TWI691726B - 可撓曲的電流感測器 - Google Patents

可撓曲的電流感測器 Download PDF

Info

Publication number
TWI691726B
TWI691726B TW104134207A TW104134207A TWI691726B TW I691726 B TWI691726 B TW I691726B TW 104134207 A TW104134207 A TW 104134207A TW 104134207 A TW104134207 A TW 104134207A TW I691726 B TWI691726 B TW I691726B
Authority
TW
Taiwan
Prior art keywords
magnetic field
field sensor
wires
magnetically conductive
sensor
Prior art date
Application number
TW104134207A
Other languages
English (en)
Other versions
TW201625965A (zh
Inventor
保羅 林斯洛德
Original Assignee
美商富克有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商富克有限公司 filed Critical 美商富克有限公司
Publication of TW201625965A publication Critical patent/TW201625965A/zh
Application granted granted Critical
Publication of TWI691726B publication Critical patent/TWI691726B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/12Circuits for multi-testers, i.e. multimeters, e.g. for measuring voltage, current, or impedance at will
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/181Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using coils without a magnetic core, e.g. Rogowski coils

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

一種用來測量流經一導體的電流的設備及方法包括一裝置,其由一具有多股線繩(strand)的導磁性環圈及一磁場感測器所組成。每一股線繩具有導磁性材料。該等線繩被建構來將一磁場傳送至一第一磁場感測器,其被設置成鄰近第一多股線繩的一端。該等多股線繩可被安排成各式圖案,其可允許該導磁性環圈比一電流夾裝置更容易彎折或更有可撓曲性。

