TWI728165B - 三族氮化物高速電子遷移率場效應電晶體元件 - Google Patents

三族氮化物高速電子遷移率場效應電晶體元件 Download PDF

Info

Publication number
TWI728165B
TWI728165B TW106126682A TW106126682A TWI728165B TW I728165 B TWI728165 B TW I728165B TW 106126682 A TW106126682 A TW 106126682A TW 106126682 A TW106126682 A TW 106126682A TW I728165 B TWI728165 B TW I728165B
Authority
TW
Taiwan
Prior art keywords
electrode
effect transistor
electron mobility
group iii
mobility field
Prior art date
Application number
TW106126682A
Other languages
English (en)
Other versions
TW201911421A (zh
Inventor
童建凱
馮天璟
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW106126682A priority Critical patent/TWI728165B/zh
Priority to US16/058,698 priority patent/US10396193B2/en
Publication of TW201911421A publication Critical patent/TW201911421A/zh
Application granted granted Critical
Publication of TWI728165B publication Critical patent/TWI728165B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

一種三族氮化物高速電子遷移率場效應電晶體元件,包含一基板;一半導體磊晶疊層,位於前述基板上,包含一緩衝結構;一通道層,形成在前述緩衝結構上;以及一障壁層,形成在前述通道層上,且前述通道層與前述障壁層間包含一二維電子氣層;以及一第一電極、一第二電極、以及一第三電極,分別形成在前述障壁層上;且前述第二電極位於前述第一電極及前述第三電極之間;其中,前述第一電極與前述第二電極間具有一第一最小間距,前述第二電極與前述第三電極間具有一第二最小間距,且前述第一最小間距與前述第一最小間距與前述第二最小間距總和的比值大於或等於0.77且小於1。

