑。再請參照圖6,在一第二充電程序中,第二開關Q11-Q14係為導通,第二開關Q15-Q20係為不導通,使得第二電容C4-C6彼此串聯後與充電電感L1串聯於輸入電壓Vin與輸出電壓Vout之間,以形成一第二充電路徑。在一第二放電程序中,第二開關Q15-Q20係導通,第二開關Q11-Q14係不導通,使第二電容C4、第二電容C5及第二電容C6彼此並聯後串聯放電電感L2,而形成複數第二放電路徑。應注意者為,上述第一充電程序與上述第二放電程序係同時進行,上述第一放電程序與上述第二充電程序係同時進行,上述第一充電程序與上述第一放電程序係於不同的時間段進行,上述第二充電程序與上述第二放電程序係於不同的時間段進行。於本實施例中,每個第一電容C1-C3及每個第二電容C4-C6的直流偏壓均為Vo,故本實施例中的第一電容C1-C3及第二電容C4-C6需要耐較低的額定電壓,故可使用較小體積的電容器。The first switch Q1-Q10 and the second switch Q11-Q20 can switch the electrical connection relationship between the corresponding first capacitor C1-C3, the second capacitor C4-C6 and the charging inductor L1 and the discharging inductor L2 according to the corresponding operation signal. In a first charging procedure, the first switches Q1-Q4 are turned on, and the first switches Q5-Q10 are not turned on, so that the first capacitors C1-C3 are connected in series with each other and the charging inductor L1 is connected in series with the input voltage Vin and the output Between the voltages Vout to form a first charging path. In a first discharging procedure, the first switches Q5-Q10 are turned on, and the first switches Q1-Q4 are not turned on, so that the first capacitor C1, the first capacitor C2, and the first capacitor C3 are connected in parallel to each other, and then the discharge inductor L2 is connected in series. A plurality of first discharge paths are formed. 6 again, in a second charging process, the second switches Q11-Q14 are turned on, and the second switches Q15-Q20 are not turned on, so that the second capacitors C4-C6 are connected in series with each other and then connected in series with the charging inductor L1 Between the input voltage Vin and the output voltage Vout, a second charging path is formed. In a second discharging procedure, the second switches Q15-Q20 are turned on, and the second switches Q11-Q14 are not turned on, so that the second capacitor C4, the second capacitor C5, and the second capacitor C6 are connected in parallel to each other and then the discharge inductor L2 is connected in series. A plurality of second discharge paths are formed. It should be noted that the first charging procedure and the second discharging procedure are carried out simultaneously, the first discharging procedure and the second charging procedure are carried out simultaneously, and the first charging procedure is different from the first discharging procedure. The second charging process and the second discharging process are performed in different time periods. In this embodiment, the DC bias of each first capacitor C1-C3 and each second capacitor C4-C6 is Vo, so the first capacitor C1-C3 and the second capacitor C4-C6 in this embodiment Need to withstand a lower rated voltage, so a smaller volume capacitor can be used.

於一實施例中,上述第一充電程序的持續時間大致上為特定比例之工作週期(duty cycle),例如但不限於大致上為百分之五十之工作週期;藉此,第一開關可於流經第一開關的電流在其正半波相對較低位準的時點切換,以達成柔性切換。在一種較佳的實施例中,可達到零電流切換(zero current switch, ZCS)。In one embodiment, the duration of the first charging process is substantially a duty cycle of a specific proportion, such as but not limited to a duty cycle of substantially fifty percent; thereby, the first switch can be The current flowing through the first switch is switched at a relatively low level of the positive half-wave, so as to achieve flexible switching. In a preferred embodiment, zero current switch (ZCS) can be achieved.

於一實施例中,上述第一充電程序的持續時間小於特定比例之工作週期一段第一預設期間,例如但不限於小於百分之五十之工作週期一段第一預設期間;藉此提前不導通第一開關Q1-Q4後仍維持有微小的電流,流經充電電感L1,因此,即可將第一開關Q10中,儲存於其中之寄生電容的累積電荷透過第一開關Q4之寄生二極體帶走,而降低第一開關Q10的跨壓,以達到柔性切換。在一種較佳的實施例中,調整第一預設期間,而達到零電壓切換。In one embodiment, the duration of the first charging process is less than a specific proportion of the duty cycle for a first predetermined period, such as but not limited to a first predetermined period of less than 50% of the duty cycle; thereby After the first switch Q1-Q4 is not turned on, there is still a small current flowing through the charging inductor L1. Therefore, the accumulated charge of the parasitic capacitance stored in the first switch Q10 can be transmitted through the parasitic second of the first switch Q4. The pole body is taken away, and the cross voltage of the first switch Q10 is reduced to achieve flexible switching. In a preferred embodiment, the first predetermined period is adjusted to achieve zero voltage switching.

於一實施例中,相對地,上述第一放電程序的持續時間大於特定比例之工作週期一段第二預設期間,例如但不限於大於百分之五十之工作週期一段第二預設期間;藉此,延後不導通第一開關Q5-Q10後放電電感L2的負電流會通過第一開關Q5的寄生二極體而對第一開關Q1的寄生電容進行充電,而降低第一開關Q1的跨壓,以達到柔性切換。在一種較佳的實施例中,調整第二預設期間,而達到零電壓切換。In one embodiment, relatively, the duration of the first discharge process is greater than a specific proportion of the duty cycle for a second predetermined period, for example, but not limited to, a work period greater than 50% for a second predetermined period; Thereby, after the first switch Q5-Q10 is not turned on, the negative current of the discharge inductor L2 will charge the parasitic capacitance of the first switch Q1 through the parasitic diode of the first switch Q5, thereby reducing the capacitance of the first switch Q1. Cross pressure to achieve flexible switching. In a preferred embodiment, the second predetermined period is adjusted to achieve zero voltage switching.

於一實施例中,上述第二充電程序的持續時間大致上為特定比例之工作週期,例如但不限於大致上為百分之五十之工作週期;藉此,第二開關可於流經第二開關的電流在其正半波相對較低位準的時點切換,以達成柔性切換。在一種較佳的實施例中,可達到零電流切換。In one embodiment, the duration of the second charging process is roughly a specific proportion of the duty cycle, such as but not limited to roughly 50% of the duty cycle; thereby, the second switch can flow through the first The currents of the two switches are switched at a relatively low level of the positive half-wave, so as to achieve flexible switching. In a preferred embodiment, zero current switching can be achieved.

於一實施例中,上述第二充電程序的持續時間小於特定比例之工作週期一段第一預設期間,例如但不限於小於百分之五十之工作週期一段第一預設期間,藉此提前不導通第二開關Q11-Q14後仍維持有微小的電流,流經充電電感L1,因此,即可將第二開關Q20中,儲存於其中之寄生電容的累積電荷透過第二開關Q14之寄生二極體帶走,而降低第二開關Q20的跨壓,以達到柔性切換。在一種較佳的實施例中,調整第一預設期間,而達到零電壓切換。In one embodiment, the duration of the second charging process is less than a specific proportion of the duty cycle for a first predetermined period, for example, but not limited to less than 50% of the duty cycle for a first predetermined period, thereby advancing After the second switches Q11-Q14 are not turned on, there is still a small current flowing through the charging inductor L1. Therefore, the accumulated charge of the parasitic capacitance stored in the second switch Q20 can be transmitted through the parasitic two of the second switch Q14. The pole body is taken away, and the cross voltage of the second switch Q20 is reduced to achieve flexible switching. In a preferred embodiment, the first predetermined period is adjusted to achieve zero voltage switching.

