TWI488904B - 絕緣化超微細粉末及其製造方法、以及高介電常數樹脂複合材料 - Google Patents

絕緣化超微細粉末及其製造方法、以及高介電常數樹脂複合材料 Download PDF

Info

Publication number
TWI488904B
TWI488904B TW099124471A TW99124471A TWI488904B TW I488904 B TWI488904 B TW I488904B TW 099124471 A TW099124471 A TW 099124471A TW 99124471 A TW99124471 A TW 99124471A TW I488904 B TWI488904 B TW I488904B
Authority
TW
Taiwan
Prior art keywords
ultrafine powder
dielectric constant
insulating
composite material
resin composite
Prior art date
Application number
TW099124471A
Other languages
English (en)
Other versions
TW201114827A (en
Inventor
Takahiro Matsumoto
Hirotaka Tsuruya
Hajime Ban
Reiki Akita
Original Assignee
Mitsubishi Gas Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co filed Critical Mitsubishi Gas Chemical Co
Publication of TW201114827A publication Critical patent/TW201114827A/zh
Application granted granted Critical
Publication of TWI488904B publication Critical patent/TWI488904B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • H01B3/004Inhomogeneous material in general with conductive additives or conductive layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0239Coupling agent for particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulators (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

絕緣化超微細粉末及其製造方法、以及高介電常數樹脂複合材料
本發明係關於絕緣化超微細粉末及其製造方法,以及使用該絕緣化超微細粉末之高介電常數樹脂複合材料。
IC(積體電路)之資料錯誤的原因之一為高頻雜訊之影響。為了抑制它,已知於配線基板設置容量大的電容器消除高頻雜訊之方法。如此之容量大的電容器係藉由於配線基板形成高介電常數層而實現。又,因內建天線的大小或電波吸收體之厚度大致與介電常數的平方根成反比,高介電常數材料係對於此等構件之小型化、薄型化有用處。特別是在加工性或成形性優良之樹脂材料正要求賦予如此之特性。
高介電常數樹脂複合材料之先前技術係提案將以鈦酸鋇等為代表之鐵電體作為高介電常數填料以65vol%以上、也就是80wt%以上填充於樹脂複合材料(例如參照專利文獻1)。另一方面,提案將導電性粉末以熱硬化性樹脂形成絕緣皮膜來形成高介電常數組成物(例如參照專利文獻2),但因無法得到安定的性能,無法商業化製造。又,近年提案有以金屬氧化物形成皮膜於金屬粉的方法(例如參照專利文獻3),但因與先前之高介電常數填料同樣需要高填充,再加上因金屬粉比金屬氧化物有比一般還要高的比重,高介電常數樹脂複合材料的比重變得比3還要大。
又,亦提案有以高分子包覆單層奈米碳管來絕緣化,並將其利用來高介電常數化樹脂材料的方法(例如參照專利文獻4),此方法係因相當於絕緣皮膜之包覆高分子可能有可逆的剝離,含有無法得到安定的性能之問題。
因此,實際上現況為使用先前所述之大量添加填料之方法。因此,高介電常數化所換來的是損害樹脂材料原本特長的加工性、成形性、輕量性。
為了解決這樣的問題,本發明人等先前已揭示將特定導電性超微細粉末以特定金屬氧化物被覆而成的絕緣化超微細粉末,及使用它的高介電常數樹脂複合材料(例如參照專利文獻5、6)。
[先前技術文獻] [專利文獻]
[專利文獻1] 日本特開2001-237507號公報
[專利文獻2] 日本特開昭54-115800號公報
[專利文獻3] 日本特開2002-334612號公報
[專利文獻4] 日本特表2004-506530號公報
[專利文獻5] 國際公開小冊WO2006/013947
[專利文獻6] 日本特開2008-94962號公報
形成前述絕緣化超微細粉末之絕緣皮膜的金屬氧化物,係將導電性超微細粉末分散於有機溶劑中,在該有機溶劑中將金屬烷氧化物藉由溶膠凝膠反應析出金屬氫氧化物後脫水縮合,接著施行表面處理來疏水化而製得。
如此進行所製得之絕緣化超微細粉末因藉由溶膠凝膠法所得到之皮膜為多孔質,特別在以絕緣化超微細粉末進行高充填之高介電常數樹脂複合材料的介電常數變高的同時,另一方面有顯示電能損失之tanδ容易變大的課題。
因此,本發明之目的為提供在將高介電常數樹脂複合材料之介電常數維持在高的狀態之同時,可降低tanδ之絕緣化超微細粉末及其製造方法,以及使用該絕緣化超微細粉末之高介電常數樹脂複合材料。
本發明人等為了解決前述問題而專心研究之結果,發現以簡便的方法抑制tanδ的増加的同時,將樹脂複合材料高介電常數化之絕緣化超微細粉末及其製造方法,以及使用它之高介電常數樹脂複合材料。也就是說,本發明係如下所述。
(1) 一種絕緣化超微細粉末,其係藉由將由碳材料所構成之導電性超微細粉末分散於含有甲醇之有機溶劑,於該含有甲醇之有機溶劑中添加液態金屬烷氧化物,再添加水而製得。
(2) 一種絕緣化超微細粉末,藉由將碳材料所構成之導電性超微細粉末分散於含有甲醇之有機溶劑,於該含有甲醇之有機溶劑中添加液態金屬烷氧化物,再添加有機矽化合物或偶合劑,然後再添加水而製得。
(3) 如(1)或(2)所記載之絕緣化超微細粉末,其中該由碳材料所構成之導電性超微細粉末之剖面直徑係1nm以上、500nm以下。
