TWI708383B - 顯示裝置及電子裝置 - Google Patents

顯示裝置及電子裝置 Download PDF

Info

Publication number
TWI708383B
TWI708383B TW104120010A TW104120010A TWI708383B TW I708383 B TWI708383 B TW I708383B TW 104120010 A TW104120010 A TW 104120010A TW 104120010 A TW104120010 A TW 104120010A TW I708383 B TWI708383 B TW I708383B
Authority
TW
Taiwan
Prior art keywords
electrode
layer
substrate
display device
addition
Prior art date
Application number
TW104120010A
Other languages
English (en)
Other versions
TW201607021A (zh
Inventor
山崎舜平
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW201607021A publication Critical patent/TW201607021A/zh
Application granted granted Critical
Publication of TWI708383B publication Critical patent/TWI708383B/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

提供一種顯示裝置,即使在該顯示裝置中是非矩形的情況下,顯示裝置具有窄邊框和與顯示區域的形狀無顯著不同的形狀。顯示裝置包括顯示區域及端子電極的。端子電極與顯示區域重疊,並經過顯示區域的非顯示面一側與外部電極電連接。

Description

顯示裝置及電子裝置
本發明係關於一種顯示裝置。本發明亦係關於一種顯示裝置的製造方法。
注意,本發明的一個方式不侷限於上述技術領域。本說明書等所公開的發明的一個方式的技術領域係關於一種物體、方法、或者製造方法。另外,本發明的一個方式係關於一種流程(process)、機器(machine)、產品(manufacture)或者組成物(composition of matter)。
用語顯示裝置是指包括顯示元件的裝置。顯示裝置可包括驅動多個像素的驅動電路、控制電路、電源電路、信號產生電路等。顯示裝置可是指,例如,連接諸如FPC(Flexible printed circuit:撓性印刷電路)、TAB Tape Automated Bonding:捲帶自動接合)或TCP(Tape Carrier Package:捲帶式封裝)之連接器的模組;在TAB或TCP端部中設置有印刷線路板的模組;以及IC(積體電路)藉由COG(Chip On Glass:玻璃上晶片)方式直接安裝在顯示元件上的模組。
在本說明書等中,用語半導體裝置是指能夠 藉由利用半導體特性而工作的所有裝置。因此,電晶體或二極體等半導體元件和半導體電路是半導體裝置。另外,顯示裝置、發光裝置、照明設備、電光裝置及電子裝置等有時包括半導體元件或半導體電路。因此,顯示裝置、發光裝置、照明設備、電光裝置及電子裝置等也可包括半導體裝置。
已廣泛地應用於電視、可攜式終端等的平板顯示器被期待著應用於滿足新需求的手錶、車用電子,尤其是儀錶板等。
包括矩形顯示區域的習知的平板顯示器與矩陣驅動相容,其中以行或列控制顯示區域,且大部分的平板顯示器採用矩陣驅動。然而,非矩形的顯示區域在設計方面的需求提高應用於手錶或車用電子。
包括非矩形顯示區域的顯示裝置,已公開於例如,專利文獻1至專利文獻3及非專利文獻1。
[專利文獻1]日本專利申請公開第2006-276359號公報
[專利文獻2]日本專利申請公開第2009-069768號公報
[專利文獻3]日本專利申請公開第2007-272203號公報
[非專利文獻1]SID 08 DIGEST page 951-954
在專利文獻1及專利文獻2所公開的一個方式中,從設置在顯示區域的上下左右中至少一個的驅動電路向非矩形形狀的顯示區域引導信號線。由此,在採用習知的矩陣驅動的同時,也可以使用非矩形形狀顯示區域。然而,在顯示區域的外側需要設置特定邊框寬度的區域。例如,當顯示區域形狀為圓形或橢圓形時,由於配置驅動電路的區域及引導信號線的區域而使面板的外形成為四角形或八角形等。當這種方式時,即使顯示區域可以具有非矩形形狀,外殼的設計嚴重地受限制。
另一方面,在專利文獻3及非專利文獻1所公開的一個方式中,藉由改變驅動電路的佈局,可以在採用習知矩陣驅動的同時,沿著非矩形形狀的顯示區域實現窄化邊框寬度。然而,這種方式需要至少一個資料驅動器(源極驅動器)與閘極驅動器之間的頂點,其限制顯示區域的形狀。例如,該模式不能應用於實際上不具有頂點的形狀的顯示區域,如:圓形或橢圓形等,或包括具有鈍角的頂點比直角大得多的多邊形。
另外,無論顯示裝置的顯示區域是具有非矩形形狀還是矩形形狀,顯示區域皆被期望最大化,使顯示裝置的可見性藉由例如,窄邊框化顯示區域而提高。顯示裝置需要設置用來對顯示裝置輸入影像信號等外部信號至顯示裝置中的輸入端子區域。一般來說,輸入端子區域被設置在顯示區域的外側的邊框區域。由此,在顯示區域的外側需要設置特定寬度的邊框區域,這防止顯示區域的最 大化。
鑒於上述問題,本發明的一個方式的目的之一是提供一種顯示裝置,無論其顯示區域的形狀具有矩形形狀還是非矩形形狀,顯示裝置具有窄邊框化寬度和與包括在該顯示裝置中之顯示區域的形狀不同的形狀。另外,本發明的一個方式的目的之一是提供一種能夠使顯示區域最大化的顯示裝置。另外,本發明的一個方式的目的之一是提供一種容易實現小型化的顯示裝置。另外,在本發明的一個方式中提供一種包括新穎結構的顯示裝置。
注意,這些目的的記載不妨礙其他目的的存在。本發明的一個方式並不需要實現所有上述目的。另外,從說明書、圖式以及申請專利範圍等的記載中可明顯看出上述目的以外的目的,並可以從說明書、圖式以及申請專利範圍等的記載中抽出上述目的以外的目的。
本發明的一個方式是一種顯示裝置,該顯示裝置包括顯示區域及端子電極,端子電極與顯示區域彼此重疊,顯示區域具有能夠在其一個面上顯示影像的功能,端子電極藉由顯示區域的另一個面與外部電極電連接。
另外,本發明的一個方式是一種顯示裝置,該顯示裝置包括第一基板、第二基板、發光元件以及第一電極,第一電極設置在第一基板的上方,發光元件設置在第一電極的上方,第二基板設置在發光元件的上方,來自 發光元件的光經過第二基板而出,第一電極在設置於第一基板中的開口中與第二電極電連接。
第一基板及第二基板較佳為都具有撓性。
藉由本發明的一個方式,可以提供一種在使顯示區域的形狀具有高彈性的同時能夠實現由於窄邊框化寬度而使顯示裝置的外形最小化的顯示裝置,由此可以提供一種能夠對設計上的限制靈活應對的顯示裝置。
藉由本發明的一個方式,可以提供一種顯示裝置,在該顯示裝置中,無論其顯示區域的形狀是矩形形狀還是非矩形形狀,顯示裝置的形狀也與顯示區域的形狀不大不同,並且可以實現窄邊框化寬度。另外,藉由本發明的一個方式,可以提供一種能夠使顯示區域最大化的顯示裝置。另外,可以提供一種容易實現小型化的顯示裝置。另外,可以提供一種新穎的顯示裝置。
注意,這些效果的記載不妨礙其他效果的存在。本發明的一個方式並不需要實現所有上述效果。另外,從說明書、圖式以及申請專利範圍等的記載中可明顯看出上述效果以外的效果,並可以從說明書、圖式以及申請專利範圍等的記載中衍生上述效果以外的效果。
100‧‧‧顯示裝置
101‧‧‧基板
102‧‧‧基板
111‧‧‧基板
112‧‧‧黏合層
113‧‧‧剝離層
114‧‧‧分隔壁
115‧‧‧電極
117‧‧‧EL層
118‧‧‧電極
119‧‧‧絕緣層
120‧‧‧黏合層
121‧‧‧基板
122‧‧‧黏合層
123‧‧‧剝離層
124‧‧‧外部電極
125‧‧‧發光元件
127‧‧‧開口
128‧‧‧開口
129‧‧‧絕緣層
130‧‧‧像素
131‧‧‧顯示區域
132‧‧‧開口
133‧‧‧驅動電路
134‧‧‧像素電路
135‧‧‧佈線
136‧‧‧佈線
138‧‧‧各向異性導電連接層
140‧‧‧像素
151‧‧‧光
161‧‧‧功能層
170‧‧‧區域
171‧‧‧元件基板
181‧‧‧相對基板
205‧‧‧絕緣層
206‧‧‧電極
207‧‧‧絕緣層
208‧‧‧半導體層
209‧‧‧絕緣層
210‧‧‧絕緣層
211‧‧‧絕緣層
212‧‧‧絕緣層
213‧‧‧電極
214‧‧‧電極
215‧‧‧電極
216‧‧‧端子電極
217‧‧‧絕緣層
219‧‧‧佈線
221‧‧‧絕緣層
222‧‧‧雜質元素
223‧‧‧絕緣層
232‧‧‧電晶體
233‧‧‧電容元件
252‧‧‧電晶體
264‧‧‧遮光層
266‧‧‧彩色層
268‧‧‧保護層
274‧‧‧層
318‧‧‧電極
320‧‧‧EL層
322‧‧‧電極
330‧‧‧發光元件
331‧‧‧發光元件
410‧‧‧電晶體
411‧‧‧電晶體
420‧‧‧電晶體
421‧‧‧電晶體
430‧‧‧電晶體
431‧‧‧電晶體
432‧‧‧液晶元件
434‧‧‧電晶體
435‧‧‧節點
436‧‧‧節點
437‧‧‧節點
440‧‧‧電晶體
441‧‧‧電晶體
951‧‧‧車體
952‧‧‧車輪
953‧‧‧儀表板
954‧‧‧燈
955‧‧‧顯示部
5100‧‧‧顆粒
5101‧‧‧離子
5102‧‧‧氧化鋅層
5103‧‧‧粒子
5120‧‧‧基板
5130‧‧‧靶材
5161‧‧‧區域
7100‧‧‧可攜式顯示裝置
7101‧‧‧可攜式顯示裝置
7102‧‧‧顯示部
7103‧‧‧操作按鈕
7104‧‧‧收發裝置
7400‧‧‧行動電話機
7401‧‧‧外殼
7402‧‧‧顯示部
7403‧‧‧操作按鈕
7404‧‧‧外部連接埠
7405‧‧‧揚聲器
7406‧‧‧麥克風
130B‧‧‧像素
130G‧‧‧像素
130R‧‧‧像素
130Y‧‧‧像素
132a‧‧‧開口
132b‧‧‧開口
142a‧‧‧驅動電路
142b‧‧‧驅動電路
209b‧‧‧汲極電極
320a‧‧‧電荷產生層
5100a‧‧‧顆粒
5100b‧‧‧顆粒
5105a‧‧‧顆粒
5105a1‧‧‧區域
5105a2‧‧‧顆粒
5105b‧‧‧顆粒
5105c‧‧‧顆粒
5105d‧‧‧顆粒
5105d1‧‧‧區域
5105e‧‧‧顆粒
在圖式中:圖1A和圖1B是說明顯示裝置的一個方式的透視圖 及剖面圖;圖2A和圖2B是說明顯示裝置的一個方式的透視圖及剖面圖;圖3A至圖3D是說明顯示裝置的一個方式的製程的圖;圖4A至圖4C是說明顯示裝置的一個方式的製程的圖;圖5A和圖5B是說明顯示裝置的一個方式的製程的圖;圖6A至圖6E是說明顯示裝置的一個方式的製程的圖;圖7A和圖7B是說明顯示裝置的一個方式的製程的圖;圖8A和圖8B是說明顯示裝置的一個方式的製程的圖;圖9A和圖9B是說明顯示裝置的一個方式的製程的圖;圖10A和圖10B是說明顯示裝置的一個方式的製程的圖;圖11A和圖11B是說明顯示裝置的一個方式的透視圖及剖面圖;圖12A和圖12B是說明顯示裝置的一個方式的像素結構的一個例子的圖;圖13A和圖13B是說明顯示裝置的一個方式的像素 結構的一個例子的圖;圖14A至圖14C是說明顯示裝置的一個方式的方塊圖及電路圖;圖15A1、圖15A2、圖15B1、圖15B2、圖15C1以及圖15C2是說明電晶體的一個方式的剖面圖;圖16A至圖16C是說明電晶體的一個方式的俯視圖及剖面圖;圖17A1、圖17A2、圖17A3、圖17B1及圖17B2是說明電晶體的一個方式的剖面圖;圖18A至圖18C是說明電晶體的一個方式的俯視圖及剖面圖;圖19A和圖19B是說明發光元件的結構實例的圖;圖20A至圖20C是說明顯示裝置的一個方式的圖;圖21A至圖21D是說明電子裝置的一個方式的圖;圖22A至圖22D是CAAC-OS的剖面的Cs校正高解析度TEM影像以及CAAC-OS的剖面示意圖;圖23A至圖23D是CAAC-OS的平面的Cs校正高解析度TEM影像;圖24A至圖24C是說明CAAC-OS及單晶氧化物半導體的藉由XRD的結構分析的圖;圖25A和圖25B是示出CAAC-OS的電子繞射圖案的圖;圖26是示出照射電子時的In-Ga-Zn氧化物的結晶部的變化的圖; 圖27A和圖27B是說明CAAC-OS以及nc-OS的成膜模型的示意圖;圖28A至圖28C是說明InGaZnO4的結晶及顆粒的圖;及圖29A至圖29D是說明CAAC-OS的成膜模型的示意圖。
下面,參照圖式對本發明的實施方式進行詳細說明。注意,本發明不侷限於以下說明,所屬技術領域的普通技術人員可以很容易地理解一個事實就是,其方式及詳細內容可以被變換為各種各樣的形式。此外,本發明不應該被解釋為僅限定於以下所示的實施方式和例子的記載內容中。注意,在用於說明實施方式的所有圖式中,使用相同的元件符號來表示相同的部分或具有相同功能的部分,而省略其重複說明。
另外,在本說明書等中,“電極”或“佈線”不在功能上限定其構成要素。例如,有時將“電極”用作“佈線”的一部分,反之亦然。再者,“電極”或“佈線”還包括多個“電極”或“佈線”被形成為一體的情況等。
例如,在本說明書等中,當明確地記載為“X與Y連接”時,在本說明書等中公開了如下情況:X與Y電連接的情況;X與Y在功能上連接的情況;以及X與Y直接連接的情況。因此,不侷限於圖式或文中所示的連接 關係等規定的連接關係,在具有圖式或文中所示的連接關係之元件之間可提供其它元件。
這裡,X和Y為物件(例如,裝置、元件、電路、佈線、電極、端子、導電膜和層等)。
X與Y直接連接的情況的一個例子包括允許電連接X與Y的元件(例如開關、電晶體、電容元件、電感器、電阻元件、二極體、顯示元件、發光元件和負載等)的情況在X與Y之間沒有連接,並且沒有藉由允許在X與Y之間設置電連接的元件(例如開關、電晶體、電容元件、電感器、電阻元件、二極體、顯示元件、發光元件和負載等)連接X與Y的情況。
例如,X與Y電連接的情況的一個例子,可以在X與Y之間連接一個以上的能夠電連接X與Y的元件(例如開關、電晶體、電容元件、電感器、電阻元件、二極體、顯示元件、發光元件和負載等)。另外,開關被控制以開啟和關閉。換言之,藉由使開關處於導通狀態(開啟狀態)或非導通狀態(關閉狀態)來控制是否使電流流過。或者,開關具有選擇並切換電流路徑的功能。另外,X與Y電連接的情況包括X與Y直接連接的情況。
例如,X與Y在功能上連接的情況的一個例子,可以在X與Y之間連接一個以上的能夠在功能上連接X與Y的電路(例如,邏輯電路(反相器、NAND電路、NOR電路等)、信號轉換電路如,DA轉換電路、AD轉換電路、伽瑪校正電路等、電位位準轉換電路如,電源 電路(例如,直流對直流轉換器、升壓直流對直流轉換器、降壓直流對直流轉換器等)、或改變信號的電位位準的位準轉移電路等)、電壓源、電流源、切換電路、放大電路如,能夠增大信號振幅或電流量等的電路、運算放大器、差動放大電路、源極隨耦電路、緩衝電路等、信號產生電路、記憶體電路、和/或控制電路等)。注意,例如,即使在X與Y之間夾有其他電路,當從X輸出的信號傳送到Y時,也可以說X與Y在功能上是連接著的。另外,X與Y在功能上連接的情況包括X與Y直接連接的情況及X與Y電連接的情況。
此外,當明確地記載為“X與Y電連接”時,在本說明書等中公開了如下情況:X與Y電連接的情況(換言之,以中間夾有其他元件或其他電路的方式連接X與Y的情況);X與Y在功能上連接的情況(換言之,以中間夾有其他電路的方式在功能上連接X與Y的情況);以及X與Y直接連接的情況(換言之,以中間不夾有其他元件或其他電路的方式連接X與Y的情況)。換言之,當明確記載為“X與Y電連接”時,在本說明書等中公開了與只明確記載為“X與Y連接”的情況相同的內容。
注意,例如,在電晶體的源極(或第一端子等)藉由Z1(或沒有藉由Z1)與X電連接,電晶體的汲極(或第二端子等)藉由Z2(或沒有藉由Z2)與Y電連接的情況下以及在電晶體的源極(或第一端子等)與Z1 的一部分直接連接,Z1的另一部分與X直接連接,電晶體的汲極(或第二端子等)與Z2的一部分直接連接,Z2的另一部分與Y直接連接的情況下,可以表現為如下。
例如,可以表現為“X、Y、電晶體的源極(或第一端子等)與電晶體的汲極(或第二端子等)互相電連接,X、電晶體的源極(或第一端子等)、電晶體的汲極(或第二端子等)與Y依次電連接”。或者,可以表現為“電晶體的源極(或第一端子等)與X電連接,電晶體的汲極(或第二端子等)與Y電連接,X、電晶體的源極(或第一端子等)、電晶體的汲極(或第二端子等)與Y依次電連接”。或者,可以表現為“X藉由電晶體的源極(或第一端子等)及汲極(或第二端子等)與Y電連接,X、電晶體的源極(或第一端子等)、電晶體的汲極(或第二端子等)、Y依次設置為相互連接”。藉由使用與這種例子相同的表現方法規定電路結構中的連接順序,可以區別電晶體的源極(或第一端子等)與汲極(或第二端子等)而決定技術範圍。
另外,作為其他表現方法,例如可以表現為“電晶體的源極(或第一端子等)至少經過第一連接路徑與X電連接,第一連接路徑不具有第二連接路徑,第二連接路徑是電晶體的源極(或第一端子等)與電晶體的汲極(或第二端子等)之間的路徑,第一連接路徑是藉由Z1的路徑,電晶體的汲極(或第二端子等)至少經過第三連接路徑與Y電連接,第三連接路徑不具有第二連接路徑, 第三連接路徑是藉由Z2的路徑”。或者,也可以表現為“電晶體的源極(或第一端子等)至少經過第一連接路徑,藉由Z1與X電連接,第一連接路徑不具有第二連接路徑,第二連接路徑具有藉由電晶體的連接路徑,電晶體的汲極(或第二端子等)至少經過第三連接路徑,藉由Z2與Y電連接,第三連接路徑不具有第二連接路徑”。或者,也可以表現為“電晶體的源極(或第一端子等)至少經過第一電路徑,藉由Z1與X電連接,第一電路徑不具有第二電路徑,第二電路徑是從電晶體的源極(或第一端子等)到電晶體的汲極(或第二端子等)的電路徑,電晶體的汲極(或第二端子等)至少經過第三電路徑,藉由Z2與Y電連接,第三連接路徑不具有第四連接路徑,第四電路徑是從電晶體的汲極(或第二端子等)到電晶體的源極(或第一端子等)的電路徑”。藉由使用與這種例子同樣的表現方法規定電路結構中的連接路徑,可以區別電晶體的源極(或第一端子等)和汲極(或第二端子等)來決定技術範圍。
注意,這種表現方法只是一個例子而已,不侷限於上述表現方法。在此,X、Y、Z1及Z2為物件(例如,裝置、元件、電路、佈線、電極、端子、導電膜和層等)。
另外,即使圖式示出在電路圖上獨立的構成要素彼此電連接,也有一個構成要素兼有多個構成要素的功能的情況。例如,在佈線的一部分被用作電極時,一個 導電膜兼有佈線和電極的兩個構成要素的功能。因此,本說明書中的“電連接”的範疇內還包括這種一個導電膜兼有多個構成要素的功能的情況。
另外,在本說明書等中,可以使用各種基板形成電晶體。對基板的種類沒有特別的限制。作為該基板的一個例子,可以舉出半導體基板(例如,單晶基板或矽基板)、SOI基板、玻璃基板、石英基板、塑膠基板、金屬基板、不鏽鋼基板、包含不鏽鋼箔的基板、鎢基板、包含鎢箔的基板、撓性基板、貼合薄膜、包含纖維狀材料的紙或基材薄膜等。作為玻璃基板的一個例子,可以舉出鋇硼矽酸鹽玻璃基板、鋁硼矽酸鹽玻璃基板或鈉鈣玻璃基板等。作為撓性基板的一例,可以舉出以聚對苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚碸(PES)為代表的塑膠或丙烯酸樹脂等具有撓性的合成樹脂等。作為貼合薄膜材料的一個例子,可以舉出聚氟化乙烯或氯乙烯等乙烯、聚丙烯、聚酯等。作為基材薄膜的一個例子,可以舉出聚酯、聚醯胺、聚醯亞胺、無機蒸鍍薄膜或紙等。尤其是,藉由使用半導體基板、單晶基板或SOI基板等製造電晶體,可以製造特性、尺寸或形狀等的不均勻小、電流能力高且尺寸小的電晶體。當利用上述電晶體構成電路時,可以實現電路的低功耗化或電路的高集成化。