於一實施例中,相對地,上述第二放電程序的持續時間大於特定比例之工作週期一段第二預設期間,例如但不限於大於百分之五十之工作週期一段第二預設期間;藉此,延後不導通第二開關Q15-Q20後放電電感L2的負電流會通過第二開關Q15的寄生二極體而對第二開關Q11的寄生電容進行充電,而降低第二開關Q11的跨壓,以達到柔性切換。在一種較佳的實施例中,調整第二預設期間,而達到零電壓切換。於一實施例中,上述特定比例係與諧振頻率相關。於一實施例中,上述第一充電程序具有一第一充電諧振頻率,上述第一放電程序具有一第一放電諧振頻率,上述第二充電程序具有一第二充電諧振頻率,上述第二放電程序具有一第二放電諧振頻率。於一較佳實施例中,上述第一充電諧振頻率與上述第一放電諧振頻率相同,上述第二充電諧振頻率與上述第二放電諧振頻率相同。In one embodiment, relatively, the duration of the second discharge process is greater than a specific proportion of the duty cycle for a second predetermined period, such as but not limited to a second preset period of greater than 50% of the duty cycle; Thereby, after the second switch Q15-Q20 is not turned on, the negative current of the discharge inductor L2 will charge the parasitic capacitance of the second switch Q11 through the parasitic diode of the second switch Q15, and reduce the second switch Q11. Cross pressure to achieve flexible switching. In a preferred embodiment, the second predetermined period is adjusted to achieve zero voltage switching. In one embodiment, the aforementioned specific ratio is related to the resonance frequency. In one embodiment, the first charging procedure has a first resonant frequency of charging, the first discharging procedure has a first resonant frequency of discharging, the second charging procedure has a second resonant frequency of charging, and the second discharging procedure Has a second discharge resonance frequency. In a preferred embodiment, the first charging resonance frequency is the same as the first discharging resonance frequency, and the second charging resonance frequency is the same as the second discharging resonance frequency.

於一實施例中,上述電源轉換器60可為雙向電源轉換器。於一實施例中,上述電源轉換器60之輸入電壓Vin與輸出電壓Vout之電壓轉換比率可為4:1、3:1或2:1。於一實施例中,第一充電諧振頻率為f r6=

Figure 02_image015
,第一放電諧振頻率為f r7=
Figure 02_image017
,第二充電諧振頻率為f r8=
Figure 02_image015
,第二放電諧振頻率為f r9=
Figure 02_image017
,若C1=C2=C3=C4=C5=C6=Cr且欲使f r6=f r7=f r8=f r9,則L1與L2的電感值需符合L2=
Figure 02_image013
L1。 In one embodiment, the aforementioned power converter 60 may be a bidirectional power converter. In one embodiment, the voltage conversion ratio between the input voltage Vin and the output voltage Vout of the power converter 60 may be 4:1, 3:1, or 2:1. In one embodiment, the first resonant frequency of charging is fr6 =
Figure 02_image015
, The first discharge resonance frequency is f r7=
Figure 02_image017
, The second charging resonance frequency is f r8 =
Figure 02_image015
, The second discharge resonance frequency is f r9=
Figure 02_image017
, If C1=C2=C3=C4=C5=C6=Cr and want to make f r6 = f r7 = f r8 = f r9 , the inductance values of L1 and L2 must meet L2=
Figure 02_image013
L1.

圖7係根據本發明之再另一實施例顯示一電源轉換器之電路示意圖。本實施例的電源轉換器為交錯式(interleaved)電源轉換器。如圖7所示,本實施例的充電電感可移至輸入電壓Vin與第一開關Q1及第二開關Q11之間,且係利用前端轉換器701內之前端電感作為充電電感L1,藉此可更進一步減少電感的數量。本發明之電源轉換器70包含第一電容C1、第一電容C2、第一電容C3、第二電容C4、第二電容C5、第二電容C6、第一開關Q1、第一開關Q2、第一開關Q3、第一開關Q4、第一開關Q5、第一開關Q6、第一開關Q7、第一開關Q8、第一開關Q9、第一開關Q10、第二開關Q11、第二開關Q12、第二開關Q13、第二開關Q14、第二開關Q15、第二開關Q16、第二開關Q17、第二開關Q18、第二開關Q19、第二開關Q20、充電電感L1、放電電感L2。第一開關Q1-Q3分別與對應之第一電容C1-C3串聯,而第一開關Q4與輸出電壓Vout耦接,第二開關Q11-Q13分別與對應之第二電容C4-C6串聯,而第二開關Q14與輸出電壓Vout耦接。第一開關Q1與充電電感L1耦接,而第二開關Q11與充電電感L1耦接,充電電感L1之另一端則係耦接至輸入電壓Vin。應注意者為,本發明之電源轉換器中的電容數量並不限於本實施例的六個,亦可為四個或六個以上,本實施例所顯示之元件數量僅用以說明本發明並不用限制本發明。FIG. 7 is a circuit diagram of a power converter according to still another embodiment of the present invention. The power converter of this embodiment is an interleaved power converter. As shown in FIG. 7, the charging inductor of this embodiment can be moved between the input voltage Vin and the first switch Q1 and the second switch Q11, and the front-end inductor in the front-end converter 701 is used as the charging inductor L1. Further reduce the number of inductances. The power converter 70 of the present invention includes a first capacitor C1, a first capacitor C2, a first capacitor C3, a second capacitor C4, a second capacitor C5, a second capacitor C6, a first switch Q1, a first switch Q2, and a first capacitor. Switch Q3, first switch Q4, first switch Q5, first switch Q6, first switch Q7, first switch Q8, first switch Q9, first switch Q10, second switch Q11, second switch Q12, second The switch Q13, the second switch Q14, the second switch Q15, the second switch Q16, the second switch Q17, the second switch Q18, the second switch Q19, the second switch Q20, the charging inductor L1, the discharging inductor L2. The first switches Q1-Q3 are respectively connected in series with the corresponding first capacitors C1-C3, and the first switch Q4 is coupled with the output voltage Vout, the second switches Q11-Q13 are respectively connected in series with the corresponding second capacitors C4-C6, and the The second switch Q14 is coupled to the output voltage Vout. The first switch Q1 is coupled to the charging inductor L1, the second switch Q11 is coupled to the charging inductor L1, and the other end of the charging inductor L1 is coupled to the input voltage Vin. It should be noted that the number of capacitors in the power converter of the present invention is not limited to six in this embodiment, and can be four or more than six. The number of components shown in this embodiment is only used to illustrate the combination of the present invention. The invention is not limited.

如圖7所示,第一開關Q5之一端耦接至第一開關Q1與第一電容C1之間的節點,第一開關Q6之一端耦接至第一開關Q2與第一電容C2之間的節點,而第一開關Q7之一端耦接至第一開關Q3與第一電容C3之間的節點。第一開關Q8之一端耦接至第一電容C1與第一開關Q2之間的節點,第一開關Q9之一端耦接至第一電容C2與第一開關Q3之間的節點,而第一開關Q10之一端耦接至第一電容C3與第一開關Q4之間的節點。如圖7所示,第一開關Q5-Q7之另一端並接後串聯至放電電感L2,第一開關Q8-Q10之另一端係耦接至接地電位。放電電感L2的另一端係耦接至輸出電壓Vout。請繼續參照圖7,第二開關Q15之一端耦接至第二開關Q11與第二電容C4之間的節點,第二開關Q16之一端耦接至第二開關Q12與第二電容C5之間的節點,而第二開關Q17之一端耦接至第二開關Q13與第二電容C6之間的節點。第二開關Q18之一端耦接至第二電容C4與第二開關Q12之間的節點,第二開關Q19之一端耦接至第二電容C5與第二開關Q13之間的節點,而第二開關Q20之一端耦接至第二電容C6與第二開關Q14之間的節點。第二開關Q15-Q17之另一端共同電連接至一節點後串聯放電電感L2,第二開關Q18-Q20之另一端係共同耦接至接地電位。As shown in FIG. 7, one end of the first switch Q5 is coupled to the node between the first switch Q1 and the first capacitor C1, and one end of the first switch Q6 is coupled to the node between the first switch Q2 and the first capacitor C2. Node, and one end of the first switch Q7 is coupled to the node between the first switch Q3 and the first capacitor C3. One end of the first switch Q8 is coupled to the node between the first capacitor C1 and the first switch Q2, one end of the first switch Q9 is coupled to the node between the first capacitor C2 and the first switch Q3, and the first switch One end of Q10 is coupled to the node between the first capacitor C3 and the first switch Q4. As shown in FIG. 7, the other ends of the first switches Q5-Q7 are connected in parallel and then connected in series to the discharge inductor L2, and the other ends of the first switches Q8-Q10 are coupled to the ground potential. The other end of the discharge inductor L2 is coupled to the output voltage Vout. Please continue to refer to FIG. 7, one end of the second switch Q15 is coupled to the node between the second switch Q11 and the second capacitor C4, and one end of the second switch Q16 is coupled to the node between the second switch Q12 and the second capacitor C5 Node, and one end of the second switch Q17 is coupled to the node between the second switch Q13 and the second capacitor C6. One end of the second switch Q18 is coupled to the node between the second capacitor C4 and the second switch Q12, one end of the second switch Q19 is coupled to the node between the second capacitor C5 and the second switch Q13, and the second switch One end of Q20 is coupled to the node between the second capacitor C6 and the second switch Q14. The other ends of the second switches Q15-Q17 are commonly electrically connected to a node and the discharge inductor L2 is connected in series, and the other ends of the second switches Q18-Q20 are commonly coupled to the ground potential.

第一開關Q1-Q10及第二開關Q11-Q20可根據對應之操作訊號,切換所對應之第一電容C1-C3、第二電容C4-C6與充電電感L1及放電電感L2之電連接關係。在一第一充電程序中,第一開關Q1-Q4係為導通,第一開關Q5-Q10係為不導通,使得第一電容C1-C3彼此串聯後與充電電感L1串聯於輸入電壓Vin與輸出電壓Vout之間,以形成一第一充電路徑。在一第一放電程序中,第一開關Q5-Q10係導通,第一開關Q1-Q4係不導通,使第一電容C1、第一電容C2及第一電容C3彼此並聯後串聯放電電感L2,而形成複數第一放電路徑。再請參照圖7,在一第二充電程序中,第二開關Q11-Q14係為導通,第二開關Q15-Q20係為不導通,使得第二電容C4-C6彼此串聯後與充電電感L1串聯於輸入電壓Vin與輸出電壓Vout之間,以形成一第二充電路徑。在一第二放電程序中,第二開關Q15-Q20係導通,第二開關Q11-Q14係不導通,使第二電容C4、第二電容C5及第二電容C6彼此並聯後串聯放電電感L2,而形成複數第二放電路徑。應注意者為,上述第一充電程序與上述第二放電程序係同時進行,上述第一放電程序與上述第二充電程序係同時進行,上述第一充電程序與上述第一放電程序係於不同的時間段進行,上述第二充電程序與上述第二放電程序係於不同的時間段進行。於本實施例中,每個第一電容C1-C3及每個第二電容C4-C6的直流偏壓均為Vo,故本實施例中的第一電容C1-C3及第二電容C4-C6需要耐較低的額定電壓,故可使用較小體積的電容器。The first switch Q1-Q10 and the second switch Q11-Q20 can switch the electrical connection relationship between the corresponding first capacitor C1-C3, the second capacitor C4-C6 and the charging inductor L1 and the discharging inductor L2 according to the corresponding operation signal. In a first charging procedure, the first switches Q1-Q4 are turned on, and the first switches Q5-Q10 are not turned on, so that the first capacitors C1-C3 are connected in series with each other and the charging inductor L1 is connected in series with the input voltage Vin and the output Between the voltages Vout to form a first charging path. In a first discharging procedure, the first switches Q5-Q10 are turned on, and the first switches Q1-Q4 are not turned on, so that the first capacitor C1, the first capacitor C2, and the first capacitor C3 are connected in parallel to each other, and then the discharge inductor L2 is connected in series. A plurality of first discharge paths are formed. Please refer to FIG. 7 again. In a second charging procedure, the second switches Q11-Q14 are turned on, and the second switches Q15-Q20 are not turned on, so that the second capacitors C4-C6 are connected in series with each other and then connected in series with the charging inductor L1. Between the input voltage Vin and the output voltage Vout, a second charging path is formed. In a second discharging procedure, the second switches Q15-Q20 are turned on, and the second switches Q11-Q14 are not turned on, so that the second capacitor C4, the second capacitor C5, and the second capacitor C6 are connected in parallel to each other and then the discharge inductor L2 is connected in series. A plurality of second discharge paths are formed. It should be noted that the first charging procedure and the second discharging procedure are carried out simultaneously, the first discharging procedure and the second charging procedure are carried out simultaneously, and the first charging procedure is different from the first discharging procedure. The second charging process and the second discharging process are performed in different time periods. In this embodiment, the DC bias of each first capacitor C1-C3 and each second capacitor C4-C6 is Vo, so the first capacitor C1-C3 and the second capacitor C4-C6 in this embodiment Need to withstand a lower rated voltage, so a smaller volume capacitor can be used.

於一實施例中,上述第一充電程序的持續時間大致上為特定比例之工作週期(duty cycle),例如但不限於大致上為百分之五十之工作週期;藉此,第一開關可於流經第 一開關的電流在其正半波相對較低位準的時點切換,以達成柔性切換。在一種較佳的實施例中,可達到零電流切換。In one embodiment, the duration of the first charging process is substantially a duty cycle of a specific proportion, such as but not limited to a duty cycle of substantially fifty percent; thereby, the first switch can be The current flowing through the first switch is switched at a relatively low level of the positive half-wave, so as to achieve flexible switching. In a preferred embodiment, zero current switching can be achieved.

於一實施例中,上述第二充電程序的持續時間大致上為特定比例之工作週期,例如但不限於大致上為百分之五十之工作週期;藉此,第二開關可於流經第二開關的電流在其正半波相對較低位準的時點切換,以達成柔性切換。在一種較佳的實施例中,可達到零電流切換。In one embodiment, the duration of the second charging process is roughly a specific proportion of the duty cycle, such as but not limited to roughly 50% of the duty cycle; thereby, the second switch can flow through the first The currents of the two switches are switched at a relatively low level of the positive half-wave, so as to achieve flexible switching. In a preferred embodiment, zero current switching can be achieved.

於一實施例中,上述特定比例係與諧振頻率相關。於一實施例中,上述第一充電程序具有一第一充電諧振頻率,上述第一放電程序具有一第一放電諧振頻率,上述第二充電程序具有一第二充電諧振頻率,上述第二放電程序具有一第二放電諧振頻率。於一較佳實施例中,上述第一充電諧振頻率與上述第一放電諧振頻率相同,上述第二充電諧振頻率與上述第二放電諧振頻率相同。In one embodiment, the aforementioned specific ratio is related to the resonance frequency. In one embodiment, the first charging procedure has a first resonant frequency of charging, the first discharging procedure has a first resonant frequency of discharging, the second charging procedure has a second resonant frequency of charging, and the second discharging procedure Has a second discharge resonance frequency. In a preferred embodiment, the first charging resonance frequency is the same as the first discharging resonance frequency, and the second charging resonance frequency is the same as the second discharging resonance frequency.

於一實施例中,上述電源轉換器70可為雙向電源轉換器。於一實施例中,上述電源轉換器70之輸入電壓Vin與輸出電壓Vout之電壓轉換比率可為4:1、3:1或2:1。於一實施例中,上述前端轉換器701包含但不限於如圖12A-12J所示之降壓轉換器、升壓轉換器、反壓轉換器、升降壓轉換器及升反壓轉換器。In one embodiment, the aforementioned power converter 70 may be a bidirectional power converter. In one embodiment, the voltage conversion ratio between the input voltage Vin and the output voltage Vout of the power converter 70 may be 4:1, 3:1, or 2:1. In one embodiment, the front-end converter 701 includes, but is not limited to, a buck converter, a boost converter, a back-voltage converter, a buck-boost converter, and a boost-back-voltage converter as shown in FIGS. 12A-12J.

圖8係根據本發明之又另一實施例顯示一電源轉換器之電路示意圖。本實施例與圖4之實施例的不同在於本實施例的電源轉換器80之充電電感L1可移至第一開關Q3與第一電容C3之間,其餘元件與圖4類似故不贅述。應注意者為,本發明之電源轉換器中的電容數量並不限於本實施例的三個,亦可為二個或四個以上,本實施例所顯示之元件數量僅用以說明本發明並不用限制本發明。FIG. 8 is a schematic diagram showing a circuit of a power converter according to still another embodiment of the present invention. The difference between this embodiment and the embodiment in FIG. 4 is that the charging inductor L1 of the power converter 80 in this embodiment can be moved between the first switch Q3 and the first capacitor C3, and the remaining components are similar to those in FIG. It should be noted that the number of capacitors in the power converter of the present invention is not limited to three in this embodiment, and can be two or more than four. The number of components shown in this embodiment is only used to illustrate the combination of the present invention. The invention is not limited.

圖9係根據本發明之再另一實施例顯示一電源轉換器之電路示意圖。本實施例與圖4之實施例的不同在於本實施例的電源轉換器90之充電電感L1可移至第一開關Q1與第一電容C1之間,本實施例的電源轉換器90之放電電感L2的位置改變至與並接的第一開關Q8-Q10串聯,換言之第一開關Q8-Q10並接後串聯至放電電感L2,放電電感L2之另一端則係耦接接地電位,其餘元件與圖4類似故不贅述。應注意者為,本發明之電源轉換器中的電容數量並不限於本實施例的三個,亦可為二個或四個以上,本實施例所顯示之元件數量僅用以說明本發明並不用限制本發明。FIG. 9 is a circuit diagram of a power converter according to still another embodiment of the present invention. The difference between this embodiment and the embodiment of FIG. 4 is that the charging inductor L1 of the power converter 90 of this embodiment can be moved between the first switch Q1 and the first capacitor C1, and the discharging inductor of the power converter 90 of this embodiment The position of L2 is changed to be connected in series with the first switch Q8-Q10 connected in parallel. In other words, the first switch Q8-Q10 is connected in series to the discharge inductor L2 after being connected in parallel. The other end of the discharge inductor L2 is coupled to the ground potential. 4 It is similar, so I won't repeat it. It should be noted that the number of capacitors in the power converter of the present invention is not limited to three in this embodiment, and can be two or more than four. The number of components shown in this embodiment is only used to illustrate the combination of the present invention. The invention is not limited.

圖10係根據本發明之又另一實施例顯示一電源轉換器之電路示意圖。本實施例與圖4A之實施例的不同在於本實施例的電源轉換器100之充電電感可移至第一開關Q1與第一電容C1之間且係利用前端轉換器1001內之前端電感作為充電電感L1並利用前端轉換器1001內之開關作為第一開關Q1,藉此可更進一步減少電感的數量,本實施例的電源轉換器100之放電電感L2的位置可改變至與並接的第一開關Q6-Q7串聯,換言之第一開關Q6-Q7並接後串聯至放電電感L2,放電電感L2之另一端則係耦接接地電位。如圖10所示,本發明之電源轉換器100包含第一電容C1、第一電容C2、第一開關Q1、第一開關Q2、第一開關Q3、第一開關Q4、第一開關Q5、第一開關Q6、第一開關Q7、充電電感L1、放電電感L2。第一電容C1-C2分別與對應之第一開關Q2-Q3串聯,而第一開關Q1與充電電感L1串聯。應注意者為,本發明之電源轉換器中的電容數量並不限於本實施例的二個,亦可為三個或四個以上,本實施例所顯示之元件數量僅用以說明本發明並不用限制本發明。FIG. 10 is a circuit diagram of a power converter according to still another embodiment of the present invention. The difference between this embodiment and the embodiment of FIG. 4A is that the charging inductor of the power converter 100 of this embodiment can be moved between the first switch Q1 and the first capacitor C1, and the front-end inductor in the front-end converter 1001 is used for charging. The inductor L1 uses the switch in the front-end converter 1001 as the first switch Q1, thereby further reducing the number of inductors. The position of the discharge inductor L2 of the power converter 100 of this embodiment can be changed to the first switch connected in parallel. The switches Q6-Q7 are connected in series. In other words, the first switch Q6-Q7 is connected in parallel and then connected in series to the discharge inductor L2. The other end of the discharge inductor L2 is coupled to the ground potential. As shown in FIG. 10, the power converter 100 of the present invention includes a first capacitor C1, a first capacitor C2, a first switch Q1, a first switch Q2, a first switch Q3, a first switch Q4, a first switch Q5, and a first switch Q5. A switch Q6, a first switch Q7, a charging inductor L1, and a discharging inductor L2. The first capacitors C1-C2 are respectively connected in series with the corresponding first switches Q2-Q3, and the first switch Q1 is connected in series with the charging inductor L1. It should be noted that the number of capacitors in the power converter of the present invention is not limited to two in this embodiment, but can also be three or more than four. The number of components shown in this embodiment is only used to illustrate the combination of the present invention. The invention is not limited.

如圖10所示,第一開關Q4之一端耦接至充電電感L1與第一電容C1之間的節點,而第一開關Q5之一端耦接至第一開關Q2與第一電容C2之間的節點。第一開關Q6之一端耦接至第一電容C1與第一開關Q2之間的節點,而第一開關Q7之一端耦接至第一電容C2與第一開關Q3之間的節點。第一開關Q4-Q5之另一端共同電連接至一節點後,耦接至輸出電壓Vout,第一開關Q6-Q7之另一端共同電連接至一節點後,串聯至放電電感L2,放電電感L2之另一端係耦接至接地電位。第一開關Q1之另一端耦接至輸入電壓Vin,充電電感L1之另一端耦接第一電容C1,第一開關Q3之另一端係耦接至輸出電壓Vout。As shown in FIG. 10, one end of the first switch Q4 is coupled to the node between the charging inductor L1 and the first capacitor C1, and one end of the first switch Q5 is coupled to the node between the first switch Q2 and the first capacitor C2. node. One end of the first switch Q6 is coupled to the node between the first capacitor C1 and the first switch Q2, and one end of the first switch Q7 is coupled to the node between the first capacitor C2 and the first switch Q3. After the other ends of the first switches Q4-Q5 are commonly electrically connected to a node, they are coupled to the output voltage Vout. After the other ends of the first switches Q6-Q7 are commonly electrically connected to a node, they are connected in series to the discharge inductor L2 and the discharge inductor L2. The other end is coupled to the ground potential. The other end of the first switch Q1 is coupled to the input voltage Vin, the other end of the charging inductor L1 is coupled to the first capacitor C1, and the other end of the first switch Q3 is coupled to the output voltage Vout.

第一開關Q1-Q7可根據對應之操作訊號,切換所對應之第一電容C1-C2與充電電感L1及放電電感L2之電連接關係。在一第一充電程序中,第一開關Q1-Q3係為導通,第一開關Q4-Q7係為不導通,使得充電電感L1與彼此串聯的第一電容C1-C2串聯於輸入電壓Vin與輸出電壓Vout之間,以形成一第一充電路徑。在一第一放電程序中,第一開關Q4-Q7係導通,第一開關Q1-Q3係不導通,使第一電容C1、第一電容C2及第一電容C3彼此並聯後串聯放電電感L2,而形成複數第一放電路徑。應注意者為,上述第一充電程序與上述第一放電程序係於不同的時間段交錯進行,而非同時進行。於本實施例中,每個第一電容C1-C2的直流偏壓均為Vo,故本實施例中的第一電容C1-C2需要耐較低的額定電壓,故可使用較小體積的電容器。The first switch Q1-Q7 can switch the electrical connection relationship between the corresponding first capacitor C1-C2 and the charging inductor L1 and the discharging inductor L2 according to the corresponding operation signal. In a first charging procedure, the first switches Q1-Q3 are turned on, and the first switches Q4-Q7 are not turned on, so that the charging inductor L1 and the first capacitor C1-C2 connected in series with each other are connected in series with the input voltage Vin and the output Between the voltages Vout to form a first charging path. In a first discharging procedure, the first switches Q4-Q7 are turned on, and the first switches Q1-Q3 are not turned on, so that the first capacitor C1, the first capacitor C2, and the first capacitor C3 are connected in parallel to each other and then the discharge inductor L2 is connected in series. A plurality of first discharge paths are formed. It should be noted that the above-mentioned first charging process and the above-mentioned first discharging process are performed staggered in different time periods, rather than being performed at the same time. In this embodiment, the DC bias voltage of each first capacitor C1-C2 is Vo. Therefore, the first capacitor C1-C2 in this embodiment needs to withstand a lower rated voltage, so a smaller-volume capacitor can be used .

於一實施例中,上述特定比例係與諧振頻率相關。於一實施例中,上述第一充電程序具有一第一充電諧振頻率,上述第一放電程序具有一第一放電諧振頻率。於一較佳實施例中,上述第一充電諧振頻率與上述第一放電諧振頻率相同。In one embodiment, the aforementioned specific ratio is related to the resonance frequency. In one embodiment, the first charging process has a first resonant frequency of charging, and the first discharging process has a first resonant frequency of discharging. In a preferred embodiment, the first charging resonance frequency is the same as the first discharging resonance frequency.

於一實施例中,上述電源轉換器100可為雙向電源轉換器。於一實施例中,上述電源轉換器100之輸入電壓Vin與輸出電壓Vout之電壓轉換比率可為3:1或2:1。於一實施例中,上述前端轉換器1001包含但不限於如圖12A-12J所示之降壓轉換器、升壓轉換器、反壓轉換器、升降壓轉換器及升反壓轉換器。In one embodiment, the aforementioned power converter 100 may be a bidirectional power converter. In one embodiment, the voltage conversion ratio between the input voltage Vin and the output voltage Vout of the power converter 100 may be 3:1 or 2:1. In one embodiment, the aforementioned front-end converter 1001 includes, but is not limited to, a buck converter, a boost converter, a back-voltage converter, a buck-boost converter, and a boost-back-voltage converter as shown in FIGS. 12A-12J.

圖11A係根據本發明之一實施例顯示一充電程序與放電程序之對應之操作訊號與對應之電感電流之訊號波形示意圖。請同時參閱圖4A,圖11A所示的實施例中,第一開關Q1~Q4之操作訊號G1~G4於充電程序時為高位準,而第一開關Q5~Q10之操作訊號G5~G10於放電程序時為高位準。於圖11A之實施例中,充電程序的持續時間大致上為百分之五十之工作週期;藉此,第一開關Q1可於流經第一開關的電流在其正半波相對較低位準的時點切換,也就是在充電電感L1之電流為零電流時切換,以達成柔性切換。在一種較佳的實施例中,可達到零電流切換。FIG. 11A is a schematic diagram showing the corresponding operation signal of a charging process and a discharging process and the signal waveform of the corresponding inductor current according to an embodiment of the present invention. Please refer to FIG. 4A at the same time. In the embodiment shown in FIG. 11A, the operation signals G1~G4 of the first switches Q1~Q4 are at a high level during the charging process, and the operation signals G5~G10 of the first switches Q5~Q10 are at discharge It is high level during the program. In the embodiment of FIG. 11A, the duration of the charging process is approximately 50% of the duty cycle; thereby, the first switch Q1 can be used when the current flowing through the first switch is relatively low in its positive half-wave Punctual switching, that is, switching when the current of the charging inductor L1 is zero current, so as to achieve flexible switching. In a preferred embodiment, zero current switching can be achieved.

圖11B及11C係根據本發明之另一實施例顯示一充電程序與放電程序之對應之操作訊號與對應之電感電流之訊號波形示意圖。請同時參閱圖4A,圖11B所示的實施例中,第一開關Q1~Q4之操作訊號G1~G4於第一充電程序時為高位準,而第一開關Q5~Q10之操作訊號G5~G10於第一放電程序時為高位準。於圖11B之實施例中,第一充電程序的持續時間大致上為小於百分之五十之工作週期一段預設期間T1;藉此,提前不導通第一開關Q1-Q4後仍維持有微小的電流流經充電電感L1,因此,即可將第一開關Q10中,儲存於其中之寄生電容的累積電荷透過第一開關Q4之寄生二極體帶走,而降低第一開關Q10的跨壓,以達到柔性切換。在一種較佳的實施例中,調整預設期間T1,而達到零電壓切換。請同時參閱圖4A,圖11C所示的實施例中,第一開關Q1~Q4之操作訊號G1~G4於第一充電程序時為高位準,第一開關Q5~Q10之操作訊號G5~G10於第一放電程序時為高位準。於圖11C之實施例中,第一放電程序的持續時間大致上為大於百分之五十之工作週期一段預設期間T2+T3;藉此,延後不導通第一開關Q5-Q10後放電電感L2的負電流會通過第一開關Q5的寄生二極體而對第一開關Q1的寄生電容進行充電,而降低第一開關Q1的跨壓,以達到柔性切換。在一種較佳的實施例中,調整預設期間T2及T2,而達到零電壓切換。於一實施例中,應注意者為,圖11B及11C之實施例可一起實施或僅實施其中一者。此外,請參照圖11D,其係根據本發明之另一實施例顯示一充電程序與放電程序之對應之操作訊號與對應之電容電流之訊號波形示意圖。請同時參照圖4A,如圖11D所示,可調整充電程序的持續時間與放電程序的持續時間例如加入延遲時間Td,而更具彈性地調整輸入電壓Vin與輸出電壓Vout的比例。11B and 11C are schematic diagrams showing the corresponding operation signals of a charging process and a discharging process and the signal waveforms of the corresponding inductor current according to another embodiment of the present invention. Please also refer to FIG. 4A. In the embodiment shown in FIG. 11B, the operation signals G1~G4 of the first switches Q1~Q4 are high during the first charging process, and the operation signals G5~G10 of the first switches Q5~Q10 It is high level during the first discharge process. In the embodiment of FIG. 11B, the duration of the first charging process is substantially less than 50% of the duty cycle for a predetermined period T1; thereby, the first switch Q1-Q4 is not turned on in advance, and there is still a small amount of time. The current flows through the charging inductor L1. Therefore, the accumulated charge of the parasitic capacitance stored in the first switch Q10 can be taken away through the parasitic diode of the first switch Q4, thereby reducing the cross-voltage of the first switch Q10 , In order to achieve flexible switching. In a preferred embodiment, the preset period T1 is adjusted to achieve zero voltage switching. Please also refer to FIG. 4A. In the embodiment shown in FIG. 11C, the operation signals G1 to G4 of the first switches Q1 to Q4 are high during the first charging process, and the operation signals G5 to G10 of the first switches Q5 to Q10 are at a high level during the first charging process. It is high level during the first discharge procedure. In the embodiment of FIG. 11C, the duration of the first discharging process is substantially greater than 50% of the duty cycle for a predetermined period T2+T3; thereby, the first switch Q5-Q10 is delayed and the first switch Q5-Q10 is not turned on. The negative current of the inductor L2 charges the parasitic capacitance of the first switch Q1 through the parasitic diode of the first switch Q5, and reduces the cross voltage of the first switch Q1 to achieve flexible switching. In a preferred embodiment, the preset periods T2 and T2 are adjusted to achieve zero voltage switching. In one embodiment, it should be noted that the embodiments of FIGS. 11B and 11C can be implemented together or only one of them can be implemented. In addition, please refer to FIG. 11D, which is a schematic diagram showing the corresponding operation signal of a charging process and a discharging process and the signal waveform of the corresponding capacitor current according to another embodiment of the present invention. Please also refer to FIG. 4A. As shown in FIG. 11D, the duration of the charging process and the duration of the discharging process can be adjusted, such as adding a delay time Td, and the ratio of the input voltage Vin to the output voltage Vout can be adjusted more flexibly.

請參照圖13,其根據本發明之一實施例顯示一電源轉換器中之控制器之示意圖。如圖13所示,本發明之電源轉換器可包含一控制器1301,其耦接至第一開關Q1-10及/或第二開關Q11-Q20,用以產生操作訊號G1-G4、G5-G10、G11-14、G15-20,以分別輸出至第一開關Q1-Q4、Q5-Q10及/或第二開關Q11-Q14、Q15-20,藉此分別切換第一開關Q1-Q4、Q5-Q10及/或第二開關Q11-Q14、Q15-20。Please refer to FIG. 13, which shows a schematic diagram of a controller in a power converter according to an embodiment of the present invention. As shown in FIG. 13, the power converter of the present invention may include a controller 1301, which is coupled to the first switch Q1-10 and/or the second switch Q11-Q20 for generating operation signals G1-G4, G5- G10, G11-14, G15-20 to respectively output to the first switch Q1-Q4, Q5-Q10 and/or the second switch Q11-Q14, Q15-20, thereby switching the first switch Q1-Q4, Q5 respectively -Q10 and/or the second switch Q11-Q14, Q15-20.

本發明如上所述提供了一種電源轉換器,其藉由特殊的電路設計可減少電感數量、使用較小體積的電容就可達到諧振電容、降低電壓應力、具有較佳的動態負載暫態響應、具有較佳的電流電壓平衡、具有穩定的諧振頻率、較容易控制以達到具有零電流切換(ZCS)或零電壓切換(ZVS)的柔性切換、並可更具彈性地調變電壓轉換比率且具有較廣的輸入電壓應用範圍,並可將輸出電壓控制在較先前技術更為精確的範圍內。As described above, the present invention provides a power converter, which can reduce the number of inductances through a special circuit design, use a smaller volume capacitor to achieve resonant capacitance, reduce voltage stress, and have better dynamic load transient response. It has better current and voltage balance, stable resonance frequency, easier to control to achieve flexible switching with zero current switching (ZCS) or zero voltage switching (ZVS), and can adjust the voltage conversion ratio more flexibly and has A wider input voltage application range, and the output voltage can be controlled in a more accurate range than the previous technology.

以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。所說明之各個實施例,並不限於單獨應用,亦可以組合應用,舉例而言,兩個或以上之實施例可以組合運用,而一實施例中之部分組成亦可用以取代另一實施例中對應之組成部件。此外,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,舉例而言,本發明所稱「根據某訊號進行處理或運算或產生某輸出結果」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行電壓電流轉換、電流電壓轉換、及/或比例轉換等,之後根據轉換後的訊號進行處理或運算產生某輸出結果。由此可知,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,其組合方式甚多,在此不一一列舉說明。因此,本發明的範圍應涵蓋上述及其他所有等效變化。The present invention has been described with reference to the preferred embodiments above, but the above is only for making the content of the present invention easier for those skilled in the art, and is not used to limit the scope of rights of the present invention. The illustrated embodiments are not limited to individual applications, but can also be combined. For example, two or more embodiments can be used in combination, and part of the composition in one embodiment can also be used to replace another embodiment. Corresponding components. In addition, under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations. For example, the “processing or calculation based on a certain signal or generating a certain output result” in the present invention is not limited to According to the signal itself, it also includes performing voltage-current conversion, current-voltage conversion, and/or ratio conversion on the signal when necessary, and then process or calculate an output result according to the converted signal. It can be seen from this that under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations, and there are many combinations of them, which will not be listed here. Therefore, the scope of the present invention should cover all the above and other equivalent changes.

30, 40, 50, 60, 70, 80, 90, 100:電源轉換器 501, 701, 1001:前端轉換器 1301:控制器 C1~C3:第一電容 C4~C6:第二電容 C1(CR), C2(CF), C3(CR), C4(CR), C5(CF), C6(CR):電容 Co:輸出電容 G1~G10:操作訊號 Ic1:第一電容C1電流 IL1:充電電感電流 IL2:放電電感電流 Io:輸出電流 IS7:第一開關Q7電流 IS9:第一開關Q9電流 L1~L3:充電電感(放電電感) L1(LR), L2(LR), L3(LR), L4(LR):電感 Q1~Q10:第一開關 Q11~Q20:第二開關 Q1(S1A), Q2(S2A), Q3(S1B), Q4(S2B), Q5(S1A), Q6(S2A), Q7(S2A), Q8(S1B), Q9(S1B), Q10(S2B), Q11(S2C), Q12(S1C), Q13(S2D), Q14(S1D), Q15(S2C), Q16(S1C), Q17(S1C), Q18(S2D), Q19(S2D), Q20(S1D), Qb, Qb1, Qb2:開關 RL:負載電阻 T1, T2, T3:期間 Td:延遲時間 V1:電壓 Vc1:第一電容C1直流偏壓 Vc2:第二電容C2直流偏壓 Vc3:第三電容C3直流偏壓 Vin:輸入電壓 Vout:輸出電壓 30, 40, 50, 60, 70, 80, 90, 100: power converter 501, 701, 1001: front-end converter 1301: Controller C1~C3: the first capacitor C4~C6: second capacitor C1(CR), C2(CF), C3(CR), C4(CR), C5(CF), C6(CR): capacitance Co: output capacitance G1~G10: Operation signal Ic1: Current of the first capacitor C1 IL1: Charging inductor current IL2: discharge inductor current Io: output current IS7: First switch Q7 current IS9: First switch Q9 current L1~L3: Charging inductance (discharging inductance) L1(LR), L2(LR), L3(LR), L4(LR): inductance Q1~Q10: the first switch Q11~Q20: second switch Q1(S1A), Q2(S2A), Q3(S1B), Q4(S2B), Q5(S1A), Q6(S2A), Q7(S2A), Q8(S1B), Q9(S1B), Q10(S2B), Q11(S2C), Q12(S1C), Q13(S2D), Q14(S1D), Q15(S2C), Q16(S1C), Q17(S1C), Q18(S2D), Q19(S2D), Q20(S1D), Qb, Qb1, Qb2: switch RL: load resistance T1, T2, T3: period Td: Delay time V1: Voltage Vc1: DC bias voltage of the first capacitor C1 Vc2: DC bias voltage of the second capacitor C2 Vc3: The third capacitor C3 DC bias Vin: input voltage Vout: output voltage

圖1係為習知的電源轉換器。Figure 1 is a conventional power converter.

圖2係為另一習知的電源轉換器。Figure 2 is another conventional power converter.

圖3係根據本發明之一實施例顯示一電源轉換器之電路示意圖。FIG. 3 is a schematic diagram showing a circuit of a power converter according to an embodiment of the present invention.

圖4A與4B係根據本發明之另一實施例顯示一電源轉換器之電路與相關訊號之訊號波形示意圖。4A and 4B are schematic diagrams showing signal waveforms of a power converter circuit and related signals according to another embodiment of the present invention.

圖5係根據本發明之再另一實施例顯示一電源轉換器之電路示意圖。FIG. 5 is a schematic diagram showing a circuit of a power converter according to still another embodiment of the present invention.

圖6係根據本發明之又另一實施例顯示一電源轉換器之電路示意圖。FIG. 6 is a circuit diagram of a power converter according to still another embodiment of the present invention.

圖7係根據本發明之再另一實施例顯示一電源轉換器之電路示意圖。FIG. 7 is a circuit diagram of a power converter according to still another embodiment of the present invention.

圖8係根據本發明之又另一實施例顯示一電源轉換器之電路示意圖。FIG. 8 is a schematic diagram showing a circuit of a power converter according to still another embodiment of the present invention.

圖9係根據本發明之再另一實施例顯示一電源轉換器之電路示意圖。FIG. 9 is a circuit diagram of a power converter according to still another embodiment of the present invention.

圖10係根據本發明之又另一實施例顯示一電源轉換器之電路示意圖。FIG. 10 is a circuit diagram of a power converter according to still another embodiment of the present invention.

圖11A、11B及11C係根據本發明之一實施例顯示一充電程序與放電程序之對應之操作訊號與對應之電感電流之訊號波形示意圖。11A, 11B, and 11C are schematic diagrams showing the corresponding operation signals of a charging process and a discharging process and the corresponding signal waveforms of the inductor current according to an embodiment of the present invention.

圖11D係根據本發明之一實施例顯示一充電程序與放電程序之對應之操作訊號與對應之電容電流之訊號波形示意圖。FIG. 11D is a schematic diagram showing the corresponding operation signals of a charging process and a discharging process and the signal waveforms of the corresponding capacitor current according to an embodiment of the present invention.

圖12A-12J顯示降壓轉換器、升壓轉換器、反壓轉換器、升降壓轉換器及升反壓轉換器。Figures 12A-12J show a buck converter, a boost converter, a back-pressure converter, a buck-boost converter, and a boost-back converter.

圖13係根據本發明之一實施例顯示一電源轉換器中之控制器之示意圖。FIG. 13 is a schematic diagram showing a controller in a power converter according to an embodiment of the present invention.

30:電源轉換器 30: power converter

C1~C3:第一電容 C1~C3: the first capacitor

Co:輸出電容 Co: output capacitance

G1~G10:操作訊號 G1~G10: Operation signal

Ic1:第一電容C1電流 Ic1: Current of the first capacitor C1

L1~L3:充電電感(放電電感) L1~L3: Charging inductance (discharging inductance)

Q1~Q10:第一開關 Q1~Q10: the first switch

RL:負載電阻 RL: load resistance

Vin:輸入電壓 Vin: input voltage

Vout:輸出電壓 Vout: output voltage

Claims (19)

一種電源轉換器,用以將一輸入電壓轉換為一輸出電壓,該電源轉換器包含:複數第一電容;複數第一開關,與該複數第一電容對應耦接,分別根據對應之一第一操作訊號,以切換所對應之該第一電容之電連接關係;至少一充電電感,與該複數第一電容中之至少其中之一對應串聯;以及至少一放電電感,與該複數第一電容中之至少其中之一對應串聯;其中,在一第一充電程序中,藉由該複數第一開關的切換,使該複數第一電容之每一者與該至少一充電電感之每一者彼此串聯於該輸入電壓與該輸出電壓之間,以形成單一的一第一充電路徑;其中,在一第一放電程序中,藉由該複數第一開關的切換,使每一該第一電容與對應之該放電電感串聯於該輸出電壓與一接地電位間,而形成複數第一放電路徑;其中,該第一充電程序與該第一放電程序彼此重複地交錯排序,以將該輸入電壓轉換為該輸出電壓。 A power converter is used to convert an input voltage into an output voltage. The power converter includes: a plurality of first capacitors; The operation signal is used to switch the electrical connection relationship of the corresponding first capacitor; at least one charging inductor is connected in series with at least one of the plurality of first capacitors; and at least one discharge inductor is connected in series with the plurality of first capacitors At least one of them corresponds in series; wherein, in a first charging process, by switching of the plurality of first switches, each of the plurality of first capacitors and each of the at least one charging inductor are connected in series with each other A single first charging path is formed between the input voltage and the output voltage; wherein, in a first discharging process, by switching the plurality of first switches, each of the first capacitors and the corresponding The discharge inductor is connected in series between the output voltage and a ground potential to form a plurality of first discharge paths; wherein, the first charging process and the first discharging process are alternately sequenced repeatedly to convert the input voltage to the The output voltage. 如請求項1所述之電源轉換器,其中該至少一充電電感為複數充電電感,與該複數第一電容分別對應串聯,且在該第一充電程序中,藉由該複數第一開關的切換,使該複數第一電容之每一者與該複數充電電感之每一者彼此串聯於該輸入電壓與該輸出電壓之間,以形成單一的該第一充電路徑;其中,在該第一放電程序中,該複數充電電感用以作為該複數放電電感,並藉由該複數第一開關的切換,使該複數放電電感與該複數第 一電容分別對應串聯於該輸出電壓與該接地電位之間,以形成該複數第一放電路徑,其中該複數第一放電路徑係彼此並聯。 The power converter according to claim 1, wherein the at least one charging inductor is a plurality of charging inductors, respectively corresponding to the plurality of first capacitors in series, and in the first charging procedure, by the switching of the plurality of first switches , Each of the plurality of first capacitors and each of the plurality of charging inductors are connected in series with each other between the input voltage and the output voltage to form a single first charging path; wherein, in the first discharge In the procedure, the complex charging inductance is used as the complex discharging inductance, and by switching the plurality of first switches, the complex discharging inductance and the plurality of second A capacitor is respectively connected in series between the output voltage and the ground potential to form the plurality of first discharge paths, wherein the plurality of first discharge paths are connected in parallel with each other. 如請求項1所述之電源轉換器,其中該至少一充電電感為單一個充電電感,且該至少一放電電感為單一個放電電感,在該第一放電程序中,藉由該複數第一開關的切換,使該複數第一電容彼此並聯後串聯該單一個放電電感。 The power converter according to claim 1, wherein the at least one charging inductance is a single charging inductance, and the at least one discharging inductance is a single discharging inductance, and in the first discharging process, the plurality of first switches The first capacitor is connected in parallel with each other and then the single discharge inductor is connected in series. 如請求項1所述之電源轉換器,更包含:複數第二電容;以及複數第二開關,與該複數第二電容對應耦接,分別根據對應之一第二操作訊號,以切換所對應之該第二電容之電連接關係;其中,該至少一充電電感,與該複數第二電容中之至少其中之一對應串聯;其中,該至少一放電電感,與該複數第二電容中之至少其中之一對應串聯;其中,在一第二充電程序中,藉由該複數第二開關的切換,使該複數第二電容之每一者與該至少一充電電感之每一者彼此串聯於該輸入電壓與該輸出電壓之間,以形成單一的一第二充電路徑;其中,在一第二放電程序中,藉由該複數第二開關的切換,使每一該第二電容與對應之該放電電感串聯於該輸出電壓與一接地電位間,而形成複數第二放電路徑;其中,該第二充電程序與該第二放電程序彼此重複地交錯排序,以將該輸入電壓轉換為該輸出電壓;其中,該電源轉換器於該第一充電程序時,執行該第二放電程序; 其中,該電源轉換器於該第一放電程序時,執行該第二充電程序。 The power converter according to claim 1, further comprising: a plurality of second capacitors; and a plurality of second switches, which are correspondingly coupled to the plurality of second capacitors, and switch the corresponding ones according to a corresponding second operation signal. The electrical connection relationship of the second capacitor; wherein, the at least one charging inductor is connected in series with at least one of the plurality of second capacitors; wherein, the at least one discharge inductor is connected to at least one of the plurality of second capacitors One of them corresponds to series connection; wherein, in a second charging process, by switching of the plurality of second switches, each of the plurality of second capacitors and each of the at least one charging inductor are connected in series with each other in the input Between the voltage and the output voltage to form a single second charging path; wherein, in a second discharging process, by switching the plurality of second switches, each of the second capacitors and the corresponding discharge The inductor is connected in series between the output voltage and a ground potential to form a plurality of second discharge paths; wherein, the second charging process and the second discharging process are repeatedly arranged in a staggered manner to convert the input voltage into the output voltage; Wherein, the power converter executes the second discharging procedure during the first charging procedure; Wherein, the power converter executes the second charging procedure during the first discharging procedure. 如請求項3所述之電源轉換器,更包含一前端轉換器,其中該前端轉換器具有一前端電感,用以作為該充電電感。 The power converter according to claim 3, further comprising a front-end converter, wherein the front-end converter has a front-end inductor used as the charging inductor. 如請求項5所述之電源轉換器,其中該前端轉換器包含降壓轉換器、升壓轉換器、升降壓轉換器、反壓轉換器或升反壓轉換器。 The power converter according to claim 5, wherein the front-end converter includes a buck converter, a boost converter, a buck-boost converter, a back-voltage converter, or a boost-back converter. 如請求項1、2、3或5所述之電源轉換器,其中該第一充電程序具有一第一充電諧振頻率,且該第一放電程序具有一第一放電諧振頻率,且該第一充電諧振頻率與該第一放電諧振頻率相同。 The power converter according to claim 1, 2, 3, or 5, wherein the first charging procedure has a first charging resonance frequency, and the first discharging procedure has a first discharging resonance frequency, and the first charging The resonance frequency is the same as the first discharge resonance frequency. 如請求項4所述之電源轉換器,其中該第二充電程序具有一第二充電諧振頻率,且該第二放電程序具有一第二放電諧振頻率,且該第二充電諧振頻率與該第二放電諧振頻率相同。 The power converter according to claim 4, wherein the second charging procedure has a second resonant frequency of charging, and the second discharging procedure has a second resonant frequency of discharging, and the second resonant frequency of charging and the second The discharge resonance frequency is the same. 如請求項1、2、3或5所述之電源轉換器,其中該第一充電程序的持續時間等於該第一放電程序的持續時間,以達到柔性切換(soft switching)之零電流切換。 The power converter according to claim 1, 2, 3, or 5, wherein the duration of the first charging procedure is equal to the duration of the first discharging procedure, so as to achieve zero-current switching of soft switching. 如請求項4所述之電源轉換器,其中該第二充電程序的持續時間等於該第二放電程序的持續時間,以達到柔性切換之零電流切換。 The power converter according to claim 4, wherein the duration of the second charging procedure is equal to the duration of the second discharging procedure, so as to achieve zero-current switching of flexible switching. 如請求項1所述之電源轉換器,其中藉由調整該第一充電程序的持續時間,以達到柔性切換(soft switching)之零電壓切換。 The power converter according to claim 1, wherein the duration of the first charging process is adjusted to achieve soft switching (zero voltage switching). 如請求項4所述之電源轉換器,其中藉由調整該第二充電程序的持續時間,以達到柔性切換之零電壓切換。 The power converter according to claim 4, wherein the duration of the second charging process is adjusted to achieve flexible switching of zero voltage switching. 如請求項1所述之電源轉換器,其中藉由調整該第一放電程序的持續時間,以達到柔性切換(soft switching)之零電壓切換。 The power converter according to claim 1, wherein the duration of the first discharge process is adjusted to achieve soft switching (zero voltage switching). 如請求項4所述之電源轉換器,其中藉由調整該第二放電程序的持續時間,以達到柔性切換之零電壓切換。 The power converter according to claim 4, wherein the duration of the second discharge process is adjusted to achieve zero-voltage switching of flexible switching. 如請求項1-4中之任一者所述之電源轉換器,其中該電源轉換器為雙向電源轉換器。 The power converter according to any one of claims 1-4, wherein the power converter is a bidirectional power converter. 如請求項1-4中之任一者所述之電源轉換器,其中該電源轉換器之該輸入電壓與該輸出電壓之電壓轉換比率為4:1、3:1或2:1。 The power converter according to any one of claims 1-4, wherein the voltage conversion ratio of the input voltage to the output voltage of the power converter is 4:1, 3:1, or 2:1. 如請求項1所述之電源轉換器,其中該第一充電程序的持續時間與該第一放電程序的持續時間彼此不重疊。 The power converter according to claim 1, wherein the duration of the first charging procedure and the duration of the first discharging procedure do not overlap with each other. 如請求項4所述之電源轉換器,其中該第二充電程序的持續時間與該第二放電程序的持續時間彼此不重疊。 The power converter according to claim 4, wherein the duration of the second charging procedure and the duration of the second discharging procedure do not overlap with each other. 如請求項1所述之電源轉換器,更包含一控制器,其耦接至該複數第一開關,用以產生該第一操作訊號。 The power converter according to claim 1, further comprising a controller coupled to the plurality of first switches for generating the first operation signal.
TW109131749A 2020-04-20 2020-09-15 Power converter TWI742851B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/210,434 US11418112B2 (en) 2020-04-20 2021-03-23 Power converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063012684P 2020-04-20 2020-04-20
US63/012684 2020-04-20

Publications (2)

Publication Number Publication Date
TWI742851B true TWI742851B (en) 2021-10-11
TW202141911A TW202141911A (en) 2021-11-01

Family

ID=78094256

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109131749A TWI742851B (en) 2020-04-20 2020-09-15 Power converter

Country Status (2)

Country Link
CN (1) CN113541484B (en)
TW (1) TWI742851B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104022640A (en) * 2013-02-21 2014-09-03 德州仪器公司 DC-DC converter of single inductor output driver based on resonance and method
TW201644164A (en) * 2015-03-13 2016-12-16 亞提克聖德技術股份有限公司 DC-DC converter with modular stages
CN208063044U (en) * 2016-10-26 2018-11-06 谷歌有限责任公司 Switch tank circuit converter
EP3503367A1 (en) * 2017-12-20 2019-06-26 Infineon Technologies Austria AG Switched capacitor converter with compensation inductor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW466819B (en) * 1999-07-30 2001-12-01 Wonderland Internat Inc Resonant switching power supplier with zero switching voltage and zero switching current
EP2882085A1 (en) * 2013-12-03 2015-06-10 EM Microelectronic-Marin SA DC-DC converter with operation in discontinuous mode
US9831776B1 (en) * 2016-06-16 2017-11-28 Google Inc. DC-DC converter
US10298132B2 (en) * 2016-10-13 2019-05-21 Intersil Americas LLC Switching power supply for low step down conversion ratio with reduced switching losses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104022640A (en) * 2013-02-21 2014-09-03 德州仪器公司 DC-DC converter of single inductor output driver based on resonance and method
TW201644164A (en) * 2015-03-13 2016-12-16 亞提克聖德技術股份有限公司 DC-DC converter with modular stages
CN208063044U (en) * 2016-10-26 2018-11-06 谷歌有限责任公司 Switch tank circuit converter
EP3503367A1 (en) * 2017-12-20 2019-06-26 Infineon Technologies Austria AG Switched capacitor converter with compensation inductor

Also Published As

Publication number Publication date
CN113541484A (en) 2021-10-22
CN113541484B (en) 2022-11-22
TW202141911A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
KR102653533B1 (en) DC/DC converter and its converter control
CN108988676B (en) Single-stage isolated bidirectional AC-DC converter
CN101132151B (en) Electric power supply converter
CN106208698B (en) The four switch Buck-Boost converter circuits equipped with Sofe Switch and its control method
CN104143919A (en) Bidirectional direct-current converter
JPWO2008020629A1 (en) Isolated step-up push-pull soft switching DC / DC converter
JP2023523864A (en) power converter
CN104704731A (en) Converter and bi-directional converter
CN215934730U (en) DC-DC converter with high step-up ratio
Shiva et al. Tap changing transformer based dual active bridge bi-directional DC-DC converter
TW201737607A (en) Interleaved boost converter comprising first to second transformers, first to second input capacitors, first to six diodes, and first to second switches and first to third output capacitors
TWI742852B (en) Resonant switching power converter
TWI742851B (en) Power converter
CN112202351A (en) Single-stage isolated three-phase AC/DC rectifier of wide-range soft switch
CN112350583A (en) Current type push-pull bridge type soft switching bidirectional direct current converter
TWI742914B (en) Two-stage power converter
CN207460002U (en) A kind of cascade two-stage type DC converter of wide input range
TWI767346B (en) Resonant switching power converter
Naik et al. A non-inverting multi device interleaved buck boost converter for fuel cell low voltage applications
He et al. A Four-Phase Interleaved Four-Switch Buck-Boost Converter with Smooth Mode Transition Strategy for Fuel Cell System
CN114825940A (en) Multiphase input series output parallel double-active-bridge converter capable of automatically equalizing voltage
Shahzad et al. Low-cost high-efficiency single-stage solid-state transformer for lighting applications
TWI746163B (en) Resonant switching power converter
CN217469775U (en) High-frequency isolation type Buck-Boost AC-AC converter
Xu et al. A ZVS bidirectional three-level DC-DC converter with direct current slew rate control of leakage inductance