Description

可撓曲的電流感測器
本發明係有關於一種可撓性電流感測器。
能夠測量直流電(DC)的典型非接觸式電流感測器利用具有一可被設置在一電子構件周圍的硬式夾鉗的夾式或顎式感測器來測量電流。一馬達將該夾鉗的顎夾(jaw)打開及閉合並對準該等顎夾。有效的測量需要精確的顎夾對準。
打開該等顎夾需要一大的實體空間。此外,對於一技工而言,將一夾鉗式感測器放置在一電子面板內或其它狹小的空間內的電子構件周圍會是笨拙且麻煩的,且會對將被測量的該電子構件或對其附近的構件造成傷害。來自於附近的機器的振動會擴大這些問題。夾鉗式感測器典型地比一標準的測量工具重,因為該等顎夾包括大型鐵件及一用來打開、閉合、及對準顎夾的馬達。
羅哥夫斯基線圈(Rogowski coil)是比夾鉗式電流感測器輕且更有撓曲性的電流感測器。羅哥夫斯基線圈 在狹小空間內比多數夾鉗式感測器更容易使用;然而,羅哥夫斯基線圈並不適合測量DC電流。一種能夠測量DC且具有較輕的重量及形狀因子(form factor)剛性比夾鉗式電流計小的裝置是所想要的。
下面的發明內容以簡化的形式介紹概念的選擇,其將於發明方式中被進一步描述。此發明內容並不打算要指出被請求的發明主體的關鍵特徵,也不打算要被用作為決定被請求的發明主體的範圍的輔助。
在一或多個態樣中,一種裝置被提供來測量流經一導體的電流。該裝置包括一具有第一多股線繩的導磁性環圈及一第一磁場感測器。該第一多股線繩的線繩包括一導磁性材料。該等多股線繩的線繩可具有一在該導磁層外面的層,其包括一絕緣材料。該等線繩被建構來將一磁場傳送至一第一磁場感測器,其被設置在和該第一多股線繩的端部相鄰處。被該等線繩傳送的該磁場可以是流經該導體的電流的一個標示(indicative)。在一些實施例中,該第一磁場感測器被建構來根據該第一磁場感測器測得的該磁場的強度(magnitude)來輸出流經該導體的電流的一訊號標示。
在一些實施例中,該裝置進一步包含一纏繞在該環圈周圍線圈及一驅動器電路,其被耦接至該線圈及該磁場感測器。該驅動器電路被建構來產生一電流,其實 質地抵消該第一磁場,其中該驅動器電路所產生的該電流是流經該導體的電流的標示。
在一些實施例中,該第一磁場感測器被建構來根據該第一磁場感測器測得該磁場的強度來輸出流經該導體的電流的一訊號標示。在一些實施例中,一第一線繩集束包括該第一多股線繩,且該第一多股線繩被安排成使得它們在該導磁性環圈的長度上通過該第一線繩集束的內部及外部至少一次。在一些實施例中,該等線繩平均而言在該第一線繩集束的長度的一內部及一外部中可被設置大致相同的量。該等線繩可交替地在該第一線繩集束的一內部中及在一外部中,使得該等線繩在該第一線繩集束的該內部中的長度的量約和在該第一線繩集束的該外部中的長度的量相同。在一些實施例中,該第一多股線繩被捻合(twisted)。
在一些實施例中,用來測量電流的流動的該裝置亦可包括一緊固裝置,其被建構來打開及閉合該導磁性環圈。該緊固裝置可被建構來將該第一多股線繩和該第一磁長感測器的一感測元件重疊地設置。在一些實施例中,該裝置亦可包括一第二多股線繩,其包括一第二線繩集束。該緊固裝置可被建構來將該第一及第二線繩集束的端部和該第一磁場感測器的一感測元件重疊地設置。該導磁線圈可進一步包括一第二磁場感測器,其中該第一磁場感測器和該第二磁場感測器被設置成彼此橫跨該導磁性環圈。
在一些實施例中,該第一多股線繩的該內部包括一鐵鎳合金,其具有至少5.0*10-3H/m的磁導率(magnetic permeability)。在一些實施例中,該第一多股線繩的該內部包括高磁導率金屬(mu-metal)。該高磁導率金屬具有至少2.5*10-3H/m的磁導率。該第一磁場感測器可包括霍爾效應感測器、通量閘(flux gate)、非等向性磁電阻感測器、及巨磁電阻感測器的至少一者。在一些實施例中,該第一多股線繩是可撓曲的。流經該導體的電流可以是直流電。在一些實施例中,該裝置進一步包括一環面形(torroidal-shaped)線圈,其被建構來被設置在該導磁性環圈的周圍。
在另一態樣中,本揭露內容提供一種測量流經一導體的電流的方法。該方法包括將一磁場從一導磁性環圈的多股導磁線繩的端部傳送至一磁場感測器,該磁場感測器被設置在鄰近該等多股導磁線繩的端部處。該方法可包括根據該磁場感測器測得磁場的強度來從指示流經該導體的電流之磁場感測器輸出一訊號。該方法可進一步包括產生一電流流經一纏繞在該導磁性環圈周圍的線圈以實質地抵消該第一磁場,其中該驅動器電路所產生之用來實質地抵消該第一磁場的該電流是流經該導體的電流的一標示。在一些實施例中,該等導磁線繩的線繩具有一絕緣材料的外層。
在一些實施例中,該方法進一步包括在將該磁場傳送至該磁場感測器之前,將該導磁性環圈設置在該 導體周圍並藉由用一緊固裝置將該導磁性環圈閉合來將該等多股被絕緣的導磁線繩的端部和一磁場感測器感測元件對準。
在本揭露內容的又另一態樣中,一種用來測量流經一導體的電流的系統被提供。該系統包括一測量裝置,其被建構成可和該用來測量流經一導體的電流的裝置耦合、及一羅哥夫斯基線圈。該測量裝置被建構來從該裝置及該羅哥夫斯基線圈的一者輸出一被測得的電流值。
100‧‧‧電流測量系統
102‧‧‧電流感測器
110‧‧‧環圈
190‧‧‧測量裝置
116‧‧‧訊號線
114‧‧‧懸吊件
150‧‧‧耦合件
192‧‧‧殼體
198‧‧‧顯示器
196‧‧‧埠口
118‧‧‧緊固件
128‧‧‧第一端
120‧‧‧緊固件接受器
129‧‧‧第二端
300‧‧‧電流感測器
310‧‧‧環圈
314‧‧‧磁場感測器
304‧‧‧導磁區段
318‧‧‧第一端
319‧‧‧第二端
302‧‧‧間隙
316‧‧‧訊號線
360‧‧‧線圈
400‧‧‧電流感測器
410‧‧‧環圈
414‧‧‧第一磁場感測器
415‧‧‧第二磁場感測器
304‧‧‧第一導磁區段
305‧‧‧第二導磁區段
418‧‧‧第一端
438‧‧‧第一端
402‧‧‧第一間隙
403‧‧‧第二間隙
419‧‧‧第二端
439‧‧‧第二端
380‧‧‧外部空間
470‧‧‧內部空間
416‧‧‧訊號線
417‧‧‧電纜線
500‧‧‧集束
501‧‧‧第一位置
502‧‧‧第二位置
521‧‧‧線繩
522‧‧‧線繩
523‧‧‧線繩
531‧‧‧線繩
532‧‧‧線繩
533‧‧‧線繩
512‧‧‧外層
520‧‧‧線
600‧‧‧集束
602‧‧‧捻合的線繩
610‧‧‧外層
700‧‧‧集束
710‧‧‧外層
本發明的前述態樣及許多伴隨的優點將變得更容易瞭解,因為它們藉由參考下文中參照附圖的詳細描述會變得更容易理解,其中:圖1是依據本揭露內容的一或多個實施例的一具有一打開的環圈的電流測量系統的例子;圖2是依據本揭露內容的一或多個實施例的圖1的電流測量系統的例子,其中該環圈被閉合在一導體的周圍且正在測量一流經該導體的電流;圖3是一依據本揭露內容的一或多個實施例的電流感測器的方塊圖,具有一環圈的該電流感測器包括一設置在一導磁區段和一線圈之間的磁場感測器;圖4是一依據本揭露內容的一或多個實施例的電流感測器的方塊圖,具有一環圈的該電流感測器包括至少兩個 磁場感測器及兩個分開的導磁區段;圖5例示依據本揭露內容的一或多個實施例的一束導磁線繩在沿著該束線繩的不同長度位置處的兩個剖面圖;圖6為依據本揭露內容的一或多個實施例的一束導磁線繩,其中該等線繩已相對於彼此被捻合;及圖7為依據本揭露內容的一或多個實施例的一束導磁線繩,其包括多束被捻合的線繩。
下文中提出之與附圖(其內相同的標號代表相同的元件)有關的詳細敘述描述被揭露的發明主體的各式實施例且並不是打算只代表該等實施例。被描述在此揭露內容中的每一實施例只提供一例子或實例,其不應被解讀為相較於其它實施例而言是較佳的或有利的。該等被例示的例子並不耗盡式的例子或是要將被請求的發明主體限制到和被揭露的形式完全一模一樣。
下面的討論提供和一能夠不和一導體接觸而能測量流經該導體的電流之可撓性的電流感測器有關的系統、設備及方法。在不同的實施例中,一可撓曲的電流感測器可具有和羅哥夫斯基線圈的可撓曲的環圈類似的尺寸、形狀、及外觀。但,和羅哥夫斯基線圈不同的是,描述於本文中的電流感測器可感測直流電(DC)。在一些實施例中,該電流感測器能夠進一步感測交流電(AC)。該電流感測器用一種類似夾式或顎式感測器的方式但使用不同的 磁芯來感測電流的流動。
圖1顯示電流測量系統100,其具有一電流感測器102和一測量裝置190。該電流感測器102包括一環圈110,其具有一可撓曲的部分。該環圈110包括一導磁性材料或“磁芯”。該導磁性材料包括多股導磁線繩。該等線繩及該環圈110可以是可撓曲的或可彎折的。該等線繩可包括一絕緣材料的外層,其有助於將該等線繩彼此絕緣。該電流感測器102使用該環圈110來感測在一導體內的電流流動,而不是使用一用馬達來打開及閉合之重且硬的顎夾。在一些實施例中,該環圈可被打開及閉合使得它可被置於一有電流的導體周圍而不干擾到該電流。
如在本文中詳細討論的,在該環圈110內的該等多股可撓曲的導磁線繩可被編織、編綴、捻合或被安排成圖案。該環圈110亦包括至少一磁場感測器及一訊號線116,其可包括一可撓曲的部分。該訊號線116可被耦合至該環圈110的一或多個構件,譬如一或多個磁場感測器。
該磁場感測器可被放置在導磁性材料之間的間隙內。各式磁場感測器可被使用。例如,該磁場感測器可包括霍爾效應感測器。該環圈110可包括一容納該磁場感測器的懸吊件(pendant)114。該懸吊件114可保護該磁場感測器。
該電流感測器102被耦合或可耦合至該測量裝置190。該訊號線116可從該環圈110延伸出且可包括 一耦合件150,其被***到該測量裝置190的一殼體192內。該測量裝置190包括測量電路,其能夠接受該電流感測器102提供的輸出、計算電流值、及將計算出來的電流值呈現給使用者。該測量裝置190的該測量電路亦可用於其它功能,譬如接受來自其它感測器的輸入並計算測量值。該測量裝置190可被體現為各式電子測量裝置,譬如萬用電錶(multimeter)。代表被該電流感測器102送出的電流的被測得的數值可被顯示在該測量裝置190的顯示器198上。
除了被耦合或可耦合至該電流感測器102之外,該測量裝置190還可被耦合或可耦合至羅哥夫斯基線圈或其它感測器。例如,該耦合件150可和羅哥夫斯基線圈的耦合件實質相同,且不論是該電流感測器102或是羅哥夫斯基線圈都可被***到該測量裝置190的殼體192的一埠口196內。在一些實施例中,該測量裝置190可具有多個輸入埠。在一些實施例中,該測量裝置190可同時耦合或被耦合至羅哥夫斯基線圈及電流感測器102。該測量裝置190可被建構來選擇性地顯示從該電流感測器102或羅哥夫斯基線圈輸入的被測得的數值以回應該測量裝置190的一使用者輸入。此等實施例可允許一技工攜帶該測量裝置190並與該電流感測器102及其它感測器一起使用,而不是帶著用於每一種感測器之分開的測量裝置。例如,該技工可將測量裝置190分別和羅哥夫斯基線圈一起使用以測量AC電流及和該電流感測器102一起使用以測 量AC電流。這可減小技工必需在工作場所帶著四處走的設備的大小及重量且亦可減少為了更換測量裝置而在工作場所來回走動的次數。
仍參考圖1,該電流感測器102的該環圈110可包括第一端128,其具有一緊固件118。該環圈110可具有一緊固件接納器120,其附裝在該環圈110的第二端129或其附近。該緊固件118及該緊固件接納器120被建構成彼此匹配。例如,該緊固件118和該緊固件接納器120可分別包含四分之一轉式(quarter-turn)緊固件及一相容的緊固件接納器。至少一磁場感測器可被設置在該第一端128及該第二端129的一者處,且該導磁性材料可被設置在該第一端128及該第二端129的另一者處。
該導磁性材料可提供一磁場至該至少一磁場感測器的一感測元件。在一些實施例中,在該環圈110內的該等多股導磁性材料(譬如,該等線繩)的端部被設置在該第一端128及該第二端129的一者處,且一磁場被該等多股導磁性材料的線繩的端部提供至該磁場感測器。一磁場感測器和該導磁性材料之間可存在一間隙,且來自該導磁性材料的磁場可被傳送橫跨該間隙。
該環圈110和該磁場感測器的一致且精準的放置有助於獲得精確且可靠的測量值。在一些實施例中,在該導磁性材料和該磁場感測器之間的間隙被最小化。將該間隙最小化可降低磁場損失及來自外部磁場的干擾。在一些實施例中,緊固件118和緊固件接納器120的匹配嚙 合自動地放置或對準該導磁性材料和該磁場感測器,使得一磁場經由該磁場感測器被聚焦。該緊固件118和該緊固件接納器120之間的匹配嚙合可將該第一端128和該第二端129相對於彼此放置、將該等線繩提供的磁場和該磁場感測器對準、及/或將介於該導磁性材料和該磁場感測器之間的間隙最小化。
圖2顯示操作中的電流感測器102。該電流感測器102經由該訊號線116被連接至該測量裝置190。該環圈110被閉合且被設置在一導體C的周圍,該導體有一DC電流流經。該緊固件118和該緊固件接納器120被匹配嚙合,且該導磁性材料(譬如該等線繩)和該磁感測器透過此匹配嚙合而被對準。一被測得的電流值0.2mA被顯示在該顯示器198上。
圖3顯示一具有一環圈310的電流感測器300的方塊圖,該環圈包括一磁場感測器314和一導磁區段304,其亦可被稱為一“磁芯”。該電流感測器300適合和圖1所示的系統100一起使用。如圖3所示,該電流感測器300被閉合。該導磁區段304可具有第一端318及第二端319。該導磁區段304包括多股導磁性材料的線繩。在一些實施例中,該等導磁性材料的線繩在該環圈310內從該第一端318延伸至該第二端319。該環圈310經由訊號線316被耦合至該測量裝置190。當該環圈310在此閉合的位置時,一間隙302被界定在該導磁區段304內。
該磁場感測器314被設置在該間隙302內, 且可被附裝至該第一端318及第二端319的一者。該第一端318及第二端319的另一者被設置成鄰近該磁場感測器314。該磁場感測器314被建構來接受來自該第一端318及第二端319的另一者的磁場。該磁場可被該導磁區段304集中或聚焦。該電流感測器300可被建構成一“開放環圈”式感測器。該磁場感測器314可提供一流經一電路構件(譬如,被該環圈310圈圍起來的電線或其它導體(如,圖2中所例示))的電流的輸出訊號標示。例如,該磁場感測器314可以是一霍爾效應感測器,且該感測器的霍爾電壓可被提供作為送至一測量裝置的輸出訊號。
在一些實施例中,該電流感測器300包括一環面形線圈360,其被延伸且纏繞在該導磁區段304的周圍。該線圈360是導電的且可被耦合至該訊號線316。該線圈360可被一包含放大器的驅動器電路驅動,使得一電流流經該線圈360。流經該線圈360的電流可被一電源提供,該電源例如是和該測量裝置190包括在一起或附裝至該測量裝置190。在一些實施例中,該電流感測器300是一“閉合環圈”。該電流感測器300使用該驅動器電路來產生一電流流經該線圈360,用以藉由在相反方向上產生和來自該導體的電流的磁場實質相同強度的磁通量來實質地抵消來自該導體的電流的磁場。流經該線圈360的電流可在同一操作時點提供給該磁芯及該感測器且可降低來自該感測器或磁芯的非直線性的不想要的影響。流經該線圈360的電流可和流經待測的導體的電流成正比。該驅動器 電路所產生的電流可以是流經該導體的電流的標示。
圖4顯示一電流感測器400的方塊圖,其具有一環圈410、一第一磁場感測器414、及一第二磁場感測器415。該電流感測器400可以是適合和圖1中所示的該電流測量系統100一起使用。該電流感測器400類似於電流感測器300,但是它具有兩個磁場感測器,而不是單一個磁場感測器。該環圈410包括一第一導磁區段404及一第二導磁區段405。該第一導磁區段404和該第二導磁區段405的至少一者包括多股導磁性材料。該環圈410包括一第一間隙402及一第二間隙403。該第一導磁區段404和該第二導磁區段405因而彼此分開。該第一導磁區段404的一第一端418和該第二導磁區段405的一第一端438界定該第一間隙402。
該第一磁場感測器414被設置在該第一間隙402內,且被建構來感測一由該第一導磁區段404和該第二導磁區段405的導磁性材料提供的磁場。該第一導磁區段404的一第二端419和該第二導磁區段405的一第二端439界定該第二間隙403。該第二磁場感測器415被設置在該第二間隙403內。為了要減小磁場損失及來自外部磁場的干擾,分別介於磁場感測器414及415和該環圈410的端部418,419,438及439之間的空間可被最小化。例如,端部419和439在操作期間應被設置靠近或附裝至該第二磁場感測器415。使用兩個被設置成彼此橫跨該環圈的內部空間的磁場感測器可補償外部磁場。藉由抵消或減 低來自外部空間380的磁影響,該線圈360可幫助降低測量不精確性。該電流感測器400可以是開放式環圈或閉合式環圈。例如,雖然未示出,一被驅動通過一如圖3所示的環面形線圈360的電流亦可和該電流感測器400一起使用,用以降低該環圈410內的非直線性(non-linearity)。
該環圈410可包括一絕緣材料層。該第一導磁區段404、該第一磁場感測器414、該第二導磁區段405、及該第二磁場感測器415可被該絕緣材料層覆蓋。該第一導磁區段404和該第二導磁區段405的長度可以實質相同。在一些實施例中,該第一磁場感測器414和該第二磁場感測器415可設置成彼此橫跨該內部空間470。該環圈410可進一步包括一緊固件。該環圈410可以是開放式或閉合式,且可被放置在一待測量的電子構件或導體的周圍或圈圍該待測量的電子構件或導體。該第二磁場感測器415可經由一電纜線417而被耦合至該訊號線416。
其它的實施例是有可能的。例如,除了該第一導磁區段404和該第二導磁區段405之外,該環圈410還包括一或多個額外的分開的導磁性材料區段。此外,磁場感測器可被設置在導磁材料之多個區段之間的間隙中。在一些實施例中,電流感測器102或400包括一類似於圖3所示的線圈360。而且,電流感測器102,300及400可使用不同的磁場感測器。例如,該等磁場感測器可包括霍爾效應感測器、通量閘、非等向性磁電阻(AMR)感測器、及巨磁電阻(GMR)感測器的一者或多者。該磁場感測器可 包括其它能夠測量在該等間隙內的磁場的強度的裝置。
圖5顯示一導磁線繩的一集束500位在一第一位置501及在一第二位置502(其離該第一位置501一段長度方向的距離)的剖面圖。該集束500適合和圖1所示的系統100一起使用。該集束500包括線繩521,522,523,531,532及533。該等線繩被安排成使得它們相對於彼此的相對位置沿著該束導磁線繩的長度而改變。該等線繩包含一內部504,其包括導磁性材料。該等線繩可包括一外部506,其具有一用來將該等線繩彼此絕緣的絕緣材料。具有及不具有該絕緣材料的外部的線繩都適合本揭露內容的各式實施例,譬如電流感測器102,300及400。使用多股線繩可將渦電流效應最小化,該渦電流會造成電流形成在該感測器內,其會造成感測器的加熱並侷限它測量磁場的能力。使使用多股線繩亦可讓導磁區段比一電流夾裝置更有可撓曲性或可彎折性。
該集束500例如可具有一圓角化的或圓的剖面形狀。在一些實施例中,該束導磁線繩的形狀和該磁場感測器的感測元件的形狀一致。當被對準時,來自該束導磁線繩的實質磁場被提供至該磁場感測器。在一些實施例中,該集束500包括約20股線繩,但不同的線繩數量亦可被使用。該等線繩可被安排成使得它們提供一磁場橫跨一間隙,譬如圖4中所示的第一間隙402。該集束500可包括一外層512,其可包括一絕緣材料,用來保護該等線繩免受干擾或傷害。
如圖5所示,該集束500具有該等線繩的一外部(它是在線520的外面)及該等線繩的一內部(它是在線520的內部)。在該第一位置501時,線繩521,522,及523是在該集束500的內部,且線繩531,532,533是在該集束500的外部。如圖所示,該等線繩的位置沿著該集束500的長度相對於彼此改變。例如,在該第二位置502時,線繩521,522,523是在內部且線繩531,532,533是在外部。在一些實施例中,該等線繩交替在該集束500的外部區段和內部區段之間,使得該等線繩在該集束500的長度上穿過該集束的內部及外部。在一些實施例中,該等線繩沿著該集束500的長度在該集束500的外部區段和內部區段之間交替多次。
在一些實施例中,該等線繩在該集束的內部區段和外部區段之間交替,使得該等線繩在該集束的內部中的該集束的長度和該等線繩在該集束的外部中的該集束的長度相同。在一些實施例中,該等線繩平均而言被設置在內部中的集束長度量和被設置在內部中的集束長度量相同。各式圖案可被用來安排該等線繩。在一些實施例中,每一線繩在一集束的外部中的總長度的比例是大致相同的。在一些實施例中,每一線繩在一集束的內部中的總長度的比例是大致相同的。這些圖案可提供電性及機械性好處(譬如,描述於本文中的,允許圈在一電流感測器中的環圈是耐用的且是可撓曲的)。安排線繩及/或線繩的大小的各式圖案可讓該集束是有彈性的。某些圖案可讓該環圈 是可撓曲的且是有彈性的。這些特性提供優於既有夾鉗式電流感測器之重大的優點。
如上文中參考圖3所討論的,導磁性材料相對於一或多個磁場感測器的精確且一致的設置對於提供精確且一致的測量結果是很重要的。介於該等線繩的端部和磁場感測器之間的距離可被最小化,且該等線繩可和該磁場感測器對準。某些導磁性材料可能不像典型的導體材料般地可撓曲,且某些線繩會隨著時間及使用而變硬及/或斷裂,造成數千分之一英吋的尺寸改變。線繩相對於一磁場感測器的設置的此一改變會造成測量結果的不一致。在一些實施例中,線繩和磁場感測器間的精確距離是藉由研磨線繩端部來達成的。在一些實施例中,線繩的端部是用環氧樹脂密封,用以在線繩被彎折之後幫助一致性地保持線繩的位置。
圖6顯示被捻合的線繩602的一集束600。相較於,該等被捻合的線繩在可撓曲性及彈性上提供比筆直的線繩更好的特性。如圖6所示,線繩被捻合,使得它們的一些部分沿著該集束的長度方向改變。集束600可具有一外層610,其包括一絕緣材料。
圖7顯示由線繩602的多股集束600所組成的集束700。如圖所示,該等集束600已沿著該集束700的長度方向被捻合。在一些實施例中,該等集束600可被編織在一起。該等集束600可被安排成類似於本文中討論的圖案。集束700可具有一外層710,其包括一絕緣材 料。該外層710有助於防範短路或外部干擾的影響。
線繩及集束之圖案的各種組合都可和揭露於本文中的電流感測器的實施例一起被使用。各式纏繞技術可用來安排該等線繩及/或線繩的集束。在一些實施例中,Litz繞組技術可被使用,使得該等線繩被安排成Litz圖案。例如,該等線繩可包括一導磁性材料,且可被安排成和New England Wire Technology的Round Type 2電線類似。
集束500,600及700的整體尺寸可被改變。該等集束的大小及組態可被建構成使得該集束的一端和一磁場感測器的一感測元件重疊。例如,包括在該集束內的線繩數量及該集束的形狀可根據該感測元件的大小及該等線繩的截面積(其包括該集束的內部和外部)來決定。例如,為了讓該集束的端部和磁場感測器的感測元件重疊,該感測元件的表面積和尺寸可以是讓在該集束的端部的截面積大於該磁場感測器的該感測元件的面積,使得來自該集束內的線繩的磁場被該磁場感測器感測到。
在本揭示內容的實施例中的導磁性材料具有至少5.0×10-3H/m的磁導率。一具有此磁導率的材料將提高該磁料附近的磁場,這有助於將磁場聚集橫跨一包括該磁場感測器的間隙。不同的導磁性材料和絕緣材料可分別被使用在該等線繩的內部504及外部506中。提高線繩的磁導率可提高電流感測器(譬如,電流感測器102,300或400)的靈敏度。例如,在線繩的內部504中的導磁性材料 可包括鐵鎳合金,譬如電性鋼(electrical steel)。
在一些實施例中,線繩的導磁性材料包括高磁導率金屬(mu-metal)。該高磁導率金屬具有2.5×10-2H/m的磁導率。市面上可獲得的高磁導率金屬的例子包括MuMETAL、Mumetal1、及Mumetal2。高磁導率金屬可被作成細電線。該等線繩包含易延展可加工的材料。一種讓線繩具有良好的彈性使得該集束500在被置於一待測的電子構件或導體周圍時不會永久性地降服或彎折的透磁材料可提供顯著的優點。高磁導率金屬線繩具有比其它鐵鎳合金有利的彈性特性及更佳延展性及可加工性。可使用具有低損耗正切(loss tangent)的材料,例如電工鋼(electrical steel)。使用具有低損耗正切的材料可提供更好的精確度及可重復性的特性。
在操作時,一磁場可從一導磁性環圈的多股被絕緣的導磁線繩的一端被傳送至設置在和該等被絕緣的導磁線繩的該端相鄰處的磁場感測器。一訊號可根據從該等多股線繩的該端被傳送的該磁場而被該磁場感測器輸出,其代表流經該待測的電子構件或導體的電流。
在一些實施例中,在將該磁場傳送至該磁場感測器之前,該導磁性環圈被設置在該導體的周圍。該等被絕緣的導磁線繩的該端可藉由用一緊固裝置將該導磁性環圈閉合來和該磁場感測器的一感測元件對準。
將被理解的是,各式導磁線繩、集束及配置的圖案(譬如集束500,600及700)可以適當地使用在圖1 及2的環圈110的導磁部分、圖3的導磁區段304、及圖4的第一導磁區段404和第二導磁區段405內。
圖案可以有許多替代例。線繩的編綴、編織、捻合及其它圖案或配置可提供機械性及電性優點且當使用在電流測量系統中(譬如,圖1的電流測量系統100中)時亦可提供所想要的磁性特性。編綴或編織可允許個別的線繩及集束的長度在該環圈110被撓曲時保持固定不變,這讓該等線繩的端部在該環圈110被撓曲的同時仍能保持均一。在端部缺少均一性會降低測量精確性。如果該等多股線繩的第一端318在被撓曲時並不一致的話,某些線繩或集束在被撓曲時會拉離磁場感測器314。線繩的各式配置可被使用,譬如圖5、6及7所示的配置。如稍早提到的,在一些實施例中,一集束係使用Litz纏繞方法纏繞線繩來形成。
在一集束中的線繩數量、線繩的尺寸、線繩的導磁性材料、及其它特性可被改變。在一些實施例中,多股集束500可被編織在一起。偏織或編綴該等線繩可提供好處。例如,在集束500內的線繩比筆直電線更有可撓曲性、更耐用且能夠承受振動。線繩的多股集束500可被編綴在一起。
在前面的描述中,許多細節被提出以提供本揭露內容的一或多個實施例的徹底瞭解。然而,對於熟習此技藝者而言很明顯的是,本揭露內容的許多實施例可在沒有某些或全部的細節下被實施。將被理解的是,在沒有 偏離本揭露內容的精神及範圍下可對各式實施例作改變。因此,將被理解的是,本揭露內容的實施例可使用描述於本文中的特徵的任何組合。
190‧‧‧測量裝置
300‧‧‧電流感測器
302‧‧‧間隙
304‧‧‧第一導磁區段
310‧‧‧環圈
314‧‧‧磁場感測器
316‧‧‧訊號線
318‧‧‧第一端
319‧‧‧第二端
360‧‧‧線圈
380‧‧‧外部空間

Claims (21)

  1. 一種用來測量流經一導體的電流的裝置,該裝置包含:一導磁性環圈,其可被設置來包圍該電流被測量的導體,其中該導磁性環圈是由一包括多股線繩的線繩集束組成;及一磁場感測器,其被設置成鄰近該等多股線繩的一端以感測一磁場,其中該等多股線繩的每一線繩包含一導磁性材料且在該等多股線繩中的諸線繩被安排成使得它們在該導磁性環圈的長度範圍內通過該線繩集束的內部和該線繩集束的外部至少一次,其中該等多股線繩被建構來將一磁場傳送至該磁場感測器,該磁場是流經該導體的電流的標示;及其中該磁場感測器被建構來根據該磁場感測器感測到的磁場的強度(magnitude)來輸出流經該導體的電流的一訊號標示。
  2. 如申請專利範圍第1項之裝置,其更包含:一纏繞在該導磁性環圈周圍的線圈;及一驅動器電路,其被耦接至該線圈及該磁場感測器,其中該驅動器電路被建構來產生一流經該線圈並抵消該磁場的電流,及其中該驅動器電路所產生的該電流是流經該導體的電流的標示。
  3. 如申請專利範圍第1項之裝置,其中該等多股線繩的一或多股線繩具有一絕緣材料的外層在該導磁性材料的周圍。
  4. 如申請專利範圍第1項之裝置,其中在該等多股線繩內的線繩被安排成使得該等線繩在該線繩集束的內部和該線繩集束的該外部之間交替,其中該等線繩在該線繩集束的該內部中的該導磁性環圈的長度量值和該等線繩在該線繩集束的該外部中的該導磁性環圈的長度量值大致相同。
  5. 如申請專利範圍第1項之裝置,其中在該等多股線繩內的線繩被安排成使得該等線繩平均而言被設置在該線繩集束的該內部中及在該線繩集束的該外部中一段大致相同的該線繩集束的長度量值。
  6. 如申請專利範圍第1項之裝置,其中在該等多股線繩內的線繩被捻合。
  7. 如申請專利範圍第1項之裝置,其更包含一緊固裝置,其被建構來打開及閉合該導磁性環圈。
  8. 如申請專利範圍第7項之裝置,其中該緊固裝置被建構來將該等多股線繩的一端和該磁場感測器的一感測元件重疊地設置。
  9. 如申請專利範圍第7項之裝置,其中該等多股線繩是第一多股線繩,該裝置進一步包含第二多股線繩,其中該緊固裝置被建構來將該第一及第二多股線繩的端部和該磁場感測器的一感測元件重疊地設置。
  10. 如申請專利範圍第1項之裝置,其中該磁場感測器是一第一磁場感測器,其中該導磁性環圈進一步包含一第二磁場感測器,其被設置成鄰近該等多股線繩的一端以感測一磁場,及其中該第一磁場感測器和該第二磁場感測器被設置成彼此橫跨該導磁性環圈。
  11. 如申請專利範圍第1項之裝置,其中在該等多股線繩內的線繩的內層包含鐵鎳合金,其具有至少5.0*10-3H/m的磁導率。
  12. 如申請專利範圍第11項之裝置,其中在該等多股線繩內的線繩包含高磁導率金屬(Mu-metal)。
  13. 如申請專利範圍第1項之裝置,其中該磁場感測器包含霍爾效應感測器、通量閘(flux gate)、非等向性磁電阻感測器、及巨磁電阻感測器的至少一者。
  14. 如申請專利範圍第1項之裝置,其中該等多股線繩是可撓曲的。
  15. 如申請專利範圍第1項之裝置,其中該等多股線繩被建構來將一磁場傳送至該磁場感測器,該磁場是流經該導體的直流電的標示。
  16. 如申請專利範圍第1項之裝置,其更包含一環面形線圈,其被建構來環繞該導磁性環圈以減小在該磁場感測器及該導磁性環圈的至少一者內的非直線性。
  17. 一種測量流經一導體的電流的方法,其包含:將一導磁性環圈放置在該導體周圍,其中該導磁性環圈是由一包括多股線繩的線繩集束組成,其具有一端被設 置成鄰近一磁場感測器,其中在該等多股線繩中的諸線繩被安排成使得它們在該導磁性環圈的長度範圍內通過該線繩集束的內部和該線繩集束的外部至少一次;及將一磁場從該等多股導磁性線繩的該端傳送至該磁場感測器,其中被傳送至該磁場感測器的該磁場是流經該導體的電流的標示。
  18. 如申請專利範圍第17項之方法,其更包含根據從該等多股導磁性線繩的該端被傳送至該磁場感測器的該磁場的強度,從該磁場感測器輸出流經該導體的電流的標示之訊號。
  19. 如申請專利範圍第17項之方法,其更包含產生一電流通過一纏繞在該導磁性環圈周圍的線圈以抵消該磁場,其中被產生來抵消該磁場的該電流是流經該導體的電流的標示。
  20. 如申請專利範圍第17項之方法,其更包含:在將該磁場傳送至該磁場感測器之前,藉由用一緊固裝置將該導磁性環圈閉合來將該等多股導磁性線繩的端部和該磁場感測器的一感測元件對準。
  21. 一種用來測量流經一導體的電流的系統,該系統包含一如申請專利範圍第1項的裝置以及一可耦合至如申請專利範圍第1項的裝置及一羅哥夫斯基線圈的測量裝置,其中該測量裝置被建構來根據一接收自如申請專利範圍第1項的裝置及該羅哥夫斯基線圈的一者的訊號來輸出一電流測量值,它是流經該導體的電流的代表。
TW104134207A 2014-10-27 2015-10-19 可撓曲的電流感測器 TWI691726B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/524,886 US9541581B2 (en) 2014-10-27 2014-10-27 Flexible current sensor
US14/524,886 2014-10-27

Publications (2)

Publication Number Publication Date
TW201625965A TW201625965A (zh) 2016-07-16
TWI691726B true TWI691726B (zh) 2020-04-21

Family

ID=54364118

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104134207A TWI691726B (zh) 2014-10-27 2015-10-19 可撓曲的電流感測器

Country Status (5)

Country Link
US (1) US9541581B2 (zh)
EP (1) EP3015871A1 (zh)
JP (1) JP6712455B2 (zh)
CN (1) CN105548650B (zh)
TW (1) TWI691726B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWD181396S (zh) 2015-11-11 2017-02-21 富克有限公司 交流鉗錶配件
USD820128S1 (en) * 2016-10-26 2018-06-12 Klein Tools, Inc. Voltage tester
EP3566061B1 (en) 2017-02-13 2020-04-08 Ladislav Grno Flexible current sensor with stranded core
FR3076657B1 (fr) * 2018-01-05 2021-04-09 Socomec Sa Transformateur de courant ouvrant a noyau magnetique souple
US10746767B2 (en) * 2018-05-09 2020-08-18 Fluke Corporation Adjustable length Rogowski coil measurement device with non-contact voltage measurement
US10551416B2 (en) * 2018-05-09 2020-02-04 Fluke Corporation Multi-sensor configuration for non-contact voltage measurement devices
JP7058548B2 (ja) * 2018-05-09 2022-04-22 日置電機株式会社 電流センサ及び測定装置
US10908188B2 (en) 2018-05-11 2021-02-02 Fluke Corporation Flexible jaw probe for non-contact electrical parameter measurement
CN110244103A (zh) * 2019-01-16 2019-09-17 国网浙江杭州市富阳区供电有限公司 一种基于罗氏线圈的钳形电流表
USD911858S1 (en) * 2019-04-25 2021-03-02 Klein Tools, Inc. Test device
US11112433B2 (en) * 2019-08-08 2021-09-07 Fluke Corporation Non-contact electrical parameter measurement device with clamp jaw assembly
USD946430S1 (en) * 2020-07-28 2022-03-22 Chauvin Arnoux Power energy logger
DE102020124516A1 (de) 2020-09-21 2022-03-24 Turck Duotec GmbH Sensor mit Lichtleiteranschluss
CN114928333A (zh) * 2022-05-18 2022-08-19 立讯精密工业(滁州)有限公司 光伏检测结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1570654A (zh) * 2004-04-28 2005-01-26 邹高芝 无磁芯护套的电流传感器用线圈磁芯组件
US20100231198A1 (en) * 2009-03-12 2010-09-16 Consolidated Edison Company Of New York, Inc. Current measuring device
CN101957394A (zh) * 2009-07-17 2011-01-26 福禄克公司 带罗克夫斯基线圈的用于测量导体中交流电的钳式万用表
CN202661526U (zh) * 2012-01-19 2013-01-09 邹高芝 穿芯式高精度闭环型霍尔电流传感器用同轴双环路磁芯线圈组件
CN103675403A (zh) * 2012-08-28 2014-03-26 国际商业机器公司 柔性电流和电压传感器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3983521A (en) * 1972-09-11 1976-09-28 The Furukawa Electric Co., Ltd. Flexible superconducting composite compound wires
CH648148A5 (de) * 1979-02-09 1985-02-28 Bbc Brown Boveri & Cie Supraleitendes kabel.
US4558276A (en) 1983-05-13 1985-12-10 Leon J. Comeau Device and method for sensing electric current in a conductor
JPS60126393A (ja) * 1983-12-03 1985-07-05 朝日ミニロープ販売株式会社 ロ−プ
JPH053987Y2 (zh) * 1986-02-25 1993-01-29
JPH01112175A (ja) * 1987-10-26 1989-04-28 Chubu Denki Hoan Kyokai 漏洩電流探知器
JPH06174753A (ja) 1992-12-02 1994-06-24 Sansha Electric Mfg Co Ltd 大電流検出装置
JP4332623B2 (ja) * 2003-02-26 2009-09-16 テクトロニクス・インコーポレイテッド 電流プローブ
US7205947B2 (en) * 2004-08-19 2007-04-17 Harris Corporation Litzendraht loop antenna and associated methods
JP2008547155A (ja) * 2005-02-18 2008-12-25 エアパックス コーポレーション 付属センサユニットを備える回路遮断器を含む装置
JP2008145352A (ja) * 2006-12-12 2008-06-26 Jeco Co Ltd 電流センサ及び電流検出方法
US8461824B2 (en) * 2010-06-07 2013-06-11 Infineon Technologies Ag Current sensor
EP2431751A1 (en) * 2010-09-21 2012-03-21 Liaisons Electroniques-Mecaniques Lem S.A. Closed-loop current transducer with switched mode amplifier
CN102323467A (zh) * 2011-08-31 2012-01-18 清华大学 一种采用非晶合金磁环结构的巨磁电阻效应电流传感器
US8952686B2 (en) * 2011-10-25 2015-02-10 Honeywell International Inc. High current range magnetoresistive-based current sensor
US20140035607A1 (en) * 2012-08-03 2014-02-06 Fluke Corporation Handheld Devices, Systems, and Methods for Measuring Parameters
US9198500B2 (en) * 2012-12-21 2015-12-01 Murray W. Davis Portable self powered line mountable electric power line and environment parameter monitoring transmitting and receiving system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1570654A (zh) * 2004-04-28 2005-01-26 邹高芝 无磁芯护套的电流传感器用线圈磁芯组件
US20100231198A1 (en) * 2009-03-12 2010-09-16 Consolidated Edison Company Of New York, Inc. Current measuring device
CN101957394A (zh) * 2009-07-17 2011-01-26 福禄克公司 带罗克夫斯基线圈的用于测量导体中交流电的钳式万用表
CN202661526U (zh) * 2012-01-19 2013-01-09 邹高芝 穿芯式高精度闭环型霍尔电流传感器用同轴双环路磁芯线圈组件
CN103675403A (zh) * 2012-08-28 2014-03-26 国际商业机器公司 柔性电流和电压传感器

Also Published As

Publication number Publication date
JP2016085216A (ja) 2016-05-19
CN105548650B (zh) 2020-11-06
TW201625965A (zh) 2016-07-16
CN105548650A (zh) 2016-05-04
EP3015871A1 (en) 2016-05-04
JP6712455B2 (ja) 2020-06-24
US9541581B2 (en) 2017-01-10
US20160116506A1 (en) 2016-04-28

Similar Documents

Publication Publication Date Title
TWI691726B (zh) 可撓曲的電流感測器
TWI820127B (zh) 電參數感測器探針及用於測量絕緣導體中之電參數的裝置
JP2016085216A5 (zh)
JP2011521252A (ja) 永久又は可変交番磁場循環センサ及び前記センサを使用する電流センサ
US10564227B2 (en) Integrated current sensor using Z-axis magnetoresistive gradiometer and lead frame current
US20070188170A1 (en) Fluxgate and fluxgate magnetometers
EP2063281A3 (en) Magnetic detection coil and apparatus for magnetic field measurement
US20230251289A1 (en) Non-contact voltage measurement with adjustable size rogowski coil
JP6566188B2 (ja) 電流センサ
CN107103982B (zh) 用于传感器的磁芯
JP2006046922A (ja) 電流センサ
CN107144801A (zh) 室温智能主动构件
JP2012098205A (ja) 電流測定方法、および磁気センサ装置
US11181555B2 (en) Current sensing method and current sensor
WO2014116848A1 (en) Flexible magnetic field sensor
JP6317443B2 (ja) 電流が貫流する一次導体における電流強度を測定するための装置、配置構造、および方法
JP2017181220A (ja) 電流検出センサおよび電流測定装置
CN203191433U (zh) 电流检测钳
CN108362925B (zh) 双“8”字形三导线磁场对消的零磁通大电流检测***及方法
KR102385761B1 (ko) 미네랄로 절연되는, 결합된 선속 루프와 b-도트 와이어
JPH1082764A (ja) 線状体の腐食度測定装置および方法
JP6747909B2 (ja) 電流センサ
JP6906473B2 (ja) 磁場補償装置
JP2017203712A (ja) 電流センサー
CN103913609B (zh) 不受交变外磁场影响的测量仪表及其实现方法