注意,也可以使用一個基板形成電晶體,然後將電晶體轉移到其他基板上。作為被轉移電晶體至其上 的基板,除了上述可以形成電晶體的基板之外,還可以使用紙基板、玻璃紙基板、石材基板、木材基板、布基板(包括天然纖維(絲、棉、麻)、合成纖維(尼龍、聚氨酯、聚酯)或再生纖維(醋酯纖維、銅氨纖維、人造纖維、再生聚酯)等)、皮革基板、或橡膠基板等。藉由使用上述基板,可以形成特性良好的電晶體或功耗低的電晶體,可以製造具有耐久性的裝置,並具有耐熱性,並且可以實現輕量化或薄型化。
另外,為了便於理解,有時在圖式等中示出的各構成要素的位置、大小及範圍等並不表示其實際的位置、大小及範圍等。因此,所公開的發明不一定限定於圖式等所公開的位置、大小、範圍等。例如,在實際的製程中,有時由於蝕刻等處理而光阻遮罩等被非意圖性地蝕刻,但是為了便於理解有時省略圖示。
尤其是在俯視圖(也稱為平面圖)中,為了易於理解圖式,有時省略構成要素的一部分。另外,有時省略隱藏線等的記載的一部分。
另外,在本說明書等中,“上”或“下”這樣的術語不限定於構成要素的位置關係為“正上”或“正下”且直接接觸的情況。例如,如果是“絕緣層A上的電極B”的表述,則不一定必須在絕緣層A上直接接觸地形成有電極B,也可以包括在絕緣層A與電極B之間包括其他構成要素的情況。
另外,由於“源極”及“汲極”的功能例如在採用 不同極性的電晶體時或在電路工作中電流的方向變化時等,根據工作條件等而相互調換,因此很難限定哪個是“源極”哪個是“汲極”。因此,在本說明書中,可以將“源極”和“汲極”互相調換地使用。
此外,在本說明書中,“平行”是指在-10°以上且10°以下的角度的範圍中配置兩條直線的狀態。因此,也包括該角度為-5°以上且5°以下的狀態。另外,“大致平行”是指兩條直線形成的角度為-30°以上且30°以下的情況。另外,“垂直”或“正交”是指在80°以上且100°以下的角度的範圍中配置兩條直線的狀態。因此,也包括該角度為85°以上且95°以下的狀態。“大致垂直”是指兩條直線形成的角度為60°以上且120°以下的情況。
注意,“電壓”大多是指某個電位與參考電位(例如,地電位(GND電位)或源極電位)之間的電位差。由此,可以將電壓換稱為電位。
此外,半導體的雜質例如是指構成半導體的主要成分以外的元素。例如,濃度小於0.1atomic%的元素可以說是雜質。由於半導體包含雜質,而例如有時導致半導體中的DOS(Density of State:態密度)的增高、載子移動率的降低或結晶性的降低等。當半導體是氧化物半導體時,作為改變半導體的特性的雜質,例如有半導體主要成分以外的第1族元素、第2族元素、第13族元素、第14族元素、第15族元素及過渡金屬。尤其是,例如有氫(也包含在水中)、鋰、鈉、矽、硼、磷、碳、氮等。當 採用氧化物半導體時,例如由於氫等雜質混入,而有可能形成氧缺陷。當半導體是矽時,作為改變半導體的特性的雜質,例如有氧、除了氫以外的第1族元素、第2族元素、第13族元素、第15族元素等。
注意,本說明書等中的“第一”、“第二”等序數詞是為了避免構成要素的混淆而附加的,其並不表示製程順序或者層疊順序等某種順序或次序。注意,關於本說明書等中不附加有序數詞的術語,為了避免構成要素的混淆,在申請專利範圍中有時對該術語附加序數詞。關於本說明書等中附加有序數詞的術語,在申請專利範圍中有時對該術語附加不同的序數詞。此外,關於本說明書等中附加有序數詞的術語,在申請專利範圍中有時省略其序數詞。
注意,例如,“通道長度”是指在電晶體的俯視圖中,在半導體(或在電晶體處於導通狀態時,在半導體中電流流過的部分)和閘極電極重疊的區域或者形成通道的區域中的源極(源極區域或源極電極)和汲極(汲極區域或汲極電極)之間的距離。另外,在一個電晶體中,通道長度不一定在所有的區域中都是相同的值。也就是說,一個電晶體的通道長度有時不限定於一個值。因此,在本說明書中,通道長度是形成通道的區域中的任一個值、最大值、最小值或平均值。
例如,“通道寬度”是指在半導體(或在電晶體處於導通狀態時,在半導體中電流流過的部分)和閘極 電極重疊的區域或者形成通道的區域中的源極和汲極相對的部分的長度。另外,在一個電晶體中,通道寬度不一定在所有的區域中都是相同的值。也就是說,一個電晶體的通道寬度有時不限定於一個值。因此,在本說明書中,通道寬度是形成通道的區域中的任一個值、最大值、最小值或平均值。
另外,根據電晶體的結構,有時實際上形成通道的區域中的通道寬度(下面稱為實效的通道寬度)和電晶體的俯視圖所示的通道寬度(下面稱為外觀上的通道寬度)不同。例如,在具有立體結構的電晶體中,有時因為實效的通道寬度大於電晶體的俯視圖所示的外觀上的通道寬度,所以不能忽略其影響。例如,在具有微型且立體的結構的電晶體中,有時形成在半導體的側面上的通道區域的比例大於形成在半導體的頂面上的通道區域的比例。在此情況下,實際上形成通道的實效的通道寬度大於俯視圖所示的外觀上的通道寬度。
在具有立體結構的電晶體中,有時難以藉由實測估計實效的通道寬度。例如,為了根據設計值估計實效的通道寬度,需要預先知道半導體的形狀作為假定。因此,當半導體的形狀不清楚時,難以正確地測量實效的通道寬度。
於是,在本說明書中,在電晶體的俯視圖中將半導體和閘極電極重疊的區域中的源極和汲極相對的部分的長度的外觀上的通道寬度稱為“圍繞通道寬度 (SCW:Surrounded Channel Width)”。此外,在本說明書中,在簡單地使用“通道寬度”的情況下,可指圍繞通道寬度或外觀上的通道寬度。或者,在本說明書中,在簡單地使用“通道寬度”的情況下,可表示實效的通道寬度。注意,藉由取得剖面TEM影像等並對其影像進行分析等,可以決定通道長度、通道寬度、實效的通道寬度、外觀上的通道寬度、圍繞通道寬度等的值。
另外,在藉由計算求得電晶體的場效移動率或每個通道寬度的電流值等時,有時使用圍繞通道寬度進行計算。在此情況下,有時成為與使用實效的通道寬度進行計算時不同的值。
在本說明書中,六方晶系包括三方晶系和菱方晶系。
實施方式1
參照圖式說明本發明的一個方式的顯示裝置100的結構實例及製造方法的例子。
〈顯示裝置的結構實例1〉
圖1A是與外部電極124連接的顯示裝置100的透視圖。圖1A所示的顯示裝置100是外形形狀為非矩形的顯示裝置。另外,顯示裝置100包括非矩形形狀的顯示區域131。圖1B是沿著圖1A中的點劃線A1-A2所示的部分的剖面圖。另外,作為本說明書所公開的顯示裝置100,例 示出作為顯示元件使用發光元件的顯示裝置。此外,作為本發明的一個方式的顯示裝置100,例示出頂部發射結構(頂面發射結構)的顯示裝置。
本實施方式所示的顯示裝置100包括顯示區域131。顯示裝置100具有包括電極115、EL層117及電極118的發光元件125以及端子電極216。多個發光元件125形成在顯示區域131中。此外,各發光元件125與用來控制發光元件125的發光量的電晶體232連接。
電晶體232隔著黏合層112、絕緣層221、絕緣層223以及絕緣層205設置在基板111上。在圖1B中,端子電極216形成在絕緣層221與絕緣層223之間。
端子電極216與穿過基板111、黏合層112及絕緣層221的開口132重疊。端子電極216藉由形成在開口132中的各向異性導電連接層138與外部電極124電連接。端子電極216與電晶體232電連接且在功能上連接。例如,端子電極216也可以與驅動電路連接,將供應到端子電極216的信號經過驅動電路供應給電晶體232。驅動電路是具有決定將信號供應給顯示區域131中的哪個發光元件125的功能的電路,也可以在形成顯示裝置100中的電晶體232的同時在顯示裝置100中設置驅動電路。
電晶體232包括電極206、絕緣層207、半導體層208、電極214以及電極215。電極206能夠被用作閘極電極。絕緣層207能夠被用作閘極絕緣層。電極214、電極215能夠被用作源極電極或汲極電極。另外, 在與電極214及電極215相同的層中形成有佈線219。另外,在電晶體232上形成有絕緣層210,在絕緣層210上形成有絕緣層211,在絕緣層211上形成有絕緣層212。另外,在絕緣層211上形成有電極115。電極115藉由形成在絕緣層210、絕緣層211及絕緣層212中的開口與電極215電連接。另外,在電極115上形成有分隔壁114,在電極115及分隔壁114上形成有EL層117及電極118。
在基板121的一個側上隔著黏合層122具有絕緣層129、遮光層264、彩色層266以及保護層268。由黏合層120貼合基板121及基板111,使基板121的該一個側面對基板111的設置有發光元件125的側。
另外,絕緣層205被用作基底層,並能夠防止或抑制水分或雜質元素從基板111或黏合層112等擴散到電晶體或發光元件中。此外,絕緣層129被用作基底層,並能夠防止或抑制水分或雜質元素從基板121或黏合層122等擴散到電晶體或發光元件中。絕緣層129可以使用與絕緣層205相似的材料及方法形成。
作為基板111及基板121,可以使用有機樹脂材料等具有撓性的材料等。在將顯示裝置100形成為所謂的底部發射結構(底面發射結構)的顯示裝置或者雙面發射型顯示裝置的情況下,作為基板111使用對於來自EL層117的發光具有透光性的材料。另外,在將顯示裝置100形成為頂面發射型顯示裝置或者雙面發射型顯示裝置的情 況下,作為基板121使用對於來自EL層117的發光具有透光性的材料。
與此相同,在顯示裝置100為所謂的底部發射結構(底面發射結構)的顯示裝置或者雙面發射型顯示裝置的情況下,作為基板111使用對於來自EL層117的發光具有透光性的材料。在作為顯示裝置100使用頂面發射型顯示裝置或雙表面發射型顯示裝置的情況下,作為基板121使用對於來自EL層117的發光具有透光性的材料。
基板111及基板121較佳為使用彼此相同的材料且具有彼此相同的厚度。但是,根據目的也可以使用互不相同的材料或具有互不相同的厚度。
作為可用於基板111及基板121的具有撓性及對可見光的透光性的材料的一個例子,有聚對苯二甲酸乙二醇酯樹脂、聚萘二甲酸乙二醇酯樹脂、聚丙烯腈樹脂、聚醯亞胺樹脂、聚甲基丙烯酸甲酯樹脂、聚碳酸酯樹脂、聚醚碸樹脂、聚醯胺樹脂、環烯烴樹脂、聚苯乙烯樹脂、聚醯胺醯亞胺樹脂、聚氯乙烯樹脂等。另外,在無需使光透過的情況下,也可以使用非透光性的基板。例如,基板111及基板121可以使用鋁等。
此外,基板121及基板111的熱膨脹係數較佳為30ppm/K以下,更佳為10ppm/K以下。另外,也可以在基板121及基板111表面上預先形成具有低透水性的保護膜,諸如氮化矽或氧氮化矽等含有氮和矽的膜、氮化鋁等含有氮和鋁的膜等。另外,作為基板121及基板 111,也可以使用在纖維體中浸滲有有機樹脂的結構體(所謂的預浸料)。
藉由使用這種基板,能夠提供一種不易碎裂的顯示裝置。另外,能夠提供一種輕量的顯示裝置。此外,能夠提供一種容易彎曲的顯示裝置。
〈顯示裝置的結構實例2〉
圖2A是外形形狀為矩形的顯示裝置100a。圖2A為與外部電極124連接的具有矩形形狀的顯示裝置100a的透視圖。圖2B是沿著圖2A中的點劃線A3-A4所示的部分的剖面圖。注意,為了避免重複說明,省略與圖1A所示的顯示裝置100相同的部分的說明。
圖2A所示的顯示裝置100a包括具有矩形形狀的顯示區域131。另外,在顯示區域131的外側設置有驅動電路133、驅動電路142a及驅動電路142b。注意,在本說明書等中,有時將驅動電路133、驅動電路142a及驅動電路142b中的一個或多個簡稱為驅動電路或周邊驅動電路。
各驅動電路133、驅動電路142a及驅動電路142b由多個電晶體252構成。驅動電路133、驅動電路142a及驅動電路142b具有決定將經過外部電極124被供應的信號供應給顯示區域131中的哪個發光元件125的功能。
可以經過與電晶體232相同的製程製造電晶 體252。電晶體232及電晶體252也可以具有相同結構或不同結構。
另外,也可以在基板121的與驅動電路133、驅動電路142a或/及驅動電路142b重疊的區域中設置遮光層264、彩色層266或保護層268。圖2B示出在與驅動電路133重疊的區域中設置遮光層264及保護層268的例子。藉由以與電晶體252重疊的方式設置遮光層264,可以抑制由於外光的照射而導致的電晶體252的特性變動。
如圖2A所示的顯示裝置100a那樣,當在顯示區域131的外側設置有驅動電路時,也可以在與驅動電路重疊的位置上設置端子電極216及開口132,藉由各向異性導電連接層138將外部電極124電連接於端子電極216。圖2B示出在與驅動電路133重疊的位置上設置端子電極216及開口132且藉由各向異性導電連接層138將外部電極124電連接於端子電極216的例子。
另外,端子電極216在去除絕緣層205及絕緣層223的一部分而形成的開口中藉由電極224與電晶體252的源極電極和汲極電極中的一個電連接。
此外,即使採用外形或顯示區域的形狀不是矩形的顯示裝置,也可以設置驅動電路。
〈顯示裝置的製造方法的一個例子〉
參照圖式說明顯示裝置100的製造方法的一個例子。另外,圖3A至圖9B相當於圖1A中的以點劃線A1-A2表 示的部分的剖面。
[形成剝離層]
首先,在基板101上形成剝離層113(參照圖3A)。此外,作為基板101可以使用玻璃基板、石英基板、藍寶石基板、陶瓷基板、金屬基板等。此外,也可以使用能夠承受本實施方式的處理溫度的耐熱性的塑膠基板。
另外,作為玻璃基板,例如使用如鋁矽酸鹽玻璃、鋁硼矽酸鹽玻璃、鋇硼矽酸鹽玻璃等玻璃材料。注意,藉由使玻璃基板含有較多氧化鋇(BaO),可以得到實用性更高的耐熱玻璃。此外,還可以使用晶化玻璃等。
剝離層113可以使用選自鎢、鉬、鈦、鉭、鈮、鎳、鈷、鋯、釕、銠、鈀、鋨、銥、矽中的元素、含有上述元素的合金材料、含有上述元素的化合物材料形成。剝離層113也可以使用上述材料的任何一種形成已具有單層或疊層結構。剝離層113的結晶結構也可以是非晶、微晶、多晶中的任何一種。剝離層113也可以使用氧化鋁、氧化鎵、氧化鋅、二氧化鈦、氧化銦、銦錫氧化物、銦鋅氧化物或InGaZnO(IGZO)等金屬氧化物形成。
剝離層113可以藉由濺射法、CVD法、塗佈法、印刷法等形成。另外,塗佈法包括旋塗法、液滴噴射法、分配器方法。
在以單層形成剝離層113的情況下,較佳為使用含有鎢的材料、含有鉬的材料或含有鎢和鉬的材料。 或者,在以單層形成剝離層113的情況下,較佳為使用鎢的氧化物或氧氮化物、鉬的氧化物或氧氮化物、或者包含鎢和鉬的材料的氧化物或氧氮化物。
另外,當作為剝離層113例如形成包含鎢的層和包含鎢的氧化物的層的疊層結構時,可以使用如下方法:首先形成包含鎢的層,然後接觸於包含鎢的層地形成氧化物絕緣層,由此,包含鎢的氧化物的層形成在包含鎢的層與氧化物絕緣層之間的介面。此外,也可以對包含鎢的層的表面進行熱氧化處理、氧電漿處理、使用諸如臭氧水等高氧化性的溶液的處理等來形成包含鎢的氧化物的層。
在本實施方式中,作為基板101使用玻璃基板。另外,剝離層113在基板101上藉由濺射法形成鎢層。
[形成絕緣層]
接著,在剝離層113上形成絕緣層221(參照圖3A)。較佳為使用氧化矽、氧氮化矽、氮氧化矽、氧化鋁、氧氮化鋁或氮氧化鋁等包含氧的絕緣材料形成絕緣層221。當藉由進行使剝離層113的表面氧化的處理時,也可以使用氮化矽及氮化鋁等沒有包含氧的材料形成絕緣層221。絕緣層221較佳為以單層或多層形成。例如,絕緣層221可以採用層疊有氧化矽和氮化矽的兩層結構或組合有上述材料的五層結構。絕緣層221可以藉由濺射法、 CVD法、熱氧化法、塗佈法、印刷法等形成。
絕緣層221的厚度為30nm以上且500nm以下,較佳為50nm以上且400nm以下。在本實施方式中,作為絕緣層221,藉由電漿CVD法形成200nm厚的氧氮化矽和50nm厚的氮氧化矽的疊層膜。
[形成端子電極]
接著,在絕緣層221上形成端子電極216(參照圖3A)。端子電極216可以使用選自鋁、鉻、銅、鉭、鈦、鉬、鎢中的金屬元素、以上述金屬元素為成分的合金或組合上述金屬元素的合金等而形成。另外,也可以使用選自錳和鋯中的任一種或多種的金屬元素。此外,端子電極216可以具有單層結構或者兩層以上的疊層結構。例如,有包含矽的鋁膜的單層結構、在鈦膜上層疊鋁膜的兩層結構、在氮化鈦膜上層疊鈦膜的兩層結構、在氮化鈦膜上層疊鎢膜的兩層結構、在氮化鉭膜或氮化鎢膜上層疊鎢膜的兩層結構、在鈦膜上層疊銅膜的兩層結構、依次層疊鈦膜、鋁膜及鈦膜的三層結構等。此外,也可以使用組合鋁與選自鈦、鉭、鎢、鉬、鉻、釹、鈧中的一種或多種而形成的合金膜或氮化膜。
端子電極216也可以使用銦錫氧化物、包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、銦鋅氧化物、添加有氧化矽的銦錫氧化物等透光導電材料。另外,也可 以採用上述具有透光性的導電性材料和上述金屬元素的疊層結構。
首先,在絕緣層221上藉由濺射法、CVD法、蒸鍍法等層疊後面成為端子電極216的導電膜,在該導電膜上經過光微影製程形成光阻遮罩。接著,使用該光阻遮罩對導電膜的一部分進行蝕刻來形成端子電極216。此時,可以同時形成其他佈線及電極。
作為導電膜的蝕刻方法,可以使用乾蝕刻法和濕蝕刻法中的一者或兩者。另外,在藉由乾蝕刻法進行蝕刻的情況下,在去除光阻遮罩之前進行灰化處理時,可以容易使用剝離液去除光阻遮罩。
另外,作為端子電極216的形成方法,也可以利用電鍍法、印刷法、噴墨法等代替上述形成方法。
端子電極216的厚度較佳為5nm以上且500nm以下,更佳為10nm以上且300nm以下,進一步較佳為10nm以上且200nm以下。
[形成絕緣層]
接著,在端子電極216上形成絕緣層223(參照圖3A)。絕緣層223較佳為使用氧化矽、氮化矽、氧氮化矽、氮氧化矽、氧化鋁、氧氮化鋁或氮氧化鋁等的單層或疊層形成。例如,絕緣層223也可以採用氧化矽和氮化矽的疊層。絕緣層223可以藉由濺射法、CVD法、熱氧化法、塗佈法、印刷法等形成。
另外,為了降低表面的凹凸,也可以對絕緣層223進行平坦化處理。對平坦化處理沒有特別的限制,可以使用拋光處理(例如,化學機械拋光(Chemical Mechanical Polishing:CMP))或乾蝕刻處理。
[形成絕緣層]
接著,在絕緣層223上形成作為基底層的絕緣層205(參照圖3B)。絕緣層205較佳為使用氧化矽、氮化矽、氧氮化矽、氮氧化矽、氧化鋁、氧氮化鋁或氮氧化鋁等的單層或疊層形成。例如,絕緣層205可以採用層疊有氧化矽和氮化矽的兩層結構,也可以採用組合有上述材料的五層結構。絕緣層205可以藉由濺射法、CVD法、熱氧化法、塗佈法、印刷法等形成。
可以將絕緣層205的厚度設定為30nm以上且500nm以下,較佳為50nm以上且400nm以下。
絕緣層205具有防止或抑制雜質元素從基板101或剝離層113等擴散的功能。另外,在將基板101替換為基板111之後也能夠防止或抑制雜質元素從基板111或黏合層112等擴散到電晶體232或發光元件125。在本實施方式中,作為絕緣層205,藉由電漿CVD法形成200nm厚的氧氮化矽和50nm厚的氮氧化矽的疊層膜。
[形成閘極電極]
接著,在絕緣層205上形成電極206(參照圖3B)。 電極206可以使用選自鋁、鉻、銅、鉭、鈦、鉬、鎢中的金屬元素、以上述金屬元素為成分的合金或組合上述金屬元素的合金等形成。另外,也可以使用選自錳和鋯中的任一種或多種的金屬元素。此外,電極206可以具有單層結構或者兩層以上的疊層結構。例如,有含矽的鋁膜的單層結構、在鈦膜上層疊鋁膜的兩層結構、在氮化鈦膜上層疊鈦膜的兩層結構、在氮化鈦膜上層疊鎢膜的兩層結構、在氮化鉭膜或氮化鎢膜上層疊鎢膜的兩層結構、在鈦膜上層疊銅膜的兩層結構、依次層疊鈦膜、鋁膜及鈦膜的三層結構等。此外,也可以使用含有鋁以及選自鈦、鉭、鎢、鉬、鉻、釹和鈧中的一種或多種元素的合金膜或氮化膜。
另外,電極206也可以使用銦錫氧化物、包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、銦鋅氧化物、添加氧化矽的銦錫氧化物等具有透光性的導電性材料。另外,也可以採用上述具有透光性的導電性材料和上述金屬元素的疊層結構。
藉由利用濺射法、CVD法、蒸鍍法等在絕緣層205上層疊後面用作電極206的導電膜,並且在該導電膜上藉由利用光微影製程形成光阻遮罩。接著,藉由使用光阻遮罩對用作電極206的導電膜的一部分進行蝕刻來形成電極206。此時,可以同時形成其他佈線及電極。
作為導電膜的蝕刻方法,可以使用乾蝕刻法和濕蝕刻法中的一者或兩者。另外,在藉由乾蝕刻法進行 蝕刻的情況下,在去除光阻遮罩之前進行灰化處理時,可以容易使用剝離液去除光阻遮罩。