(4) 如(1)或(2)所記載之絕緣化超微細粉末,其中構成該導電性超微細粉末之碳材料係奈米碳纖維、天然石墨、碳黑、奈米碳管或人造石墨。
(5) 如(1)或(2)所記載之絕緣化超微細粉末,其中該液態金屬烷氧化物的構成金屬元素係至少包含Ti及Zr之任一種。
(6) 如(2)所記載之絕緣化超微細粉末,其中該偶合劑係矽烷系偶合劑。
(7) 一種高介電常數樹脂複合材料,其係由前述(1)或(2)所記載之絕緣化超微細粉末與樹脂以體積比(絕緣化超微細粉末/樹脂)在5/95~50/50的範圍調配而製得。
(8) 如(7)所記載之高介電常數樹脂複合材料,其中該樹脂係熱塑性樹脂。
(9) 如(7)所記載之高介電常數樹脂複合材料,其中該樹脂係聚丙烯、聚苯乙烯、改質聚苯醚、聚對苯二甲酸丁二酯及聚苯基硫醚之任一者。
(10) 如(7)所記載之高介電常數樹脂複合材料,該高介電常數樹脂複合材料的比重係2以下。
(11) 如(7)所記載之高介電常數樹脂複合材料,該高誘電率樹脂複合材料係進一步含有填料。
(12) 如(7)所記載之高介電常數樹脂複合材料,該高介電常數樹脂複合材料的相對介電常數係10以上。
(13) 一種超絕緣化超微細粉末的製造方法,其係將由碳材料所構成之導電性超微細粉末分散於含有甲醇之有機溶劑、於該含有甲醇之有機溶劑中添加液態金屬烷氧化物、再添加水。
(14) 一種超絕緣化超微細粉末的製造方法,其係將由碳材料所構成之導電性超微細粉末分散於含有甲醇之有機溶劑,於該含有甲醇之有機溶劑中添加液態金屬烷氧化物,再添加具有烷氧化基的偶合劑,然後再添加水。
依據本發明可提供在將高介電常數樹脂複合材料之介電常數維持在高的狀態之同時,可降低tanδ的絕緣化超微細粉末及其製造方法,以及使用該絕緣化超微細粉末之高介電常數樹脂複合材料。
[實施發明之形態] (1.絕緣化超微細粉末及其製造方法)
本發明之第1絕緣化超微細粉末係藉由將碳材料所構成之導電性超微細粉末分散於含有甲醇之有機溶劑,於該含有甲醇之有機溶劑中添加液態金屬烷氧化物,再添加水而製得。
又,本發明之第2絕緣化超微細粉末係藉由將碳材料所構成之導電性超微細粉末分散於含有甲醇之有機溶劑,於該含有甲醇之有機溶劑中添加液態金屬烷氧化物、再添加有機矽化合物或偶合劑後,再添加水而製得。
以下針對本發明之第1絕緣化超微細粉末及第2絕緣化超微細粉末(以下、將其一倂稱為「本發明之絕緣化超微細粉末」)進行詳細說明。
本發明之導電性超微細粉末係使用在單獨添加至樹脂材料的情況能降低樹脂複合材料之體積電阻,也就是具有賦予導電性之效果者。具體而言係使用天然石墨、人造石墨、爐碳黑、石墨化碳黑、奈米碳管、奈米碳纖維等導電性碳材料。
相對於導電性碳材料,代表性導電體之金屬的超微細粉末除了一部分的貴金屬以外,不僅易於氧化而容易降低導電性,亦有粉塵***的可能。又,金屬原子由超微細粉末擴散至絕緣體介質中,降低樹脂複合材料的絕緣性。相對於此,導電性碳材料沒有此種問題,且碳材料的比重小於2.2,具有其他導電性物質或過去之高介電常數填料所沒有的特長,亦有輕量化高介電常數複合材料的效果。
本發明所使用之導電性超微細粉末舉例為較佳為粒子直徑1nm以上、500nm以下、更佳為5nm以上、300nm以下、進一步更佳為10nm以上、100nm以下之球狀碳材料。如此之球狀碳材料,例如碳黑係藉由將烴原料於氣相熱分解而得。又,石墨化碳黑係在He、CO、或此等混合氣體之氣體環境系統,保持在內壓2~19Torr之減壓容器內,藉由將碳材料以電弧放使其電氣化,將氣化後的碳蒸氣冷卻凝固而得。
具體而言舉例為Tokai Carbon(股)製的Seast S或Toka black# 7100F、導電性碳黑# 5500、# 4500、# 4400、# 4300或石墨化碳黑# 3855、# 3845、# 3800、或三菱化學(股)製的# 3050B、# 3030B、# 3230B、# 3350B、MA7、MA8、MA11、或Lion(股)製的Ketjen black EC、Ketjen black EC600JD等。
又,此處的「球狀」並非一定要是嚴格的球狀、亦可為等方形。例如亦可為有角的多面體狀。又,在不是球狀的情況,「粒子直徑」係表示最小直徑。
又,本發明所使用之導電性超微細粉末舉例為較佳為剖面直徑1nm以上、500nm以下,更佳為5nm以上、300nm以下、進一步更佳為10nm以上、200nm以下之纖維狀碳材料。其長度較佳為剖面直徑的3倍以上、300倍以下。
如此之纖維狀的碳材料,例如奈米碳纖維、奈米碳管係藉由以鈷或鐵作為觸媒之有機金屬化合物與烴原料在氣相混合、加熱而得。又,奈米碳纖維亦有將酚系樹脂融熔紡絲、在非活性氣體環境下加熱而得者。
具體而言舉例為昭和電工(股)製VGCF及VGNF或GSI Creos(股)製的Carbere、群榮化學工業(股)製奈米碳纖維等。
又,此處所謂「纖維狀」表示在單一方向延伸成的形狀,例如方材狀、圓棒狀或長球狀皆可。又,在如方材狀之情況之「剖面直徑」係表示最小直徑。
接著,本發明所使用之導電性超微細粉末舉例為厚度較佳為1nm以上、500nm以下,更佳為5nm以上、300nm以下,進一步更佳為10nm以上、200nm以下之板狀碳材料。其長度及寬度較佳為厚度的3倍以上、300倍以下。
如此之板狀碳材料係藉由例如將天然石墨或人造石墨精製‧粉碎‧分級而得者。例如舉例為SEC CARBON(股)製的SGP系列、SNO系列等,或日本石墨製的鱗狀石墨粉末、薄片化石墨粉末等。又,亦可將該等進一步粉碎、精密分級。
又,此處所謂「板狀」表示在單一方向收縮而成的形狀,例如扁平球狀或鱗片狀皆可。
該粒子直徑、剖面直徑或厚度在前述範圍可防止因量子尺寸效應的導電性降低。又,可容易製造並用於工業用途,藉由凝集等可讓使用性不易降低。且連續層的形成在50vol%以上,也就是在不會惡化樹脂特性之添加率範圍內,可充分形成連續層。
又,在導電性超微細粉末的形狀為纖維狀或板狀的情況,高寬比較佳為3~300。本發明所使用的導電性超微細粉末,其中在纖維狀的情況比球狀或板狀來的好。此係因為在纖維狀的情況,為了形成相對介電常數為20以上的樹脂複合材料的連續層所必要的添加量為例如少至30vol%以下。
又,粒子直徑、剖面直徑、厚度及高寬比係可藉由掃描電子顯微鏡求得。
本發明中藉由將碳材料所構成之導電性超微細粉末分散於含有甲醇之有機溶劑,於該含有甲醇之有機溶劑中添加液態金屬烷氧化物再添加水,而在導電性超微細粉末表面上形成絕緣覆膜。
所謂形成絕緣皮膜所用之液態金屬烷氧化物係在小於甲醇沸點之溫度、也就是若在常壓下小於64.7℃時為液態之金屬烷氧化物。例如,舉例為熔點54℃之四乙氧基鈦。
特佳為在室溫為液體之四丙氧基鈦、四正丁氧基鈦、四正丁氧基鈦二聚物、四-2-乙基己氧基鈦、三乙氧基單丙氧基鈦等的烷氧基鈦;肆二級丁氧基鋯、肆三級丁氧基鋯等烷氧基鋯。
含有甲醇之有機溶劑中的甲醇含量較佳為5重量%以上、更佳為12重量%以上、進一步更佳為20重量%以上、特佳為100重量%。與甲醇一同使用之有機溶劑舉例為乙醇、2-丙醇、丙酮、2-丁酮、四氫呋喃、二甲基甲醯胺、二甲基乙醯胺、N-甲基-2-吡咯啶酮、己烷、甲苯、二甲苯等。
又,含有甲醇之有機溶劑的使用量係依據該有機溶劑中的甲醇量及添加之液態金屬烷氧化物的量而決定。具體而言,所使用之甲醇的量,較佳設為藉由液態金屬烷氧化物的醇取代反應生成甲氧基之固態金屬甲氧化物的生成量,較佳設為液態金屬烷氧化物的4倍(莫耳比)以上之含量。
接著,甲醇係在將碳材料所構成之導電性超微細粉末分散於有機溶劑(例如,先前所述之甲醇以外的有機溶劑),然後在該有機溶劑中添加液態金屬烷氧化物後加入,結果亦可作為含有甲醇之有機溶劑。甲醇可與液態金屬烷氧化物一同加入有機溶劑,或亦可交替的加入有機溶劑中。
本發明中係以有機溶劑的甲醇作為必須成分,此係因利用將液態金屬烷氧化物藉由醇取代反應變成固態,而在導電性超微細粉末表面上形成絕緣覆膜的前驅物(例如四甲氧基鈦),而成為非常重要的成分。再者,藉由添加水來進行水解反應及脫水聚縮合反應,於導電性超微細粉末表面上形成緻密的TiO2 絕緣覆膜。
藉由前述方法形成絕緣覆膜之超微細粉末係在表面殘留有氫氧基。由於此表面氫氧基係伴隨著過濾‧乾燥而脫水縮合,使得絕緣化超微細粉末在絕緣金屬酸化物之皮膜產生交聯。也就是有絕緣化超微細粉末硬化的情況。因此,在對絕緣化超微細粉末施加強大應力與該樹脂材料複合化的情況,例如在使用雙軸押出機等量產的條件下,在與熱塑性樹脂融熔捏合時容易破壞絕緣皮膜,使介電特性不安定化。為了防止這件事,較佳為如本發明之第2絕緣化超微細粉末,以有機矽化合物或偶合劑(特別是具有烷氧基之偶合劑)實施表面處理、疏水化。
本發明之第2絕緣化超微細粉末之製得,首先與第1絕緣化超微細粉末的情形相同,將碳材料所構成之導電性超微細粉末分散於含有甲醇之有機溶劑,於該含有甲醇之有機溶劑中添加液態金屬烷氧化物。其後進一步添加有機矽化合物或偶合劑後,再添加水而製得。
於為了得到本發明之第2絕緣化超微細粉末之反應中,藉由將導電性超微細粉末分散於含有甲醇之有機溶劑中,可在常溫常壓下進行液態金屬烷氧化物與有機矽化合物或偶合劑及水之反應。也就是說,因變得不需要如以往般在TiO2 覆膜等之形成後為了促進反應而添加酸或鹼觸媒、脫水或蒸餾等步驟,可得高生產性之絕緣化超微細粉末。
於本發明中,用於表面處理之有機矽化合物係選自於由烷氧基矽烷、烷氧基矽烷所生成之有機矽烷化合物、聚矽氧烷、改質聚矽氧烷、末端改質聚矽氧烷及氟烷基矽烷所構成之群組之1種或2種以上的化合物。其中,較佳為烷氧基矽烷、氟烷基矽烷、聚矽氧烷。
作為烷氧基矽烷,具體而言舉例為甲基三乙氧基矽烷、二甲基二乙氧基矽烷、苯基三乙氧基矽烷、二苯基二乙氧基矽烷、二甲基二甲氧基矽烷、甲基三甲氧基矽烷、苯基三甲氧基矽烷、二苯基二甲氧基矽烷、異丁基三甲氧基矽烷、癸基三甲氧基矽烷、乙烯基三甲氧基矽烷、乙烯基三乙氧基矽烷、γ-胺丙基三乙氧基矽烷、γ-環氧丙氧基丙基三甲氧基矽烷、γ-巰基丙基三甲氧基矽烷、γ-甲基丙烯醯氧基丙基三甲氧基矽烷、N-β(胺乙基)-γ-胺丙基三甲氧基矽烷、γ-環氧丙氧基丙基甲基二甲氧基矽烷等。
若考慮生成於導電性超微細粉末上之絕緣性金屬氧化物或金屬氫氧化物對皮膜粒子之附著強度,更佳為甲基三乙氧基矽烷、甲基三甲氧基矽烷、二甲基二甲氧基矽烷、異丁基三甲氧基矽烷、苯基三乙氧基矽烷等烷氧基矽烷,或由該烷氧基矽烷生成之有機矽烷化合物。
又,聚矽氧烷可舉出具有甲基氫矽氧烷單元之聚矽氧烷、聚醚改質聚矽氧烷及末端以羧酸改質之末端羧酸改質聚矽氧烷。
氟烷基矽烷具體而言舉例為三氟丙基三甲氧基矽烷、十三氟辛基三甲氧基矽烷、十七氟癸基三甲氧基矽烷、十七氟癸基甲基二甲氧基矽烷、三氟丙基乙氧基矽烷、十三氟辛基三乙氧基矽烷或十七氟癸基三乙氧基矽烷等。
又,使用於表面處理之偶合劑可使用選自於由矽烷系、鈦酸鹽系、鋁酸鹽系及鋯酸鹽系偶合劑所組成之群組之1種或2種以上的偶合劑。
前述偶合劑中,針對矽烷系偶合劑包含先前舉出之有機矽化合物的一部分,也就是烷氧基矽烷,而除了烷氧基矽烷以外的矽烷系偶合劑,舉例為甲基三氯矽烷、苯基三氯矽烷、二甲基二氯矽烷、甲基三氯矽烷、苯基三氯矽烷、二苯基二氯矽烷、異丁基三氯矽烷、癸基三氯矽烷、乙烯基三氯矽烷、乙烯基三氯矽烷、γ-胺丙基三氯矽烷、γ-環氧丙氧基丙基三氯矽烷、γ-巰基丙基三氯矽烷、γ-甲基丙烯醯氧基丙基三氯矽烷、N-β(胺乙基)-γ-胺丙基三氯矽烷等。
鈦酸鹽系偶合劑舉例為異丙基三硬脂基鈦、異丙基參(焦磷酸二辛酯)鈦、異丙基三(N-胺乙基‧胺乙基)鈦、四辛基雙(磷酸雙十三酯)鈦、四(2,2-二烯丙基氧甲基-1-丁基)雙(雙十三基)磷酸酯鈦、雙(焦磷酸二辛酯)氧基乙酸酯鈦、雙(焦磷酸二辛酯)乙烯鈦等。
鋁酸鹽系偶合劑舉例為乙醯烷氧基二異丙酸酯鋁、二異丙氧基單乙醯乙酸乙酯鋁、參乙醯乙酸乙酯鋁、參乙醯丙酮鋁等。
鋯酸鹽系偶合劑舉例為肆乙醯丙酮鋯、二丁氧基雙乙醯丙酮鋯、肆乙醯乙酸乙酯鋯、三丁氧基單乙醯乙酸乙酯鋯、三丁氧基乙醯丙酮鋯等。
表面處理劑的使用量依表面氫氧基量的程度而不同,但相對於100重量份該處理前之絕緣化超微細粉末(也就是第1絕緣化超微細粉末),較佳為0.01~30重量份。若於此範圍內則可將絕緣化超微細粉末充分的分散於樹脂中,又,亦可確保絕緣化超微細粉末與樹脂之密著性。更佳為0.1~25重量份、特佳為1~15重量份。
經過表面處理、過濾‧乾燥後亦可進一步進行燒製處理。燒製處理較佳係藉由在200℃~1000℃之溫度範圍保持30分鐘~24小時來進行。但在導電性超微細粉末為碳材料之情形,燒製氣體環境必須為非氧化性。也就是說必須施予氮氣置換或氬氣置換來阻隔氧氣。
(2.高介電常數樹脂複合材料)
本發明之高介電常數樹脂複合材料係將先前所述之本發明之絕緣化超微細粉末與樹脂以體積比(絕緣化超微細粉末/樹脂)在5/95~50/50的範圍,也就是在5~50vol%的範圍調配本發明之絕緣化超微細粉末而製得。
藉由將本發明之絕緣化超微細粉末以50vol%以下之量調配於樹脂中,可得到相對介電常數為20以上之高介電常數樹脂複合材料。於實現相對介電常數為20以上之高介電常數樹脂複合材料時,在使用過去之高介電常數填料之情形,該填料必須以50vol%以上之程度調配,在使用本發明之絕緣化超微細粉末之情形,調配5~50vol%之該絕緣化超微細粉末即可。從而,調配本發明之絕緣化超微細粉末而成之樹脂複合材料不會損害樹脂材料原本之特長之成型加工性或輕量性,展現高介電常數。
又,於本發明中,添加前述絕緣化超微細粉末之樹脂成分雖可為熱塑性樹脂及熱硬化性樹脂的任一者,但較佳為熱塑性樹脂。
熱塑性樹脂可舉出聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯、聚乙酸乙烯酯、ABS樹脂、AS樹脂、丙烯酸樹脂等通用塑膠、聚縮醛、聚醯胺、聚碳酸酯、改質聚苯醚、聚對苯二甲酸丁二酯等工程塑料(engineering plastic)、聚芳酯、聚碸、聚苯基硫醚、聚醚碸、聚醚醚酮、聚醯亞胺樹脂、氟樹脂、聚醯胺醯亞胺等超級工程塑料(super engineering plastic)。此等之中,由低介電正切(dielectric tangent)且良好之射出成形性的觀點來看,較佳為聚丙烯、聚苯乙烯、改質聚苯醚、聚對苯二甲酸丁二酯、聚苯基硫醚之任一者。
熱硬化性樹脂舉例為酚樹脂、胺樹脂(脲樹脂、三聚氰胺樹脂、苯胍樹脂)、不飽和聚酯樹脂、鄰苯二甲酸二烯丙酯樹脂(烯丙樹脂)、酸醇樹脂、環氧樹脂、聚胺酯樹脂(聚胺酯)、矽樹脂(聚矽氧)等。
本發明之高介電常數樹脂複合材料在高介電常數以外之目的,可依需要進一步添加填充劑使用。填充劑舉例為為了改善彈性率之玻璃纖維、為了降低成形收縮率之碳酸鈣、用於改善表面平滑性或耐摩耗性之滑石、為了改善尺寸安定性所使用之雲母。又,作為賦予阻燃性之填充劑,也就是阻燃劑,可舉出鹵素系或磷系阻燃劑、氫氧化鋁、氫氧化鎂。
又,在使用作為電波吸收材料之情形,於電波吸收特性調整時,可進一步使用於先前技術之亞鐵酸鹽粉末或以鐵作為主成分之磁性金屬粉末、或者碳系或氧化錫系的導電性粉末、或亦具有作為阻燃劑之效果的導電性粉末之膨脹石墨粉末等作為填充劑添加。
於本發明中,相對於絕緣化超微細粉末之樹脂組成物的添加量如先前所述為5~50vol%,但較佳為5~30vol%。若少於5vol%則在樹脂組成物中未形成連續層,無法得到足夠的相對介電常數。另一方面,若大於50vol%則會損害樹脂組成物原本的加工性等。
本發明之高介電常數樹脂複合材料因在絕緣化超微細粉末的原料中使用碳材料,其比重可輕量化至2以下。
在將本發明之高介電常數樹脂複合材料用於天線基板之情形,該高介電常數樹脂複合材料之相對介電常數較佳為20以上。且,在如此之高介電常數樹脂複合材料的1μm以上、3mm以下之層,更具體而言係在以1μm~100μm之厚度成形之薄膜或以100μm~3mm之厚度成形之薄片的至少一者的表面設置配線圖案,可形成天線基板。
又,依需要亦可在高介電常數樹脂複合材料之薄膜或薄片設置通孔。
於將本發明之高介電常數樹脂複合材料使用在非接觸型IC卡/標籤之情形,亦可於天線基板的配線圖案將IC直接配線,亦可讓IC與內建之卡/標籤與天線基板接觸,作為助力天線(booster antenna)利用。又,在將高介電常數樹脂複合材料之薄膜或薄片用作為天線基板或非接觸IC卡使用之情形,亦可依需要貼附保護膜等。
藉由將本發明之絕緣化超微細粉末以5vol%以上、50vol%以下的量調配於樹脂,可得到相對介電常數為20以上之電波吸收材料。在實現相對介電常數20以上之電波吸收材料,而使用過去之高介電常數填料之情形,該填料需要以50vol%以上之程度調配,但在使用本發明之絕緣化超微細粉末的情形,調配50vol%以下、例如5~50vol%之該絕緣化超微細粉末即可。從而,調配本發明之絕緣化超微細粉末而成之樹脂複合材料不會損害樹脂材料原本之特長之成型加工性或輕量性,展現高介電常數。
使用如此之本發明的高介電常數樹脂複合材料的電波吸收材料,由於具有高介電常數,在經薄片化的情形,相對於吸收之電波的波長,厚度可為1/20以下。又,使用本發明之高介電常數樹脂複合材料的電波吸收材料,可使用在機器外殼的內部,作為電子儀器顯示優秀之性能。再者,因在絕緣化超微細粉末的原料中使用碳材料,電波吸收材料之比重可降低到2以下,可謀取更進一步的輕量化。
[實施例]
接下來藉由實施例進一步詳細的說明本發明,但本發明並非限定於此等實例。
又,相對介電常數之測定係將樹脂複合材料成形為30mmΦ 、厚度3mm之碟片、使用阻抗分析儀(Agilent公司製4294A)於室溫以1MHz測定。
(絕緣化超微細粉末之合成方法1)
使用2L玻璃製反應容器,於800重量份甲醇中添加100重量份碳黑(球狀體粒子直徑50~100nm、平均粒徑40nm)與100重量份四丙氧基鈦,在30℃攪拌混合1小時。接著,添加10重量份苯基三甲氧基矽烷、混合30分鐘。接著花費30分鐘滴入30重量份蒸餾水、攪拌2小時,得到以TiO2 絕緣化之碳黑粒子/甲醇分散液。接著藉由將使用減壓過濾瓶固液分離之濕餅使用減壓乾燥器乾燥,得到以TiO2 絕緣化之碳黑粒子(絕緣化超微細粉末)。藉由掃描穿透電子顯微鏡(Hitachi High-Tech Co.(股)製HD-2300)以倍率40萬倍觀察該絕緣化超微細粉末後,確認於碳黑表面形成TiO2 覆膜。其覆膜狀態係平滑,可推知係緻密之覆膜。(第1圖)。
(絕緣化超微細粉末之合成方法2)
除了在粒子合成方法1中使用甲醇/2-丁醇(100重量份/700重量份)之混合溶劑以外,同樣的進行合成,得到以TiO2 絕緣化之碳黑粒子(絕緣化超微細粉末)。
(絕緣化超微細粉末之合成方法3)
使用2L玻璃製反應容器,於800重量份異丙醇中添加100重量份碳黑(球狀體粒子直徑50~100nm、平均粒徑40nm)與100重量份四丙氧基鈦,於30℃攪拌混合1小時。接著,添加10重量份苯基三甲氧基矽烷、混合30分鐘。接著花費30分鐘滴入30重量份蒸餾水、攪拌2小時,得到以TiO2 絕緣化之碳黑粒子/異丙醇分散液。接著,藉由將使用減壓過濾瓶而固液分離之濕餅使用減壓乾燥器乾燥,得到以TiO2 絕緣化之碳黑粒子(絕緣化超微細粉末)。藉由掃描穿透電子顯微鏡(Hitachi High-Tech Co.(股)製HD-2300)以倍率40萬倍觀察該絕緣化超微細粉末,在碳黑表面確認形成TiO2 覆膜。但其覆膜狀態有許多凹凸,可推知空隙之存在。(第2圖)。
(絕緣化超微細粉末之合成方法4)
使用奈米碳纖維(剖面直徑150nm、長度5~6μm之纖維狀)取代粒子合成方法1之碳黑,同樣的進行合成,得到以TiO2 絕緣化之奈米碳纖維粒子(絕緣化超微細粉末)。
(絕緣化超微細粉末之合成方法5)
使用天然石墨(厚度100~200nm、平均厚度150nm、1~3平方微米、平均2平方微米的板狀)取代粒子合成方法1之碳黑,同樣的進行合成,得到以TiO2 絕緣化之天然石墨粒子(絕緣化超微細粉末)。
(絕緣化超微細粉末之合成方法6)
除了使用肆三級丁氧基鋯取代粒子合成方法1之四丙氧基鈦以外,同樣的合成粒子,得到以ZrO2 絕緣化之碳黑粒子(絕緣化超微細粉末)。
(實施例1)
將以絕緣化超微細粉末之合成方法1製得之絕緣化超微細粉末與聚苯基硫醚(PPS),以使絕緣化超微細粉末/PPS的體積比=25/75的方式在融熔捏合機中以300℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為25、介電正切為0.01。又,樹脂複合材料之比重為1.49。
(實施例2)
除了絕緣化超微細粉末/PPS的體積比=20/80以外,與實施例1同樣的在融熔捏合機中以300℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為20、介電正切為0.006。又,樹脂複合材料之比重為1.46。
(實施例3)
除了絕緣化超微細粉末/PPS的體積比=30/70以外,與實施例1同樣的在融熔捏合機中以300℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為40、介電正切為0.02。又,樹脂複合材料之比重為1.52。
(實施例4)
除了使用以絕緣化超微細粉末之合成方法2合成之粒子以外,與實施例3同樣的在融熔捏合機中以300℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為39、介電正切為0.02。又,樹脂複合材料之比重為1.52。
(比較例1)
除了使用以絕緣化超微細粉末之合成方法3合成之粒子以外,與實施例3同樣的在融熔捏合機中以300℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為39、介電正切為0.04。又,樹脂複合材料之比重為1.52。
(實施例5)
除了使用以絕緣化超微細粉末之合成方法4合成之粒子以外,與實施例1同樣的在融熔捏合機中以300℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為28、介電正切為0.01。又,樹脂複合材料之比重為1.45。
(實施例6)
除了使用以絕緣化超微細粉末之合成方法5合成之粒子以外,與實施例1同樣的在融熔捏合機中以300℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為25、介電正切為0.008。又,樹脂複合材料之比重為1.45。
(實施例7)
除了使用以絕緣化超微細粉末之合成方法6合成之粒子以外,與實施例1同樣的在融熔捏合機中以300℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為26、介電正切為0.012。又,樹脂複合材料之比重為1.49。
(實施例8)
將以絕緣化超微細粉末之合成方法1製得之絕緣化超微細粉末與聚苯醚(PPE)及聚苯乙烯(PS)、以使絕緣化超微細粉末/PPE/PS的體積比=25/37.5/37.5的方式在融熔捏合機中以270℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為15、介電正切為0.008。又,樹脂複合材料之比重為1.24。
(實施例9)
除了絕緣化超微細粉末/PPE/PS的體積比=20/40/40以外,與實施例8同樣的在融熔捏合機中以270℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為12、介電正切為0.005。又,樹脂複合材料之比重為1.2。
(實施例10)
除了絕緣化超微細粉末/PPE/PS的體積比=30/35/35以外,與實施例8同樣的在融熔捏合機中以270℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為18、介電正切為0.011。又,樹脂複合材料之比重為1.29。
(實施例11)
除了使用以絕緣化超微細粉末之合成方法2合成之粒子以外,與實施例8同樣的在融熔捏合機中以270℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為11、介電正切為0.005。又,樹脂複合材料之比重為1.2。
(比較例2)
除了使用以絕緣化超微細粉末之合成方法3合成之粒子以外,與實施例8同樣的在融熔捏合機中以270℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為11、介電正切為0.04。又,樹脂複合材料之比重為1.2。
(實施例12)
除了使用以絕緣化超微細粉末之合成方法4合成之子以外,與實施例8同樣的在融熔捏合機中以270℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為10、介電正切為0.005。又,樹脂複合材料之比重為1.21。
(實施例13)
將以絕緣化超微細粉末之合成方法1得到的絕緣化超微細粉末與聚對苯二甲酸丁二酯(PBT),以使絕緣化超微細粉末/PBT的體積比=25/75的方式在融熔捏合機中以270℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為16、介電正切為0.01。又,樹脂複合材料之比重為1.45。
(實施例14)
除了絕緣化超微細粉末/PBT的體積比=20/80以外,與實施例13同樣的在融熔捏合機中以270℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為13、介電正切為0.008。又,樹脂複合材料之比重為1.29。
(實施例15)
除了絕緣化超微細粉末/PBT的體積比=30/70以外,與實施例13同樣的在融熔捏合機中以270℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為20、介電正切為0.015。又,樹脂複合材料之比重為1.53。
(實施例16)
將以絕緣化超微細粉末之合成方法1得到的絕緣化超微細粉末與聚丙烯(PP),以使絕緣化超微細粉末/PP的體積比=25/75的方式在融熔捏合機中以220℃融熔捏合,得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為12、介電正切為0.008。又,樹脂複合材料之比重為1.07。
(實施例17)
除了絕緣化超微細粉末/PP的體積比=20/80以外,與實施例16同樣的在融熔捏合機中以220℃融熔捏合得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為10、介電正切為0.007。又,樹脂複合材料之比重為1.05。
(實施例18)
除了絕緣化超微細粉末/PP的體積比=30/70以外,與實施例16同樣的在融熔捏合機中以220℃融熔捏合得到丸粒化之樹脂複合材料。
以1MHz測定介電常數後,相對介電常數為14、介電正切為0.009。又,樹脂複合材料之比重為1.12。
第1圖係依據絕緣化超微細粉末之合成方法1所製得之絕緣化超微細粉末的掃描電子顯微鏡照片。
第2圖係依據絕緣化超微細粉末之合成方法3所製得之絕緣化超微細粉末的掃描電子顯微鏡照片。

Claims (14)

  1. 一種絕緣化超微細粉末,其係包含由碳材料所構成之導電性超微細粉末與絕緣覆膜之超微細粉末,該絕緣覆膜係藉由於將該導電性超微細粉末分散而得之含有甲醇之有機溶劑中添加液態金屬烷氧化物,再添加水,而在該導電性超微細粉末的表面上形成。
  2. 一種絕緣化超微細粉末,其係包含由碳材料所構成之導電性超微細粉末與絕緣覆膜之超微細粉末,該絕緣覆膜係藉由於將該導電性超微細粉末分散而得之含有甲醇之有機溶劑中添加液態金屬烷氧化物,再添加有機矽化合物或偶合劑,然後再添加水,而在該導電性超微細粉末的表面上形成。
  3. 如申請專利範圍第1或第2項所記載之絕緣化超微細粉末,其中該由碳材料所構成之導電性超微細粉末之剖面直徑係1nm以上500nm以下。
  4. 如申請專利範圍第1或第2項所記載之絕緣化超微細粉末,其中構成該導電性超微細粉末之碳材料係奈米碳纖維、天然石墨、碳黑、奈米碳管或人造石墨。
  5. 如申請專利範圍第1或第2項所記載之絕緣化超微細粉末,其中該液態金屬烷氧化物的構成金屬元素係至少包含Ti及Zr之任一種。
  6. 如申請專利範圍第2項所記載之絕緣化超微細粉末,其中該偶合劑係矽烷系偶合劑。
  7. 一種高介電常數樹脂複合材料,其係將如申請專利範圍第1或第2項所記載之絕緣化超微細粉末與樹脂以體積比(絕緣化超微細粉末/樹脂)在5/95~50/50的範圍調配而製得。
  8. 如申請專利範圍第7項所記載之高介電常數樹脂複合材料,其中該樹脂係熱塑性樹脂。
  9. 如申請專利範圍第7項所記載之高介電常數樹脂複合材料,其中該樹脂係聚丙烯、聚苯乙烯、改質聚苯醚、聚對苯二甲酸丁二酯及聚苯基硫醚之任一者。
  10. 如申請專利範圍第7項所記載之高介電常數樹脂複合材料,該高介電常數樹脂複合材料的比重係2以下。
  11. 如申請專利範圍第7項所記載之高介電常數樹脂複合材料,該高誘電率樹脂複合材料係進一步含有填料。
  12. 如申請專利範圍第7項所記載之高介電常數樹脂複合材料,該高介電常數樹脂複合材料的相對介電常數係10以上。
  13. 一種超絕緣化超微細粉末的製造方法,其係藉由於將由碳材料所構成之導電性超微細粉末分散而得之含有甲醇之有機溶劑中添加液態金屬烷氧化物、再添加水,而在該導電性超微細粉末的表面上形成絕緣覆膜。
  14. 一種超絕緣化超微細粉末的製造方法,其係藉由於將由碳材料所構成之導電性超微細粉末分散而得之含有甲醇之有機溶劑中添加液態金屬烷氧化物,再添加具有烷氧 基的偶合劑,然後再添加水,而在該導電性超微細粉末的表面上形成絕緣覆膜。
TW099124471A 2009-07-28 2010-07-26 絕緣化超微細粉末及其製造方法、以及高介電常數樹脂複合材料 TWI488904B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009175196 2009-07-28
JP2010029291A JP5644130B2 (ja) 2009-07-28 2010-02-12 絶縁化超微粉末およびその製造方法、並びに高誘電率樹脂複合材料

Publications (2)

Publication Number Publication Date
TW201114827A TW201114827A (en) 2011-05-01
TWI488904B true TWI488904B (zh) 2015-06-21

Family

ID=43529162

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099124471A TWI488904B (zh) 2009-07-28 2010-07-26 絕緣化超微細粉末及其製造方法、以及高介電常數樹脂複合材料

Country Status (7)

Country Link
US (2) US9315673B2 (zh)
EP (1) EP2460765B1 (zh)
JP (1) JP5644130B2 (zh)
KR (1) KR101737145B1 (zh)
CN (1) CN102471066B (zh)
TW (1) TWI488904B (zh)
WO (1) WO2011013501A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013021831A1 (ja) * 2011-08-10 2015-03-05 三菱瓦斯化学株式会社 高誘電率な樹脂複合材料、及びその製造方法
CN103865496B (zh) * 2012-12-14 2017-09-19 深圳市百柔新材料技术有限公司 一种绝缘导热粉体、材料及其制备方法
JP6201456B2 (ja) * 2013-06-28 2017-09-27 Dic株式会社 ポリアリーレンスルフィド樹脂組成物、成形体およびそれらの製造方法
JP6348694B2 (ja) * 2013-09-03 2018-06-27 山陽特殊製鋼株式会社 磁性部材用絶縁被覆粉末
JP6051128B2 (ja) * 2013-09-03 2016-12-27 山陽特殊製鋼株式会社 磁性部材用絶縁被覆粉末
US9394421B2 (en) * 2013-10-02 2016-07-19 Xerox Corporation Method of manufacture for graphene fluoropolymer dispersion
CN105419301A (zh) * 2014-09-11 2016-03-23 北京廊桥材料技术有限公司 复合导热填料及其制造方法
US9809489B2 (en) * 2014-09-12 2017-11-07 Jsr Corporation Composition for forming a conductive film, a conductive film, a method for producing a plating film, a plating film, and an electronic device
KR101663821B1 (ko) * 2015-01-05 2016-10-07 (주) 브이에스아이 고출력 전계방출 에미터용 카본나노튜브 페이스트 및 이의 제조방법
WO2015166666A2 (en) 2015-08-24 2015-11-05 Sumitomo Chemical Company, Limited Injection-molded article for packaging material, injection-molded article for automotive part, industrial film, and food packaging film
CN110894069A (zh) * 2019-11-21 2020-03-20 陆树 一种用于提高纳米材料电性能的改性剂,及其制备方法
CN114410111A (zh) * 2022-01-26 2022-04-29 四川轻化工大学 一种石墨化多壁碳纳米管提高复合薄膜介电常数的方法
WO2024054531A1 (en) * 2022-09-07 2024-03-14 Birla Carbon U.S.A. Near-infrared reflective carbon black

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168846A (ja) * 2002-11-19 2004-06-17 Asahi Glass Co Ltd 複合微粒子およびその製造方法
WO2004100180A1 (ja) * 2003-05-09 2004-11-18 Matsushita Electric Industrial Co., Ltd. 複合誘電体及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115800A (en) 1978-03-01 1979-09-08 Showa Electric Wire & Cable Co Preparation of composition with high dielectric constant
JP2001237507A (ja) 2000-02-24 2001-08-31 Ngk Spark Plug Co Ltd 高誘電率複合材料及びそれを用いたプリント配線板並びに多層プリント配線板
US7264876B2 (en) 2000-08-24 2007-09-04 William Marsh Rice University Polymer-wrapped single wall carbon nanotubes
EP1231637A3 (en) 2001-02-08 2004-08-25 Hitachi, Ltd. High dielectric constant composite material and multilayer wiring board using the same
AU2003261909A1 (en) * 2002-09-05 2004-03-29 National Institute Of Advanced Industrial Science And Technology Carbon fine powder coated with metal oxide, metal nitride or metal carbide, process for producing the same, and supercapacitor and secondary battery using the carbon fine powder
JP4867130B2 (ja) 2003-02-17 2012-02-01 三菱瓦斯化学株式会社 絶縁化超微粉末とその製造方法、およびそれを用いた高誘電率樹脂複合材料
WO2006013947A1 (ja) * 2004-08-06 2006-02-09 Mitsubishi Gas Chemical Company, Inc. 絶縁化超微粉末および高誘電率樹脂複合材料
JP2006057005A (ja) * 2004-08-20 2006-03-02 Sumitomo Chemical Co Ltd 高熱伝導性の樹脂成形体
JP5092341B2 (ja) * 2006-10-12 2012-12-05 三菱瓦斯化学株式会社 絶縁化超微粉末および高誘電率樹脂複合材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168846A (ja) * 2002-11-19 2004-06-17 Asahi Glass Co Ltd 複合微粒子およびその製造方法
WO2004100180A1 (ja) * 2003-05-09 2004-11-18 Matsushita Electric Industrial Co., Ltd. 複合誘電体及びその製造方法

Also Published As

Publication number Publication date
TW201114827A (en) 2011-05-01
US20140170305A1 (en) 2014-06-19
JP2011049141A (ja) 2011-03-10
EP2460765A4 (en) 2013-04-17
WO2011013501A1 (ja) 2011-02-03
US9394447B2 (en) 2016-07-19
CN102471066B (zh) 2015-04-29
JP5644130B2 (ja) 2014-12-24
US9315673B2 (en) 2016-04-19
KR20120053496A (ko) 2012-05-25
US20120142836A1 (en) 2012-06-07
EP2460765B1 (en) 2018-06-06
CN102471066A (zh) 2012-05-23
EP2460765A1 (en) 2012-06-06
KR101737145B1 (ko) 2017-05-17

Similar Documents

Publication Publication Date Title
TWI488904B (zh) 絕緣化超微細粉末及其製造方法、以及高介電常數樹脂複合材料
Wu et al. Core-satellite BaTiO 3@ SrTiO 3 assemblies for a local compositionally graded relaxor ferroelectric capacitor with enhanced energy storage density and high energy efficiency
JP5092341B2 (ja) 絶縁化超微粉末および高誘電率樹脂複合材料
US20190166733A1 (en) Two-dimensional metal carbide, nitride, and carbonitride films and composites for emi shielding
EP1788040B1 (en) Insulated ultrafine powder and high dielectric constant resin composite material
Yue et al. Significantly enhanced dielectric constant and energy storage properties in polyimide/reduced BaTiO 3 composite films with excellent thermal stability
WO2013021831A1 (ja) 高誘電率な樹脂複合材料、及びその製造方法
JP2010028179A (ja) 近距離通信用アンテナフィルム
Gao et al. Improved dielectric properties of poly (arylene ether nitrile) with sulfonated poly (arylene ether nitrile) modified CaCu3Ti4O12
US11017917B2 (en) Dielectric composite containing dispersed primary nanoparticles of aluminum or aluminum oxide
JP4977976B2 (ja) 絶縁化超微粉末および高誘電率樹脂複合材料
JP2008022416A (ja) 高誘電体を用いたアンテナ
KR101133057B1 (ko) 고유전 복합 조성물
JP2009017142A (ja) 誘電特性を用いたノイズ抑制材料およびノイズ抑制フィルム
JP2010021841A (ja) 樹脂複合材料を用いた地上波デジタルテレビ放送用アンテナ
JP2009049263A (ja) ノイズ抑制フィルムおよびその製造方法
JP2009001702A (ja) ノイズ抑制樹脂複合材料
Panomsuwan et al. Synthesis of polybenzoxazine and nano-barium titanate for a novel composite
JP2009016506A (ja) 誘電特性を用いたノイズ抑制体
JP2009159392A (ja) 近距離通信用icチップを搭載した携帯情報端末
JP2010155914A (ja) プリプレグ及びその製造方法、積層板、プリント配線板
JP2012036307A (ja) プリプレグ
JP2009111303A (ja) ノイズ抑制材料

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees