TWI479184B - 可攜式電子裝置與其光學成像鏡頭 - Google Patents

可攜式電子裝置與其光學成像鏡頭 Download PDF

Info

Publication number
TWI479184B
TWI479184B TW102128742A TW102128742A TWI479184B TW I479184 B TWI479184 B TW I479184B TW 102128742 A TW102128742 A TW 102128742A TW 102128742 A TW102128742 A TW 102128742A TW I479184 B TWI479184 B TW I479184B
Authority
TW
Taiwan
Prior art keywords
lens
optical imaging
optical axis
imaging lens
optical
Prior art date
Application number
TW102128742A
Other languages
English (en)
Other versions
TW201409069A (zh
Inventor
林家正
樊大正
張加欣
Original Assignee
玉晶光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 玉晶光電股份有限公司 filed Critical 玉晶光電股份有限公司
Publication of TW201409069A publication Critical patent/TW201409069A/zh
Application granted granted Critical
Publication of TWI479184B publication Critical patent/TWI479184B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

可攜式電子裝置與其光學成像鏡頭
本發明乃是與一種可攜式電子裝置與其光學成像鏡頭相關,且尤其是與應用五片式透鏡之可攜式電子裝置與其光學成像鏡頭相關。
近年來,行動電話之小型化、薄型化已成為設計趨勢,而此一趨勢連帶影響了相關光學成像鏡頭的發展;如何能夠有效縮減光學鏡頭之系統長度,同時仍能夠維持足夠之光學性能,一直是業界努力之研發方向。
US7502181、US7826151以及US8422145都揭露了一種由五片透鏡所組成之光學鏡頭,然而這些專利之光圈是設於第一透鏡之前,且第一透鏡及第二透鏡之屈光率為正負配置,此種光學設計之半視角(HFOV;half of field of view)僅約32~33度,無法滿足日益嚴苛之使用者需求,且該等光學設計之系統長度分別為6.5~8.0mm,也無法滿足行動電話薄型化之設計需求。
因此如何能夠有效縮減光學鏡頭之系統長度,同時仍能夠維持足夠之光學性能,一直是業界亟待解決之課題。
本發明之一目的係在提供一種可攜式電子裝置與其光學成像鏡頭,透過控制各透鏡的凹凸曲面排列及/或屈光率配置等特性,並控制參數滿足至少一與第二透鏡在光軸上的厚度相關的條件式,而在維持良好光學性能並維持系統性能之條件下,縮短系統長度。
一種光學成像鏡頭,從物側至像側沿一光軸依序包括一第一 透鏡、一光圈、一第二透鏡、一第三透鏡、一第四透鏡及一第五透鏡,每一透鏡具有一朝向物側的物側面及一朝向像側的像側面,且每一透鏡具有屈光率。第一透鏡之物側面為一凸面,第二透鏡具有正屈光率,且第五透鏡之該像側面包括一位於光軸附近區域的凹面部及一位於圓周附近區域的凸面部。光學成像鏡頭並滿足至少一與第二透鏡在光軸上的厚度相關的條件式,如下列條件式之任一:T2/AG23≦2.5 條件式(1),T2/T3≦1.2 條件式(2),或T2/AG12≦5.3 條件式(3),T2為第二透鏡在光軸上的厚度,T3為第三透鏡在光軸上的厚度,AG12為第一透鏡與第二透鏡之間在光軸上的空氣間隙寬度,AG23為第二透鏡與第三透鏡之間在光軸上的空氣間隙寬度。
第二透鏡提供了光學成像鏡頭整體所需之正屈光率,一般中心厚度通常較厚,而設計者如能朝向薄型化之方式來設計,應可更效地達到縮短鏡頭整體長度的效果,且可使其厚度與兩側之間隙值,包含AG12及AG23,獲得良好的配置。
其次,本發明可選擇性地控制部分參數之比值滿足其他條件式,如:控制T3與第四透鏡在光軸上的厚度(以T4表示)滿足T4/T3≦1.8 條件式(4);或者是控制第一透鏡至該第五透鏡在光軸上的五片鏡片厚度總和(以ALT表示)與第一透鏡與該第五透鏡之間四個空氣間隙在光軸上的寬度總和(以AAG表示)滿足ALT/AAG≦3.5 條件式(5);或者是控制AG23及第五透鏡在光軸上的厚度(以T5表示)滿足T5/AG23≦2.0 條件式(6);或者是控制T4與AG23滿足T4/AG23≦4.0 條件式(7); 或者是控制AG23與ALT滿足ALT/AG23≦10.0 條件式(8);或者是控制AAG、第三透鏡與第四透鏡之間在光軸上的空氣間隙寬度(以AG34表示)與第四透鏡與第五透鏡之間在光軸上的空氣間隙寬度(以AG45表示)滿足4.5≦AAG/(AG34+AG45) 條件式(9);或者是控制AG12與第一透鏡在光軸上的厚度(以T1表示)滿足T1/AG12≦2.8 條件式(10);或0.4≦T1/AG12≦2.8 條件式(10');或者是控制T4與AG12滿足T4/AG12≦2.0 條件式(11);或者是控制T3與ALT滿足3.5≦ALT/T3≦6.0 條件式(12);或者是控制T4與T5滿足0.8≦T5/T4 條件式(13);或者是控制AAG與T4滿足1.7≦AAG/T4 條件式(14)。
前述所列之示例性限定條件式亦可任意選擇性地合併施用於本發明之實施態樣中,並不限於此。
在實施本發明時,除了上述條件式之外,亦可針對單一透鏡或廣泛性地針對多個透鏡額外設計出其他更多的透鏡的凹凸曲面排列等細部結構及/或屈光率的限定條件,以加強對系統性能及/或解析度的控制。舉例來說,第二透鏡的物側面可額外形成一位於圓周附近區域的凹面部、第三透鏡的物側面可額外形成一位於光軸附近區域的凹面部、第四透鏡的物側面可額外形成一位於光軸附近區域的凸面部、及/或第五透鏡可具有正屈光率等。須注意的是,此些細部結構及/或屈光率等特性需在無衝突之情況之下,選擇性地合併施用於本發明之其他實施例當中。
本發明可依據前述之各種光學成像鏡頭,提供一種可攜式電 子裝置,包括:一機殼及一影像模組安裝於該機殼內。影像模組包括依據本發明之任一光學成像鏡頭、一鏡筒、一模組後座單元、一基板及一影像感測器。鏡筒俾供設置光學成像鏡頭,模組後座單元俾供設置鏡筒,基板俾供設置模組後座單元,影像感測器是設置於基板並位於光學成像鏡頭的像側。
由上述中可以得知,本發明之可攜式電子裝置與其光學成像鏡頭,透過控制各透鏡的凹凸曲面排列及/或屈光率等設計,並控制參數滿足至少一與第二透鏡在光軸上的厚度相關的條件式,以維持良好光學性能,並有效縮短鏡頭長度。
1,2,3,4,5,6,7,8,9,10,11‧‧‧光學成像鏡頭
20,20'‧‧‧可攜式電子裝置
21‧‧‧機殼
22‧‧‧影像模組
23‧‧‧鏡筒
24‧‧‧模組後座單元
100,200,300,400,500,600,700,800,900,1000,1100‧‧‧光圈
110,210,310,410,510,610,710,810,910,1010,1110‧‧‧第一透鏡
111,121,131,141,151,161,211,221,231,241,251,261,311,321,331,341,351,361,411,421,431,441,451,461,511,521,531,541,551,561,611,621,631,641,651,661,711,721,731,741,751,761,811,821,831,841,851,861,911,921,931,941,951,961,1011,1021,1031,1041,1051,1061,1111,1121,1131,1141,1151,1161‧‧‧物側面
112,122,132,142,152,162,212,222,232,242,252,262,312,322,332,342,352,362,412,422,432,442,452,462,512,522,532,542,552,562,612,622,632,642,652,662,712,722,732,742,752,762,812,822,832,842,852,862,912,922,932,942,952,962,1012,1022,1032,1042,1052,1062,1112,1122,1132,1142,1152,1162‧‧‧像側面
120,220,320,420,520,620,720,820,920,1020,1120‧‧‧第二透鏡
130,230,330,430,530,630,730,830,930,1030,1130‧‧‧第三透 鏡
140,240,340,440,540,640,740,840,940,1040,1140‧‧‧第四透鏡
150,250,350,450,550,650,750,850,950,1050,1150‧‧‧第五透鏡
160,260,360,460,560,660,760,860,960,1060,1160‧‧‧濾光件
170,270,370,470,570,670,770,870,970,1070,1170‧‧‧成像面
171‧‧‧影像感測器
172‧‧‧基板
2401‧‧‧鏡頭後座
2402‧‧‧第一座體單元
2403‧‧‧第二座體單元
2404‧‧‧線圈
2405‧‧‧磁性元件
2406‧‧‧影像感測器後座
1211,1321,1411,1511,2211,2321,2411,2511,3211,3321,3411,3511,4211,4321,4411,4511,5211,5321,5411,5511,6321,6511,7321,7411,7511,8411,8511,9411,9511,10211,10321,10411,10511,11211,11321,11411,11511‧‧‧位於光軸附近區域的凸面部
1212,1412,1512,2212,2412,2512,3212,3412,3512,4212,4412,4512,5212,5412,5512,6512,7412,7512,8321,8412,8512,9321,9412,10212,10412,10512,11212,11412,11512‧‧‧位於圓周附近區域的凹面部
1311,1421,1521,2311,2421,2521,3311,3421,3521,4311,4421,4521,5311,5421,5521,6311,6411,6421,6521,7421,7521,8211,8311,8421,8521,9211,9311,9421,9521,10311,10421,10521,11311,11421,11521‧‧‧位於光軸附近區域的凹面部
1422,1522,2422,2522,3422,3522,4422,4522,5422,5522,6422, 6522,7211,7311,7422,7522,8422,8522,9422,9512,9522,10422,10522,11422,11522‧‧‧位於圓周附近區域的凸面部
9513‧‧‧位於光軸附近區域及圓周附近區域之間的凹面部
d1,d2,d3,d4,d5,d6‧‧‧空氣間隙
A1‧‧‧物側
A2‧‧‧像側
I‧‧‧光軸
I-I'‧‧‧軸線
A,B,C,E‧‧‧區域
第1圖顯示依據本發明之一實施例之一透鏡之剖面結構示意圖。
第2圖顯示依據本發明之第一實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖。
第3圖顯示依據本發明之第一實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖。
第4圖顯示依據本發明之第一實施例光學成像鏡頭之各鏡片之詳細光學數據。
第5圖顯示依據本發明之第一實施例之光學成像鏡頭之非球面數據。
第6圖顯示依據本發明之第二實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖。
第7圖顯示依據本發明之第二實施例光學成像鏡頭之縱向球差與各項像差圖示意圖。
第8圖顯示依據本發明之第二實施例之光學成像鏡頭之各鏡片之詳細光學數據。
第9圖顯示依據本發明之第二實施例之光學成像鏡頭之非球面數據。
第10圖顯示依據本發明之第三實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖。
第11圖顯示依據本發明之第三實施例光學成像鏡頭之縱向球差與各項像差圖示意圖。
第12圖顯示依據本發明之第三實施例之光學成像鏡頭之各鏡片之詳細光學數據。
第13圖顯示依據本發明之第三實施例之光學成像鏡頭之非球面數據。
第14圖顯示依據本發明之第四實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖。
第15圖顯示依據本發明之第四實施例光學成像鏡頭之縱向球差與各項像差圖示意圖。
第16圖顯示依據本發明之第四實施例之光學成像鏡頭之各鏡片之詳細光學數據。
第17圖顯示依據本發明之第四實施例之光學成像鏡頭之非球面數據。
第18圖顯示依據本發明之第五實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖。
第19圖顯示依據本發明之第五實施例光學成像鏡頭之縱向球差與各項像差圖示意圖。
第20圖顯示依據本發明之第五實施例之光學成像鏡頭之各鏡片之詳細光學數據。
第21圖顯示依據本發明之第五實施例之光學成像鏡頭之非球面數據。
第22圖顯示依據本發明之第六實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖。
第23圖顯示依據本發明之第六實施例光學成像鏡頭之縱向球差與各項像差圖示意圖。
第24圖顯示依據本發明之第六實施例之光學成像鏡頭之各 鏡片之詳細光學數據。
第25圖顯示依據本發明之第六實施例之光學成像鏡頭之非球面數據。
第26圖顯示依據本發明之第七實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖。
第27圖顯示依據本發明之第七實施例光學成像鏡頭之縱向球差與各項像差圖示意圖。
第28圖顯示依據本發明之第七實施例之光學成像鏡頭之各鏡片之詳細光學數據。
第29圖顯示依據本發明之第七實施例之光學成像鏡頭之非球面數據。
第30圖顯示依據本發明之第八實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖。
第31圖顯示依據本發明之第八實施例光學成像鏡頭之縱向球差與各項像差圖示意圖。
第32圖顯示依據本發明之第八實施例之光學成像鏡頭之各鏡片之詳細光學數據。
第33圖顯示依據本發明之第八實施例之光學成像鏡頭之非球面數據。
第34圖顯示依據本發明之第九實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖。
第35圖顯示依據本發明之第九實施例光學成像鏡頭之縱向球差與各項像差圖示意圖。
第36圖顯示依據本發明之第九實施例之光學成像鏡頭之各鏡片之詳細光學數據。
第37圖顯示依據本發明之第九實施例之光學成像鏡頭之非球面數據。
第38圖顯示依據本發明之第十實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖。
第39圖顯示依據本發明之第十實施例光學成像鏡頭之縱向球差與各項像差圖示意圖。
第40圖顯示依據本發明之第十實施例之光學成像鏡頭之各鏡片之詳細光學數據。
第41圖顯示依據本發明之第十實施例之光學成像鏡頭之非球面數據。
第42圖顯示依據本發明之第十一實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖。
第43圖顯示依據本發明之第十一實施例光學成像鏡頭之縱向球差與各項像差圖示意圖。
第44圖顯示依據本發明之第十一實施例之光學成像鏡頭之各鏡片之詳細光學數據。
第45圖顯示依據本發明之第十一實施例之光學成像鏡頭之非球面數據。
第46圖所顯示的依據本發明之以上十一個實施例的ALT、AAG、T2/AG23、T4/T3、ALT/AAG、T2/T3、T5/AG23、T2/AG12、T4/AG23、ALT/AG23、AAG/(AG34+AG45)、T1/AG12、T4/AG12、ALT/T3、T5/T4及AAG/T4值之比較表。
第47圖顯示依據本發明之一實施例之可攜式電子裝置之一結構示意圖。
第48圖顯示依據本發明之另一實施例之可攜式電子裝置之一結構示意圖。
為進一步說明各實施例,本發明乃提供有圖式。此些圖式乃為本發明揭露內容之一部分,其主要係用以說明實施例,並可配合說明書之相關描述來解釋實施例的運作原理。配合參考這些內容,本領域具有通常知識者應能理解其他可能的實施方式以及本發明之優點。圖中的元件並未按比例繪製,而類似的元件符號通常用來表示類似的元件。
本篇說明書所言之「一透鏡具有正屈光率(或負屈光率)」,是指所述透鏡位於光軸附近區域具有正屈光率(或負屈光率)而言。「一透鏡的物側面(或像側面)包括位於某區域的凸面部(或凹面部)」,是指該區域相較於徑向上緊鄰該區域的外側區域,朝平行於光軸的方向更為「向外凸起」(或「向內凹陷」)而言。以第1圖為例,其中I為光軸且此一透鏡是以該光軸I為對稱軸徑向地相互對稱,該透鏡之物側面於A區域具有凸面部、B區域具有凹面部而C區域具有凸面部,原因在於A區域相較於徑向上緊鄰該區域的外側區域(即B區域),朝平行於光軸的方向更為向外凸起,B區域則相較於C區域更為向內凹陷,而C區域相較於E區域也同理地更為向外凸起。「位於圓周附近區域」,是指位於透鏡上僅供成像光線通過之曲面之位於圓周附近區域,亦即圖中之C區域,其中,成像光線包括了主光線(chief ray)Lc及邊緣光線(marginal ray)Lm。「位於光軸附近區域」是指該僅供成像光線通過之曲面之光軸附近區域,亦即圖中之A區域。此外,該透鏡還包含一延伸部E,用以供該透鏡組裝於一光學成像鏡頭內,理想的成像光線並不會通過該延伸部E,但該延伸部E之結構與形狀並不限於此,以下之實施例為求圖式簡潔均省略了部分的延伸部。
本發明之光學成像鏡頭,乃是由從物側至像側沿一光軸依序設置之一第一透鏡、一光圈、一第二透鏡、一第三透鏡、一第四透鏡及一第五透鏡所構成,每一透鏡具有一朝向物側且使成像光線通過的物側面及一朝向像側且使成像光線通過的像側面,且每一透鏡具有屈光率。本發明之光學成像鏡頭總共只有此五片具有屈光率的透鏡,透過設計各透鏡之細部特徵及/或屈光率配置,並至少滿足下列任一與第二透鏡在光軸上的厚度相關的條件式,而可提供良好之光學性能,並縮短鏡頭長度:T2/AG23≦2.5 條件式(1),T2/T3≦1.2 條件式(2),或T2/AG12≦5.3 條件式(3),T2為第二透鏡在光軸上的厚度,T3為第三透鏡在光軸上的厚度,AG12為第一透鏡與第二透鏡之間在光軸上的空氣間隙寬度,AG23為第二透鏡與第三透鏡之間在光軸上的空氣間隙寬度。在本發明中,光學成像鏡頭總共只 有五片具有屈光率的透鏡。更進一步詳細地說,各透鏡之細部特徵如下:第一透鏡之物側面為一凸面;第二透鏡具有正屈光率;及第五透鏡之像側面包括一位於光軸附近區域的凹面部及一位於圓周附近區域的凸面部。
在此設計的前述各鏡片之特性主要是考量光學成像鏡頭的光學特性與鏡頭長度,舉例來說:第二透鏡之正屈光率可提供透鏡整體所需之屈光率;光圈置於第一與第二透鏡之間,可達到擴大視場角及改善像差之效果;第五透鏡像側面於光軸附近區域設置凹面部以及於圓周附近區域設置凸面部,可有效改善場曲(field curvature aberration),且可使成像光線以更趨近於垂直的角度進入成像面,若再搭配第五透鏡之正屈光率,則可分配第二透鏡的正屈光率,降低製造上之敏感度。上述技術特徵若搭配第二透鏡物側面圓周附近區域之凹面部、第三透鏡物側面光軸附近區域之凹面部、第三透鏡像側面光軸附近區域之凸面部、或是第四透鏡物側面光軸附近區域之凸面部,可更為提升成像品質。
其次,本發明可選擇性地控制部分參數之比值滿足其他條件式,如:控制T3與第四透鏡在光軸上的厚度(以T4表示)滿足T4/T3≦1.8 條件式(4);或者是控制第一透鏡至該第五透鏡在光軸上的五片鏡片厚度總和(以ALT表示)與第一透鏡與該第五透鏡之間四個空氣間隙在光軸上的寬度總和(以AAG表示)滿足ALT/AAG≦3.5 條件式(5);或者是控制AG23及第五透鏡在光軸上的厚度(以T5表示)滿足T5/AG23≦2.0 條件式(6);或者是控制T4與AG23滿足T4/AG23≦4.0 條件式(7);或者是控制AG23與ALT滿足ALT/AG23≦10.0 條件式(8);或者是控制AAG、第三透鏡與第四透鏡之間在光軸上的空 氣間隙寬度(以AG34表示)與第四透鏡與第五透鏡之間在光軸上的空氣間隙寬度(以AG45表示)滿足4.5≦AAG/(AG34+AG45) 條件式(9);或者是控制AG12與第一透鏡在光軸上的厚度(以T1表示)滿足T1/AG12≦2.8 條件式(10);或0.4≦T1/AG12≦2.8 條件式(10');或者是控制T4與AG12滿足T4/AG12≦2.0 條件式(11);或者是控制T3與ALT滿足3.5≦ALT/T3≦6.0 條件式(12);或者是控制T4與T5滿足0.8≦T5/T4 條件式(13);或者是控制AAG與T4滿足1.7≦AAG/T4 條件式(14)。
前述所列之示例性限定條件式亦可任意選擇性地合併施用於本發明之實施態樣中,並不限於此。
在條件式(1)、(2)、(3)中,分別限制與第二透鏡厚度相關的參數範圍於一定範圍內的原因是考量到第二透鏡提供系統主要之正屈光率,通常具備較厚之中心厚度,因此如能有效縮短(即T2趨小),將有助於縮短鏡頭長度。然而,尚有其他在光學成像鏡頭中要縮短較不易達到或有光學特性上考量非為首要縮短對象之參數,因此本發明以其至少一比值的限制範圍作為控制光學成像鏡頭鏡頭縮短與維持光學特性於一定程度的控制條件,藉此在有效縮短光學成像鏡頭的鏡頭長度的同時,亦維持其良好光學性能。
以條件式(1)為例,除上述T2趨小的考量之外,T2/AG23值之設計乃是著眼於第二、第三透鏡之間的空氣間隙(即AG23)擴大,可使成像光線聚集至適當程度後再進入第三透鏡,有助於成像品質之提高。因此,T2/AG23值應朝趨小之方式來被設計,在此建議控制T2/AG23值小於或等 於2.5以滿足條件式(1),較佳地,T2/AG23值可更進一步受一下限限制,如:0.6≦T2/AG23≦2.5。
以條件式(2)為例,除上述T2趨小的考量之外,T2/T3值之設計乃是著眼於T2如上所述應朝趨小方向設計,而T3則應維持一定之厚度,故T2/T3值應朝趨小之方式被設計。因此在此建議控制T2/T3值小於或等於1.2以滿足條件式(2),較佳地,T2/T3值可更進一步受一下限限制,如:0.5≦T2/T3≦1.2。