另外,作為電極206的形成方法,也可以利用電鍍法、印刷法、噴墨法等代替上述形成方法。
電極206的厚度較佳為5nm以上且500nm以下,更佳為10nm以上且300nm以下,進一步較佳為10nm以上且200nm以下。
當使用具有遮光性的導電性材料形成電極206時,可以不容易使來自外部的光從電極206側到達半導體層208。其結果,能夠抑制光照射所引起的電晶體電特性的變動。
[形成閘極絕緣層]
接著,形成絕緣層207(參照圖3B)。例如可以使用氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鋁、氧化鋁與氧化矽的混合物、氧化鉿、氧化鎵、Ga-Zn類金屬氧化物等形成絕緣層207以具有單層結構或疊層結構。
使用矽酸鉿(HfSiOx)、添加有氮的矽酸鉿(HfSixOyNz)、添加有氮的鋁酸鉿(HfAlxOyNz)、氧化鉿、氧化釔等high-k材料形成絕緣層207,能夠降低電晶體的閘極漏電流。例如,也可以使用氧氮化矽和氧化鉿的疊層。
絕緣層207的厚度較佳為5nm以上且400nm以下,更佳為10nm以上且300nm以下,進一步較佳為 50nm以上且250nm以下。絕緣層207可以藉由濺射法、CVD法、蒸鍍法等形成。
當作為絕緣層207形成氧化矽膜、氧氮化矽膜或氮氧化矽膜的情況下,作為源氣體較佳為使用包含矽的沉積氣體及氧化性氣體。包含矽的沉積氣體的典型例子包括矽烷、乙矽烷、丙矽烷、氟化矽烷等。作為氧化氣體,可以舉出氧、臭氧、一氧化二氮、二氧化氮等。
絕緣層207也可以具有從電極206一側依次層疊氮化物絕緣層和氧化物絕緣層的疊層結構。藉由在電極206一側設置氮化物絕緣層,能夠防止氫、氮、鹼金屬或鹼土金屬等從電極206一側移動到半導體層208中。注意,氮、鹼金屬或鹼土金屬等一般被用作半導體的雜質元素。另外,氫被用作氧化物半導體的雜質元素。因此,本說明書等中的“雜質”包括氫、氮、鹼金屬或鹼土金屬等。
此外,當作為半導體層208使用氧化物半導體時,藉由在半導體層208一側設置氧化物絕緣層,能夠降低絕緣層207與半導體層208的介面的缺陷態密度。其結果,能夠得到電特性劣化少的電晶體。另外,當作為半導體層208使用氧化物半導體時,藉由使用包含超過化學計量組成的氧的氧化物絕緣層形成氧化物絕緣層,能夠進一步降低絕緣層207與半導體層208的介面的缺陷態密度,所以是較佳的。
此外,當絕緣層207為如上所述那樣的氮化物絕緣層和氧化物絕緣層的疊層時,氮化物絕緣層較佳為 比氧化物絕緣層厚。
由於氮化物絕緣層的相對介電常數比氧化物絕緣層高,因此即便絕緣層207的厚度厚,也可以有效地將產生在電極206的電場傳送到半導體層208。另外,藉由增大絕緣層207整體的厚度,能夠提高絕緣層207的絕緣耐壓。因此,能夠提高顯示裝置的可靠性。
另外,絕緣層207可以採用從電極206一側依次層疊缺陷少的第一氮化物絕緣層、氫阻擋性高的第二氮化物絕緣層及氧化物絕緣層的疊層結構。藉由將缺陷少的第一氮化物絕緣層用於絕緣層207中,能夠提高絕緣層207的絕緣耐壓。另外,當使用氧化物半導體作為半導體層208時,藉由在絕緣層207中設置氫阻擋性高的第二氮化物絕緣層,能夠防止包含於電極206及第一氮化物絕緣層中的氫移動到半導體層208。
下面示出第一氮化物絕緣層及第二氮化物絕緣層的製造方法的一個例子。首先,藉由將矽烷、氮和氨的混合氣體用作源氣體的電漿CVD法形成缺陷少的氮化矽膜作為第一氮化物絕緣層。接著,藉由將源氣體切換為矽烷和氮的混合氣體,形成氫濃度低且能夠阻擋氫的氮化矽膜作為第二氮化物絕緣層。藉由使用這種形成方法,能夠形成層疊有缺陷少且具有氫阻擋性的氮化物絕緣層的絕緣層207。
另外,絕緣層207可以採用從電極206一側依次層疊雜質阻擋性高的第三氮化物絕緣層、缺陷少的第 一氮化物絕緣層、氫阻擋性高的第二氮化物絕緣層及氧化物絕緣層的結構。藉由在絕緣層207中設置雜質阻擋性高的第三氮化物絕緣層,能夠防止氫、氮、鹼金屬或鹼土金屬等從電極206移動到半導體層208。
下面示出第一氮化物絕緣層至第三氮化物絕緣層的製造方法的一個例子。首先,藉由將矽烷、氮和氨的混合氣體用作源氣體的電漿CVD法形成雜質阻擋性高的氮化矽膜作為第三氮化物絕緣層。接著,藉由增加氨流量,形成缺陷少的氮化矽膜作為第一氮化物絕緣層。接著,藉由將源氣體切換為矽烷和氮的混合氣體,形成氫濃度低且能夠阻擋氫的氮化矽膜作為第二氮化物絕緣層。藉由使用這種形成方法,能夠形成層疊有缺陷少且具有雜質阻擋性的氮化物絕緣層的絕緣層207。
此外,當作為絕緣層207形成氧化鎵膜時,可以藉由MOCVD(Metal Organic Chemical Vapor Deposition:有機金屬化學氣相沉積)法形成。
另外,藉由隔著氧化物絕緣層層疊形成有電晶體的通道的半導體層208和含有氧化鉿的絕緣層並將電子注入含有氧化鉿的絕緣層,能夠改變電晶體的臨界電壓。
[形成半導體層]
半導體層208可以使用非晶半導體、微晶半導體、多晶半導體等形成。例如,可以使用非晶矽或微晶鍺等。此 外,也可以使用碳化矽、鎵砷、氧化物半導體或氮化物半導體等化合物半導體、有機半導體等。
首先,藉由利用電漿CVD法、LPCVD法、金屬CVD法或MOCVD法等CVD法或者ALD法、濺射法、蒸鍍法等形成用來形成半導體層208的半導體膜。當藉由MOCVD法形成該半導體膜時,能夠減少對被形成面造成的損傷。
將半導體膜的厚度設定為3nm以上且200nm以下,較佳為3nm以上且100nm以下,更佳為3nm以上且50nm以下。在本實施方式中,作為用來形成半導體層208的半導體膜,藉由濺射法形成30nm厚的氧化物半導體膜。
接著,在半導體膜上形成光阻遮罩,並且藉由使用該光阻遮罩選擇性地對半導體膜的一部分進行蝕刻來形成半導體層208。光阻遮罩可以適當地使用光微影法、印刷法、噴墨法等形成。當藉由噴墨法形成光阻遮罩時不使用光罩,因此能夠減少製造成本。
作為半導體膜的蝕刻方法,可以使用乾蝕刻法和濕蝕刻法中的一者或兩者。在半導體膜的蝕刻結束之後,去除光阻遮罩(參照圖3C)。
〈氧化物半導體的結構〉
下面說明氧化物半導體的結構。
氧化物半導體被分為單晶氧化物半導體和非 單晶氧化物半導體。非單晶氧化物半導體的例子有CAAC-OS(c-axis aligned crystalline oxide semiconductor:c軸配向結晶氧化物半導體)、多晶氧化物半導體、nc-OS(nanocrystalline Oxide Semiconductor)、a-like OS(amorphous-like Oxide Semiconductor)、非晶氧化物半導體等。
從其他觀點看來,氧化物半導體被分為非晶氧化物半導體和結晶氧化物半導體。作為結晶氧化物半導體有單晶氧化物半導體、CAAC-OS、多晶氧化物半導體以及nc-OS等。
已知,非晶結構一般被定義為處於介穩狀態並沒有固定化,並且為各向同性且不具有非均勻結構等。另外,也可以說是鍵角可靈活地改變且具有短程有序而不具有長程有序的結構。
從相反的角度來看,不能將本質上穩定的氧化物半導體稱為完全是非晶(completely amorphous)的氧化物半導體。另外,不能將不是等方性(例如,在微小區域中具有週期性結構)的氧化物半導體稱為完全是非晶的氧化物半導體。注意,a-like OS在微小區域中具有週期性結構,但同時具有空洞(void),所以是不穩定的結構。因此,a-like OS在物性上接近於非晶氧化物半導體。
[CAAC-OS]
CAAC-OS是包含多個c軸配向的結晶部(也稱為顆粒)的氧化物半導體之一。
在利用穿透式電子顯微鏡(TEM:Transmission Electron Microscope)觀察所得到的CAAC-OS的明視野影像與繞射圖案的複合分析影像(也稱為高解析度TEM影像)中,觀察到多個顆粒。然而,在高解析度TEM影像中,觀察不到顆粒與顆粒之間的明確的邊界,即晶界(grain boundary)。因此,可以說在CAAC-OS中,不容易發生起因於晶界的電子移動率的降低。
下面,對利用TEM觀察的CAAC-OS進行說明。圖22A示出從大致平行於樣本面的方向觀察所得到的CAAC-OS的剖面的高解析度TEM影像。利用球面像差校正(Spherical Aberration Corrector)功能得到高解析度TEM影像。將利用球面像差校正功能所得到的高解析度TEM影像特別稱為Cs校正高解析度TEM影像。可以使用,例如日本電子株式會社製造的原子解析度分析型電子顯微鏡JEM-ARM200F等得到Cs校正高解析度TEM影像。
圖22B示出將圖22A中的區域(1)放大的Cs校正高解析度TEM影像。由圖22B可以確認到在顆粒中金屬原子排列為層狀。各金屬原子層具有反映了形成CAAC-OS膜的面(也稱為被形成面)或CAAC-OS膜的頂面的凸凹的配置並以平行於CAAC-OS膜的被形成面或頂面的方式排列。
如圖22B所示,CAAC-OS具有特有的原子排列。圖22C是以輔助線示出特有的原子排列的圖。由圖22B和圖22C可知,一個顆粒的尺寸為1nm以上或3nm以上,由顆粒與顆粒之間的傾斜產生的空隙的尺寸為0.8nm左右。因此,也可以將顆粒稱為奈米晶(nc:nanocrystal)。另外,也可以將CAAC-OS稱為具有CANC(C-Axis Aligned nanocrystals:c軸配向奈米晶)的氧化物半導體。
在此,根據Cs校正高解析度TEM影像,將基板5120上的CAAC-OS的顆粒5100的配置示意性地表示為堆積磚塊或塊體的結構(參照圖22D)。在圖22C中觀察到的在顆粒與顆粒之間產生傾斜的部分相當於圖22D所示的區域5161。
圖23A示出從大致垂直於樣本面的方向觀察所得到的CAAC-OS的平面的Cs校正高解析度TEM影像。圖23B、圖23C和圖23D分別示出將圖23A中的區域(1)、區域(2)和區域(3)放大的Cs校正高解析度TEM影像。由圖23B、圖23C和圖23D可知在顆粒中金屬原子排列為三角形狀、四角形狀或六角形狀。但是,在不同的顆粒之間金屬原子的排列沒有規律性。
接著,說明使用X射線繞射(XRD:X-Ray Diffraction)裝置進行分析的CAAC-OS。例如,當利用out-of-plane法分析包含InGaZnO4結晶的CAAC-OS的結構時,如圖24A所示,在繞射角(2θ)為31°附近時常出 現峰值。由於該峰值來源於InGaZnO4結晶的(009)面,由此可知CAAC-OS中的結晶具有c軸配向性,並且c軸朝向大致垂直於被形成面或頂面的方向。
注意,當利用out-of-plane法分析CAAC-OS的結構時,除了2θ為31°附近的峰值以外,有時在2θ為36°附近時也出現峰值。2θ為36°附近的峰值表示CAAC-OS中的一部分包含不具有c軸配向性的結晶。較佳的是,在利用out-of-plane法分析的CAAC-OS的結構中,在2θ為31°附近時出現峰值而在2θ為36°附近時不出現峰值。
另一方面,當利用從大致垂直於c軸的方向使X射線入射到樣本的in-plane法分析CAAC-OS的結構時,在2θ為56°附近時出現峰值。該峰值來源於InGaZnO4結晶的(110)面。在CAAC-OS中,即使將2θ固定為56°附近並在以樣本面的法線向量為軸(Φ軸)旋轉樣本的條件下進行分析(Φ掃描),如圖24B所示觀察不到明確的峰值。相比之下,在InGaZnO4的單晶氧化物半導體中,在將2θ固定為56°附近來進行Φ掃描時,如圖24C所示觀察到來源於相等於(110)面的結晶面的六個峰值。因此,由使用XRD的結構分析可以確認到CAAC-OS中的a軸和b軸的配向沒有規律性。
接著,說明利用電子繞射進行分析的CAAC-OS。例如,當對包含InGaZnO4結晶的CAAC-OS在平行於樣本面的方向上入射束徑為300nm的電子線時,可能 會獲得圖25A所示的繞射圖案(也稱為選區穿透式電子繞射圖案)。在該繞射圖案中包含起因於InGaZnO4結晶的(009)面的斑點。因此,由電子繞射也可知CAAC-OS所包含的顆粒具有c軸配向性,並且c軸朝向大致垂直於被形成面或頂面的方向。另一方面,圖25B示出對相同的樣本在垂直於樣本面的方向上入射束徑為300nm的電子線時的繞射圖案。由圖25B觀察到環狀的繞射圖案。因此,由電子繞射指出CAAC-OS所包含的顆粒的a軸和b軸不具有常規的配向性。可以認為圖25B中的第一環起因於InGaZnO4結晶的(010)面和(100)面等。可以認為圖25B中的第二環衍生自(110)面等。
如上所述,CAAC-OS是結晶性高的氧化物半導體。氧化物半導體的結晶性有時會因為雜質的混入或缺陷的產生等而得到降低,所以從相反的角度來看,CAAC-OS也可以說是雜質或缺陷(氧缺陷等)少的氧化物半導體。
此外,雜質是指氧化物半導體的主要成分以外的元素,諸如氫、碳、矽和過渡金屬元素等。例如,與氧的鍵合力比構成氧化物半導體的金屬元素強的矽等元素會奪取氧化物半導體中的氧,由此打亂氧化物半導體的原子排列,導致結晶性下降。另外,由於鐵或鎳等的重金屬、氬、二氧化碳等的原子半徑(或分子半徑)大,所以會打亂氧化物半導體的原子排列,導致結晶性下降。
在氧化物半導體具有雜質或缺陷的情況下, 其特性有時因為光或熱等而發生變動。例如,包含於氧化物半導體的雜質有時會成為載子陷阱或載子發生源。另外,氧化物半導體中的氧缺損有時會成為載子陷阱或因俘獲氫而成為載子發生源。
雜質或氧缺陷少的CAAC-OS為載子密度低的氧化物半導體。明確而言,可以將氧化物半導體的載子密度設定為低於8×1011個/cm3,較佳為低於1×1011個/cm3,更佳為低於1×1010個/cm3且為1×10-9個/cm3以上。將這種氧化物半導體稱為高純度本質或實質上高純度本質的氧化物半導體。CAAC-OS的雜質濃度和缺陷態密度低。即,CAAC-OS可以說是具有穩定的特性的氧化物半導體。
[nc-OS]
在nc-OS的高解析度TEM影像中有能夠觀察到結晶部的區域和觀察不到明確的結晶部的區域。nc-OS所包含的結晶部的尺寸大多為1nm以上且10nm以下或1nm以上且3nm以下。注意,有時將其結晶部的尺寸為大於10nm且為100nm以下的氧化物半導體稱為微晶氧化物半導體。例如,在nc-OS的高解析度TEM影像中,有時無法明確地觀察到晶界。注意,奈米晶的來源有可能與CAAC-OS中的顆粒相同。因此,下面有時將nc-OS的結晶部稱為顆粒。
在nc-OS中,微小的區域(例如1nm以上且 10nm以下的區域,特別是1nm以上且3nm以下的區域)中的原子排列具有週期性。另外,nc-OS在不同的顆粒之間觀察不到結晶定向的規律性。因此,在膜整體中觀察不到配向性。所以,有時nc-OS在某些分析方法中與a-like OS或非晶氧化物半導體沒有差別。例如,當藉由利用使用其直徑比顆粒大的X射線束的out-of-plane法對nc-OS進行分析時,檢測不到表示結晶面的峰值。此外,在使用其束徑比顆粒大(例如,50nm以上)的電子束對nc-OS進行電子繞射時,觀察到類似光暈圖案的繞射圖案。另一方面,在使用其束徑近於顆粒或者比顆粒小的電子射線對nc-OS進行奈米束電子繞射時,觀察到斑點。另外,在nc-OS的奈米束電子繞射圖案中,有時觀察到如圓圈那樣的(環狀的)亮度高的區域。而且,在nc-OS的奈米束電子繞射圖案中,有時還觀察到環狀的區域內的多個斑點。
如此,由於在顆粒(奈米晶)之間結晶定向都沒有規律性,所以也可以將nc-OS稱為包含RANC(Random Aligned nanocrystals:無規配向奈米晶)的氧化物半導體或包含NANC(Non-Aligned nanocrystals:無配向奈米晶)的氧化物半導體。
nc-OS是規律性比非晶氧化物半導體高的氧化物半導體。因此,nc-OS的缺陷態密度比a-like OS及非晶氧化物半導體低。但是,在nc-OS中的不同的顆粒之間觀察不到晶體配向的規律性。所以,nc-OS的缺陷態密度比CAAC-OS高。
[a-like OS]
a-like OS是具有介於nc-OS與非晶氧化物半導體之間的結構的氧化物半導體。
在a-like OS的高解析度TEM影像中有時觀察到空洞。另外,在高解析度TEM影像中,有能夠明確地觀察到結晶部的區域和不能觀察到結晶部的區域。
由於a-like OS包含空洞,所以其結構不穩定。為了證明與CAAC-OS及nc-OS相比a-like OS具有不穩定的結構,下面示出電子照射所導致的結構變化。
作為進行電子照射的樣本,準備a-like OS(樣本A)、nc-OS(樣本B)和CAAC-OS(樣本C)。每個樣本都是In-Ga-Zn氧化物。
首先,取得各樣本的高解析度剖面TEM影像。由高解析度剖面TEM影像可知,每個樣本都具有結晶部。
注意,如下那樣決定將哪個部分作為一個結晶部。例如,已知InGaZnO4結晶的單位晶格具有包括三個In-O層和六個Ga-Zn-O層的9個層在c軸方向上以層狀層疊的結構。這些彼此靠近的層的間隔與(009)面的晶格表面間隔(也稱為d值)是幾乎相等的,由結晶結構分析求出其值為0.29nm。由此,可以將晶格條紋的間隔為0.28nm以上且0.30nm以下的部分作為InGaZnO4結晶部。每個晶格條紋對應於InGaZnO4結晶的a-b面。
圖26示出調查了各樣本的結晶部(22個部分至45個部分)的平均尺寸的例子。注意,結晶部尺寸對應於上述晶格條紋的長度。由圖26指出,在a-like OS中,結晶部隨著電子的累積照射量逐漸變大。明確而言,如圖26中的(1)所示,可知在TEM的觀察初期尺寸為1.2nm左右的結晶部(也稱為初始晶核)在累積照射量為4.2×108e-/nm2時生長到2.6nm左右。相比之下,nc-OS和CAAC-OS從開始電子照射時到電子的累積照射量為4.2×108e-/nm2,結晶部的尺寸示出鮮少變化。明確而言,如圖26中的(2)及(3)所示,無論電子的累積照射量如何,nc-OS及CAAC-OS的平均結晶部尺寸都分別為1.4nm左右及2.1nm左右。
如此,有時電子照射引起a-like OS中的結晶部的生長。另一方面,可知在nc-OS和CAAC-OS中,幾乎沒有電子照射所引起的結晶部的生長。即,a-like OS與CAAC-OS及nc-OS相比具有不穩定的結構。
此外,由於a-like OS包含空洞,所以其密度比nc-OS及CAAC-OS低。具體地,a-like OS的密度為具有相同組成的單晶氧化物半導體的78.6%以上且小於92.3%。nc-OS的密度及CAAC-OS的密度為具有相同組成的單晶氧化物半導體的92.3%以上且小於100%。注意,難以形成其密度小於單晶氧化物半導體的密度的78%的氧化物半導體。
例如,在原子個數比滿足In:Ga:Zn=1: 1:1的氧化物半導體中,具有菱方晶系結構的單晶InGaZnO4的密度為6.357g/cm3。因此,例如,在原子個數比滿足In:Ga:Zn=1:1:1的氧化物半導體中,a-like OS的密度為5.0g/cm3以上且小於5.9g/cm3。另外,例如,在原子個數比滿足In:Ga:Zn=1:1:1的氧化物半導體中,nc-OS的密度和CAAC-OS的密度為5.9g/cm3以上且小於6.3g/cm3
注意,有具有特定組成的氧化物半導體有時不存在於單晶結構中。此時,藉由以任意比例組合組成不同的單晶氧化物半導體,可以估計出相當於所希望的組成的單晶氧化物半導體的密度。根據組成不同的單晶氧化物半導體的組合比例使用加權平均可計算出具有所希望的組成的單晶氧化物半導體的密度。注意,較佳為儘可能減少所組合的單晶氧化物半導體的種類來計算密度。
如上所述,氧化物半導體具有各種結構及各種特性。注意,氧化物半導體例如可以是包括非晶氧化物半導體、a-like OS、nc-OS和CAAC-OS中的兩種以上的疊層膜。
〈成膜模型〉
下面對CAAC-OS和nc-OS的成膜模型的一個例子進行說明。
圖27A是示出利用濺射法形成CAAC-OS的狀況的成膜室內的示意圖。
靶材5130被黏合到底板上。在隔著底板與靶材5130相對的位置配置多個磁鐵。由該多個磁鐵產生磁場。關於磁鐵的佈局及結構,參照上述成膜室的說明。利用磁鐵的磁場提高沉積速度的濺射法被稱為磁控濺射法。
靶材5130具有多晶結構,其中至少一個晶粒包括劈開面。
作為一個例子,對包含In-Ga-Zn氧化物的靶材5130的劈開面進行說明。圖28A示出靶材5130所包含的InGaZnO4結晶的結構。注意,圖28A示出使c軸朝上並從平行於b軸的方向觀察InGaZnO4結晶時的結構。
由圖28A可知,在靠近的兩個Ga-Zn-O層中,每個層中的氧原子彼此配置得很近。並且,藉由氧原子具有負電荷,靠近的兩個Ga-Zn-O層相互排斥。其結果,InGaZnO4結晶在靠近的兩個Ga-Zn-O層之間具有劈開面。
基板5120以與靶材5130相對的方式配置,其距離d(也稱為靶材與基板之間的距離(T-S間距離))為0.01m以上且1m以下,較佳為0.02m以上且0.5m以下。成膜室內幾乎被成膜氣體(例如,氧、氬或包含5vol%以上的氧的混合氣體)充滿,並且成膜室內的壓力被控制為0.01Pa以上且100Pa以下,較佳為0.1Pa以上且10Pa以下。在此,藉由對靶材5130施加一定程度以上的電壓,開始放電且確認到電漿。由磁場在靶材5130附近形成高密度電漿區域。在高密度電漿區域中,因成膜氣體 的離子化而產生離子5101。離子5101例如是氧的陽離子(O+)或氬的陽離子(Ar+)等。
離子5101由電場向靶材5130一側被加速而碰撞到靶材5130。此時,平板狀或顆粒狀的濺射粒子的顆粒5100a和顆粒5100b從劈開面剝離而濺出。注意,顆粒5100a和顆粒5100b的結構有時會因離子5101碰撞的衝擊而產生畸變。
顆粒5100a是具有三角形(例如正三角形)的平面的平板狀或顆粒狀的濺射粒子。顆粒5100b是具有六角形(例如正六角形)的平面的平板狀或顆粒狀的濺射粒子。注意,將顆粒5100a和顆粒5100b等平板狀或顆粒狀的濺射粒子總稱為顆粒5100。顆粒5100的平面的形狀不侷限於三角形或六角形。例如,有時為組合多個三角形的形狀。例如,還有時為組合兩個三角形(例如正三角形)的四角形(例如菱形)。
根據成膜氣體的種類等決定顆粒5100的厚度。顆粒5100的厚度較佳為均勻的,其理由在後面說明。另外,與厚度大的骰子狀相比,濺射粒子較佳為厚度小的顆粒狀。例如,顆粒5100的厚度為0.4nm以上且1nm以下,較佳為0.6nm以上且0.8nm以下。另外,例如,顆粒5100的寬度為1nm以上且3nm以下,較佳為1.2nm以上且2.5nm以下。顆粒5100相當於在上述圖26中的(1)所說明的初始晶核。例如,在使離子5101碰撞包含In-Ga-Zn氧化物的靶材5130的情況下,如圖28B所 示,包含Ga-Zn-O層、In-O層和Ga-Zn-O層的三個層的顆粒5100濺出來。注意,圖28C示出從平行於c軸的方向觀察顆粒5100時的結構。因此,可以將顆粒5100的結構稱為包含兩個Ga-Zn-O層(麵包片)和In-O層(餡)的奈米尺寸的三明治結構。
有時顆粒5100在穿過電漿時接收電荷,因此其側面帶負電或帶正電。顆粒5100在其側面具有氧原子,該氧原子有可能帶負電。如此,因側面帶相同極性的電荷而電荷相互排斥,從而可以維持平板形狀。當CAAC-OS是In-Ga-Zn氧化物時,與銦原子鍵合的氧原子有可能帶負電。或者,與銦原子、鎵原子或鋅原子鍵合的氧原子有可能帶負電。另外,有時顆粒5100在穿過電漿時與銦原子、鎵原子、鋅原子和氧原子等鍵合而生長。這是上述圖26中的(2)和(1)的尺寸的差異的原因。在此,當基板5120的溫度為室溫左右時,顆粒5100不再繼續生長,因此成為nc-OS(參照圖27B)。由於能夠進行成膜的溫度為室溫左右,即使基板5120的面積大也能夠形成nc-OS。注意,為了使顆粒5100在電漿中生長,提高濺射法中的成膜功率是有效的。藉由提高成膜功率,可以使顆粒5100的結構穩定。
如圖27A和圖27B所示,例如顆粒5100像風箏那樣在電漿中飛著,並輕飄飄地飛到基板5120上。由於顆粒5100帶有電荷,所以在它靠近其他顆粒5100已沉積的區域時產生斥力。在此,在基板5120的頂面產生平 行於基板5120頂面的磁場(也稱為水平磁場)。另外,由於在基板5120與靶材5130之間有電位差,所以電流從基板5120向靶材5130流過。因此,顆粒5100在基板5120頂面受到由磁場和電流的作用引起的力量(勞侖茲力)。這可以由弗萊明左手定則得到解釋。
顆粒5100的質量比一個原子大。因此,為了在基板5120頂面移動,重要的是從外部施加某些力量。該力量之一有可能是由磁場和電流的作用產生的力量。為了增大施加到顆粒5100的力量,較佳為在基板5120頂面設置平行於基板5120頂面的磁場為10G以上,較佳為20G以上,更佳為30G以上,進一步較佳為50G以上的區域。或者,較佳為在基板5120頂面設置平行於基板5120頂面的磁場為垂直於基板5120頂面的磁場的1.5倍以上,較佳為2倍以上,更佳為3倍以上,進一步較佳為5倍以上的區域。
此時,藉由磁鐵單元或/及基板5120相對地移動或旋轉,基板5120頂面的水平磁場的方向不斷地變化。因此,在基板5120頂面,顆粒5100受到各種方向的力量而可以向各種方向移動。
另外,如圖27A所示,當基板5120被加熱時,顆粒5100與基板5120之間的由摩擦等所引起的電阻為小。其結果,顆粒5100在基板5120頂面下滑。顆粒5100的移動發生在使其平板面朝向基板5120的狀態下。然後,當顆粒5100到達已沉積的其他顆粒5100的側面 時,顆粒5100它們的側面彼此鍵合。此時,顆粒5100的側面的氧原子脫離。CAAC-OS中的氧缺損可以脫離的氧原子填補,因此CAAC-OS具有低的缺陷態密度。注意,基板5120的頂面溫度例如為100℃以上且低於500℃、150℃以上且低於450℃或170℃以上且低於400℃即可。也就是說,即使當基板5120具有大的尺寸時,也能夠沉積CAAC-OS。
另外,藉由在基板5120上加熱顆粒5100,原子重新排列,從而離子5101的碰撞所引起的結構畸變得到緩和。畸變得到緩和的顆粒5100幾乎成為單晶。由於顆粒5100幾乎成為單晶,即使顆粒5100在彼此鍵合之後被加熱也幾乎不會發生顆粒5100本身的伸縮。因此,不會發生顆粒5100之間的空隙擴大導致晶界等缺陷的形成而成為裂縫(crevasse)的情況。
CAAC-OS不是如一張平板的單晶氧化物半導體,而是具有如磚塊或塊體堆積起來那樣的顆粒5100(奈米晶)的集合體的排列的結構。另外,它們之間沒有晶界。因此,即使因成膜時的加熱、成膜後的加熱或彎曲等而發生CAAC-OS的收縮等變形,也能夠緩和局部應力或解除畸變。因此,這是適合具有撓性的半導體裝置的結構。
當使離子碰撞靶材時,有時不僅是顆粒,氧化鋅等也濺出來。氧化鋅比顆粒輕,因此先到達基板5120的頂面。並且形成0.1nm以上且10nm以下、0.2nm 以上且5nm以下或0.5nm以上且2nm以下的氧化鋅層5102。圖29A至圖29D示出剖面示意圖。
如圖29A所示,在氧化鋅層5102上沉積顆粒5105a和顆粒5105b。在此,顆粒5105a和顆粒5105b的側面彼此接觸。另外,顆粒5105c在沉積到顆粒5105b上後,在顆粒5105b上滑動。此外,在顆粒5105a的其他側面上,與氧化鋅一起從靶材濺出來的多個粒子5103因對基板5120的加熱而晶化,由此形成區域5105a1。注意,多個粒子5103有可能包含氧、鋅、銦和鎵等。
然後,如圖29B所示,區域5105a1與顆粒5105a變為一體而成為顆粒5105a2。另外,顆粒5105c的側面與顆粒5105b的其他側面接觸。
接著,如圖29C所示,顆粒5105d在沉積到顆粒5105a2上和顆粒5105b上後,在顆粒5105a2上和顆粒5105b上滑動。另外,顆粒5105e在氧化鋅層5102上向顆粒5105c的其他側面滑動。
然後,如圖29D所示,顆粒5105d的側面與顆粒5105a2的側面接觸。另外,顆粒5105e的側面與顆粒5105c的其他側面接觸。此外,在顆粒5105d的其他側面上,與氧化鋅一起從靶材濺出來的多個粒子5103因基板5120的加熱而晶化,由此形成區域5105d1。
如上所述,藉由所沉積的顆粒彼此接觸,並且在顆粒的側面發生結晶生長,在基板5120上形成CAAC-OS。因此,CAAC-OS的顆粒的每一個都比nc-OS 的顆粒大。上述圖26中的(3)和(2)的尺寸的差異對應於沉積後的生長的量。
當顆粒5100之間的空隙極小時,可形成有一個大顆粒。大顆粒具有單晶結構。例如,從頂面看來大顆粒的尺寸可為10nm以上且200nm以下、15nm以上且100nm以下或20nm以上且50nm以下。因此,當電晶體的通道形成區域比大顆粒小時,可以將具有單晶結構的區域用作通道形成區域。另外,當顆粒變大時,可以將具有單晶結構的區域用作電晶體的通道形成區域、源極區域和汲極區域。
如此,當電晶體的通道形成區域等形成在具有單晶結構的區域中時,在一些情況下可以提高電晶體的頻率特性。
如上述模型那樣,可以認為顆粒5100沉積到基板5120上。因此,可知即使當被形成面不具有結晶結構時,也能夠形成CAAC-OS,這是與磊晶生長不同的。例如,即使當基板5120的頂面(被形成面)結構為非晶結構(例如非晶氧化矽)時,也能夠形成CAAC-OS。
另外,可知即使作為被形成面的基板5120的頂面具有凹凸,在CAAC-OS中顆粒5100也根據基板5120頂面的形狀排列。例如,當基板5120的頂面在原子級別上平坦時,顆粒5100以使其平行於ab面的平板面朝下的方式排列,由此,形成厚度均勻、平坦且結晶性高的層。並且,藉由層疊n個(n是自然數)該層,可以得到 CAAC-OS。
另一方面,在基板5120的頂面具有凹凸的情況下,CAAC-OS也具有顆粒5100沿凸面排列的層層疊為n個(n是自然數)層的結構。由於基板5120具有凹凸,在CAAC-OS中有時容易在顆粒5100之間產生空隙。注意,由於在顆粒5100之間產生分子間力,所以即使有凹凸,顆粒也以儘可能地減小它們之間的空隙的方式排列。因此,即使有凹凸也可以得到結晶性高的CAAC-OS。
因此,CAAC-OS不需要雷射晶化,並且在大面積的玻璃基板等上也能夠均勻地進行成膜。
因為根據這樣的模型形成CAAC-OS,所以濺射粒子較佳為厚度小的顆粒狀。注意,當濺射粒子為厚度大的骰子狀時,朝向基板5120上的面不固定,所以有時不能使厚度或結晶的配向均勻。
根據上述成膜模型,即使在具有非晶結構的被形成面上也可以形成結晶性高的CAAC-OS。
[形成源極電極、汲極電極等]
接著,形成電極214、電極215及佈線219(參照圖3D)。首先,在絕緣層207及半導體層208上形成用來形成電極214、電極215及佈線219的導電膜。
作為導電膜,可以使用鋁、鈦、鉻、鎳、銅、釔、鋯、鉬、銀、鉭或鎢等金屬、或者以上述金屬為主要成分的合金的單層或疊層形成。例如,有包含矽的鋁 膜的單層結構、在鈦膜上層疊鋁膜的兩層結構、在鎢膜上層疊鋁膜的兩層結構、在銅-鎂-鋁合金膜上層疊銅膜的兩層結構、在鈦膜上層疊銅膜的兩層結構、在鎢膜上層疊銅膜的兩層結構、依次層疊鈦膜或氮化鈦膜、鋁膜或銅膜和鈦膜或氮化鈦膜的三層結構、依次層疊鉬膜或氮化鉬膜、鋁膜或銅膜和鉬膜或氮化鉬膜的三層結構、依次層疊鎢膜、銅膜和鎢膜的三層結構等。
另外,也可以使用銦錫氧化物、鋅氧化物、包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、銦鋅氧化物、添加氧化矽的銦錫氧化物等包含氧的導電材料、包含氮化鈦、氮化鉭等包含氮的導電材料。另外,也可以採用組合包含上述金屬元素的材料和包含氧的導電材料的疊層結構。此外,也可以採用組合包含上述金屬元素的材料和包含氮的導電材料的疊層結構。另外,也可以採用組合包含上述金屬元素的材料、包含氧的導電材料和包含氮的導電材料的疊層結構。
此外,導電膜的厚度較佳為5nm以上且500nm以下,更佳為10nm以上且300nm以下,進一步較佳為10nm以上且200nm以下。在本實施方式中,作為導電膜形成300nm厚的鎢膜。
接著,使用光阻遮罩選擇性地對導電膜的一部分進行蝕刻,來形成形成電極214、電極215及佈線219(包括使用相同的層形成的其他電極或佈線)。光阻 遮罩可以適當地使用光微影法、印刷法、噴墨法等形成。藉由噴墨法形成光阻遮罩不使用光罩,因此能夠減少製造成本。
作為導電膜的蝕刻方法,可以使用乾蝕刻法和濕蝕刻法中的一者或兩者。另外,藉由蝕刻製程,有時會去除所露出的半導體層208的一部分。在導電膜的蝕刻結束之後,去除光阻遮罩。
藉由設置電極214及電極215,可以形成電晶體232(參照圖3D)。
[形成絕緣層]
接著,在電極214、電極215及佈線219上形成絕緣層210及絕緣層211(參照圖4A)。絕緣層210及絕緣層211可以使用與絕緣層205相同的材料及方法形成。
此外,當將氧化物半導體用於半導體層208時,較佳為至少將含氧的絕緣層用於絕緣層210的與半導體層208接觸的區域。例如,當絕緣層210為多個層的疊層時,至少與半導體層208接觸的層較佳為使用氧化矽形成。
[形成開口]
接著,使用光阻遮罩選擇性地對絕緣層210及絕緣層211的一部分進行蝕刻,來形成開口128(參照圖4A)。此時,還可以同時形成未圖示的開口。光阻遮罩可以適當 地使用光微影法、印刷法、噴墨法等形成。當藉由噴墨法形成光阻遮罩時不使用光罩,因此能夠減少製造成本。
作為絕緣層210及絕緣層211的蝕刻方法,可以使用乾蝕刻法和濕蝕刻法中的一者或兩者。
藉由形成開口128,使汲極電極215及端子電極216的一部分露出。在形成開口128之後,去除光阻遮罩。
[形成絕緣層]
接著,在絕緣層211上形成絕緣層212(參照圖4B)。絕緣層212可以使用與絕緣層205相同的材料及方法形成。
此外,為了減少發光元件125的被形成面的表面凹凸,也可以對絕緣層212進行平坦化處理。對平坦化處理沒有特別的限制,可以利用拋光處理(例如,CMP)或乾蝕刻處理。
此外,藉由使用具有平坦化功能的絕緣材料形成絕緣層212,可以省略拋光處理。作為具有平坦化功能的絕緣材料,例如可以使用聚醯亞胺樹脂、丙烯酸樹脂等有機材料。此外,除了上述有機材料之外,還可以使用低介電常數材料(low-k材料)等。另外,也可以層疊多個由上述材料形成的絕緣層形成絕緣層212。
另外,去除與開口128重疊的區域的絕緣層212的一部分形成開口127。此時,還同時形成未圖示的 開口。此外,去除在後面外部電極124連接的區域的絕緣層211。注意,藉由使用光微影製程在絕緣層212上形成光阻遮罩,並對絕緣層212的沒有被光阻遮罩覆蓋的區域進行蝕刻,由此可以形成開口127等。藉由形成開口127,使電極215的表面露出(參照圖4B)。
另外,藉由將具有光敏性的材料用於絕緣層212,可以形成開口127而無需使用光阻遮罩。在本實施方式中,使用光敏性聚醯亞胺樹脂形成絕緣層212及開口127。
[形成陽極]
接著,在絕緣層212上形成電極115(參照圖4C)。電極115較佳為使用高效率地反射在後面形成的EL層117所發射的光的導電材料形成。此外,電極115不侷限於單層,也可以採用多個層的疊層結構。在將電極115用作陽極的情況下,可以具有一種層的結構,其中,例如,與EL層117接觸具有透光性且其功函數大於EL層117,諸如為銦錫氧化物等的層,並且可以接觸於該層地設置具有反射率較高的層(鋁層、包含鋁的合金層或銀層等)。
另外,雖然本實施方式例示出頂部發射結構的顯示裝置,但也可以採用底部發射結構(下面發射結構)或者雙發射結構(雙面發射結構)的顯示裝置。
當顯示裝置100採用底部發射結構(下面發射結構)或者雙發射結構(雙面發射結構)時,將透光導電材料 用於電極115,即可。
藉由在絕緣層212上形成用作電極115的導電膜,在該導電膜上形成光阻遮罩,並對該導電膜的沒有被光阻遮罩覆蓋的區域進行蝕刻,由此可以形成電極115。作為該導電膜的蝕刻方法,可以使用乾蝕刻法和濕蝕刻法中的一者或兩者。光阻遮罩可以適當地使用光微影法、印刷法、噴墨法等形成。當藉由噴墨法形成光阻遮罩時不使用光罩,因此能夠減少製造成本。在形成電極115之後,去除光阻遮罩。
[形成分隔壁]
接著,形成分隔壁114(參照圖5A)。分隔壁114是為了防止相鄰像素中的發光元件125之間非意圖地電短路並防止從發光元件125非意圖地發光而設置的。此外,在形成在後面所述的EL層117時使用金屬遮罩的情況下,分隔壁114還具有不使金屬遮罩與電極115接觸的功能。分隔壁114可以使用環氧樹脂、丙烯酸樹脂、醯亞胺樹脂等有機樹脂材料、氧化矽等無機材料形成。分隔壁114的側壁較佳為形成為錐形形狀或具有連續曲率的傾斜面。藉由作為分隔壁114的側壁採用上述形狀,可以實現在後面形成的EL層117或電極118的良好的覆蓋性。
[形成EL層]
關於EL層117的結構,將在實施方式4中進行說 明。
[形成陰極]
在本實施方式中電極118用作陰極,因此較佳為使用具有低功函數且能夠將電子注入在後面所述的EL層117的材料形成。此外,除了由具有低功函數的金屬形成的單層之外,還可以使用在由具有低功函數的鹼金屬或鹼土金屬形成的幾奈米厚的緩衝層上形成有鋁等金屬材料、銦錫氧化物等導電氧化物材料或者半導體材料的疊層。作為緩衝層,也可以使用鹼土金屬的氧化物、鹵化物、鎂-銀等合金。
此外,在透過電極118提取EL層117所發射的光的情況下,電極118較佳為對可見光具有透光性。由電極115、EL層117及電極118形成發光元件125(參照圖5B)。
在本實施方式中,將在基板101上形成有電晶體232及發光元件125的基板稱為元件基板171。另外,在本實施方式中,將在基板102上形成有彩色層266等的基板稱為相對基板181。
[形成相對基板]
首先,在基板102上形成剝離層123(參照圖6A)。基板102可以使用與基板101同樣的材料形成。另外,基板101和基板102既可以使用相同的材料又可以使用彼此 不同的材料。此外,剝離層123可以與剝離層113同樣地形成。也可以在基板102與剝離層123之間設置絕緣層。在本實施方式中,作為基板102使用鋁硼矽酸鹽玻璃。另外,作為形成在基板102上的剝離層123,藉由濺射法來形成鎢層。
另外,較佳的是,在形成剝離層123之後,使剝離層123的表面暴露於包含氧的氛圍或包含氧的電漿氛圍中。藉由使剝離層123的表面氧化,可以使在後面的製程中進行的基板102的剝離變得容易。
[絕緣層129的形成]
接著,在剝離層123上形成絕緣層129(參照圖6A)。絕緣層129可以利用與絕緣層205同樣的材料及方法。在本實施方式中,作為絕緣層129,藉由電漿CVD法,從基板102一側形成厚度為200nm的氧氮化矽膜、厚度為140nm的氮氧化矽膜、厚度為100nm的氧氮化矽膜的疊層膜。
[遮光層264的形成]
接著,在絕緣層129上形成用來形成遮光層264的層274(參照圖6B)。遮光層264遮擋來自鄰接的顯示元件的光,從而抑制鄰接的顯示元件之間的混色。另外,藉由使彩色層266的端部與遮光層264的端部重疊,可以抑制漏光。層274可以具有單層結構或兩層以上的疊層結構。 作為能夠用於層274的材料,例如可以舉出包含鉻、鈦或鎳等的金屬材料、包含鉻、鈦或鎳等的氧化物材料或者包含金屬材料、顏料或染料的樹脂材料等。
在使用金屬材料、氧化物材料或樹脂材料形成層274的情況下,在層274上形成光阻遮罩,使用該光阻遮罩將層274蝕刻為所希望的形狀,由此可以形成遮光層264(參照圖6C)。另外,當使用分散有碳黑的高分子材料時,可以藉由噴墨法在絕緣層129上直接描繪遮光層264。
[彩色層266的形成]
接著,在絕緣層129上形成彩色層266(參照圖6D)。彩色層是使特定波長區域的光透射的有色層。例如,可以使用透過紅色波長區的光的紅色(R)濾色片、透過綠色波長區的光的綠色(G)濾色片、透過藍色波長區的光的藍色(B)濾色片等。彩色層266藉由使用各種材料並利用印刷法、噴墨法、光微影法在所需的位置形成。此時,設置彩色層266是較佳的以部分重疊於遮光層264。藉由設置不同像素的不同顏色的彩色層266,可以進行彩色顯示。
[保護層268的形成]
接著,在遮光層264及彩色層266上形成保護層268(參照圖6E)。
作為保護層268,例如可以使用丙烯酸樹脂、環氧樹脂、聚醯亞胺等有機絕緣層。藉由形成保護層268,能夠抑制例如包含在彩色層266中的雜質等擴散到發光元件125一側。但是,不一定必須要設置保護層268,也可以採用不形成保護層268的結構。
另外,作為保護層268也可以使用具有透光性的導電膜。藉由作為保護層268設置具有透光性的導電膜,能夠使從發光元件125發射的光透過保護層268,並能夠防止離子化的雜質經過保護層268。
具有透光性的導電膜例如可以使用上述具有透光性的導電材料形成。另外,還可以使用形成為薄到具有透光性的程度的金屬膜。