Description

三族氮化物高速電子遷移率場效應電晶體元件
本揭露是關於一種高速電子遷移率場效應電晶體元件,更具體而言,係關於一種具有良好電流特性且耐高壓的三族氮化物高速電子遷移率場效應電晶體元件。
近幾年來,高功率元件產品的需求與日俱增,三五族半導體材料氮化鎵(GaN)的能隙約為3.4eV,熱傳導性>1.5W/cm,其寬能隙及高熱傳導性(易於散熱)適合操作在高溫以及耐化學腐蝕的環境。此外,氮化鎵材料的崩潰電場為(3 x 106V/cm),載子傳輸速度可以達到3×107cm/s,使得氮化鎵材料適合作為高功率元件,並可施加高的外部輸入操作電壓於其上而不致崩壞。因此,以氮化鎵材料為主的氮化物半導體功率元件,例如氮化鋁鎵/氮化鎵(AlGaN/GaN)等三族氮化物高速電子遷移率場效應電晶體元件(High Electron Mobility Field Effect Transistor,HEMT)等因具高速電子遷移率、可達到非常快速的切換速度、可於高功率及高溫工作環境下操作的元件特性,廣泛地被應用在電源供應器(power supply)、DC/DC轉換器(DC/DC converter)、DC/AC逆變器(AC/DC inverter)以及工業運用,其領域包含電子產品、不斷電系統、汽車、馬達、風力發電等。
如第1圖所示之一習知的發光二極體(light-emitting diode,LED)照明系統電路圖L,包含有橋式整流器12、功率因數校正器(power factor corrector, PFC)14、LED驅動電路16、以及一LED 18。功率因數校正器14可以是一個升壓電路(booster),LED驅動電路16可以是一降壓電路(buckconverter)。其中,LED驅動電路16多以矽基材料製作,而矽基材料為不耐高壓之元件,因此需搭配保護電路以及許多被動元件,例如與電感元件整合,使得LED驅動電路16整體體積龐大且昂貴。
如第2圖所示,顯示為對一習知之矽基材料場效應電晶體元件施加不同的閘源電壓(VGS=0V、-1V、-2V、-3V、-4V)條件,在改變汲源電壓VDS下,量測元件輸出的汲源電流IDS的電壓電流量測特性圖。當LED驅動電路16中採用習知的矽基材料場效應電晶體元件時,會選擇在超過飽和電壓(VDSS)後的飽和區域操作。在此區域中,矽基材料場效應電晶體元件的汲源電流IDS較飽和電壓前的電流穩定,被稱為飽和電流(IDSS)。然而矽基材料場效應電晶體元件的特性,在飽和區域中,其汲源電流IDS仍會隨著外部輸入汲源電壓VDS的增加而繼續增加。此時,整個LED驅動電路16便難以定功率方式進行操作。此外,如圖中所示,矽基材料場效應電晶體元件的崩潰電壓大約在15~25伏特間(崩潰區域),顯示矽基材料場效應電晶體元件在更高壓下的操作會崩毀,矽基材料場效應電晶體元件可的飽和電壓VDSS範圍也因此受限。
因此,本揭露提供一個可以改善上述缺點、具有良好電流特性、並且耐高壓的三族氮化物高速電子遷移率場效應電晶體元件。
本揭露係關於一種三族氮化物高速電子遷移率場效應電晶體元件,包含一基板;一半導體磊晶疊層,位於前述基板上,包含一緩衝結構;一通道層,形成在前述緩衝結構上;以及一障壁層,形成在前述通道層上,且前述通 道層與前述障壁層間包含一二維電子氣層;以及一第一電極、一第二電極、以及一第三電極,分別形成在前述障壁層上;且前述第二電極位於前述第一電極及前述第三電極之間;其中,前述第一電極與前述第二電極間具有一第一最小間距,前述第二電極與前述第三電極間具有一第二最小間距,前述第一最小間距與前述第一最小間距與前述第二最小間距總和的比值大於或等於0.77且小於1。
為讓本揭露之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。
10:基板
12:橋式整流器
14:功率因數校正器
16:LED驅動電路
18:LED
20:成核層
30:緩衝結構
40:通道層
50:障壁層
60:保護層
70:源極電極
80:汲極電極
90:閘極電極
901、902:閘極電極段
1000:半導體磊晶疊層
2DEG:二維電子氣層
L:照明系統電路圖
S70、S70’、S70”:源極墊
S80、S80’、S80”:汲極墊
S90、S90’、S90”:閘極墊
E1、E2、E3:三族氮化物高速電子遷移率場效應電晶體元件單元
S、O、P:三族氮化物高速電子遷移率場效應電晶體元件
EE’、FF’、GG’:剖線
LS、LD、LG:長度
WG:總寬度
LGD、LGS:間距
IDS:汲源電流
VGS:閘源電壓
VDS:汲源電壓
VDSS:飽和電壓
Vbr:崩潰電壓
IDSS:飽和電流
H1:閘極段寬度
第1圖係習知的照明系統電路圖。
第2圖係習知之矽基材料場效應電晶體輸入汲源電壓VDS與輸出汲源電流IDS的電壓電流量測特性圖。
第3圖係本揭露第一實施例之三族氮化物高速電子遷移率場效應電晶體元件的上視圖。
第4A圖係本揭露第一實施例之三族氮化物高速電子遷移率場效應電晶體元件單元的局部放大上視示意圖。
第4B圖係沿第4A圖元件剖線FF’之剖面示意圖。
第5圖係本揭露第二實施例之三族氮化物高速電子遷移率場效應電晶體元件的上視圖。
第6A圖係本揭露第二實施例之三族氮化物高速電子遷移率場效應電晶體元件單元的局部放大上視示意圖。
第6B係沿第6A圖元件剖線GG’之剖面示意圖。
第7圖係依據本揭露第二實施例之三族氮化物高速電子遷移率場效應電晶體元件,改變元件間距LGD時,元件崩潰電壓Vbr變動關係之實驗結果表。
第8A圖係依據本揭露第二實施例之三族氮化物高速電子遷移率場效應電晶體元件,改變元件間距LGD時,三族氮化物高速電子遷移率場效應電晶體元件輸入汲源電壓VDS與輸出汲源電流IDS的電壓電流量測特性圖。
第8B圖係依據本揭露第二實施例之三族氮化物高速電子遷移率場效應電晶體元件,改變元件間距LGD時,三族氮化物高速電子遷移率場效應電晶體元件飽和電壓VDSS及導通電阻RDS(ON)變動關係之實驗結果表。
第9A圖係依據本揭露第二實施例之三族氮化物高速電子遷移率場效應電晶體元件,改變元件長度LG時,三族氮化物高速電子遷移率場效應電晶體元件輸入汲源電壓VDS與輸出汲源電流IDS的電壓電流量測特性圖。
第9B圖係依據本揭露第二實施例之三族氮化物高速電子遷移率場效應電晶體元件,改變元件長度LG時,三族氮化物高速電子遷移率場效應電晶體元件飽和電壓VDSS、導通電阻RDS(ON)、及飽和電流IDSS變動關係之實驗結果表。
第10圖係本揭露第三實施例之三族氮化物高速電子遷移率場效應電晶體元件的上視圖。
第11A圖係本揭露第三實施例之三族氮化物高速電子遷移率場效應電晶體元件單元的局部放大上視示意圖。
第11B係沿第11A圖剖線EE’之剖面示意圖。
以下實施例將伴隨著圖式說明本揭露之概念,在圖式或說明中,相似或相同之部分係使用相同之標號,並且在圖式中,元件之形狀或厚度可擴大或縮小。需特別注意的是,圖中未繪示或描述之元件,可以是熟習此技藝之人士所知之形式。
請參閱第3圖,第3圖為本揭露第一實施例之一三族氮化物高速電子遷移率場效應電晶體元件S的上視圖。三族氮化物高速電子遷移率場效應電晶體元件S為一三端點的結構。於本實施例中,三族氮化物高速電子遷移率場效應電晶體元件S包含一源極墊S70、一汲極墊S80、一閘極墊S90和至少一個三族氮化物高速電子遷移率場效應電晶體元件單元E1。三族氮化物高速電子遷移率場效應電晶體元件單元E1可包括與源極墊S70電性連接之一源極電極70、與汲極墊S80電性連接之一汲極電極80、與閘極墊S90電性連接之一閘極電極90,以及一半導體磊晶疊層1000,半導體磊晶疊層1000內部各層的材料、厚度及組成可依實際的需求而做調整。此外,三族氮化物高速電子遷移率場效應電晶體元件S所包含的三族氮化物高速電子遷移率場效應電晶體元件單元E1亦可被本揭露其他實施例中的三族氮化物高速電子遷移率場效應電晶體元件單元所取代。
第4A圖、第4B圖所示為本揭露第一實施例之三族氮化物高速電子遷移率場效應電晶體元件單元E1的細部結構。第4A圖繪示了如第3圖所示的三族氮化物高速電子遷移率場效應電晶體元件單元E1之局部放大上視示意圖,而第4B圖繪示了第4A圖沿剖線FF’之剖面示意圖。三族氮化物高速電子遷移率場效應電晶體元件S係由多個三族氮化物高速電子遷移率場效應電晶體元件單元E1構成,在此以三族氮化物高速電子遷移率場效應電晶體元件單元E1之結構代表說 明。三族氮化物高速電子遷移率場效應電晶體元件單元E1例如為一種常開型(normally-on)高速電子遷移率場效應電晶體元件單元,包括一基板10;一半導體磊晶疊層1000,包含有:一成核層20、一緩衝結構30、一通道層40、一障壁層50,但實際情況並不以所列舉之層數為限,其定義為基板10至閘極電極90間所夾的半導體磊晶疊層,至少包含有通道層30及障壁層40;一源極電極70;一汲極電極80;一閘極電極90;以及一保護層60。其中,成核層20與緩衝結構30依序位於基板10的上方;通道層40具有一第一能隙,且位於緩衝結構30上方;障壁層50位於通道層40上方,具有一第二能隙,且第二能隙大於第一能隙,而通道層30及障壁層40間包含一二維電子氣層2DEG。障壁層50上方分別具有源極電極70、汲極電極80、與閘極電極90;而閘極電極90則位於源極電極70與汲極電極80之間;最終,可選擇性地形成保護層60於未覆蓋有源極電極70、汲極電極80、與閘極電極90的障壁層50表面上。此外,保護層60也可選擇性地位於閘極電極90的下方(圖未示),藉由選擇具有不同介電常數的保護層60及/或調整保護層60的厚度,能進一步降低三族氮化物高速電子遷移率場效應電晶體元件單元E1整體表面漏電流,並可改變閘極電極90操作偏壓範圍。
基板10的材料可以是半導體材料或是氧化物材料,上述的半導體材料例如可以包含矽(Si)、氮化鎵(GaN)、碳化矽(SiC)、砷化鎵(GaAs)等,而上述的氧化物材料例如可以包含藍寶石(sapphire)。於本實施例中,係選用矽基板。於矽基板10的(111)表面上沿著[0001]方向直接形成氮化鋁成核層20。另外,當以導電性來區分時,基板10本身可為導電基板或者是絕緣基板,上述的導電基板包含矽基板、氮化鎵(GaN)基板、砷化鎵(GaAs)等基板,而上述的絕緣基板則包含藍寶石(sapphire)、絕緣矽基板(Silicon on insulator,SOI)等基板。此外,基板10可 選擇性的摻雜物質於其中,以改變其導電性,以形成導電基板或不導電基板,以矽基板而言,其摻雜物可為硼(B)、砷(As)或磷(P)。於本實施例中,基板10為導電之半導體矽基板,厚度約為1000~1200μm。
接著,將前述的成核層20以磊晶方式成長於基板10的(111)面上,其中成核層20係沿{0001}方向成長,厚度約可為數十奈米或數百奈米,可用以減少基板10和上方半導體層之間的晶格差異。磊晶成長的方式例如為物理氣相沉積法(physical vapor deposition,PVD)、原子層沉積法(atomic layer deposition,ALD)、金屬有機物化學氣相沉積法(metal-organic chemical vapor deposition,MOCVD)、或分子束磊晶法(molecular-beam epitaxy,MBE)。藉由成核層20可讓後續形成於其上的緩衝結構30、通道層40等半導體層的磊晶品質較佳。成核層20的材料例如是三五族半導體材料,包括氮化鋁(AlN)、氮化鎵(GaN)、氮化鋁鎵(AlGaN)等磊晶層、或由這些磊晶層重複或混和堆疊構成的疊層,而成核層20的結構例如可以是非晶、多晶、單晶或是晶質漸變的混和層。於本實施例中,成核層20為氮化鋁層,厚度約為50~200nm,是藉由物理氣相沉積法形成,更具體而言是以濺鍍法(Sputtering)形成。
形成成核層20之後,再以與前述相似的磊晶方式將緩衝結構30成長於成核層20的上方,緩衝結構30係用以讓後續形成於其上的通道層40與障壁層50之磊晶品質較佳,其厚度約為1μm~10μm。緩衝結構30可以是單層或是多層,當緩衝結構30為多層時,可包括超晶格疊層(super lattice multilayer)或兩層以上材料各不相同之交互疊層。單層或多層緩衝結構30之材料可包括三五族半導體材料,例如氮化鋁、氮化鎵、或氮化鋁鎵等材料,並且可摻雜其他元素,例如碳(C)或是鐵(Fe)於其中,摻雜濃度可為依成長方向漸變或固定。此外,當緩衝結構30 為超晶格疊層時,其可由兩層具不同材料交互堆疊之多層磊晶層所構成,其材料可為三五族半導體材料,例如是由氮化鋁層與氮化鋁鎵層交疊所構成或是由氮化鎵層與氮化銦鎵層(InGaN)交疊所構成,氮化鋁層與氮化鋁鎵層兩層相加的一組疊層總厚度約為2nm~30nm,而整體疊層總厚度約為1μm~9μm。疊層中氮化鋁層與氮化鋁鎵層的材料亦可以氮化鎵層與氮化銦鎵層置換之。於本實施例中,緩衝結構30例如為以厚度5nm的氮化鋁層及厚度20nm的氮化鋁鎵層交疊80組的超晶格疊層,其平均鋁含量為20%。在其上,可再形成一摻雜有碳的氮化鎵緩衝厚層,其碳摻雜濃度例如為以二次離子質譜儀(Secondary Ion Mass Spectrometry,SIMS)對元件半導體層進行量測後可測得的濃度為1E18counts/cm3。在這邊,當碳摻雜濃度越高,或者是氮化鎵緩衝厚層的厚度越厚時,都可能可以使半導體磊晶疊層的片電阻值上升。為例舉的調整半導體磊晶疊層片電阻值的方式。
於緩衝結構30形成之後,再以與前述相似的磊晶方式形成通道層40及障壁層50於緩衝結構30之上,通道層40的厚度範圍例如在50nm~300nm,形成於緩衝結構30之上,並具有一第一能隙。障壁層50的厚度範圍例如在20nm~50nm,形成在通道層40之上,並具有一第二能隙,而第二能隙較第一能隙高,且障壁層50之晶格常數比通道層40小。在本實施例中,通道層40的材料包含例如氮化銦鎵(InxGa(1-x)N),0≦x<1,障壁層50包含氮化鋁銦鎵(AlyInzGa(1-y-z)N),0<y<1,0≦z<1。通道層40自身以及障壁層50自身形成自發性極化(spontaneous polarization),而障壁層50與通道層40彼此之間又因通道層40與下方磊晶疊層中各層之間不同晶格常數相互作用的總和對上層障壁層50產生壓電極化(piezoelectric polarization),進而在通道層40及障壁層50間的異質接面產生二維電子氣層(2DEG)。於本實施例中,通道層40及障壁層50的材料例如可為無摻雜其 他元素的本質性半導體,但亦可以視元件特性摻雜其他元素,例如可摻雜元素矽(Si)於其中,以摻雜的元素濃度調整二維電子氣層的濃度。於本實施例中,更特定地,緩衝層30例如為一氮化鎵緩衝層,摻雜有碳元素;通道層40例如為一未摻雜的氮化鎵通道層,厚度為200nm;因而緩衝層30較通道層40具有一較高的片電阻值;而障壁層50例如為一含有20%鋁含量的氮化鋁鎵層,厚度為30nm。值得注意的是,當障壁層50的鋁含量較低時,半導體磊晶疊層的極性下降,片電阻值也可能跟著上升。
接著,於障壁層50上方分別形成源極電極70、汲極電極80與閘極電極90以作為與外部電性連接的端點。其中源極電極70、汲極電極80分別位於障壁層50的兩端,而閘極電極90則位於源極電極70與汲極電極80之間。在本實施例中,可以藉由選擇適當的源極電極70與汲極電極80的材料,以及/或者藉由製程(如,熱退火)以使源極電極70與汲極電極80和障壁層50之間形成歐姆接觸。類似地,也可藉由選擇適當的閘極電極90的材料,使得閘極電極90與障壁層50間形成蕭特基接觸或歐姆接觸。源極電極70、汲極電極80的材料可以選自鈦(Ti)、鋁(Al),閘極電極90的材料可以選自鎳(Ni)、金(Au)、鎢(W)、氮化鈦(TiN)。
最後,於形成電極後,形成保護層60覆蓋於包含有源極電極70、汲極電極80與閘極電極90的電晶體元件S整體表面,接著再蝕刻部分保護層60,以露出部分源極電極70、汲極電極80與閘極電極90,即源極電極70、汲極電極80與閘極電極90有一部份表面未被保護層60所覆蓋,以提供元件與外界電性連接的區域,便完成如前述第3圖所示之電晶體元件S的結構。保護層60係用以防止障壁層50的電性受到影響。其中,保護層60可以是氧化物或者氮化物或者氮氧化物,如氧化矽或氧化鋁等氧化物,也可以是氮化矽或氮化鎵等氮化物,或 氮氧化矽等氮氧化物。於另一實施例中,電晶體元件S亦可不包含保護層60。
值得注意的是,在其他的實施例之中,亦可以在緩衝結構30與通道層40之間***一層背向阻障層(Back Barrier,圖未示)。此層背向阻障層較佳的組成為鋁組成比例較緩衝結構30鋁組成比例高的氮化鋁鎵層。當半導體磊晶疊層1000後續製成三族氮化物高速電子遷移率場效應電晶體元件時,背向阻障層較緩衝結構30高的鋁組成比例會具有較高的能隙來提供侷限電子能力,避免元件操作時電子進入緩衝結構30中並被緩衝結構30中的磊晶缺陷所捕捉,進而影響後續元件操作時異質介面間的二維電子氣層濃度穩定性。即,可以減少元件於反覆操作時產生電流崩塌(current collapse)的程度。
值得注意的是,於本實施例中,為了避免背向阻障層的高能隙拉升通道層40的能障高度,進一步影響三族氮化物高速電子遷移率場效應電晶體元件操作時電流的強度,背向阻障層的厚度以不超過50奈米為佳。
如本實施例所述,三族氮化物高速電子遷移率場效應電晶體元件單元E1,也就是三族氮化物高速電子遷移率場效應電晶體元件S的半導體磊晶疊層1000可具有一片電阻值大於500Ω/sq。除此之外,藉由前述的製程方式進一步調整,例如:各磊晶層的組成方式、各磊晶層中的元素組成比例、元素的摻雜種類、或元素的摻雜濃度等,半導體磊晶疊層1000整體的片電阻值亦可再增加。
參考第5圖,第5圖顯示為本揭露第二實施例的三族氮化物高速電子遷移率場效應電晶體元件O的上視圖。如前所述,三族氮化物高速電子遷移率場效應電晶體元件O為一三端點的結構。於本實施例中,三族氮化物高速電子遷移率場效應電晶體元件O亦包含一源極墊S70’、汲極墊S80’、以及一閘極墊S90’、 和至少一個三族氮化物高速電子遷移率場效應電晶體元件單元E2,共同形成於具有例如前述的半導體磊晶疊層1000的區域上。三族氮化物高速電子遷移率場效應電晶體元件單元E2可包括與源極墊S70’電性連結之一源極電極70、與汲極墊S80’及閘極墊S90’分別電性連結之一汲極電極80以及一閘極電極90。於一實施例中,自上視圖觀之,源極墊S70’及閘極墊S90’彼此重疊並且電性連接。與第一實施例相較,於本實施例中不同於第一實施例的源極墊S70及閘極墊S90,將源極墊S70’及閘極墊S90’電性整合為一個彼此重疊且電性連接的結構,如此一來,可以減省電晶體耗用在襯墊上的面積佔整體面積的比例。於另一實施例中,源極墊S70’及閘極墊S90’為彼此分離的結構
第6A圖及第6B圖所示為本揭露第二實施例之三族氮化物高速電子遷移率場效應電晶體元件單元E2的細部結構。三族氮化物高速電子遷移率場效應電晶體元件O之細部結構與三族氮化物高速電子遷移率場效應電晶體元件單元E2相同,在此以三族氮化物高速電子遷移率場效應電晶體元件單元E2之結構代表說明。在本實施例中,與第一實施例相似的結構以相同的元件標號表示。第6A圖繪示了如第5圖所示的三族氮化物高速電子遷移率場效應電晶體元件單元E2之局部放大上視示意圖,而第6B圖則繪示了第6A圖沿剖線GG’之剖面示意圖。從剖面示意圖觀之,源極電極70具有一長度LS(於本實施例中,LS=20微米)、汲極電極80具有一長度LD(於本實施例中,LD=20微米)、閘極電極90具有一長度LG(於本實施例中,LG=9微米)、源極電極70與閘極電極90間距有一間距LGS(於本實施例中,LGS=6微米)、汲極電極80與閘極電極90間距有一間距LGD(於本實施例中,LGD=15微米)。
於一實施例中,閘極電極90於整個三族氮化物高速電子遷移率場 效應電晶體元件O中具有一總寬度WG(於本實施例中,WG=280微米)。閘極電極的總寬度WG是閘極電極90位於半導體磊晶疊層1000上的各閘極段寬度H1的總和。於本實施例中,閘極電極的總寬度例如第5圖所示,為2H1。如前所述,三族氮化物高速電子遷移率場效應電晶體元件O中的半導體磊疊層1000具有一片電阻值大於500Ω/sq。此時,在固定半導體磊疊層1000的片電阻值及前述的整體結構條件下,三族氮化物高速電子遷移率場效應電晶體元件O順向開啟操作時,源極電極70與汲極電極80之間具有一崩潰電壓Vbr為250伏特。
接著,在固定所有其餘的結構條件下,藉由改變間距LGD的大小,觀察三族氮化物高速電子遷移率場效應電晶體元件O可承受的崩潰電壓Vbr。參考第7圖的實驗結果,當三族氮化物高速電子遷移率場效應電晶體元件O的LGD變大時,三族氮化物高速電子遷移率場效應電晶體元件O於順向操作下可承受的崩潰電壓Vbr也隨之變大。尤其是,在原始結構下,當固定LGS為6微米,而LGD等於或大於20微米時,即,LGD/(LGS+LGD)的值等於或大於0.77時,三族氮化物高速電子遷移率場效應電晶體元件O於開啟狀態順向開啟操作下可承受的崩潰電壓Vbr可高於300伏特。而當LGD等於或大於35微米時,三族氮化物高速電子遷移率場效應電晶體O元件開啟狀態順向操作下可承受的崩潰電壓Vbr可高於500伏特。
參考第8A圖至第8B圖,第8A圖所顯示的為依據上述的實驗,當改變LGD時,三族氮化物高速電子遷移率場效應電晶體元件O的輸入汲源電壓VDS與輸出汲源電流IDS的電壓電流量測特性圖,而第8B圖則是根據第8A圖的結果顯示的實驗結果表。其中,不同的線段代表在不同的LGD條件下的元件量測結果。由實驗結果顯示,隨著LGD增加,三族氮化物高速電子遷移率場效應電晶體元件O的導通電阻(RDS(ON))隨之上升。在此,RDS(ON)是由電晶體元件O導通時在到達飽和 區域前由VDS從0伏特至2.5伏特的電壓除以電流值計算得到,即飽和區域前的量測線段斜率的倒數。三族氮化物高速電子遷移率場效應電晶體元件O到達飽和區域所需的VDSS隨著LGD的增加跟著上升。
參考第7圖至第8B圖所示,於本實施例中,三族氮化物高速電子遷移率場效應電晶體元件O的崩潰電壓Vbr可藉由調整LGD而達到500伏特或以上。然而,當LGD等於35微米及40微米時,三族氮化物高速電子遷移率場效應電晶體元件O的導通電阻上升至78歐姆及85歐姆,VDSS也上升至8.5伏特及9.5伏特。相對於其它LGD較小的條件下,三族氮化物高速電子遷移率場效應電晶體元件O若要操作於飽和區域,則須施加較高的汲源電壓。
參考第1圖,若將本揭露的三族氮化物高速電子遷移率場效應電晶體元件O應用在照明系統時,除了要維持照明系統在可以承受高崩潰電壓下操作之外,電晶體元件也需要在飽和區域操作,輸出的汲源電流IDS才較為穩定,因此,當三族氮化物高速電子遷移率場效應電晶體元件O在較高的VDSS下,其可應用操作的汲源電壓範圍便相對縮減了。
參考第9A圖及第9B圖所示,綜合上述實驗結果可知,選擇LGD大於35微米能滿足電晶體元件崩潰電壓大於等於500伏特,若同時要滿足較佳的可應用操作的汲源電壓範圍,可再藉由改變閘極電極長度LG來調整電晶體元件VDSS的大小,以拓寬電晶體元件可操作的飽和區域電壓範圍。第9A圖所顯示的為依據上述的實驗結果,選擇LGD為40微米條件下,藉由改變三族氮化物高速電子遷移率場效應電晶體元件O的閘極電極長度LG,並固定電晶體元件整體其餘結構的情況之下,三族氮化物高速電子遷移率場效應電晶體元件O輸入的操作汲源電壓VDS與輸出的汲源電流IDS的電壓電流量測特性圖,而第9B圖則是根據第9A 圖的結果顯示的實驗結果表。其中,不同的線段代表在不同的LG條件下的元件量測結果。由實驗結果顯示,隨著LG上升,可發現在電晶體元件的導通電阻RDS(ON)可以維持不變,而飽和電壓VDSS則會隨之下降。如此一來,可以藉由調整LG,在不改變導通電阻RDS(ON)的情況下,隨著飽和電壓VDSS的下降,電晶體元件在飽和區域可操作的電壓範圍也隨之擴大。參考第9B圖所示,當LG等於9微米時,飽和電壓VDSS可降低至6.5伏特以下。可預期地,當閘極電極長度更加大時,飽和電壓VDSS應可降至更低。根據實驗結果,當閘極電極長度增加,飽和電壓VDSS下降,元件的飽和電流IDSS也隨之下降。於另一實施例中,可藉由增加電晶體元件中閘極電極的總寬度WG來增加電晶體元件中的電流路徑,進而增加電晶體元件的飽和電流IDSS
藉由第9A圖中的量測特性結果圖觀之,藉著三族氮化物高速電子遷移率場效應電晶體元件O在飽和區域隨著輸入汲源電壓的上升,輸出的汲源電流會隨之微幅下降的特性,當我們使用本揭露中三族氮化物高速電子遷移率場效應電晶體元件取代第1圖中的矽基材料場效應電晶體元件時,便可以使照明系統整體的輸出功率相對趨近於定值,使整體照明系統具有節能的效果。
第10圖顯示為本揭露第三實施例的三族氮化物高速電子遷移率場效應電晶體元件P的上視圖。如前所述,三族氮化物高速電子遷移率場效應電晶體元件P為一三端點的結構。於本實施例中,三族氮化物高速電子遷移率場效應電晶體元件P亦包含半導體磊疊層1000、一源極墊S70”、一汲極墊S80”、一閘極墊S90”、一個源極電極70、一個汲極電極80、一閘極電極90包含一條狀末端的閘極電極段901、二個環狀末端的閘極電極段902、至少一個三族氮化物高速電子遷移率場效應電晶體元件單元E3。源極電極70與源極墊S70”電性連結、汲極 電極80與汲極墊S80”電性連結、閘極電極90與閘極墊S90”電性連結。於本實施例中,為了使電晶體元件P在其他電特性不更動的情況下具有更大的飽和電流IDSS,可在電晶體結構其他設置不變動的情形下,在三族氮化物高速電子遷移率場效應電晶體元件P有限的半導體磊疊層1000表面上儘量延伸閘極電極段901、902的總寬度。因而,自上視圖觀之,延伸自閘極墊S90”的閘極電極段901及902分別具有直線及中空封閉區域(環狀)兩種不同的末端結構,藉由環狀閘極電極段902來增加電流路徑。而對應的源極電極70位於閘極電極段902的中空封閉區域內及直線閘極電極段901之一側,汲極電極80則位於閘極電極段902的外側和直線閘極電極段901之另一側。
第11A圖及第11B圖所示為本揭露第三實施例之三族氮化物高速電子遷移率場效應電晶體元件單元E3的細部結構。三族氮化物高速電子遷移率場效應電晶體元件P之細部結構與三族氮化物高速電子遷移率場效應電晶體元件單元E3相同,在此以三族氮化物高速電子遷移率場效應電晶體元件單元E3之結構代表說明。在本實施例中,與第一實施例相似的結構以相同的元件標號表示。第11A圖繪示了如第10圖所示的三族氮化物高速電子遷移率場效應電晶體元件單元E3之局部放大上視示意圖,而第11B圖則繪示了第11A圖沿剖線EE’之剖面示意圖。從剖面示意圖觀之,源極電極70具有一長度LS,於本實施例中,LS=20微米;汲極電極80具有一長度LD,於本實施例中,LD=20微米;閘極電極90具有一長度LG,於本實施例中,LG=11微米;源極電極70與閘極電極90間距有一間距LGS,於本實施例中,LGS=6微米,汲極電極80與閘極電極90間距有一間距LGD,於本實施例中,LGD=35微米。
於一實施例中,閘極電極90於整個三族氮化物高速電子遷移率場效應電晶體元件P中具有一總寬度WG,於本實施例中,在半導體磊疊層1000表面上的閘極電極段901、902的總寬度WG=1010微米。如前所述,三族氮化物高速電子遷移率場效應電晶體元件P中的半導體磊疊層1000具有一片電阻值大於500Ω/sq。此時,在固定半導體磊疊層1000的片電阻值及前述的整體元件結構條件下,三族氮化物高速電子遷移率場效應電晶體元件P在順向開啟操作時,電晶體元件P可在一崩潰電壓Vbr大於500伏特下得到一飽和電壓VDSS小於6伏特,且電晶體元件P具有高於100毫安培的飽和電流IDSS特性。
藉由本揭露精神的實施方式,可以形成係關於一種具有良好電流輸出特性且耐高壓的三族氮化物高速電子遷移率場效應電晶體元件,具有產業利用性。以上所述之實施例僅係為說明本揭露之技術思想及特點,其目的在使熟習此項技藝之人士能夠瞭解本揭露之內容並據以實施,當不能以之限定本揭露之專利範圍,即大凡依本揭露所揭示之精神所作之均等變化或修飾,仍應涵蓋在本揭露之專利範圍內。
10:基板
70:源極電極
80:汲極電極
90:閘極電極
901、902:閘極電極段
S70”:源極墊
S80”:汲極墊
S90”:閘極墊
E3:三族氮化物高速電子遷移率場效應電晶體元件單元
P:三族氮化物高速電子遷移率場效應電晶體元件

Claims (10)

  1. 一種三族氮化物高速電子遷移率場效應電晶體元件,包含:一基板;一半導體磊晶疊層,位於該基板上,包含:一緩衝結構;一通道層,形成在該緩衝結構上;以及一障壁層,形成在該通道層上,且該通道層與該障壁層間包含一二維電子氣層;以及一第一電極、一第二電極、以及一第三電極,分別形成在該障壁層上,且該第二電極位於該第一電極及該第三電極之間;其中,該第一電極與該第二電極間具有一第一最小間距,該第二電極與該第三電極間具有一第二最小間距,且該第一最小間距與該第一最小間距與該第二最小間距總和的比值大於或等於0.77且小於1。
  2. 如申請專利範圍第1項所述的三族氮化物高速電子遷移率場效應電晶體元件,其中,該第一最小間距大於或等於20微米。
  3. 如申請專利範圍第1項所述的三族氮化物高速電子遷移率場效應電晶體元件,其中,該元件更具有一飽和電壓小於6.5伏特。
  4. 如申請專利範圍第1項所述的三族氮化物高速電子遷移率場效應電晶體元件,其中,該元件更具有一崩潰電壓高於500伏特。
  5. 如申請專利範圍第1項所述的三族氮化物高速電子遷移率場效應電晶體元件,其中,該元件為一常開型三族氮化物高速電子遷移率場效應電晶體元件。
  6. 如申請專利範圍第1項所述的三族氮化物高速電子遷移率場效應電晶體元件,其中,自該元件的上視圖觀之,該第二電極具有至少二末端,該至少二末端包含一直線以及一中空封閉區域,該中空封閉區域中包含有該第三電極。
  7. 如申請專利範圍第1項所述的三族氮化物高速電子遷移率場效應電晶體元件,其中,該第二電極長度大於或等於9微米。
  8. 如申請專利範圍第1項所述的三族氮化物高速電子遷移率場效應電晶體元件,其中,該半導體磊晶疊層具有一片電阻值大於500Ω/sq,或該緩衝結構較該通道層鄰近該基板且較該通道層具有較高的片電阻值。
  9. 如申請專利範圍第8項所述的三族氮化物高速電子遷移率場效應電晶體元件,其中,該半導體磊晶疊層更包含一背向阻障層位於該緩衝結構及該通道層之間。
  10. 如申請專利範圍第9項所述的三族氮化物高速電子遷移率場效應電晶體元件,其中,該背向阻障層厚度小於等於50奈米。
TW106126682A 2017-08-08 2017-08-08 三族氮化物高速電子遷移率場效應電晶體元件 TWI728165B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106126682A TWI728165B (zh) 2017-08-08 2017-08-08 三族氮化物高速電子遷移率場效應電晶體元件
US16/058,698 US10396193B2 (en) 2017-08-08 2018-08-08 III-nitride high electron mobility transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106126682A TWI728165B (zh) 2017-08-08 2017-08-08 三族氮化物高速電子遷移率場效應電晶體元件

Publications (2)

Publication Number Publication Date
TW201911421A TW201911421A (zh) 2019-03-16
TWI728165B true TWI728165B (zh) 2021-05-21

Family

ID=65275450

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106126682A TWI728165B (zh) 2017-08-08 2017-08-08 三族氮化物高速電子遷移率場效應電晶體元件

Country Status (2)

Country Link
US (1) US10396193B2 (zh)
TW (1) TWI728165B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114391305B (zh) * 2021-05-06 2023-06-13 英诺赛科(苏州)科技有限公司 氮化物基半导体模块及其制造方法
CN116314321A (zh) * 2023-03-24 2023-06-23 厦门市三安集成电路有限公司 一种hemt射频器件及其制作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543291B2 (en) * 2013-03-15 2017-01-10 Semiconductor Components Industries, Llc Method of forming a high electron mobility semiconductor device and structure therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666685B2 (en) 2014-09-23 2017-05-30 National Tsing Hua University RF power transistor
TWI678944B (zh) 2015-10-23 2019-12-01 晶元光電股份有限公司 發光二極體之驅動器與相關之照明系統

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543291B2 (en) * 2013-03-15 2017-01-10 Semiconductor Components Industries, Llc Method of forming a high electron mobility semiconductor device and structure therefor

Also Published As

Publication number Publication date
US20190051741A1 (en) 2019-02-14
US10396193B2 (en) 2019-08-27
TW201911421A (zh) 2019-03-16

Similar Documents

Publication Publication Date Title
US9490324B2 (en) N-polar III-nitride transistors
US8933461B2 (en) III-nitride enhancement mode transistors with tunable and high gate-source voltage rating
US9306544B2 (en) Electronic device including transistor and method of operating the same
JP5907582B2 (ja) 半導体装置
US7786511B2 (en) Semiconductor device with Schottky and ohmic electrodes in contact with a heterojunction
JP6113135B2 (ja) 半導体フィールドプレートを含むiii−v族トランジスタ
CN103367356B (zh) 具有氮化物层的半导体元件
KR101922122B1 (ko) 노멀리 오프 고전자이동도 트랜지스터
JP2013038409A (ja) 集積されたダイオードを備える複合半導体装置
KR20070001095A (ko) GaN계 반도체장치
JP2007059595A (ja) 窒化物半導体素子
JP2013042120A (ja) 集積されたダイオードを有するsoi基板を備える複合半導体装置
JP2007035905A (ja) 窒化物半導体素子
US20150123139A1 (en) High electron mobility transistor and method of manufacturing the same
WO2010042479A2 (en) Enhancement-mode nitride transistor
US9343544B2 (en) Multi-finger large periphery AlInN/AlN/GaN metal-oxide-semiconductor heterostructure field effect transistors on sapphire substrate
CN103003930B (zh) 场效应晶体管
TWI728165B (zh) 三族氮化物高速電子遷移率場效應電晶體元件
JP5415668B2 (ja) 半導体素子
KR20140112272A (ko) 고전자 이동도 트랜지스터 및 그 제조방법
CN210897283U (zh) 一种半导体器件
WO2016151704A1 (ja) 窒化物半導体素子及び電力変換装置
TWI662700B (zh) 半導體單元
JP7388624B2 (ja) 半導体装置及び半導体装置の製造方法
TWI641138B (zh) 半導體功率元件單元及其製造方法