以條件式(3)為例,除上述T2趨小的考量之外,T2/AG12值之設計乃是著眼於AG12則應維持一定之間隙寬度以容納光圈,故T2/AG12應朝趨小之方式被設計。因此在此建議控制T2/AG12值為小於或等於5.3以滿足條件式(3),較佳地,T2/AG12值可進一步受一下限限制,如:0.5≦T2/AG12≦5.3。
此外,對於條件式(4)~(14)的設計考量分述如下:在條件式(4)中,T4/T3值之設計乃是著眼於第四透鏡之中心厚度如可朝薄型化之方向來設計(即T4趨小),而第三透鏡維持一定之厚度,會使兩透鏡之間維持適當之厚度配置。因此在此建議控制T4/T3值為小於或等於1.8以滿足條件式(4),較佳地,T4/T3值可進一步受一下限限制,如:0.2≦T4/T3≦1.8。
在條件式(5)中,ALT/AAG值之設計乃是著眼於ALT/AAG如能控制在小於或等於3.5之範圍內,可有效防止各透鏡過厚而導致鏡頭過長。因此在此建議控制ALT/AAG值為小於或等於3.5以滿足條件式(5),較佳地,ALT/AAG值可進一步受一下限限制,如:1.2≦ALT/AAG≦3.5。
在條件式(6)中,T5/AG23值之設計乃是著眼於AG23如上述應趨大,故T5/AG23值應朝趨小之方式被設計。因此在此建議控制T5/AG23值為小於或等於2.0以滿足條件式(6),較佳地,T5/AG23值可進一步受一下限限制,如:0.7≦T5/AG23≦2.0。
在條件式(7)、(8)中,T4/AG23與ALT/AG23值之設計乃是著眼於AG23既因前述說明乃是應往趨大方向設計,故T4/AG23與ALT/AG23值皆應朝趨小之方式被設計。因此在此建議控制T4/AG23值為小於或等於 4.0以滿足條件式(7),且以介於0.4~4.0的範圍之間為較佳;並建議控制ALT/AG23值為小於或等於10.0以滿足條件式(8),且以介於3.0~10.0的範圍之間為較佳。
在條件式(9)中,AAG/(AG34+AG45)值之設計乃是著眼於雖然各空氣間隙之縮小均有助於鏡頭之薄型化,然而,由於第一、第二透鏡之間需維持一定之間隙以及容納光圈(即AG12無法有效縮小),而第二、第三透鏡之間如上所述也應維持一定之間隙值,使得AG34及AG45值在各空氣間隙中,屬比較不受限制、可以縮得更小的參數,使得AAG/(AG34+45)值應朝趨大之方式來設計。因此在此建議控制AAG/(AG34+AG45)值大於或等於4.5以滿足條件式(9),較佳地,AAG/(AG34+AG45)值可進一步受一上限限制,如:4.5≦AAG/(AG34+AG45)≦11.0。
在條件式(10)、(11)中,T1/AG12與T4/AG12值之設計乃是著眼於AG12既因前述說明乃是應維持一定之間隙值以便容納光圈,而T1、T4則可朝趨小之方式來設計以便縮小鏡頭長度,因此故T1/AG12與T4/AG12值皆應朝趨小之方式被設計。因此在此建議控制T4/AG23為小於或等於2.8,且以介於0.4~2.8的範圍之間為較佳;並建議控制T4/AG12值為小於或等於2.0,且以介於0.4~2.0的範圍之間為較佳。
在條件式(12)中,ALT/T3值之設計乃是著眼於控制此參數值介於3.5~6.0之間,可使得T3維持較佳之厚度配置。
在條件式(13)中,T5/T4值之設計乃是著眼於第五透鏡因其光學有效徑通常大於第四透鏡,使得第五透鏡之薄型化較第四透鏡更為困難。為了控制此特性,T5/T4值應朝趨大之方式來設計,在此建議控制T5/T4為大於或等於0.8,並以落在0.8~3.0的範圍之間較佳。
在條件式(14)中,AAG/T4值之設計乃是著眼於AAG為各空氣間隙之寬度總和,如果過小可能會影響組裝。因此在此建議控制AAG/T4值大於或等於1.7,並以落在1.7~5.0的範圍之間較佳。
在實施本發明時,除了上述條件式之外,亦可針對單一透鏡或廣泛性地針對多個透鏡額外設計出其他更多的透鏡的凹凸曲面排列等細部結構及/或屈光率的限定條件,以加強對系統性能及/或解析度的控制。 舉例來說,第二透鏡的物側面可額外形成一位於圓周附近區域的凹面部、第三透鏡的物側面可額外形成一位於光軸附近區域的凹面部、第三透鏡的像側面可額外形成一位於光軸附近區域的凸面部、第四透鏡的物側面可額外形成一位於光軸附近區域的凸面部、及/或第五透鏡可具有正屈光率等,然本發明並不限於此。須注意的是,此些細部結構及/或屈光率等特性需在無衝突之情況之下,選擇性地合併施用於本發明之其他實施例當中。
為了說明本發明確實可在提供良好的光學性能的同時,縮短鏡頭長度,以下提供多個實施例以及其詳細的光學數據。首先請一併參考第2圖至第5圖,其中第2圖顯示依據本發明之第一實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖,第3圖顯示依據本發明之第一實施例之光學成像鏡頭之縱向球差與各項像差圖示意圖,第4圖顯示依據本發明之第一實施例之光學成像鏡頭之詳細光學數據,第5圖顯示依據本發明之第一實施例光學成像鏡頭之各鏡片之非球面數據。如第2圖中所示,本實施例之光學成像鏡頭1從物側A1至像側A2依序包括一第一透鏡110、一光圈(aperture stop)100、一第二透鏡120、一第三透鏡130、一第四透鏡140及一第五透鏡150。一濾光件160及一影像感測器的一成像面170皆設置於光學成像鏡頭1的像側A2。濾光件160在此示例性地為一紅外線濾光片(IR cut filter),設於第五透鏡150與成像面170之間,濾光件160將經過光學成像鏡頭1的光過濾掉特定波段的波長,如:過濾掉紅外線波段,可使人眼看不到的紅外線波段的波長不會成像於成像面170上。
光學成像鏡頭1之各透鏡在此示例性地以塑膠材質所構成,形成細部結構如下:
第一透鏡110具有正屈光率,並具有一朝向物側A1的物側面111及一朝向像側A2的像側面112。物側面111為一凸面,而像側面112為一凹面。
第二透鏡120具有正屈光率,並具有一朝向物側A1的物側面121及一朝向像側A2的像側面122。物側面121包括一位於光軸附近區域的凸面部1211及一位於圓周附近區域的凹面部1212。像側面122為一凸面。
第三透鏡130具有正屈光率,並具有一朝向物側A1的物側面131及一朝向像側A2的像側面132。物側面131為一凹面,並包括一位於光軸附近區域的凹面部1311。像側面132為一凸面,並包括一位於光軸附近區域的凸面部1321。
第四透鏡140具有負屈光率,並具有一朝向物側A1的物側面141及具有一朝向像側A2的像側面142。物側面141包括一位於光軸附近區域的凸面部1411及一位於圓周附近區域的凹面部1412。像側面142包括一位於光軸附近區域的凹面部1421及一位於圓周附近區域的凸面部1422。
第五透鏡150具有正屈光率,並具有一朝向物側A1的物側面151及一朝向像側A2的像側面152。物側面151包括一位於光軸附近區域的凸面部1511及一位於圓周附近區域的凹面部1512。像側面152包括一位於光軸附近區域的凹面部1521及一位於圓周附近區域的凸面部1522。
在本實施例中,係設計各透鏡110、120、130、140、150、濾光件160及影像感測器的成像面170之間皆存在空氣間隙,如:第一透鏡110與第二透鏡120之間存在空氣間隙d1、第二透鏡120與第三透鏡130之間存在空氣間隙d2、第三透鏡130與第四透鏡140之間存在空氣間隙d3、第四透鏡140與第五透鏡150之間存在空氣間隙d4、第五透鏡150與濾光件160之間存在空氣間隙d5、及濾光件160與影像感測器的成像面170之間存在空氣間隙d6,然而在其他實施例中,亦可不具有前述其中任一空氣間隙,如:將兩相對透鏡的表面輪廓設計為彼此相應,而可彼此貼合,以消除其間之空氣間隙。由此可知,第一透鏡110與第二透鏡120之間的空氣間隙d1即為AG12、第二透鏡120與第三透鏡130之間的空氣間隙d2即為AG23、第三透鏡130與第四透鏡140之間的空氣間隙d3即為AG34、而第四透鏡140與第五透鏡150之間的空氣間隙d4即為AG45,且d1、d2、d3、d4的和即為AAG。
關於本實施例之光學成像鏡頭1中的各透鏡之各光學特性及各空氣間隙之寬度,請參考第4圖,其中ALT、AAG、T2/AG23、T4/T3、ALT/AAG、T2/T3、T5/AG23、T2/AG12、T4/AG23、ALT/AG23、 AAG/(AG34+AG45)、T1/AG12、T4/AG12、ALT/T3、T5/T4及AAG/T4值分別為:ALT=2.279(mm);AAG=0.732(mm);T2/AG23=2.471;T4/T3=1.757;ALT/AAG=2.116;T2/T3=2.224;T5/AG23=1.074;T2/AG12=1.846;T4/AG23=1.953;ALT/AG23=8.397;AAG/(AG34+AG45)=7.561;T1/AG12=1.335;T4/AG12=1.459;ALT/T3=7.555;T5/T4=0.550;AAG/T4=1.380。
從第一透鏡物側面111至成像面170在光軸上之厚度為4.034(mm),確實縮短光學成像鏡頭1之鏡頭長度。
須注意的是,本實施例之光學成像鏡頭1在將其鏡頭長度縮短至約4mm的同時仍可提供高達46.912度的半視角(HFOV),如此可針對薄型化的產品提供優良的成像品質。
第一透鏡110的物側面111及像側面112、第二透鏡120的物側面121及像側面122、第三透鏡130的物側面131及像側面132、第四透鏡140的物側面141及像側面142、第五透鏡150的物側面151及像側面152,共計十個非球面皆是依下列非球面曲線公式定義:
其中:R表示透鏡表面之曲率半徑;Z表示非球面之深度(非球面上距離光軸為Y的點,其與相切於非球面光軸上頂點之切面,兩者間的垂直距離);Y表示非球面曲面上的點與光軸的垂直距離;K為錐面係數(Conic Constant);ai 為第i階非球面係數。
各個非球面之參數詳細數據請一併參考第5圖。
另一方面,從第3圖當中可以看出,在本實施例的縱向球差(longitudinal spherical aberration)(a)中,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差控制在±0.02(mm)以內,故本第一較佳實施例確實明顯改善不同波長的球差。其次,由於每一種波長所成的曲線彼此的舉離皆很靠近,代表不同波長光線的成像位置已相當集中,因而使色像差獲得明顯改善。
在弧矢(sagittal)方向的像散像差(astigmatism aberration)(b)、子午(tangential)方向的像散像差(c)的二個像散像差圖示中,三種代表波長在整個視場範圍內的焦距變化量落在±0.1(mm)內,說明第一較佳實施例的光學成像鏡頭1能有效消除像差。
畸變像差(distortion aberration)(d)則顯示光學成像鏡頭1的畸變像差維持在±2%的範圍內,說明光學成像鏡頭1的畸變像差已符合光學系統的成像品質要求,據此說明本第一較佳實施例之光學成像鏡頭1相較於現有光學鏡頭,在系統長度已縮短至4.034(mm)、半視角(HFOV)約47度的條件下,仍能有效克服色像差並提供較佳的成像品質,故本第一較佳實施例能在維持良好光學性能之條件下,縮短鏡頭長度以實現更加薄型化的產品設計。
因此,本實施例之光學成像鏡頭1在縱向球差、弧矢方向的像散像差、子午方向的像散像差、或畸變像差的表現都十分良好。由上述中可以得知,本實施例之光學成像鏡頭1確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考第6圖至第9圖,其中第6圖顯示依據本發明之第二實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖,第7圖顯示依據本發明之第二實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,第8圖顯示依據本發明之第二實施例之光學成像鏡頭之詳細光學數據,第9圖顯示依據本發明之第二實施例之光學成像鏡頭之各鏡片之非球面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的標號開頭改為2,例如第三透鏡物側面為231,第三透鏡像側面為232,其它元件標號在此不再贅述。如第6圖中所示,本實施例之光學成像鏡頭2從物側A1至像側A2依序包括一第一透鏡210、一光圈200、一第二透鏡220、一第三透鏡230、一第四透鏡240及一第五透鏡250。
第二實施例之第二透鏡220、第三透鏡230、第四透鏡240及第五透鏡250的屈光率正、負配置以及包括朝向物側A1的物側面211、221、231、241、251、及朝向像側A2的像側面212、222、232、242、252之各透鏡表面的凹凸配置均與第一實施例類似,唯第二實施例的各透鏡表面的曲率半徑、透鏡厚度、空氣間隙寬度及第一透鏡210屈光率的正負配置與第一實施例不同。詳細地說,第一透鏡210具有負屈光率。關於本實施例之光學成像鏡頭2的各透鏡之各光學特性及各空氣間隙之寬度,請參考第8圖,其中ALT、AAG、T2/AG23、T4/T3、ALT/AAG、T2/T3、T5/AG23、T2/AG12、T4/AG23、ALT/AG23、AAG/(AG34+AG45)、T1/AG12、T4/AG12、ALT/T3、T5/T4及AAG/T4值分別為:ALT=2.312(mm);AAG=0.696(mm);T2/AG23=2.202;T4/T3=0.430;ALT/AAG=3.324;T2/T3=0.911;T5/AG23=1.977;T2/AG12=1.693;T4/AG23=1.039; ALT/AG23=9.242;AAG/(AG34+AG45)=5.796;T1/AG12=1.234;T4/AG12=0.799;ALT/T3=3.823;T5/T4=1.903;AAG/T4=2.675。
從第一透鏡物側面211至成像面270在光軸上之厚度為4.063(mm),確實縮短光學成像鏡頭2之鏡頭長度。同時,本實施例之光學成像鏡頭2提供高達47.498度的半視角(HFOV)。
另一方面,從第7圖當中可以看出,本實施例之光學成像鏡頭2在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好。因此,由上述中可以得知,本實施例之光學成像鏡頭2確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考第10圖至第13圖,其中第10圖顯示依據本發明之第三實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖,第11圖顯示依據本發明之第三實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,第12圖顯示依據本發明之第三實施例之光學成像鏡頭之詳細光學數據,第13圖顯示依據本發明之第三實施例之光學成像鏡頭之各鏡片之非球面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的標號開頭改為3,例如第三透鏡物側面為331,第三透鏡像側面為332,其它元件標號在此不再贅述。如第10圖中所示,本實施例之光學成像鏡頭3從物側A1至像側A2依序包括一第一透鏡310、一光圈300、一第二透鏡320、一第三透鏡330、一第四透鏡340及一第五透鏡350。
第三實施例之第一透鏡310、第二透鏡320、第三透鏡330、第四透鏡340及第五透鏡350的屈光率正負配置以及包括朝向物側A1的物側面311、321、331、341、351、及朝向像側A2的像側面312、322、332、342、352等透鏡表面的凹凸配置均與第二實施例類似,唯第三實施例的各透鏡表面的曲率半徑、透鏡厚度及空氣間隙寬度與第二實施例不同。關於 本實施例之光學成像鏡頭3的各透鏡之各光學特性及各空氣間隙之寬度,請參考第12圖,其中ALT、AAG、T2/AG23、T4/T3、ALT/AAG、T2/T3、T5/AG23、T2/AG12、T4/AG23、ALT/AG23、AAG/(AG34+AG45)、T1/AG12、T4/AG12、ALT/T3、T5/T4及AAG/T4值分別為:ALT=2.328(mm);AAG=0.699(mm);T2/AG23=2.008;T4/T3=0.356;ALT/AAG=3.331;T2/T3=0.654;T5/AG23=2.010;T2/AG12=1.254;T4/AG23=1.094;ALT/AG23=9.964;AAG/(AG34+AG45)=7.672;T1/AG12=1.111;T4/AG12=0.683;ALT/T3=3.243;T5/T4=1.837;AAG/T4=2.734。
從第一透鏡物側面311至成像面370在光軸上之厚度為4.083(mm),確實縮短光學成像鏡頭3之鏡頭長度。同時,本實施例之光學成像鏡頭3提供高達48.038度的半視角(HFOV)。
另一方面,從第11圖當中可以看出,本實施例之光學成像鏡頭3在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好。因此,由上述中可以得知,本實施例之光學成像鏡頭3確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考第14圖至第17圖,其中第14圖顯示依據本發明之第四實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖,第15 圖顯示依據本發明之第四實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,第16圖顯示依據本發明之第四實施例之光學成像鏡頭之詳細光學數據,第17圖顯示依據本發明之第四實施例之光學成像鏡頭之各鏡片之非球面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的標號開頭改為4,例如第三透鏡物側面為431,第三透鏡像側面為432,其它元件標號在此不再贅述。如第14圖中所示,本實施例之光學成像鏡頭4從物側A1至像側A2依序包括一第一透鏡410、一光圈400、一第二透鏡420、一第三透鏡430、一第四透鏡440及一第五透鏡450。
第四實施例之第一透鏡410、第二透鏡420、第三透鏡430、第四透鏡440及第五透鏡450的屈光率正負配置以及包括朝向物側A1的物側面411、421、431、441、451、及朝向像側A2的像側面412、422、432、442、452等透鏡表面的凹凸配置均與第一實施例類似,唯第四實施例的各透鏡表面的曲率半徑、透鏡厚度及空氣間隙寬度與第一實施例不同。關於本實施例之光學成像鏡頭4的各透鏡之各光學特性及各空氣間隙之寬度,請參考第16圖,其中ALT、AAG、T2/AG23、T4/T3、ALT/AAG、T2/T3、T5/AG23、T2/AG12、T4/AG23、ALT/AG23、AAG/(AG34+AG45)、T1/AG12、T4/AG12、ALT/T3、T5/T4及AAG/T4值分別為:ALT=2.369(mm);AAG=0.501(mm);T2/AG23=2.881;T4/T3=1.369;ALT/AAG=4.724;T2/T3=2.298;T5/AG23=1.142;T2/AG12=5.026;T4/AG23=1.716;ALT/AG23=9.011;AAG/(AG34+AG45)=5.702;T1/AG12=3.522; T4/AG12=2.994;ALT/T3=7.189;T5/T4=0.666;AAG/T4=1.112。
從第一透鏡物側面411至成像面470在光軸上之厚度為3.860(mm),確實縮短光學成像鏡頭4之鏡頭長度。同時,本實施例之光學成像鏡頭4提供高達46.869度的半視角(HFOV)。
另一方面,從第15圖當中可以看出,本實施例之光學成像鏡頭4在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好。因此,由上述中可以得知,本實施例之光學成像鏡頭4確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考第18圖至第21圖,其中第18圖顯示依據本發明之第五實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖,第19圖顯示依據本發明之第五實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,第20圖顯示依據本發明之第五實施例之光學成像鏡頭之詳細光學數據,第21圖顯示依據本發明之第五實施例之光學成像鏡頭之各鏡片之非球面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的標號開頭改為5,例如第三透鏡物側面為531,第三透鏡像側面為532,其它元件標號在此不再贅述。如第18圖中所示,本實施例之光學成像鏡頭5從物側A1至像側A2依序包括一第一透鏡510、一光圈500、一第二透鏡520、一第三透鏡530、一第四透鏡540及一第五透鏡550。
第五實施例之第一透鏡510、第二透鏡520、第三透鏡530、第四透鏡540及第五透鏡550之屈光率正負配置以及包括朝向物側A1的物側面511、521、531、541、551及朝向像側A2的像側面512、522、532、542、552的透鏡表面的凹凸配置均與第二實施例類似,唯第五實施例的各透鏡表面的曲率半徑、透鏡厚度及空氣間隙寬度與第二實施例不同。關於本實施例之光學成像鏡頭5的各透鏡之各光學特性及各空氣間隙之寬度,請參考第20圖,其中ALT、AAG、T2/AG23、T4/T3、ALT/AAG、T2/T3、T5/AG23、T2/AG12、T4/AG23、ALT/AG23、AAG/(AG34+AG45)、T1/AG12、T4/AG12、 ALT/T3、T5/T4及AAG/T4值分別為:ALT=2.215(mm);AAG=0.815(mm);T2/AG23=1.896;T4/T3=0.497;ALT/AAG=2.718;T2/T3=1.084;T5/AG23=1.449;T2/AG12=1.647;T4/AG23=0.869;ALT/AG23=7.424;AAG/(AG34+AG45)=4.710;T1/AG12=1.268;T4/AG12=0.755;ALT/T3=4.243;T5/T4=1.667;AAG/T4=3.143。
從第一透鏡物側面511至成像面570在光軸上之厚度為4.085(mm),確實縮短光學成像鏡頭5之鏡頭長度。同時,本實施例之光學成像鏡頭5提供高達46.952度的半視角(HFOV)。
另一方面,從第19圖當中可以看出,本實施例之光學成像鏡頭5在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好。因此,由上述中可以得知,本實施例之光學成像鏡頭5確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考第22圖至第25圖,其中第22圖顯示依據本發明之第六實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖,第23圖顯示依據本發明之第六實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,第24圖顯示依據本發明之第六實施例之光學成像鏡頭之詳細光學數據,第25圖顯示依據本發明之第六實施例之光學成像鏡頭之各鏡片之非球 面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的標號開頭改為6,例如第三透鏡物側面為631,第三透鏡像側面為632,其它元件標號在此不再贅述。如第22圖中所示,本實施例之光學成像鏡頭6從物側A1至像側A2依序包括一第一透鏡610、一光圈600、一第二透鏡620、一第三透鏡630、一第四透鏡640及一第五透鏡650。
第六實施例之第一透鏡610、第二透鏡620、第三透鏡630、第四透鏡640及第五透鏡650的屈光率正負配置以及包括朝向物側A1的物側面611、631、651及朝向像側A2的像側面612、622、632、642、652的透鏡表面的凹凸配置均與第二實施例類似,唯第六實施例的各透鏡表面的曲率半徑、透鏡厚度、空氣間隙寬度及物側面621、641的表面凹凸配置與第二實施例不同。詳細地說,第二透鏡620之物側面621是一凸面,且第四透鏡640之物側面641包括一位於光軸附近區域的凹面部6411。關於本實施例之光學成像鏡頭6的各透鏡之各光學特性及各空氣間隙之寬度,請參考第24圖,其中ALT、AAG、T2/AG23、T4/T3、ALT/AAG、T2/T3、T5/AG23、T2/AG12、T4/AG23、ALT/AG23、AAG/(AG34+AG45)、T1/AG12、T4/AG12、ALT/T3、T5/T4及AAG/T4值分別為:ALT=2.058(mm);AAG=1.239(mm);T2/AG23=0.906;T4/T3=0.428;ALT/AAG=1.661;T2/T3=0.728;T5/AG23=0.890;T2/AG12=0.707;T4/AG23=0.532;ALT/AG23=4.215;AAG/(AG34+AG45)=9.913;T1/AG12=0.500;T4/AG12=0.415; ALT/T3=3.386;T5/T4=1.672;AAG/T4=4.766。
從第一透鏡物側面611至成像面670在光軸上之厚度為4.450(mm),確實縮短光學成像鏡頭6之鏡頭長度。同時,本實施例之光學成像鏡頭6提供高達45.964度的半視角(HFOV)。
另一方面,從第23圖當中可以看出,本實施例之光學成像鏡頭6在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好。因此,由上述中可以得知,本實施例之光學成像鏡頭6確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考第26圖至第29圖,其中第26圖顯示依據本發明之第七實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖,第27圖顯示依據本發明之第七實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,第28圖顯示依據本發明之第七實施例之光學成像鏡頭之詳細光學數據,第29圖顯示依據本發明之第七實施例之光學成像鏡頭之各鏡片之非球面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的標號開頭改為7,例如第三透鏡物側面為731,第三透鏡像側面為732,其它元件標號在此不再贅述。如第26圖中所示,本實施例之光學成像鏡頭7從物側A1至像側A2依序包括一第一透鏡710、一光圈700、一第二透鏡720、一第三透鏡730、一第四透鏡740及一第五透鏡750。
第七實施例之第一透鏡710、第二透鏡720、第三透鏡730、第四透鏡740及第五透鏡750的屈光率正負配置以及包括朝向物側A1的物側面711、741、751及朝向像側A2的像側面712、722、732、742、752的透鏡表面的凹凸配置均與第二實施例類似,唯第七實施例的各透鏡表面的曲率半徑、透鏡厚度、空氣間隙寬度及物側面721、731的表面凹凸配置與第二實施例不同。詳細地說,第二透鏡720的物側面721為一凸面,並包括一位於圓周附近區域的凸面部7211,第三透鏡730的物側面731包括一位於圓周附近區域的凸面部7311。關於本實施例之光學成像鏡頭7的各透鏡之各光學特性及各空氣間隙之寬度,請參考第28圖,其中ALT、AAG、 T2/AG23、T4/T3、ALT/AAG、T2/T3、T5/AG23、T2/AG12、T4/AG23、ALT/AG23、AAG/(AG34+AG45)、T1/AG12、T4/AG12、ALT/T3、T5/T4及AAG/T4值分別為:ALT=2.367(mm);AAG=0.841(mm);T2/AG23=1.014;T4/T3=0.445;ALT/AAG=2.815;T2/T3=0.799;T5/AG23=0.818;T2/AG12=1.821;T4/AG23=0.566;ALT/AG23=5.149;AAG/(AG34+AG45)=6.727;T1/AG12=2.660;T4/AG12=1.015;ALT/T3=4.056;T5/T4=1.446;AAG/T4=3.234。
從第一透鏡物側面711至成像面770在光軸上之厚度為4.309(mm),確實縮短光學成像鏡頭7之鏡頭長度。同時,本實施例之光學成像鏡頭7提供高達45.905度的半視角(HFOV)。
另一方面,從第28圖當中可以看出,本實施例之光學成像鏡頭8在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好。因此,由上述中可以得知,本實施例之光學成像鏡頭8確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考第30圖至第33圖,其中第30圖顯示依據本發明之第八實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖,第31圖顯示依據本發明之第八實施例光學成像鏡頭之縱向球差與各項像差圖示 意圖,第32圖顯示依據本發明之第八實施例之光學成像鏡頭之詳細光學數據,第33圖顯示依據本發明之第八實施例之光學成像鏡頭之各鏡片之非球面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的標號開頭改為8,例如第三透鏡物側面為831,第三透鏡像側面為832,其它元件標號在此不再贅述。如第30圖中所示,本實施例之光學成像鏡頭8從物側A1至像側A2依序包括一第一透鏡810、一光圈800、一第二透鏡820、一第三透鏡830、一第四透鏡840及一第五透鏡850。
第八實施例之第一透鏡810、第二透鏡820、第三透鏡830、第四透鏡840及第五透鏡850的屈光率正負配置以及包括朝向物側A1的物側面811、831、841、851及朝向像側A2的像側面812、822、842、852的透鏡表面的凹凸配置均與第一實施例類似,唯第八實施例的各透鏡表面的曲率半徑、透鏡厚度、空氣間隙寬度及物側面821和像側面832的表面凹凸配置與第一實施例不同。詳細地說,第二透鏡820的物側面821包括一位於光軸附近區域的凹面部8211,第三透鏡830的像側面832包括一位於圓周附近區域的凹面部8321。關於本實施例之光學成像鏡頭8的各透鏡之各光學特性及各空氣間隙之寬度,請參考第32圖,其中ALT、AAG、T2/AG23、T4/T3、ALT/AAG、T2/T3、T5/AG23、T2/AG12、T4/AG23、ALT/AG23、AAG/(AG34+AG45)、T1/AG12、T4/AG12、ALT/T3、T5/T4及AAG/T4值分別為:ALT=2.222(mm);AAG=0.728(mm);T2/AG23=1.598;T4/T3=0.852;ALT/AAG=3.053;T2/T3=1.225;T5/AG23=0.823;T2/AG12=2.547;T4/AG23=1.112;ALT/AG23=5.978; AAG/(AG34+AG45)=5.925;T1/AG12=1.817;T4/AG12=1.772;ALT/T3=4.583;T5/T4=0.741;AAG/T4=1.761。
從第一透鏡物側面811至成像面880在光軸上之厚度為4.009(mm),確實縮短光學成像鏡頭8之鏡頭長度。同時,本實施例之光學成像鏡頭8提供高達45.919度的半視角(HFOV)。
另一方面,從第31圖當中可以看出,本實施例之光學成像鏡頭8在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好。因此,由上述中可以得知,本實施例之光學成像鏡頭8確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考第34圖至第37圖,其中第34圖顯示依據本發明之第九實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖,第35圖顯示依據本發明之第九實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,第36圖顯示依據本發明之第九實施例之光學成像鏡頭之詳細光學數據,第37圖顯示依據本發明之第九實施例之光學成像鏡頭之各鏡片之非球面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的標號開頭改為9,例如第三透鏡物側面為931,第三透鏡像側面為932,其它元件標號在此不再贅述。如第34圖中所示,本實施例之光學成像鏡頭9從物側A1至像側A2依序包括一第一透鏡910、一光圈900、一第二透鏡920、一第三透鏡930、一第四透鏡940及一第五透鏡950。
第九實施例之第二透鏡920、第三透鏡930、第四透鏡940及第五透鏡950的屈光率正負配置以及包括朝向物側A1的物側面911、921、931、941及朝向像側A2的像側面912、922、932、942、952的透鏡表面的凹凸配置均與第八實施例類似,唯第九實施例的各透鏡表面的曲率半徑、透鏡厚度、空氣間隙寬度、第一透鏡910的屈光率正負配置及物側面951的表面凹凸配置與第八實施例不同。詳細地說,第一透鏡910具有負屈光 率,第五透鏡950的物側面951包括一位於光軸附近區域的凸面部9511、一位於圓周附近區域的凸面部9512及一位於光軸附近區域與圓周附近區域之間的凹面部9513。關於本實施例之光學成像鏡頭9的各透鏡之各光學特性及各空氣間隙之寬度,請參考第36圖,其中ALT、AAG、T2/AG23、T4/T3、ALT/AAG、T2/T3、T5/AG23、T2/AG12、T4/AG23、ALT/AG23、AAG/(AG34+AG45)、T1/AG12、T4/AG12、ALT/T3、T5/T4及AAG/T4值分別為:ALT=2.245(mm);AAG=0.878(mm);T2/AG23=1.241;T4/T3=0.622;ALT/AAG=2.557;T2/T3=1.196;T5/AG23=1.651;T2/AG12=1.243;T4/AG23=0.645;ALT/AG23=5.809;AAG/(AG34+AG45)=8.302;T1/AG12=1.237;T4/AG12=0.646;ALT/T3=5.600;T5/T4=2.560;AAG/T4=3.523。
從第一透鏡物側面911至成像面990在光軸上之厚度為4.130(mm),確實縮短光學成像鏡頭9之鏡頭長度。同時,本實施例之光學成像鏡頭9提供高達47.605度的半視角(HFOV)。
另一方面,從第35圖當中可以看出,本實施例之光學成像鏡頭9在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好。因此,由上述中可以得知,本實施例之 光學成像鏡頭9確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考第38圖至第41圖,其中第38圖顯示依據本發明之第十實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖,第39圖顯示依據本發明之第十實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,第40圖顯示依據本發明之第十實施例之光學成像鏡頭之詳細光學數據,第41圖顯示依據本發明之第十實施例之光學成像鏡頭之各鏡片之非球面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的標號開頭改為10,例如第三透鏡物側面為1031,第三透鏡像側面為1032,其它元件標號在此不再贅述。如第38圖中所示,本實施例之光學成像鏡頭10從物側A1至像側A2依序包括一第一透鏡1010、一光圈1000、一第二透鏡1020、一第三透鏡1030、一第四透鏡1040及一第五透鏡1050。
第十實施例之第一透鏡1010、第二透鏡1020、第三透鏡1030、第四透鏡1040及第五透鏡1050的屈光率正負配置以及包括朝向物側A1的物側面1011、1021、1031、1041、1051及朝向像側A2的像側面1012、1022、1032、1042、1052的透鏡表面的凹凸配置均與第一實施例類似,唯第十實施例的各透鏡表面的曲率半徑、透鏡厚度及空氣間隙寬度與第一實施例不同。關於本實施例之光學成像鏡頭10的各透鏡之各光學特性及各空氣間隙之寬度,請參考第40圖,其中ALT、AAG、T2/AG23、T4/T3、ALT/AAG、T2/T3、T5/AG23、T2/AG12、T4/AG23、ALT/AG23、AAG/(AG34+AG45)、T1/AG12、T4/AG12、ALT/T3、T5/T4及AAG/T4值分別為:ALT=2.374(mm);AAG=0.704(mm);T2/AG23=2.338;T4/T3=1.975;ALT/AAG=3.371;T2/T3=1.219;T5/AG23=0.389;T2/AG12=1.192; T4/AG23=3.787;ALT/AG23=11.305;AAG/(AG34+AG45)=8.546;T1/AG12=0.954;T4/AG12=1.931;ALT/T3=5.894;T5/T4=0.367;AAG/T4=0.886。
從第一透鏡物側面1011至成像面1070在光軸上之厚度為4.051(mm),確實縮短光學成像鏡頭10之鏡頭長度。同時,本實施例之光學成像鏡頭10提供高達46.898度的半視角(HFOV)。
另一方面,從第39圖當中可以看出,本實施例之光學成像鏡頭10在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好。因此,由上述中可以得知,本實施例之光學成像鏡頭10確實可維持良好光學性能,並有效縮短鏡頭長度。
另請一併參考第42圖至第45圖,其中第42圖顯示依據本發明之第十一實施例之光學成像鏡頭之五片式透鏡之剖面結構示意圖,第43圖顯示依據本發明之第十一實施例光學成像鏡頭之縱向球差與各項像差圖示意圖,第44圖顯示依據本發明之第十一實施例之光學成像鏡頭之詳細光學數據,第45圖顯示依據本發明之第十一實施例之光學成像鏡頭之各鏡片之非球面數據。在本實施例中使用與第一實施例類似的標號標示出相似的元件,唯在此使用的標號開頭改為11,例如第三透鏡物側面為1131,第三透鏡像側面為1132,其它元件標號在此不再贅述。如第42圖中所示,本實施例之光學成像鏡頭11從物側A1至像側A2依序包括一第一透鏡1110、一光圈1100、一第二透鏡1120、一第三透鏡1130、一第四透鏡1140及一第五透鏡1150。
第十一實施例之第一透鏡1110、第二透鏡1120、第三透鏡1130、第四透鏡1140及第五透鏡1150的屈光率正負配置以及包括朝向物側A1的物側面1111、1121、1131、1141、1151及朝向像側A2的像側面1112、 1122、1132、1142、1152的透鏡表面的凹凸配置均與第二實施例類似,唯第十一實施例的各透鏡表面的曲率半徑、透鏡厚度及空氣間隙寬度與第二實施例不同。關於本實施例之光學成像鏡頭11的各透鏡之各光學特性及各空氣間隙之寬度,請參考第44圖,其中ALT、AAG、T2/AG23、T4/T3、ALT/AAG、T2/T3、T5/AG23、T2/AG12、T4/AG23、ALT/AG23、AAG/(AG34+AG45)、T1/AG12、T4/AG12、ALT/T3、T5/T4及AAG/T4值分別為:ALT=2.222(mm);AAG=0.792(mm);T2/AG23=2.107;T4/T3=0.963;ALT/AAG=2.806;T2/T3=0.992;T5/AG23=1.891;T2/AG12=1.079;T4/AG23=2.046;ALT/AG23=9.866;AAG/(AG34+AG45)=6.227;T1/AG12=0.870;T4/AG12=1.048;ALT/T3=4.645;T5/T4=0.924;AAG/T4=1.719。
從第一透鏡物側面1111至成像面1170在光軸上之厚度為4.033(mm),確實縮短光學成像鏡頭11之鏡頭長度。同時,本實施例之光學成像鏡頭11提供高達47.634度的半視角(HFOV)。
另一方面,從第43圖當中可以看出,本實施例之光學成像鏡頭11在縱向球差(a)、弧矢方向的像散像差(b)、子午方向的像散像差(c)、或畸變像差(d)的表現都十分良好。因此,由上述中可以得知,本實施例之光學成像鏡頭11確實可維持良好光學性能,並有效縮短鏡頭長度。
另請參考第46圖所顯示的以上十一個實施例的ALT、AAG、T2/AG23、T4/T3、ALT/AAG、T2/T3、T5/AG23、T2/AG12、T4/AG23、ALT/AG23、AAG/(AG34+AG45)、T1/AG12、T4/AG12、ALT/T3、T5/T4及AAG/T4值,可看出本發明之光學成像鏡頭確實可滿足前述條件式(1)、條件式(2)、條件式(3)、條件式(4)、條件式(5)、條件式(6)、條件式(7)、條件式(8)、條件式(9)、條件式(10)/(10')、條件式(11)、條件式(12)、條件式(13)及/或條件式(14)。
請參閱第47圖,為應用前述光學成像鏡頭的可攜式電子裝置20的一第一較佳實施例,可攜式電子裝置20包含一機殼21及一安裝在機殼21內的影像模組22。在此僅是以手機為例說明可攜式電子裝置20,但可攜式電子裝置20的型式不以此為限,舉例來說,可攜式電子裝置20還可包括但不限於相機、平板電腦、個人數位助理(personal digital assistant,簡稱PDA)等。
如圖中所示,影像模組22包括一如前所述的光學成像鏡頭,如在此示例性地選用前述第一實施例之光學成像鏡頭1、一用於供光學成像鏡頭1設置的鏡筒23、一用於供鏡筒23設置的模組後座單元(module housing unit)24、一供該模組後座單元設置之基板172及一設置於光學成像鏡頭1像側的影像感測器171。成像面170是形成於影像感測器171。
須注意的是,本實施例雖顯示濾光件160,然而在其他實施例中亦可省略濾光件160之結構,並不以濾光件160之必要為限,且機殼21、鏡筒23、及/或模組後座單元24可為單一元件或多個元件組裝而成,無須限定於此;其次,乃是本實施例所使用的影像感測器171是採用板上連接式晶片封裝(Chip on Board,COB)的封裝方式直接連接在基板172上,和傳統晶片尺寸封裝(Chip Scale Package,CSP)之封裝方式的差別在於板上連接式晶片封裝不需使用保護玻璃(cover glass),因此在光學成像鏡頭1中並不需要在影像感測器171之前設置保護玻璃,然本發明並不以此為限。
整體具有屈光率的五片式透鏡110、120、130、140、150示例性地是以相對兩透鏡之間分別存在一空氣間隙的方式設置於鏡筒23內。
模組後座單元24包括一用以供鏡筒23設置的鏡頭後座2401及一影像感測器後座2406。鏡筒23是和鏡頭後座2401沿一軸線I-I'同軸設 置,且鏡筒23設置於鏡頭後座2401內側,影像感測器後座2406位於該鏡頭後座2401和該影像感測器171之間,且該影像感測器後座2406和該鏡頭後座2401相貼合,然在其它的實施態樣中,不一定存在影像感測器後座2406。
由於光學成像鏡頭1之長度僅4.034(mm),因此可將可攜式電子裝置20之尺寸設計地更為輕薄短小,且仍然能夠提供良好的光學性能與成像品質。藉此,使本實施例除了具有減少機殼原料用量的經濟效益外,還能滿足輕薄短小的產品設計趨勢與消費需求。
另請參閱第48圖,為應用前述光學成像鏡頭1的可攜式電子裝置20'的一第二較佳實施例,第二較佳實施例的可攜式電子裝置20'與第一較佳實施例的可攜式電子裝置20的主要差別在於:鏡頭後座2401具有一第一座體單元2402、一第二座體單元2403、一線圈2404及一磁性元件2405。第一座體單元2402與鏡筒23外側相貼合且沿一軸線I-I'設置、第二座體單元2403沿軸線I-I'並環繞著第一座體單元2402外側設置。線圈2404設置在第一座體單元2402外側與第二座體單元2403內側之間。磁性元件2405設置在線圈2404外側與第二座體單元2403內側之間。
第一座體單元2402可帶著鏡筒23及設置在鏡筒23內的光學成像鏡頭1沿軸線I-I'移動。可攜式電子裝置20'的第二實施例的其他元件結構則與第一實施例的可攜式電子裝置20類似,在此不再贅述。
類似地,由於光學成像鏡頭1之長度僅4.034(mm),因此可將可攜式電子裝置20'之尺寸設計地更為輕薄短小,且仍然能夠提供良好的光學性能與成像品質。藉此,使本實施例除了具有減少機殼原料用量的經濟效益外,還能滿足輕薄短小的產品設計趨勢與消費需求。
由上述中可以得知,本發明之可攜式電子裝置與其光學成像鏡頭,透過控制五片透鏡各透鏡的細部結構及/或屈光率之設計,並控制參數滿足至少一與第二透鏡在光軸上的厚度相關的條件式,以維持良好光學性能,並有效縮短鏡頭長度。
以上敍述依據本發明多個不同實施例,其中各項特徵可以單一或不同結合方式實施。因此,本發明實施方式之揭露為闡明本發明原則 之具體實施例,應不拘限本發明於所揭示的實施例。進一步言之,先前敍述及其附圖僅為本發明示範之用,並不受其限囿。其他元件之變化或組合皆可能,且不悖于本發明之精神與範圍。
1‧‧‧光學成像鏡頭
100‧‧‧光圈
110‧‧‧第一透鏡
111,121,131,141,151,161‧‧‧物側面
112,122,132,142,152,162‧‧‧像側面
120‧‧‧第二透鏡
130‧‧‧第三透鏡
140‧‧‧第四透鏡
150‧‧‧第五透鏡
160‧‧‧濾光件
170‧‧‧成像面
1111,1311,1421,1511‧‧‧位於光軸附近區域的凸面部
1312,1422,1512‧‧‧位於圓周附近區域的凹面部
1321,1521‧‧‧位於光軸附近區域的凹面部
1322,1522‧‧‧位於圓周附近區域的凸面部
d1,d2,d3,d4,d5,d6‧‧‧空氣間隙
A1‧‧‧物側
A2‧‧‧像側

Claims (20)

  1. 一種光學成像鏡頭,從物側至像側沿一光軸依序包括一第一透鏡、一光圈、一第二透鏡、一第三透鏡、一第四透鏡及一第五透鏡,每一透鏡具有一朝向物側的物側面及一朝向像側的像側面,且每一透鏡具有屈光率,其中:該第一透鏡之該物側面為一凸面;該第二透鏡具有正屈光率;及該第五透鏡之該像側面包括一位於光軸附近區域的凹面部及一位於圓周附近區域的凸面部;其中,該光學成像鏡頭總共只有該五片具有屈光率的透鏡,並且滿足下列條件式:T2/AG23≦2.5,T2為該第二透鏡在光軸上的厚度,AG23為該第二透鏡與該第三透鏡之間在光軸上的空氣間隙寬度,該光學成像鏡頭還滿足T2/T3≦1.2的條件式,T3為該第三透鏡在光軸上的厚度,且該第四透鏡的該物側面更包括一位於光軸附近區域的凸面部。
  2. 申請專利範圍第1項所述的光學成像鏡頭,其中該光學成像鏡頭還滿足T4/T3≦1.8的條件式,T4為該第四透鏡在光軸上的厚度。
  3. 如申請專利範圍第2項所述的光學成像鏡頭,其中該第四透鏡的該物側面更包括一位於光軸附近區域的凸面部,且該第五透鏡具有正屈光率。
  4. 如申請專利範圍第2項所述的光學成像鏡頭,其中該光學成像鏡頭還滿足4.5≦AAG/(AG34+AG45)的條件式,AG34為該第三透鏡與該第四透鏡之間在光軸上的空氣間隙寬度,AG45為該第四透鏡與該第五透鏡之間在光軸上的空氣間隙寬度,AAG為該第一透鏡與該第五透鏡之間四個空氣間隙在光軸上的寬度總和。
  5. 如申請專利範圍第1項所述的光學成像鏡頭,其中該光學成像鏡頭還滿 足ALT/AAG≦3.5的條件式,ALT為該第一透鏡至該第五透鏡在光軸上的五片鏡片厚度總和,AAG為該第一透鏡與該第五透鏡之間四個空氣間隙在光軸上的寬度總和。
  6. 如申請專利範圍第5項所述的光學成像鏡頭,其中該光學成像鏡頭還滿足0.4≦T1/AG12≦2.8的條件式,T1為該第一透鏡在光軸上的厚度,AG12為該第一透鏡與該第二透鏡之間在光軸上的空氣間隙寬度。
  7. 如申請專利範圍第1項所述的光學成像鏡頭,其中該第三透鏡的該物側面更包括一位於光軸附近區域的凹面部。
  8. 如申請專利範圍第7項所述的光學成像鏡頭,其中該光學成像鏡頭還滿足T4/AG12≦2.0的條件式,T4為該第四透鏡在光軸上的厚度,AG12為該第一透鏡與該第二透鏡之間在光軸上的空氣間隙寬度。
  9. 一種光學成像鏡頭,從物側至像側沿一光軸依序包括一第一透鏡、一光圈、一第二透鏡、一第三透鏡、一第四透鏡及一第五透鏡,每一透鏡具有一朝向物側的物側面及一朝向像側的像側面,且每一透鏡具有屈光率,其中:該第一透鏡之該物側面為一凸面;該第二透鏡具有正屈光率;及該第五透鏡之該像側面包括一位於光軸附近區域的凹面部及一位於圓周附近區域的凸面部;其中,該光學成像鏡頭總共只有該五片具有屈光率的透鏡,並且滿足下列條件式:T2/T3≦1.2,T2為該第二透鏡在光軸上的厚度,T3為該第三透鏡在光軸上的厚度,該光學成像鏡頭還滿足3.5≦ALT/T3≦6.0的條件式,ALT為該第一透鏡至該第五透鏡在光軸上的五片鏡片厚度總和。
  10. 如申請專利範圍第9項所述的光學成像鏡頭,其中該光學成像鏡頭還滿足T5/AG23≦2.0的條件式,T5為該第五透鏡在光軸上的厚度,AG23為該第二透鏡與該第三透鏡之間在光軸上的空氣間隙寬度。
  11. 如申請專利範圍第10項所述的光學成像鏡頭,其中該光學成像鏡頭還滿足ALT/AAG≦3.5的條件式,AAG為該第一透鏡與該第五透鏡之間四個空氣間隙在光軸上的寬度總和。
  12. 如申請專利範圍第10項所述的光學成像鏡頭,其中該光學成像鏡頭還滿足T2/AG12≦5.3,T2為該第二透鏡在光軸上的厚度,AG12為該第一透鏡與該第二透鏡之間在光軸上的空氣間隙寬度。
  13. 如申請專利範圍第9項所述的光學成像鏡頭,其中該第三透鏡的該像側面更包括一位於光軸附近區域的凸面部。
  14. 一種光學成像鏡頭,從物側至像側沿一光軸依序包括一第一透鏡、一光圈、一第二透鏡、一第三透鏡、一第四透鏡及一第五透鏡,每一透鏡具有一朝向物側的物側面及一朝向像側的像側面,且每一透鏡具有屈光率,其中:該第一透鏡之該物側面為一凸面;該第二透鏡具有正屈光率;及該第五透鏡之該像側面包括一位於光軸附近區域的凹面部及一位於圓周附近區域的凸面部;其中,該光學成像鏡頭總共只有該五片具有屈光率的透鏡,並且滿足下列條件式:1.07≦T2/AG12≦5.3,T2為該第二透鏡在光軸上的厚度,AG12為該第一透鏡與該第二透鏡之間在光軸上的空氣間隙寬度,該光學成像鏡頭還滿足T1/AG12≦2.8的條件式,T1為該第一透鏡在光軸上的厚度,且該第二透鏡的該物側面更包括一位於圓周附近區域的凹面部。
  15. 如申請專利範圍第14項所述的光學成像鏡頭,其中該光學成像鏡頭還滿足T4/AG23≦4.0的條件式,T4為該第四透鏡在光軸上的厚度,AG23為該第二透鏡與該第三透鏡之間在光軸上的空氣間隙寬度。
  16. 如申請專利範圍第14項所述的光學成像鏡頭,其中該光學成像鏡頭還滿足ALT/AG23≦10.0,AG23為該第二透鏡與該第三透鏡之間在光軸上的空氣間隙寬度,ALT為該第一透鏡至該第五透鏡在光軸上的五片鏡片厚度總和。
  17. 如申請專利範圍第16項所述的光學成像鏡頭,其中該光學成像鏡頭還滿足0.8≦T5/T4,T4為該第四透鏡在光軸上的厚度,T5為該第五透鏡在光軸上的厚度。
  18. 如申請專利範圍第16項所述的光學成像鏡頭,其中該光學成像鏡頭還滿足1.7≦AAG/T4的條件式,T4為該第四透鏡在光軸上的厚度,AAG為該第一透鏡與該第五透鏡之間四個空氣間隙在光軸上的寬度總和。
  19. 如申請專利範圍第16項所述的光學成像鏡頭,其中該第五透鏡具有正屈光率。
  20. 一種可攜式電子裝置,包括:一機殼;及一影像模組,安裝於該機殼內,包括:一如申請專利範圍第1項至第19項中任一項所述的光學成像鏡頭;一鏡筒,俾供設置該光學成像鏡頭;一模組後座單元,俾供設置該鏡筒;一基板,俾供設置該模組後座單元;及一影像感測器,設置於該基板且位於該光學成像鏡頭的像側。
TW102128742A 2013-07-10 2013-08-09 可攜式電子裝置與其光學成像鏡頭 TWI479184B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310288831.9A CN103631000B (zh) 2013-07-10 2013-07-10 可携式电子装置与其光学成像镜头

Publications (2)

Publication Number Publication Date
TW201409069A TW201409069A (zh) 2014-03-01
TWI479184B true TWI479184B (zh) 2015-04-01

Family

ID=50212233

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102128742A TWI479184B (zh) 2013-07-10 2013-08-09 可攜式電子裝置與其光學成像鏡頭

Country Status (4)

Country Link
US (5) US9541736B2 (zh)
JP (1) JP5873133B2 (zh)
CN (1) CN103631000B (zh)
TW (1) TWI479184B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103631000B (zh) 2013-07-10 2016-12-28 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
TWI456248B (zh) * 2013-07-23 2014-10-11 Largan Precision Co Ltd 影像系統透鏡組及取像裝置
TWI485425B (zh) 2014-05-26 2015-05-21 Largan Precision Co Ltd 成像光學系統、取像裝置以及可攜式裝置
TWI567416B (zh) * 2014-10-22 2017-01-21 揚明光學股份有限公司 光學成像鏡頭
CN104898253B (zh) * 2015-02-13 2017-07-25 玉晶光电(厦门)有限公司 便携式电子装置与其光学成像镜头
KR102380230B1 (ko) * 2015-03-18 2022-03-30 삼성전자주식회사 촬영 렌즈 및 이를 포함하는 촬영 장치
TWI627467B (zh) 2017-03-22 2018-06-21 大立光電股份有限公司 成像系統鏡頭組、取像裝置及電子裝置
TWI622798B (zh) 2017-08-01 2018-05-01 大立光電股份有限公司 光學影像擷取系統、取像裝置及電子裝置
CN107942479B (zh) * 2017-12-07 2021-02-05 广东旭业光电科技股份有限公司 光学成像透镜组及影像拾取设备
KR102293909B1 (ko) * 2019-12-11 2021-08-26 주식회사 옵트론텍 렌즈 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201239444A (en) * 2012-06-05 2012-10-01 Largan Precision Co Ltd Image capturing optical lens assembly
CN102132188B (zh) * 2008-08-25 2013-02-27 柯尼卡美能达精密光学株式会社 摄影透镜、摄影装置和便携式终端
CN202794675U (zh) * 2012-07-27 2013-03-13 大立光电股份有限公司 光学拾像***镜组
TW201317658A (zh) * 2011-10-26 2013-05-01 Hon Hai Prec Ind Co Ltd 取像鏡頭
TW201321830A (zh) * 2012-11-02 2013-06-01 玉晶光電股份有限公司 可攜式電子裝置與其光學成像鏡頭
WO2013099255A1 (ja) * 2011-12-28 2013-07-04 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3723637B2 (ja) * 1996-07-03 2005-12-07 ペンタックス株式会社 撮影レンズ
JP4847172B2 (ja) 2006-03-28 2011-12-28 富士フイルム株式会社 撮像レンズ
JP4963187B2 (ja) * 2006-04-05 2012-06-27 富士フイルム株式会社 撮像レンズおよび撮像装置
JP2007286548A (ja) * 2006-04-20 2007-11-01 Sharp Corp ズームレンズおよびデジタルカメラおよび携帯情報機器
JP5073590B2 (ja) * 2008-06-06 2012-11-14 富士フイルム株式会社 5枚構成の撮像レンズおよび撮像装置
JP5298682B2 (ja) 2008-07-24 2013-09-25 コニカミノルタ株式会社 撮像レンズ
TWI388878B (zh) 2008-12-01 2013-03-11 Largan Precision Co Ltd 取像光學鏡片組
JP5095662B2 (ja) 2009-03-31 2012-12-12 カンタツ株式会社 固体撮像素子用撮像レンズ
TWI390244B (zh) * 2009-06-12 2013-03-21 Largan Precision Co Ltd 攝影鏡頭
US8559118B2 (en) * 2009-11-18 2013-10-15 DigitalOptics Corporation Europe Limited Fixed focal length optical lens architecture providing a customized depth of focus optical system
TWI400506B (zh) * 2010-04-23 2013-07-01 Largan Precision Co Ltd 攝像光學鏡片組
TWI401485B (zh) * 2010-06-10 2013-07-11 Largan Precision Co Ltd 成像光學鏡片組
TWI416197B (zh) * 2010-06-28 2013-11-21 Largan Precision Co Ltd 廣視角攝像鏡頭
TWI418877B (zh) 2010-12-15 2013-12-11 Largan Precision Co 成像用光學系統
JP5588858B2 (ja) 2010-12-28 2014-09-10 カンタツ株式会社 撮像レンズ
TWI416162B (zh) 2011-04-22 2013-11-21 Largan Precision Co 影像擷取系統
TWI461728B (zh) 2011-09-02 2014-11-21 Largan Precision Co Ltd 影像鏡組
JP5904208B2 (ja) 2011-10-20 2016-04-13 コニカミノルタ株式会社 撮像レンズ,撮像光学装置及びデジタル機器
TWI435103B (zh) * 2012-04-06 2014-04-21 Largan Precision Co Ltd 光學攝像鏡片系統
TWI460463B (zh) 2012-05-28 2014-11-11 Largan Precision Co Ltd 拾像光學鏡片系統
TWI439754B (zh) * 2012-10-09 2014-06-01 Largan Precision Co Ltd 結像系統鏡頭組
CN103293644B (zh) * 2013-02-06 2015-11-25 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
CN103631000B (zh) * 2013-07-10 2016-12-28 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
CN103676102B (zh) * 2013-07-16 2016-08-10 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
TWI489132B (zh) * 2014-01-10 2015-06-21 Largan Precision Co Ltd 成像光學鏡頭、取像裝置及可攜式裝置
CN105445904B (zh) * 2015-07-10 2017-10-20 玉晶光电(厦门)有限公司 便携式电子装置与其光学成像镜头
JP6587292B2 (ja) * 2017-06-02 2019-10-09 カンタツ株式会社 撮像レンズ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102132188B (zh) * 2008-08-25 2013-02-27 柯尼卡美能达精密光学株式会社 摄影透镜、摄影装置和便携式终端
TW201317658A (zh) * 2011-10-26 2013-05-01 Hon Hai Prec Ind Co Ltd 取像鏡頭
WO2013099255A1 (ja) * 2011-12-28 2013-07-04 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
TW201239444A (en) * 2012-06-05 2012-10-01 Largan Precision Co Ltd Image capturing optical lens assembly
CN202794675U (zh) * 2012-07-27 2013-03-13 大立光电股份有限公司 光学拾像***镜组
TW201321830A (zh) * 2012-11-02 2013-06-01 玉晶光電股份有限公司 可攜式電子裝置與其光學成像鏡頭

Also Published As

Publication number Publication date
US20170235108A1 (en) 2017-08-17
US9541736B2 (en) 2017-01-10
US20150014515A1 (en) 2015-01-15
US20200158994A1 (en) 2020-05-21
JP2015018233A (ja) 2015-01-29
US11086107B2 (en) 2021-08-10
US10394001B2 (en) 2019-08-27
JP5873133B2 (ja) 2016-03-01
US20200264410A1 (en) 2020-08-20
US20210396971A1 (en) 2021-12-23
CN103631000A (zh) 2014-03-12
CN103631000B (zh) 2016-12-28
US11204484B2 (en) 2021-12-21
TW201409069A (zh) 2014-03-01

Similar Documents

Publication Publication Date Title
TWI479184B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI487969B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI498588B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI503592B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI479186B (zh) 可攜式電子裝置與其光學成像鏡頭(三)
TWI529408B (zh) 可攜式電子裝置與其光學成像鏡頭(二)
TWI507725B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI512319B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI471591B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI516793B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI479183B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI467217B (zh) 可攜式電子裝置與其光學成像鏡頭(二)
TWI503562B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI487935B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI521234B (zh) 可攜式電子裝置與其光學成像鏡頭
TW201317615A (zh) 可攜式電子裝置與其光學成像鏡頭
TWI490530B (zh) 可攜式電子裝置與其光學成像鏡頭(一)
TWI537632B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI471592B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI479182B (zh) 可攜式電子裝置與其光學成像鏡頭
TW201425991A (zh) 可攜式電子裝置與其光學成像鏡頭(一)
TW201341839A (zh) 可攜式電子裝置與其光學成像鏡頭
TWI471588B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI471590B (zh) 可攜式電子裝置與其光學成像鏡頭
TWI494588B (zh) 可攜式電子裝置與其光學成像鏡頭