藉由上述製程,可以形成相對基板181。但是,在不需要彩色層266的情況下,有時對相對基板181不設置彩色層266等。
[貼合元件基板171和相對基板181]
接著,隔著黏合層120貼合元件基板171和相對基板181。此時,以元件基板171上的發光元件125與相對基板181上的彩色層266相對的方式設置元件基板171及相對基板181(參照圖7A)。
[基板101的剝離]
接著,將元件基板171所具有的基板101連同剝離層 113一起從絕緣層221剝離(參照圖7B)。作為剝離方法,施加機械力(藉由人的手或夾具進行剝離的處理、使滾筒轉動進行分離的處理、超音波處理等),即可。例如,使用鋒利的刀具或者照射雷射等在剝離層113中形成切口,且向該切口中注入水。由於毛細現象而水滲到剝離層113與絕緣層221的介面,從而可以容易地將基板101連同剝離層113一起從絕緣層221剝離。
接著,去除與端子電極216重疊的絕緣層221的一部分形成開口132a。在開口132a中使端子電極216的表面的一部分露出。
[基板111的貼合]
接著,將包括開口132b的基板111隔著黏合層112貼合到絕緣層221(參照圖8B)。進行貼合,以使開口132a重疊於開口132b。開口132a重疊於開口132b形成開口132(參照圖9A)。另外,在開口132的內側使端子電極216的表面露出。
另外,在本發明的一個方式的顯示裝置100中,既可以在一個開口132中設置多個端子電極216,又可以針對每個端子電極216設置開口132。圖11A是針對每個端子電極216設置開口132的顯示裝置100的透視圖,圖11B是圖11A中的B1-B2的點劃線所示的部分的剖面圖。
[基板102的剝離]
接著,將基板181中所包括的基板102連同剝離層123一起從絕緣層129剝離(參照圖9A)。作為剝離方法,施加機械力(藉由人的手或夾具進行剝離的處理、使滾筒轉動進行分離的處理、超音波處理等),即可。例如,使用鋒利的刀具或者照射雷射等在剝離層123中形成切口,且向該切口中注入水。由於毛細現象而水滲到剝離層123與絕緣層129的介面,從而可以容易地將基板102連同剝離層123一起從絕緣層129剝離。
[基板121的貼合]
接著,隔著黏合層122將基板121貼合到絕緣層129(參照圖9B)。如此,可以製造顯示裝置100(參照圖10A)。
另外,也可以在基板111或基板121中的發射光151一側的基板的外側設置如下層中的一種以上:反射防止層、光擴散層、微透鏡陣列、稜鏡片、相位差板、偏光板等使用具有特定的功能的材料形成的層(以下也稱為“功能層”)。作為反射防止層,例如可以使用圓偏光板等。藉由設置功能層,可以實現顯示品質更良好的顯示裝置。另外,可以降低顯示裝置的耗電量。圖10B是具有功能層161的頂部發射結構的顯示裝置100的剖面圖。另外,作為功能層161也可以設置觸控感測器。
另外,作為基板111或基板121,也可以使用 具有特定的功能的材料。例如,作為基板111或基板121,也可以使用圓偏光板。此外,例如,也可以使用相位差板形成基板111或基板121,以與該基板重疊的方式設置偏光板。另外,例如,也可以使用稜鏡片形成基板111或基板121,以與該基板重疊的方式設置圓偏光板。藉由作為基板111或基板121使用具有特定的功能的材料,可以實現顯示品質的提高和製造成本的降低。
[外部電極的形成]
接著,外部電極124藉由各向異性導電連接層138在開口132中與端子電極216電連接(參照圖1B)。像這樣,可以對顯示裝置100輸入電力或信號。此外,作為外部電極124可以使用FPC。此外,作為外部電極124也可以使用金屬線。雖然該金屬線與端子電極216的連接可以使用各向異性導電連接層138,但是也可以藉由打線接合法進行而不使用各向異性導電連接層138。此外,也可以藉由銲錫進行該金屬線與端子電極216的連接。
藉由在顯示區域131的背面設置端子電極216,無論其顯示區域的形狀是非矩形形狀,顯示裝置的形狀也與顯示區域的形狀不大不同,並且可以實現窄邊框化寬度。
例如,如圖20A所示,可以形成外形形狀為矩形的顯示裝置100。另外,如圖20B所示,可以形成具有將多個曲線組合而成的外形形狀的顯示裝置100。另 外,如圖20C所示,也可以形成具有適合安裝的結構物的形狀的外形形狀的顯示裝置100。圖20C所示的顯示裝置100具有適合汽車的如下部位的外形形狀,該部位顯示汽車的速度等資訊,顯示區域131顯示速度表、發動機轉速表及燃料表。另外,也可以將外部電極124設置在顯示區域131的背面的多個部分。
[實現彩色顯示的像素結構實例]
在此,參照圖12A和圖12B對用來實現彩色顯示的像素結構的一個例子進行說明。圖12A、圖12B、圖13A及圖13B是放大在圖1A的顯示區域131中示出的區域170的平面圖。例如,如圖12A所示,將三個像素130用作子像素,將它們合併用作一個像素140。藉由作為分別對應於三個像素130的彩色層266的顏色採用紅色、綠色、藍色,可以實現全彩色顯示。此外,在圖12A中,將發射紅色的光的像素130稱為像素130R,將發射綠色的光的像素130稱為像素130G,將發射藍色的光的像素130稱為像素130B。另外,彩色層266的顏色也可以為紅色、綠色、藍色之外的顏色,例如,作為彩色層266的顏色可以採用黃色(yellow)、青色(cyan)、洋紅色(magenta)等。
另外,如圖12B所示,也可以將四個像素130用作子像素而統一用作一個像素140。例如,也可以作為分別對應於四個像素130的彩色層266的顏色採用紅 色、綠色、藍色、黃色。此外,在圖12B中,將發出紅色的光的像素130稱為像素130R,將發出綠色的光的像素130稱為像素130G,將發出藍色的光的像素130稱為像素130B,將發出黃色的光的像素130稱為像素130Y。藉由增加用作一個像素140的像素130的個數,尤其能夠提高顏色的再現性。因此,能夠提高顯示裝置的顯示品質。
另外,也可以作為分別對應於四個像素130的彩色層266採用紅色、綠色、藍色、白色(參照圖12B)。藉由設置發出白色光的像素130(像素130W),可以提高顯示區域的發光亮度。此外,在設置發出白色光的像素130W的情況下,也可以不設置對應於像素130W的彩色層266。藉由不設置對應於像素130W的白色的彩色層266,可以消除光透過彩色層266時的亮度降低,由此可以進一步提高顯示區域的發光亮度。另外,可以降低顯示裝置的耗電量。另一方面,藉由設置對應於像素130W的白色的彩色層266,可以控制白色光的色溫。因此,可以提高顯示裝置的顯示品質。此外,根據顯示裝置的用途,也可以將兩個像素130用作子像素,由此可以被用作一個像素140。
當將四個像素130統一用作一個像素140時,如圖13B所示,也可以以矩陣狀配置四個像素130。另外,當將四個像素130統一用作一個像素140時,也可以使用發射青色(cyan)、洋紅色(magenta)等的光的像素代替像素130Y及像素130W。此外,也可以在像素140中 設置多個發射相同顏色的像素130。
另外,包含於像素140中的各像素130的佔有面積或形狀等既可以相同又可以不同。此外,排列方法不限於條紋排列、矩陣狀排列。例如,可以應用三角洲狀排列、拜耳排列(Bayer arrangement)、PenTile排列等。圖13A示出PenTile排列的一個例子。
本實施方式可以與其他實施方式所記載的結構適當地組合而實施。
實施方式2
在本實施方式中,參照圖14A至圖14C說明顯示裝置100的更具體的結構實例。圖14A是用來說明顯示裝置100的結構實例的方塊圖。
圖14A示出顯示區域131、驅動電路133、驅動電路142a以及驅動電路142b。也可以將驅動電路133、驅動電路142a以及驅動電路142b設置在顯示裝置100的內部或外部。
可以將驅動電路142a及驅動電路142b用作例如掃描線驅動電路。另外,可以將驅動電路133用作例如信號線驅動電路。另外,也可以僅設置驅動電路142a和驅動電路142b中的某一個。此外,也可以在隔著顯示區域131與驅動電路133相對的位置設置某種電路。
另外,圖14A所例示出的顯示裝置包括分別大致平行地設置且由驅動電路142a和/或驅動電路142b 控制電位的m條佈線135以及分別大致平行地設置且由驅動電路133控制電位的n條佈線136。並且,顯示區域131包括配置為矩陣狀的多個像素電路134。此外,由一個像素電路134驅動一個子像素(像素130)。
各佈線135與在顯示區域131中配置為m行n列的像素電路134中的配置在某一行的n個像素電路134電連接。另外,各佈線136與在配置為m行n列的像素電路134中的配置在某一列的m個像素電路134電連接。注意,m、n都是1以上的整數。
圖14B及圖14C示出可用於圖14A所示的顯示裝置的像素電路134的電路結構實例。
[顯示裝置用像素電路的一個例子]
圖14B所示的像素電路134包括電晶體431、電容元件233、電晶體232以及電晶體434。另外,像素電路134與發光元件125電連接。
電晶體431的源極電極和汲極電極中的一個電連接於被供應資料信號的佈線(以下,稱為信號線DL_n)。並且,電晶體431的閘極電極電連接於被供應閘極信號的佈線(以下,稱為掃描線GL_m)。
電晶體431具有控制將資料信號寫入節點435的功能。
電容元件233的一對電極中的一個電極電連接於節點435,另一個電極電連接於節點437。另外,電 晶體431的源極電極和汲極電極中的另一個電連接於節點435。
電容元件233具有保持寫入到節點435的資料的儲存電容的功能。
電晶體232的源極電極和汲極電極中的一個電連接於電位供應線VL_a,另一個電連接於節點437。並且,電晶體232的閘極電極電連接於節點435。
電晶體434的源極電極和汲極電極中的一個電連接於電位供應線V0,另一個電連接於節點437。並且,電晶體434的閘極電極電連接於掃描線GL_m。
發光元件125的陽極和陰極中的一個電連接於電位供應線VL_b,另一個電連接於節點437。
作為發光元件125,例如可以使用有機電致發光元件(也稱為有機EL元件)等。但是,發光元件125不限定於此,例如也可以使用由無機材料構成的無機EL元件。
另外,作為電源電位,例如可以使用相對高電位一側的電位或低電位一側的電位。將高電位一側的電源電位稱為高電源電位(也稱為“VDD”),將低電位一側的電源電位稱為低電源電位(也稱為“VSS”)。此外,也可以將接地電位用作高電源電位或低電源電位。例如,在高電源電位為接地電位的情況下,低電源電位為低於接地電位的電位,在低電源電位為接地電位的情況下,高電源電位為高於接地電位的電位。
例如,高電源電位VDD施加到電位供應線VL_a和電位供應線VL_b中的一個,低電源電位VSS施加到另一個。
在包括圖14B所示的像素電路134的顯示裝置中,由驅動電路142a和/或驅動電路142b依次選擇各行的像素電路134,從而使電晶體431及電晶體434成為導通狀態來將資料信號寫入節點435。
當電晶體431及電晶體434處於關閉狀態時,資料被寫入到節點435的像素電路134成為保持狀態。再者,根據寫入到節點435的資料的電位,來控制流過在電晶體232的源極電極與汲極電極之間的電流量,並且,發光元件125以對應於流過的電流量的亮度發光。藉由逐行依次進行上述步驟,可以顯示影像。
[液晶顯示裝置用像素電路的一個例子]
圖14C所示的像素電路134包括電晶體431以及電容元件233。另外,像素電路134與液晶元件432電連接。
液晶元件432的一對電極中的一個的電位根據像素電路134的規格適當地設定。液晶元件432的配向狀態取決於寫入到節點436的資料。另外,可以給多個像素電路134的每一個所具有的液晶元件432的一對電極中的一個供應共用電位(共用電位)。此外,也可以對各行的每個像素電路134的液晶元件432的一對電極中的一個供應不同的電位。
作為具備液晶元件432的顯示裝置的驅動方法,例如可以使用下列模式:TN模式;STN模式;VA模式;ASM(Axially Symmetric Aligned Micro-cell:軸對稱排列微單元)模式;OCB(Optically Compensated Birefringence:光學補償雙折射)模式;FLC(Ferroelectric Liquid Crystal:鐵電液晶)模式;AFLC(AntiFerroelectric Liquid Crystal:反鐵電液晶)模式;MVA模式;PVA(Patterned Vertical Alignment:垂直配向構型)模式;IPS模式;FFS模式;或者TBA(Transverse Bend Alignment:橫向彎曲配向)模式等。另外,作為顯示裝置的驅動方法,除了上述驅動方法之外,還有ECB(Electrically Controlled Birefringence:電控雙折射)模式、PDLC(Polymer Dispersed Liquid Crystal:聚合物分散液晶)模式、PNLC(Polymer Network Liquid Crystal:聚合物網路液晶)模式、賓主模式等。注意,並不限定於此,作為液晶元件及其驅動方式可以使用各種液晶元件及其驅動方式。
液晶元件432可以使用包含呈現藍相(Blue Phase)的液晶和手性材料的液晶組成物來形成。呈現藍相的液晶具有1msec以下的回應時間,並具有光學各向同性,因此無需配向處理,並且視角依賴性小。
在第m行第n列的像素電路134中,電晶體431的源極電極和汲極電極中的一個電連接於信號線DL_n,另一個電連接於節點436。電晶體431的閘極電極 電連接於掃描線GL_m。電晶體431具有控制將資料信號寫入節點436的功能。
電容元件233的一對電極中的一個電連接於被供應特定電位的佈線(以下,稱為電容線CL),電容元件233的一對電極中的另一個電連接於節點436。另外,液晶元件432的一對電極的另一個電極電連接於節點436。此外,電容線CL的電位值根據像素電路134的規格適當地設定。電容元件233作用為保持寫入到節點436的資料的儲存電容。
例如,在包括圖14C所示的像素電路134的顯示裝置中,由驅動電路142a和/或驅動電路142b依次選擇各行的像素電路134,從而使電晶體431成為導通狀態來將資料信號寫入節點436。
藉由使電晶體431處於關閉狀態,資料信號被寫入到節點436的像素電路134成為保持狀態。藉由逐行依次進行上述步驟,可以在顯示區域131上顯示影像。
[顯示元件]
作為本發明的一個方式的顯示裝置可以採用各種方式或具有各種顯示元件。作為顯示元件,例如可以舉出EL(電致發光)元件(包含有機和無機材料的EL元件、有機EL元件或無機EL元件)、LED(白色LED、紅色LED、綠色LED、藍色LED等)、電晶體(根據電流而發光的電晶體)、電子發射元件、液晶元件、電子墨水、 電泳元件、柵光閥(GLV)、電漿顯示器(PDP)、使用MEMS(微機電系統)的顯示元件、數位微鏡裝置(DMD)、數位微快門(DMS)、MIRASOL(在日本註冊的商標)、IMOD(干涉調變)元件、快門方式的MEMS顯示元件、光干涉方式的MEMS顯示元件、電潤濕(electrowetting)元件、壓電陶瓷顯示器、使用碳奈米管的顯示元件等中的至少一個。除此以外,還可以包括其對比度、亮度、反射率、透射率等因電或磁作用而變化的顯示介質。另外,也可以作為顯示元件使用量子點。作為使用EL元件的顯示裝置的一個例子,有EL顯示器等。作為使用電子發射元件的顯示裝置的一個例子,有場致發射顯示器(FED)或SED方式平面型顯示器(SED:Surface-conduction Electron-emitter Display:表面傳導電子發射顯示器)等。作為使用量子點的顯示裝置的一個例子,有量子點顯示器等。作為使用液晶元件的顯示裝置的一個例子,有液晶顯示器(透射型液晶顯示器、半透射型液晶顯示器、反射型液晶顯示器、直觀型液晶顯示器、投射型液晶顯示器)等。作為使用電子墨水、電子粉流體(在日本註冊的商標)或電泳元件的顯示裝置的一個例子,有電子紙等。注意,當實現半透射型液晶顯示器或反射式液晶顯示器時,使像素電極的一部分或全部具有作為反射電極的功能即可。例如,使像素電極的一部分或全部包含鋁、銀等即可。並且,此時也可以將SRAM等記憶體電路設置在反射電極下方。由此,可以進一步降低耗電 量。
本實施方式可以與其他實施方式所記載的結構適當地組合而實施。
實施方式3
在本實施方式中,參照圖15A1、圖15A2、圖15B1和圖15B2說明可以代替上述實施方式所示的電晶體232和/或電晶體252來使用的電晶體的一個例子。另外,本說明書等所公開的電晶體也可以應用作為電晶體431或電晶體434等。
[底閘極型電晶體]
圖15A1所例示的電晶體410是作為底閘極型電晶體之一的通道保護型電晶體。電晶體410包括在半導體層208中的通道形成區域上能夠用作通道保護層的絕緣層209。絕緣層209可以使用與絕緣層205同樣的材料及方法來形成。電極214的一部分及電極215的一部分形成在絕緣層209上。
藉由在通道形成區域上設置絕緣層209,可以防止在形成電極214及電極215時半導體層208的露出。因此,在形成電極214及電極215時可以防止半導體層208的厚度減薄。根據本發明的一個方式,可以實現電特性良好的電晶體。
圖15A2所示的電晶體411與電晶體410之間 的不同之處在於:電晶體411在絕緣層211上具有可以用作背閘極電極的電極213。電極213可以藉由與電極206同樣的材料及方法來形成。此外,電極213也可以形成在絕緣層210與絕緣層211之間。
一般而言,背閘極電極使用導電層來形成,並以半導體層的通道形成區域被閘極電極與背閘極電極夾住的方式設置。因此,背閘極電極可以具有與閘極電極同樣的功能。背閘極電極的電位可以與閘極電極相等,也可以為GND電位或任意電位。另外,藉由不跟閘極電極聯動而獨立地改變背閘極電極的電位,可以改變電晶體的臨界電壓。
電極206及電極213都可以被用作閘極電極。因此,絕緣層207、絕緣層209、絕緣層210及絕緣層211都可以被用作閘極絕緣層。
注意,有時將電極206和電極213中的一個稱為“閘極電極”,將另一個稱為“背閘極電極”。例如,在電晶體411中,有時將電極213稱為“閘極電極”,將電極206稱為“背閘極電極”。另外,當將電極213用作“閘極電極”時,可以將電晶體411認為頂閘極型電晶體的一種。此外,有時將電極206和電極213中的某一個稱為“第一閘極電極”,將另一方稱為“第二閘極電極”。
藉由隔著半導體層208設置電極206以及電極213並將閘極電極206及電極213的電位設定為相等,半導體層208中的載子流過的區域在膜厚度方向上更加擴 大,所以載子的移動量增加。其結果,電晶體411的通態電流(on-state current)增大,並且場效移動率也增高。
因此,電晶體411是相對於佔有面積而具有較大的通態電流的電晶體。即,可以相對於所要求的通態電流而縮小電晶體411的佔有面積。根據本發明的一個方式,可以縮小電晶體的佔有面積。因此,根據本發明的一個方式,可以實現具有高集成度的半導體裝置。
另外,由於閘極電極及背閘極電極使用導電層來形成,因此具有防止在電晶體的外部產生的電場影響到形成有通道的半導體層的功能(尤其是針對靜電的靜電遮蔽功能)。
另外,因為電極206及電極213分別具有屏蔽來自外部的電場的功能,所以產生在基板111一側或電極213上方的帶電粒子等電荷不影響到半導體層208的通道形成區域。其結果是,可以抑制應力測試(例如,對閘極施加負電荷的-GBT(Gate Bias-Temperature:閘極偏壓-溫度)應力測試)所導致的劣化,並且還可以抑制不同汲極電壓下的通態電流的上升電壓的變動。注意,在電極206及電極213具有相同的電位時或不同的電位時得到這效果。
注意,BT應力測試是一種加速試驗,它可以在短時間內評估由於使用很長時間而產生的電晶體的特性變化(即,隨時間變化)。尤其是,BT應力測試前後的電晶體的臨界電壓的變動量是用於檢查可靠性的重要指 標。可以說,在BT應力測試前後,臨界電壓的變動量越少,則電晶體的可靠性越高。
另外,藉由具有電極206及電極213且將電極206及電極213設定為相同電位,臨界電壓的變動量得到降低。因此,多個電晶體中的電特性的不均勻也同時被降低。
另外,具有背閘極電極的電晶體的對閘極施加正電荷的+GBT應力測試前後的臨界電壓的變動也比不具有背閘極電極的電晶體小。
另外,在從背閘極電極一側入射光的情況下,藉由作為背閘極電極使用具有遮光性的導電膜形成,能夠防止光從背閘極電極一側入射到半導體層。由此,能夠防止半導體層的光劣化,並防止電晶體的臨界電壓偏移等電特性劣化。
根據本發明的一個方式,可以實現可靠性良好的電晶體。此外,可以實現可靠性良好的半導體裝置。
圖15B1所例示的電晶體420是作為底閘極型電晶體之一的通道保護型電晶體。電晶體420具有與電晶體410大致同樣的結構,但是不同的之處在於:在電晶體420中,絕緣層209覆蓋半導體層208。在選擇性地去除絕緣層209的一部分而形成的開口部中,半導體層208與電極214電連接。在選擇性地去除絕緣層209的一部分而形成的開口部中,半導體層208與電極215電連接。絕緣層209的與通道形成區域重疊的區域可以用作通道保護 層。
藉由設置絕緣層209,可以防止在形成電極214及電極215時產生的半導體層208的露出。因此,可以防止在形成電極214及電極215時半導體層208被薄膜化。
圖15B2所示的電晶體421與電晶體420之間的不同之處在於:能夠被用作背閘極電極的電極213設置在絕緣層211上。電晶體421包括形成在絕緣層211上的電極213。如上所述,電極213可以被用作背閘極電極。
與電晶體411同樣,電晶體421是相對於佔有面積而具有較大的通態電流。即,電晶體421的佔有面積相對於所要求的通態電流而可以為小。根據本發明的一個方式,可以縮小電晶體的佔有面積。因此,根據本發明的一個方式,可以實現高集成度的半導體裝置。
藉由設置絕緣層209,可以防止在形成電極214及電極215時產生的半導體層208的露出。因此,可以防止在形成電極214及電極215時半導體層208被薄膜化。
另外,與電晶體410及電晶體411相比,電晶體420及電晶體421的電極214與電極206之間的距離及電極215與電極206之間的距離變長。因此,可以減少產生在電極214與電極206之間的寄生電容。此外,可以減少產生在電極215與電極206之間的寄生電容。根據本發明的一個方式,可以實現電特性良好的電晶體。
圖15C1所示的電晶體425是作為底閘極型電晶體之一的通道蝕刻型電晶體。在電晶體425中,不使用絕緣層209地形成電極214及電極215。因此,在形成電極214及電極215時,半導體層208的一部分有時被露出並被蝕刻。另一方面,由於不設置絕緣層209,可以提高電晶體的生產率。
圖15C2所示的電晶體426與電晶體425之間的不同之處在於:電晶體426在絕緣層211上具有可以用作背閘極電極的電極213。
圖16A是電晶體426的俯視圖。圖16B是圖16A中的X1-X2的點劃線所示的部分的剖面圖(通道長度方向的剖面圖)。圖16C是圖16A中的Y1-Y2的點劃線所示的部分的剖面圖(通道寬度方向的剖面圖)。
設置在絕緣層119上的電極206在設置於絕緣層211、絕緣層210及絕緣層207的開口247a及開口247b中與電極213電連接。由此,向電極206和電極213供應相同的電位。也可以不設置開口247a和開口247b中的一個或兩個。在不設置開口247a及開口247b的情況下,可以向電極206和電極213供應不同的電位。
[頂閘極型電晶體]
圖17A1所例示的電晶體430是頂閘極型電晶體之一。電晶體430在絕緣層119上具有半導體層208,在半導體層208及絕緣層119上具有與半導體層208的一部分 相接的電極214以及與半導體層208的一部分相接的電極215,在半導體層208、電極214及電極215上具有絕緣層207,在絕緣層207上具有電極206。此外,在電極206上具有絕緣層210和絕緣層211。
因為在電晶體430中,電極206和電極214以及電極206和電極215不重疊,所以可以減少產生在電極206與電極214之間的寄生電容以及產生在電極206與電極215之間的寄生電容。另外,在形成電極206之後,將電極206用作遮罩將雜質元素222引入到半導體層208,由此可以在半導體層208中以自對準(Self-aligned)的方式形成雜質區域(參照圖17A3)。根據本發明的一個方式,可以實現電特性良好的電晶體。
另外,可以使用離子植入裝置、離子摻雜裝置或電漿處理裝置進行雜質元素222的引入。
在將矽等半導體用於半導體層208的情況下,作為雜質元素222,例如可以使用第13族元素和第15族元素中的至少一種元素。另外,在作為半導體層208使用氧化物半導體的情況下,作為雜質元素222,也可以使用稀有氣體、氫和氮中的至少一種元素。
圖17B1所例示的電晶體440是頂閘極型電晶體之一。電晶體440與電晶體430的不同之處在於:在電晶體440中,在形成電極214及電極215之後形成半導體層208。另外,圖17B2所例示的電晶體441與電晶體431的不同之處在於:在電晶體441中,在形成電極214及電 極215之後形成半導體層208。因此,在電晶體440及電晶體441中,半導體層208的一部分形成在電極214上,半導體層208的其他一部分形成在電極215上。
在電晶體440及電晶體441中,也在形成電極206之後將電極206用作遮罩並將雜質元素222引入到半導體層208,由此可以在半導體層208中以自對準的方式形成雜質區域。根據本發明的一個方式,可以實現電特性良好的電晶體。因此,根據本發明的一個方式,可以實現具有高集成度的半導體裝置。
此外,雖然本說明書等所公開的金屬膜、半導體膜、無機絕緣膜等各種膜可以利用濺射法或電漿CVD法來形成,但是也可以利用熱CVD(Chemical Vapor Deposition:化學氣相沉積)法等其他方法形成。作為熱CVD法的例子,可以使用MOCVD(Metal Organic Chemical Vapor Deposition:有機金屬化學氣相沉積)法或ALD(Atomic Layer Deposition:原子層沉積)法。
由於熱CVD法是不使用電漿的成膜方法,因此具有不產生因電漿損傷所引起的缺陷的優點。
可以以如下方法進行利用熱CVD法的成膜:將源氣體及氧化劑同時供應到處理室內,將處理室內的壓力設定為大氣壓或減壓,使其在基板附近或在基板上發生反應而沉積在基板上。
可以以如下方法進行利用ALD法的成膜:將處理室內的壓力設定為大氣壓或減壓,將用於反應的源氣 體依次引入處理室,並且按該順序反復地引入氣體。例如,藉由切換各開關閥(也稱為高速閥)來將兩種以上的源氣體依次供應到處理室內在引入第一源氣體的同時或之後引入惰性氣體(氬或氮等)等,使多種源氣體不混合,然後引入第二源氣體。注意,在同時引入惰性氣體的情況下,惰性氣體用作載子氣體,另外,可以在引入第二源氣體的同時引入惰性氣體。或者,也可以利用真空抽氣將第一源氣體排出來代替引入惰性氣體,然後引入第二源氣體。第一源氣體被吸收到基板表面形成第一層,之後引入的第二源氣體與該第一層起反應,其結果是,第二層層疊在第一層上,而使薄膜形成。一反復多次進行該氣體引入順序,直到獲得所希望的厚度為止,從而可以形成高低差覆蓋性良好的薄膜。薄膜的厚度可以按引入氣體順序反復的次數來進行調節,因此,ALD法使準確地調節厚度成為可能因而適用於製造微型FET。
利用MOCVD法或ALD法等熱CVD法可以形成以上所示的實施方式所公開的金屬膜、半導體膜、無機絕緣膜等各種膜,例如,當形成In-Ga-Zn-O膜時,使用三甲基銦、三甲基鎵及二甲基鋅。三甲基銦的化學式是In(CH3)3。三甲基鎵的化學式是Ga(CH3)3。二甲基鋅的化學式是Zn(CH3)2。另外,不限定於上述組合,也可以使用三乙基鎵(化學式Ga(C2H5)3)代替三甲基鎵,並使用二乙基鋅(化學式Zn(C2H5)2)代替二甲基鋅。
例如,在使用利用ALD法的成膜裝置形成氧 化鉿膜時,使用如下兩種氣體:藉由使包含溶劑和鉿前體化合物的液體(鉿醇鹽,典型為四二甲基醯胺鉿(TDMAH)等鉿氨化物)氣化而得到的源氣體、以及用作氧化劑的臭氧(O3)。四二甲基醯胺鉿的化學式是Hf[N(CH3)2]4。另外,作為其他材料液,有四(乙基甲基醯胺)鉿等。
例如,在使用利用ALD法的成膜裝置形成氧化鋁膜時,使用如下兩種氣體:藉由使包含溶劑和鋁前體化合物的液體(三甲基鋁(TMA)等)氣化而得到的源氣體、以及用作氧化劑的H2O。三甲基鋁的化學式是Al(CH3)3。作為其他材料液,有三(二甲基醯胺)鋁、三異丁基鋁、鋁三(2,2,6,6-四甲基-3,5-庚二酮)等。
例如,在使用利用ALD法的成膜裝置形成氧化矽膜時,使六氯乙矽烷附著在被成膜面上,去除包含在附著物中的氯,供應氧化性氣體(O2、一氧化二氮)的自由基使其與附著物起反應。
例如,在使用利用ALD法的成膜裝置形成鎢膜時,依次反復引入WF6氣體和B2H6氣體形成初始鎢膜,然後依次反復引入WF6氣體和H2氣體形成鎢膜。注意,也可以使用SiH4氣體代替B2H6氣體。
例如,在使用利用ALD法的成膜裝置形成氧化物半導體膜如In-Ga-Zn-O膜的情況下,依次反復引入In(CH3)3氣體和O3氣體形成In-O層,然後依次反復引入Ga(CH3)3氣體和O3氣體形成GaO層,之後依次反復引入Zn(CH3)2氣體和O3氣體形成ZnO層。注意,這些層的順 序不限定於上述例子。此外,也可以使用這些氣體來形成混合化合物層如In-Ga-O層、In-Zn-O層、Ga-Zn-O層等。注意,雖然也可以使用利用Ar等惰性氣體對水進行起泡而得到的H2O氣體代替O3氣體,但是較佳為使用不包含H的O3氣體。另外,也可以使用In(C2H5)3氣體代替In(CH3)3氣體。此外,也可以使用Ga(C2H5)3氣體代替Ga(CH3)3氣體。
圖18A是電晶體451的俯視圖。圖18B是圖18A中的X1-X2的點劃線所示的部分的剖面圖(通道長度方向的剖面圖)。圖18C是圖18A中的Y1-Y2的點劃線所示的部分的剖面圖(通道寬度方向的剖面圖)。電晶體451在形成於絕緣層217的凸部上設置有半導體層208。電晶體451是包括背閘極電極的頂閘極型電晶體之一。
圖18A至圖18C例示出將矽等無機半導體層用於構成電晶體451的半導體層208的情況。在圖18A至圖18C中,半導體層208包括設置在與電極213重疊的區域中的半導體層208i、兩個半導體層208t以及兩個半導體層208u。半導體層208i配置在兩個半導體層208t之間。另外,半導體層208i和兩個半導體層208t配置在兩個半導體層208u之間。另外,電極206與半導體層208i隔著絕緣層207彼此重疊。
當電晶體451處於導通狀態時,在半導體層208i中形成有通道。因此,半導體層208i被用作通道形成區域。半導體層208t及半導體層208u包含賦予導電型 的雜質。包含在半導體層208t中的雜質的濃度高於半導體層208i的濃度且低於半導體層208u的濃度。此外,包含在半導體層208u中的雜質的濃度高於半導體層208t的濃度。
因此,半導體層208t被用作低濃度雜質區域(LDD)。半導體層208u被用作高濃度雜質區域。也可以不設置兩個半導體層208t中的一個或兩個。兩個半導體層208u中的一個被用作源極區域,另一個被用作汲極區域。
設置在絕緣層211上的電極214在設置於絕緣層211、絕緣層210及絕緣層207的開口247c中與半導體層208u中的一個電連接。另外,設置在絕緣層211上的電極215在設置於絕緣層211、絕緣層210及絕緣層207的開口247d中與半導體層208u中的另一個電連接。
設置在絕緣層211上的電極206在設置於絕緣層207及絕緣層217的開口247a及開口247b中與電極213電連接。由此,向電極206和電極213供應相同的電位。也可以不設置開口247a和開口247b中的一個或兩個。在不設置開口247a及開口247b的情況下,可以向電極206和電極213供應不同的電位。
本實施方式可以與其他實施方式所記載的結構適當地組合而實施。
實施方式4
在本實施方式中,對可用於發光元件125的發光元件的結構實例進行說明。注意,本實施方式所示的EL層320相當於其他實施方式所示的EL層117。
〈發光元件的結構〉
在圖19A所示的發光元件330中,在一對電極(電極318、電極322)之間夾有EL層320的結構。此外,在下面本實施方式的說明中,作為例子,將電極318用作陽極,將電極322用作陰極。
此外,EL層320至少包括發光層,也可以除發光層外具有包括功能層的疊層結構。作為發光層以外的功能層,可以使用包含電洞注入性高的物質、電洞傳輸性高的物質、電子傳輸性高的物質、電子注入性高的物質、雙極性(電子及電洞的傳輸性高的物質)的物質等的層。明確而言,可以適當地組合電洞注入層、電洞傳輸層、電子傳輸層、電子注入層等功能層而使用。
圖19A所示的發光元件330在由於施加到電極318和電極322之間的電位差而使電流流過並在EL層320中電洞和電子再結合時進行發光。換言之,採用在EL層320中形成有發光區域的結構。
在本發明中,來自發光元件330的發光從電極318一側或電極322一側被提取到外部。因此,電極318和電極322中的某一個由透光物質構成。
另外,如圖19B所示的發光元件331那樣, 可以在電極318和電極322之間層疊多個EL層320。當EL層320具有n(n是2以上的自然數)層的疊層結構時,較佳為在第m(m是滿足1
Figure 104120010-A0202-12-0087-87
m<n的自然數)個EL層320和第(m+1)個EL層320之間分別設置電荷產生層320a。
電荷產生層320a可以使用如下材料形成:有機化合物和金屬氧化物的複合材料;金屬氧化物;有機化合物和鹼金屬、鹼土金屬或這些的化合物的複合材料。除此之外,還可以適當地組合上述材料形成電荷產生層320a。作為有機化合物和金屬氧化物的複合材料,例如是包含有機化合物和氧化釩、氧化鉬或氧化鎢等金屬氧化物的複合材料。作為有機化合物,可以使用各種化合物:芳香胺化合物、咔唑衍生物、芳烴等低分子化合物;或者這些低分子化合物的低聚物、樹枝狀聚合物、聚合物等。此外,作為有機化合物,較佳為使用具有電洞傳輸性且其電洞移動率為10-6cm2/Vs以上的有機化合物。但是,只要是電洞傳輸性高於電子傳輸性的物質,也可以使用上述以外的物質。另外,由於用於電荷產生層320a的這些材料具有優異的載子注入性、載子傳輸性,所以可以實現發光元件330的低電流驅動及低電壓驅動。
另外,電荷產生層320a也可以使用有機化合物和金屬氧化物的複合材料與其他材料的組合來形成。例如,也可以組合包含有機化合物和金屬氧化物的複合材料的層與包含選自電子供給物質中的一種化合物和電子傳輸 性高的化合物的層而形成。另外,也可以組合包含有機化合物和金屬氧化物的複合材料的層與透明導電膜而形成。
具有上述結構的發光元件331不容易產生能量的移動或淬滅等的問題,並且因為具有上述結構的發光元件的材料的選擇範圍變大,所以可以更容易地形成兼有高發光效率和長使用壽命的發光元件。另外,也容易從一個發光層得到磷光發光而從另一個發光層得到螢光發光。
另外,當對電極318和電極322之間施加電壓時,電荷產生層320a具有對與電荷產生層320a相接地形成的一個EL層320注入電洞的功能,並具有對另一個EL層320注入電子的功能。
在圖19B所示的發光元件331中,藉由改變用於EL層320的發光物質的種類,可以得到各種發光顏色。另外,藉由作為發光物質使用多個不同發光顏色的物質,也可以得到寬光譜的發光或白色發光。
當使用圖19B所示的發光元件331得到白色發光時,多個EL層的組合採用包括紅色、藍色及綠色的光而發射白色光的結構即可,例如可以舉出包括作為發光物質包含藍色螢光材料的發光層以及作為發光物質包含綠色及紅色的磷光材料的發光層的結構。也可以採用包括呈現紅色發光的發光層、呈現綠色發光的發光層以及呈現藍色發光的發光層的結構。或者,藉由採用包括發出存在互補色關係的光的發光層的結構,也可以獲得白色發光。在層疊有兩個發光層的疊層型元件中,當使從一個發光層獲 得的發光顏色和從另一個發光層獲得的發光顏色處於補色關係時,作為補色關係可以舉出藍色和黃色或者藍綠色和紅色等。
另外,在上述疊層型元件的結構中,藉由在層疊的發光層之間配置電荷產生層,在保持低電流密度的狀態的同時,元件能夠實現高亮度區域中的長使用壽命。另外,由於可以降低電極材料的電阻所導致的電壓下降,因此能夠實現大面積的均勻發光。
本實施方式可以與其他實施方式所記載的結構適當地組合而實施。
實施方式5
在本實施方式中,參照圖式說明應用了本發明的一個方式的顯示裝置的電子裝置的一個例子。
作為使用了根據本發明的一個方式的顯示裝置的電子裝置的具體例子,可以舉出電視機、監視器等顯示裝置、照明設備、臺式或膝上型個人電腦、文字處理機、再現儲存在DVD(Digital Versatile Disc:數位影音光碟)等儲存介質中的靜態影像或動態影像的影像再現裝置、可攜式CD播放機、收音機、磁帶錄音機、頭戴式耳機音響、音響、臺鐘、掛鐘、無線電話子機、收發機、行動電話、車載電話、可攜式遊戲機、平板終端、彈珠機等大型遊戲機、計算器、可攜式資訊終端、電子筆記本、電子書閱讀器、電子翻譯器、聲音輸入器、攝影機、數位靜 物照相機、電動剃鬚刀、微波爐等高頻加熱裝置、電鍋、洗衣機、吸塵器、熱水器、電扇、吹風機、空調設備諸如空調器、加濕器、除濕器等、洗碗機、烘碗機、乾衣機、烘被機、電冰箱、電冷凍箱、電冷藏冷凍箱、DNA保存用冰凍器、手電筒、鏈鋸等工具、煙探測器、透析裝置等醫療設備等。再者,還可以舉出工業設備諸如引導燈、信號機、傳送帶、自動扶梯、電梯、工業機器人、蓄電系統、用於使電力均勻化或智慧電網的蓄電裝置。另外,利用來自蓄電體等的電力藉由電動機推進的移動體等也包括在電子裝置的範疇內。作為上述移動體,例如可以舉出電動汽車(EV)、兼具內燃機和電動機的混合動力汽車(HEV)、插電式混合動力汽車(PHEV)、使用履帶代替這些的車輪的履帶式車輛、包括電動輔助自行車的電動自行車、摩托車、電動輪椅、高爾夫球車、小型或大型船舶、潛水艇、直升機、飛機、火箭、人造衛星、太空探測器、行星探測器、太空船等。
尤其是,作為應用具有柔軟性的顯示裝置的電子裝置的例子,可以舉出電視機(也稱為電視或電視接收機)、用於電腦等的監視器、數位相機、數位攝影機、數位相框、行動電話機(也稱為行動電話、行動電話裝置)、可攜式遊戲機、可攜式資訊終端、音頻再生裝置、彈珠機等的大型遊戲機等。
此外,也可以將顯示裝置沿著在房屋及高樓等的內壁或外壁、汽車的內部裝修或外部裝修的曲面組 裝。
圖21A示出行動電話機的一個例子。行動電話機7400包括組裝在外殼7401中的顯示部7402。行動電話機7400還包括操作按鈕7403、外部連接埠7404、揚聲器7405、麥克風7406等。藉由將顯示裝置用於顯示部7402來製造行動電話機7400。
圖21A所示的行動電話機7400在顯示部7402中包括觸控感測器。當藉由用手指等觸摸顯示部7402時,可以輸入資料至行動電話機7400。此外,藉由用手指等觸摸顯示部7402可以進行打電話或輸入文字等的所有操作。
藉由操作按鈕7403的操作,可以切換電源的ON、OFF。此外,可以切換顯示在顯示部7402的影像的種類。例如,可以從電子郵件的編寫畫面切換到主功能表畫面。
在此,在顯示部7402中包括本發明的一個方式的顯示裝置。因此,顯示部能夠彎曲且外形形狀等的設計彈性高。
圖21B是腕帶型的顯示裝置的一個例子。可攜式顯示裝置7100包括外殼7101、顯示部7102、操作按鈕7103以及收發裝置7104。
可攜式顯示裝置7100能夠由收發裝置7104接收影像信號,且可以將所接收的影像顯示在顯示部7102。此外,也可以將聲音信號發送到其他接收設備。
此外,可以由操作按鈕7103進行電源的ON、OFF工作或所顯示的影像的切換或者音量調整等。
在此,顯示部7102包括本發明的一個方式的顯示裝置。因此,顯示裝置的顯示部能夠彎曲且外形形狀等的設計彈性高。
圖21C是汽車的一個例子,該汽車包括車體951、車輪952、儀表板953及燈954等。圖21D示出該汽車的駕駛座位。速度、發動機旋轉數及燃料等資訊顯示在設置在駕駛座位中的顯示部955中。顯示部955包括本發明的一個方式的顯示裝置。本發明的一個方式的顯示裝置的顯示部能夠彎曲且外形形狀等的設計彈性高。因此,可以提高顯示部955的可見度。
本實施方式可以與其他實施方式所記載的結構適當地組合而實施。
100‧‧‧顯示裝置
111‧‧‧基板
121‧‧‧基板
124‧‧‧外部電極
131‧‧‧顯示區域
170‧‧‧區域

Claims (14)

  1. 一種顯示裝置,包含:基板;該基板上的顯示區域;該基板上的端子電極;以及該基板下的外部電極,其中該端子電極與該顯示區域彼此重疊,其中該顯示區域能夠顯示影像,其中該端子電極透過被設置在該基板中的開口與該外部電極電連接,其中該顯示區域包含發光元件,並且其中該顯示區域為非矩形顯示區域。
  2. 根據請求項1之顯示裝置,其中該發光元件被配置以發射白色光。
  3. 根據請求項1之顯示裝置,更包含與該發光元件重疊的濾色片。
  4. 一種電子裝置,包含:根據請求項1之顯示裝置;以及觸控感測器。
  5. 一種顯示裝置,包含:第一基板;第二基板;發光元件;第一電極;以及 第二電極,其中該第一電極被設置在該第一基板上,其中該發光元件被設置在該第一電極上,其中該第二電極被設置在該發光元件上,其中發射自該發光元件的光透過該第二基板而出,其中該第一電極與該顯示裝置的顯示區域彼此重疊,其中在被設置於該第一基板中的開口中,該第一電極與該第二電極電連接,並且其中該顯示裝置的外形為非矩形形狀。
  6. 根據請求項5之顯示裝置,其中該第一基板及該第二基板各具有撓性。
  7. 根據請求項5之顯示裝置,其中該發光元件被配置以發射白色光。
  8. 根據請求項5之顯示裝置,更包含與該發光元件重疊的濾色片。
  9. 一種電子裝置,包含:根據請求項5之顯示裝置;以及觸控感測器。
  10. 一種顯示裝置,包含:第一基板;第二基板;發光元件;第一電極;以及第二電極, 其中該第一電極被設置在該第一基板上,其中該發光元件被設置在該第一電極上,其中該第二電極被設置在該發光元件上,其中發射自該發光元件的光透過該第二基板而出,其中該第一電極與該顯示裝置的顯示區域彼此重疊,其中在被設置於該第一基板中的開口中,該第一電極透過各向異性導電連接層與該第二電極電連接,並且其中該顯示裝置的外形為非矩形形狀。
  11. 根據請求項10之顯示裝置,其中該第一基板及該第二基板各具有撓性。
  12. 根據請求項10之顯示裝置,其中該發光元件被配置以發射白色光。
  13. 根據請求項10之顯示裝置,更包含與該發光元件重疊的濾色片。
  14. 一種電子裝置,包含:根據請求項10之顯示裝置;以及觸控感測器。
TW104120010A 2014-06-23 2015-06-22 顯示裝置及電子裝置 TWI708383B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-128672 2014-06-23
JP2014128672 2014-06-23

Publications (2)

Publication Number Publication Date
TW201607021A TW201607021A (zh) 2016-02-16
TWI708383B true TWI708383B (zh) 2020-10-21

Family

ID=54870390

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104120010A TWI708383B (zh) 2014-06-23 2015-06-22 顯示裝置及電子裝置

Country Status (6)

Country Link
US (1) US10403703B2 (zh)
JP (1) JP2016027388A (zh)
KR (1) KR102377341B1 (zh)
CN (1) CN106463082B (zh)
TW (1) TWI708383B (zh)
WO (1) WO2015198183A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6497858B2 (ja) * 2014-07-11 2019-04-10 株式会社ジャパンディスプレイ 有機el表示装置及び有機el表示装置の製造方法
US10204535B2 (en) 2015-04-06 2019-02-12 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
CN104851892A (zh) * 2015-05-12 2015-08-19 深圳市华星光电技术有限公司 窄边框柔性显示装置及其制作方法
JP6412036B2 (ja) * 2015-12-21 2018-10-24 株式会社ジャパンディスプレイ 表示装置
WO2017158757A1 (ja) * 2016-03-16 2017-09-21 パイオニア株式会社 発光装置、電子機器及び発光装置の製造方法
KR102562898B1 (ko) * 2016-03-31 2023-08-04 삼성디스플레이 주식회사 표시 장치
JP6776058B2 (ja) * 2016-08-26 2020-10-28 シャープ株式会社 自律走行車両制御装置、自律走行車両制御システム及び自律走行車両制御方法
CN206472221U (zh) * 2017-02-15 2017-09-05 合肥鑫晟光电科技有限公司 一种显示屏的玻璃面板以及显示屏
US11444255B2 (en) 2017-05-18 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing display device, display device, display module, and electronic device
US10366919B2 (en) 2017-09-20 2019-07-30 Globalfoundries Inc. Fully aligned via in ground rule region
JP6992369B2 (ja) * 2017-09-27 2022-01-13 凸版印刷株式会社 カラーフィルタ及びそれを用いた表示装置
CN108254984B (zh) * 2018-01-31 2021-06-04 上海天马微电子有限公司 一种显示面板及显示装置
KR102595915B1 (ko) 2018-06-18 2023-10-31 삼성디스플레이 주식회사 디스플레이 장치 및 그 제조방법
US11119616B2 (en) 2018-11-01 2021-09-14 Apple Inc. Trace transfer techniques for touch sensor panels with flex circuits
US11853515B2 (en) 2018-12-19 2023-12-26 Apple Inc. Ultra-thin touch sensors
CN110197844B (zh) 2019-06-20 2021-01-12 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板和显示装置
CN111697037B (zh) * 2020-06-04 2024-04-09 武汉天马微电子有限公司 一种有机发光显示面板及显示装置
KR20220007754A (ko) * 2020-07-09 2022-01-19 삼성디스플레이 주식회사 표시 장치 및 이를 포함하는 타일형 표시 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW548860B (en) * 2001-06-20 2003-08-21 Semiconductor Energy Lab Light emitting device and method of manufacturing the same
JP2009134246A (ja) * 2007-11-09 2009-06-18 Epson Imaging Devices Corp 電気光学装置
CN102738203A (zh) * 2009-05-26 2012-10-17 索尼公司 显示装置、制造显示装置的方法以及电子设备
TW201407225A (zh) * 2012-07-12 2014-02-16 Semiconductor Energy Lab 顯示裝置和用於製造顯示裝置的方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105326A (ja) 1989-09-19 1991-05-02 Tokyo Electric Co Ltd エレクトロクロミックディスプレイ
TWI252592B (en) * 2000-01-17 2006-04-01 Semiconductor Energy Lab EL display device
JP2002299047A (ja) 2001-03-30 2002-10-11 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置およびその製造方法
TW564471B (en) 2001-07-16 2003-12-01 Semiconductor Energy Lab Semiconductor device and peeling off method and method of manufacturing semiconductor device
JP2003059648A (ja) 2001-08-10 2003-02-28 Sony Corp 表示装置及びその製造方法
JP2003255850A (ja) 2002-03-05 2003-09-10 Pioneer Electronic Corp 表示パネル基板及び表示装置
GB0212566D0 (en) 2002-05-31 2002-07-10 Koninkl Philips Electronics Nv Display device
JP4574158B2 (ja) 2003-10-28 2010-11-04 株式会社半導体エネルギー研究所 半導体表示装置及びその作製方法
US7453426B2 (en) 2004-01-14 2008-11-18 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic apparatus
JP2006276359A (ja) 2005-03-29 2006-10-12 Sanyo Epson Imaging Devices Corp 液晶表示装置
JP2007272203A (ja) 2006-03-06 2007-10-18 Nec Corp 表示装置
JP4320682B2 (ja) 2006-07-20 2009-08-26 セイコーエプソン株式会社 表示装置、表示装置の駆動方法及び電子機器
JP5299730B2 (ja) * 2006-10-13 2013-09-25 Nltテクノロジー株式会社 表示装置
US7897971B2 (en) 2007-07-26 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2009069768A (ja) 2007-09-18 2009-04-02 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
JP4518199B2 (ja) 2007-10-23 2010-08-04 エプソンイメージングデバイス株式会社 電気光学装置
TWI492201B (zh) 2007-10-23 2015-07-11 Japan Display Inc 光電裝置
US9626900B2 (en) 2007-10-23 2017-04-18 Japan Display Inc. Electro-optical device
JP2009109770A (ja) 2007-10-30 2009-05-21 Fujitsu Ltd 表示装置製造方法および表示装置
EP2151811A3 (en) 2008-08-08 2010-07-21 Semiconductor Energy Laboratory Co, Ltd. Display device and electronic device
KR101535929B1 (ko) 2008-12-02 2015-07-10 삼성디스플레이 주식회사 표시기판, 이를 갖는 표시패널 및 이를 갖는 표시장치
KR101824425B1 (ko) * 2008-12-17 2018-02-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 전자 기기
WO2011052437A1 (en) 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Non-linear element, display device including non-linear element, and electronic device including display device
JP2012103335A (ja) * 2010-11-08 2012-05-31 Hitachi Displays Ltd 表示装置
US10061356B2 (en) 2011-06-30 2018-08-28 Samsung Display Co., Ltd. Flexible display panel and display apparatus including the flexible display panel
US9286826B2 (en) 2011-10-28 2016-03-15 Apple Inc. Display with vias for concealed printed circuit and component attachment
JP2013251255A (ja) 2012-05-04 2013-12-12 Semiconductor Energy Lab Co Ltd 発光装置の作製方法
JP6142151B2 (ja) 2012-07-31 2017-06-07 株式会社Joled 表示装置および電子機器
US11074025B2 (en) 2012-09-03 2021-07-27 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
KR102160829B1 (ko) 2012-11-02 2020-09-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 밀봉체 및 밀봉체의 제작 방법
US8994827B2 (en) * 2012-11-20 2015-03-31 Samsung Electronics Co., Ltd Wearable electronic device
JP5784088B2 (ja) * 2012-11-30 2015-09-24 エルジー ディスプレイ カンパニー リミテッド 有機発光ダイオード表示装置及びその製造方法
KR20140109261A (ko) 2013-03-05 2014-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
JP6490901B2 (ja) 2013-03-14 2019-03-27 株式会社半導体エネルギー研究所 発光装置の作製方法
TWI748456B (zh) 2014-02-28 2021-12-01 日商半導體能源研究所股份有限公司 顯示裝置的製造方法及電子裝置的製造方法
KR102292148B1 (ko) 2014-03-13 2021-08-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치의 제작 방법, 및 전자 기기의 제작 방법
TWI831924B (zh) * 2014-04-25 2024-02-11 日商半導體能源研究所股份有限公司 顯示裝置及電子裝置
US10204535B2 (en) * 2015-04-06 2019-02-12 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP6761276B2 (ja) * 2015-05-28 2020-09-23 株式会社半導体エネルギー研究所 表示装置の作製方法、および電子機器の作製方法
US9941475B2 (en) * 2015-07-29 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device and method for manufacturing electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW548860B (en) * 2001-06-20 2003-08-21 Semiconductor Energy Lab Light emitting device and method of manufacturing the same
JP2009134246A (ja) * 2007-11-09 2009-06-18 Epson Imaging Devices Corp 電気光学装置
CN102738203A (zh) * 2009-05-26 2012-10-17 索尼公司 显示装置、制造显示装置的方法以及电子设备
TW201407225A (zh) * 2012-07-12 2014-02-16 Semiconductor Energy Lab 顯示裝置和用於製造顯示裝置的方法

Also Published As

Publication number Publication date
CN106463082B (zh) 2019-07-16
WO2015198183A1 (en) 2015-12-30
US10403703B2 (en) 2019-09-03
TW201607021A (zh) 2016-02-16
JP2016027388A (ja) 2016-02-18
KR20170020854A (ko) 2017-02-24
KR102377341B1 (ko) 2022-03-21
WO2015198183A9 (en) 2017-01-05
US20150372065A1 (en) 2015-12-24
CN106463082A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
TWI708383B (zh) 顯示裝置及電子裝置
JP6842585B2 (ja) 表示装置の作製方法
JP7274635B2 (ja) 表示装置
TWI748456B (zh) 顯示裝置的製造方法及電子裝置的製造方法
TWI728288B (zh) 顯示裝置、電子裝置與顯示裝置及電子裝置的製造方法
JP2022169558A (ja) 半導体装置
CN108292684B (zh) 半导体装置、该半导体装置的制造方法或包括该半导体装置的显示装置
TW202403403A (zh) 半導體裝置
TW201622146A (zh) 半導體裝置、該半導體裝置的製造方法以及包括該半導體裝置的顯示裝置

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees