TWI476147B - Carbon nanotube composite and method for making the same - Google Patents

Carbon nanotube composite and method for making the same Download PDF

Info

Publication number
TWI476147B
TWI476147B TW097104014A TW97104014A TWI476147B TW I476147 B TWI476147 B TW I476147B TW 097104014 A TW097104014 A TW 097104014A TW 97104014 A TW97104014 A TW 97104014A TW I476147 B TWI476147 B TW I476147B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
composite material
polymer matrix
carbon
nanotube composite
Prior art date
Application number
TW097104014A
Other languages
Chinese (zh)
Other versions
TW200934725A (en
Inventor
Shou-Shan Fan
Qun-Feng Cheng
Jia-Ping Wang
Kai-Li Jiang
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097104014A priority Critical patent/TWI476147B/en
Publication of TW200934725A publication Critical patent/TW200934725A/en
Application granted granted Critical
Publication of TWI476147B publication Critical patent/TWI476147B/en

Links

Description

奈米碳管複合材料及其製備方法 Nano carbon tube composite material and preparation method thereof

本發明涉及一種奈米碳管複合材料及其製備方法,尤其涉及一種奈米碳管高分子複合材料及其製備方法。 The invention relates to a carbon nanotube composite material and a preparation method thereof, in particular to a nano carbon tube polymer composite material and a preparation method thereof.

自1991年日本NEC公司的Iijima發現奈米碳管(Carbon Nanotube,CNT)以來(Iijima S.Helical Microtubules of Graphitic Carbon.Nature,1991,354:56-58),奈米碳管引起了科學界及產業界的極大重視,成為近年來國際科學研究的熱點。奈米碳管具有與金剛石相同的熱導和獨特的力學性能,如抗張強度高達100千兆帕,模量高達1800千兆帕,且耐強酸、強鹼,600℃以下基本不氧化等。 Since Iijima of NEC Corporation of Japan discovered the Carbon Nanotube (CNT) in 1991 (Iijima S. Helical Microtubules of Graphitic Carbon. Nature, 1991, 354: 56-58), the carbon nanotubes have caused the scientific community and The great attention of the industry has become a hot spot in international scientific research in recent years. The carbon nanotubes have the same thermal conductivity and unique mechanical properties as diamond, such as tensile strength up to 100 gigapascals, modulus up to 1800 gigapascals, resistance to strong acids and alkalis, and basic non-oxidation below 600 °C.

由於奈米碳管具有如此優異的性能,利用奈米碳管作為填充物與其他材料複合已成為奈米碳管應用的一個重要方向。特別地,奈米碳管與其他材料如金屬、半導體或者高分子等的複合可以實現材料的優勢互補或加強。奈米碳管具有較大的長徑比和中空的結構,具有優異的力學性能,可作為一種超級纖維,對複合材料起到增強作用。此外,奈米碳管具有優異的導熱性能,可使該複合材料具有良好的熱傳導性。 Due to the excellent performance of carbon nanotubes, the use of carbon nanotubes as fillers in combination with other materials has become an important direction for carbon nanotube applications. In particular, the combination of carbon nanotubes with other materials such as metals, semiconductors or polymers can complement or enhance the advantages of the materials. The carbon nanotube has a large aspect ratio and a hollow structure, and has excellent mechanical properties, and can be used as a super fiber to enhance the composite material. In addition, the carbon nanotubes have excellent thermal conductivity, which enables the composite to have good thermal conductivity.

先前技術多以粒子填充高分子的形式來製備奈米碳管複合材料, 由於奈米碳管容易團聚,需先對奈米碳管進行表面改性和功能化處理,而後採用溶液或熔融的方法與高分子複合。先前技術中一種製備奈米碳管複合材料的方法包括以下步驟:(一)將0.3重量份的多壁奈米碳管投入到10重量份的濃硝酸中,於100℃下攪拌回流20小時,用蒸餾水洗去酸液,於90℃下真空乾燥10小時。(二)將上述產物羧酸化奈米碳管加入到10重量份草醯氯中,於90℃下攪拌10小時,蒸除未反應的草醯氯,從而得到醯氯化的奈米碳管。(三)將醯氯化的奈米碳管放入冰浴中,於慢速攪拌下滴加10重量份的乾燥乙二胺,於100℃下抽真空乾燥10小時。(四)將上述醯胺化的奈米碳管加入到20重量份的乙醇溶劑中,超聲波處理15分鐘,加入2重量份環氧樹脂,高速攪拌分散20分鐘,蒸除溶劑,加熱至60℃,按照環氧樹脂的環氧基團與固化劑中胺基氫原子物質的摩爾比為1:1的比例加入固化劑苯二胺,並即將其分散均勻。(五)把複合體系倒入模具中,升溫至80℃固化2小時,然後於150℃下固化兩個小時,得到環氧樹脂固化複合材料。 The prior art mostly prepares a carbon nanotube composite material in the form of a particle-filled polymer. Since the carbon nanotubes are easily agglomerated, the surface modification and functionalization of the carbon nanotubes are first performed, and then the solution is melted by a solution or a molten polymer. A method for preparing a carbon nanotube composite material in the prior art includes the following steps: (1) 0.3 part by weight of a multi-walled carbon nanotube is put into 10 parts by weight of concentrated nitric acid, and stirred under reflux at 100 ° C for 20 hours. The acid solution was washed with distilled water and dried under vacuum at 90 ° C for 10 hours. (2) The above product carboxylated carbon nanotubes were added to 10 parts by weight of grass mash, stirred at 90 ° C for 10 hours, and unreacted grass chlorobenzene was distilled off to obtain a ruthenium chloride carbon nanotube. (3) The ruthenium chloride carbon nanotubes were placed in an ice bath, and 10 parts by weight of dry ethylenediamine was added dropwise under slow stirring, and vacuum-dried at 100 ° C for 10 hours. (4) Adding the above-mentioned guanated carbon nanotube to 20 parts by weight of ethanol solvent, ultrasonic treatment for 15 minutes, adding 2 parts by weight of epoxy resin, stirring at high speed for 20 minutes, distilling off the solvent, heating to 60 ° C The curing agent phenylenediamine is added in a ratio of a molar ratio of the epoxy group of the epoxy resin to the amine hydrogen atom in the curing agent of 1:1, and the dispersion is uniform. (5) Pour the composite system into a mold, heat it to 80 ° C for 2 hours, and then cure at 150 ° C for two hours to obtain an epoxy resin cured composite.

通過上述方法製備得到的奈米碳管複合材料中,奈米碳管隨機分散於高分子中,該複合材料中的奈米碳管具有不完整的外層結構,且奈米碳管分佈雜亂無章,沒有共同的取向。 In the carbon nanotube composite material prepared by the above method, the carbon nanotubes are randomly dispersed in the polymer, and the carbon nanotubes in the composite material have an incomplete outer layer structure, and the distribution of the carbon nanotubes is disordered. Common orientation.

因此,上述奈米碳管複合材料及其製備方法存在以下缺點。第一,採用機械共混的方法混合奈米碳管與高分子,很難將奈米碳管均勻混和於高分子當中,因此得到的奈米碳管複合材料中奈米碳管混合不均勻。第二,該方法需對奈米碳管進行表面修飾以利於奈米碳管於高分子中能夠更好的分散,然,對奈米碳管的表面修 飾會嚴重的破壞奈米碳管的完整結構,從而影響了奈米碳管複合材料的性能。第三,採用攪拌的方法分散奈米碳管,奈米碳管的排列雜亂無章,且沒有固定取向,使得奈米碳管於複合物中不能發揮其軸向優勢,從而影響了奈米碳管複合材料的性能。第四,該方法需要添加溶劑,而所添加的溶劑很難除去,從而使得奈米碳管複合材料成分不純。第五,該方法工藝複雜,成本較高。 Therefore, the above-described carbon nanotube composite material and its preparation method have the following disadvantages. First, the carbon nanotubes and the polymer are mixed by mechanical blending, and it is difficult to uniformly mix the carbon nanotubes in the polymer, so that the carbon nanotubes in the obtained carbon nanotube composite material are not uniformly mixed. Second, the method requires surface modification of the carbon nanotubes to facilitate better dispersion of the carbon nanotubes in the polymer. However, the surface of the carbon nanotubes is repaired. The decoration will seriously damage the complete structure of the carbon nanotubes, thus affecting the performance of the carbon nanotube composite. Thirdly, the carbon nanotubes are dispersed by stirring. The arrangement of the carbon nanotubes is disordered and there is no fixed orientation, so that the carbon nanotubes can not exert their axial advantages in the composite, thereby affecting the carbon nanotube composite. The properties of the material. Fourth, the method requires the addition of a solvent, and the added solvent is difficult to remove, thereby making the composition of the carbon nanotube composite impure. Fifth, the method is complicated in process and high in cost.

有鑒於此,提供一種具有優良特性的奈米碳管複合材料及其製備方法實為必要,且該製備方法簡單、易於實現、成本低廉。 In view of this, it is necessary to provide a carbon nanotube composite material having excellent characteristics and a preparation method thereof, and the preparation method is simple, easy to implement, and low in cost.

一種奈米碳管複合材料,包括奈米碳管和高分子基體,其中該奈米碳管以奈米碳管薄膜結構的形式設置於高分子基體中。 A carbon nanotube composite material comprising a carbon nanotube and a polymer matrix, wherein the carbon nanotube is disposed in a polymer matrix in the form of a carbon nanotube film structure.

一種奈米碳管複合材料的製造方法,其包括以下步驟:製備一高分子基體;製備一奈米碳管薄膜;將至少一個奈米碳管薄膜設置於高分子基體的至少一個表面形成一奈米碳管薄膜結構,從而形成一奈米碳管複合材料預製體;加熱奈米碳管複合材料預製體,使奈米碳管薄膜結構與高分子基體複合,從而得到一奈米碳管複合材料。 A method for manufacturing a carbon nanotube composite material, comprising the steps of: preparing a polymer matrix; preparing a carbon nanotube film; and disposing at least one carbon nanotube film on at least one surface of the polymer matrix to form a nanocap. a carbon nanotube film structure to form a carbon nanotube composite preform; heating the carbon nanotube composite preform to composite the nanocarbon film structure with the polymer matrix to obtain a carbon nanotube composite .

與先前技術相比,所述的奈米碳管複合材料及其製備方法具有以下優點:第一,由於採用奈米碳管薄膜結構自然滲入高分子材料當中,且奈米碳管薄膜結構中的奈米碳管的間隙中充滿了高分子。因此,所述的奈米碳管複合材料中,奈米碳管分佈規則、均勻,使得該複合材料具有優異的性能。第二,所述的奈米碳管複合材料的製備方法無需對奈米碳管進行表面處理,不僅保證了奈米碳管結構上的完整性,簡化了製備過程,還降低了生產成本,並 提高了所述複合材料的性能。第三,所述的奈米碳管複合材料的製備方法採用將奈米碳管薄膜結構設於高分子材料表面後,對其加壓、加熱、真空處理,因此具有簡單、容易實現、生產成本低的優點。 Compared with the prior art, the carbon nanotube composite material and the preparation method thereof have the following advantages: First, since the nano carbon tube film structure is naturally infiltrated into the polymer material, and the carbon nanotube film structure is The gap between the carbon nanotubes is filled with a polymer. Therefore, in the carbon nanotube composite material, the distribution of the carbon nanotubes is regular and uniform, so that the composite material has excellent properties. Secondly, the preparation method of the carbon nanotube composite material does not require surface treatment of the carbon nanotubes, which not only ensures the structural integrity of the carbon nanotubes, simplifies the preparation process, but also reduces the production cost, and The properties of the composite are improved. Thirdly, the method for preparing the carbon nanotube composite material adopts the method that the carbon nanotube film structure is disposed on the surface of the polymer material, and is pressurized, heated, and vacuum processed, thereby being simple, easy to realize, and low in production cost. Low advantage.

10‧‧‧奈米碳管符合材料 10‧‧‧Nano carbon tube conforming materials

20‧‧‧奈米碳管符合材料預製體 20‧‧‧Nanocarbon tubes conform to material preforms

12‧‧‧奈米碳管薄膜結構 12‧‧‧Nano Carbon Tube Thin Film Structure

14‧‧‧高分子基體 14‧‧‧ polymer matrix

122‧‧‧第一奈米碳管層 122‧‧‧First carbon nanotube layer

124‧‧‧第二奈米碳管層 124‧‧‧Second carbon nanotube layer

126‧‧‧第三奈米碳管層 126‧‧‧ third carbon nanotube layer

128‧‧‧第四奈米碳管層 128‧‧‧fourth carbon nanotube layer

30‧‧‧模具 30‧‧‧Mold

40‧‧‧加熱裝置 40‧‧‧ heating device

31‧‧‧上基板 31‧‧‧Upper substrate

33‧‧‧下基板 33‧‧‧lower substrate

35‧‧‧流膠槽 35‧‧‧ flow tank

圖1為本技術方案實施例的奈米碳管複合材料的剖面圖。 1 is a cross-sectional view of a carbon nanotube composite material according to an embodiment of the present technical solution.

圖2為圖1中的奈米碳管薄膜結構的結構分解示意圖。 2 is a schematic exploded view showing the structure of the carbon nanotube film of FIG. 1.

圖3為本技術方案實施例的奈米碳管複合材料的製備方法的流程圖。 3 is a flow chart of a method for preparing a carbon nanotube composite material according to an embodiment of the present technical solution.

圖4為本技術方案實施例的奈米碳管複合材料預製體的剖面圖。 4 is a cross-sectional view of a carbon nanotube composite preform according to an embodiment of the present technology.

圖5為本技術方案實施例製備奈米碳管複合材料的裝置的結構示意圖。 FIG. 5 is a schematic structural view of an apparatus for preparing a carbon nanotube composite material according to an embodiment of the present technical solution.

下面將結合附圖對本技術方案作進一步的詳細說明。 The technical solution will be further described in detail below with reference to the accompanying drawings.

請參考圖1,本技術方案實施例提供一種奈米碳管複合材料10,其包括高分子基體14與分佈於該高分子基體14中的奈米碳管,該奈米碳管以奈米碳管薄膜結構12的形式分佈於該高分子基體14中。 Referring to FIG. 1 , an embodiment of the present technical solution provides a carbon nanotube composite material 10 , which comprises a polymer matrix 14 and a carbon nanotube distributed in the polymer matrix 14 , wherein the carbon nanotube is nano carbon The form of the tube film structure 12 is distributed in the polymer matrix 14.

所述高分子基體14為一高分子薄膜。高分子基體14材料可選擇為熱固性高分子材料或熱塑性高分子材料。本實施例中,熱固性高分子材料包括酚醛樹脂、環氧樹脂、雙馬來醯亞胺樹脂、聚苯並惡嗪樹脂、氰酸酯樹脂、聚醯亞胺樹脂和不飽和聚醯樹脂中的一種或者幾種的混合物。該熱塑性高分子材料包括聚乙烯、聚氯乙 烯、聚四氟乙烯、聚丙烯,聚苯乙烯、聚甲基丙烯酸甲酯、聚對苯二甲酸乙二酯、聚碳酸酯、聚對苯二甲酸丁二酯、聚醯胺、聚醚酮、聚碸、聚醚碸、熱塑性聚醯亞胺、聚醚醯亞胺、聚苯醚、聚苯硫醚、聚乙酸乙烯酯、聚對苯撐苯並雙惡唑中的一種或者幾種的混合物。 The polymer matrix 14 is a polymer film. The polymer matrix 14 material may be selected from a thermosetting polymer material or a thermoplastic polymer material. In this embodiment, the thermosetting polymer material includes phenolic resin, epoxy resin, bismaleimide resin, polybenzoxazine resin, cyanate resin, polyimide resin, and unsaturated polyfluorene resin. a mixture of one or several. The thermoplastic polymer material includes polyethylene, polyvinyl chloride Alkene, polytetrafluoroethylene, polypropylene, polystyrene, polymethyl methacrylate, polyethylene terephthalate, polycarbonate, polybutylene terephthalate, polydecylamine, polyether ketone , one or more of polyfluorene, polyether oxime, thermoplastic polyimine, polyether phthalimide, polyphenylene ether, polyphenylene sulfide, polyvinyl acetate, polyparaphenylene benzobisoxazole mixture.

所述奈米碳管薄膜結構12由一個奈米碳管層或複數個平行且重疊的奈米碳管層構成,該奈米碳管層由一個奈米碳管薄膜或複數個平行且無間隙鋪設的奈米碳管薄膜構成。該奈米碳管薄膜為擇優取向排列的複數個奈米碳管束首尾相連形成的具有一定寬度的薄膜,該奈米碳管薄膜中的奈米碳管束具有基本相同的排列方向。奈米碳管束之間通過凡德瓦爾力緊密連接,該奈米碳管束長度基本相同,且包括複數個具有基本相同的長度並相互平行的奈米碳管。該奈米碳管薄膜的厚度為0.01~100微米,其中的奈米碳管為單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或幾種。當該奈米碳管薄膜中的奈米碳管為單壁奈米碳管時,該單壁奈米碳管的直徑為0.5~50奈米。當該奈米碳管薄膜中的奈米碳管為雙壁奈米碳管時,該雙壁奈米碳管的直徑為1.0~50奈米。當該奈米碳管薄膜中的奈米碳管為多壁奈米碳管時,該多壁奈米碳管的直徑為1.5~50奈米。所述奈米碳管層的面積不限,可根據實際需求製備。 The carbon nanotube film structure 12 is composed of a carbon nanotube layer or a plurality of parallel and overlapping carbon nanotube layers consisting of a carbon nanotube film or a plurality of parallel and no gaps. The carbon nanotube film is laid. The carbon nanotube film is a film having a certain width formed by connecting a plurality of carbon nanotube bundles arranged in a preferential orientation, and the carbon nanotube bundles in the carbon nanotube film have substantially the same arrangement direction. The carbon nanotube bundles are closely connected by van der Waals force, and the nano carbon nanotube bundles are substantially the same length and include a plurality of carbon nanotubes having substantially the same length and parallel to each other. The carbon nanotube film has a thickness of 0.01 to 100 μm, and the carbon nanotubes are one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. When the carbon nanotube in the carbon nanotube film is a single-walled carbon nanotube, the single-walled carbon nanotube has a diameter of 0.5 to 50 nm. When the carbon nanotube in the carbon nanotube film is a double-walled carbon nanotube, the double-walled carbon nanotube has a diameter of 1.0 to 50 nm. When the carbon nanotube in the carbon nanotube film is a multi-walled carbon nanotube, the multi-walled carbon nanotube has a diameter of 1.5 to 50 nm. The area of the carbon nanotube layer is not limited and can be prepared according to actual needs.

當所述奈米碳管薄膜結構12由複數個重疊的奈米碳管層構成時,複數個奈米碳管層之間通過凡德瓦爾力緊密連接形成一具有穩定結構的奈米碳管薄膜結構12。由複數個奈米碳管層組成的奈米碳管薄膜結構12中,相鄰的奈米碳管層中的奈米碳管的排列方向形 成一夾角α,且0°≦α≦90°。如圖2所示,本實施例中提供的奈米碳管薄膜結構12由四個相互平行疊加的第一奈米碳管層122、第二奈米碳管層124、第三奈米碳管層126、第四奈米碳管層128組成,該奈米碳管薄膜結構12的厚度為0.04~400微米,該奈米碳管薄膜結構12中相鄰奈米碳管層中的奈米碳管的排列方形成的夾角為90°。 When the carbon nanotube film structure 12 is composed of a plurality of overlapping carbon nanotube layers, a plurality of carbon nanotube layers are closely connected by van der Waals force to form a stable carbon nanotube film. Structure 12. In the carbon nanotube film structure 12 composed of a plurality of carbon nanotube layers, the arrangement direction of the carbon nanotubes in the adjacent carbon nanotube layers An angle α is formed, and 0°≦α≦90°. As shown in FIG. 2, the carbon nanotube film structure 12 provided in this embodiment is composed of four first carbon nanotube layers 122, a second carbon nanotube layer 124, and a third carbon nanotube stacked in parallel with each other. The layer 126 and the fourth carbon nanotube layer 128 are formed. The carbon nanotube film structure 12 has a thickness of 0.04 to 400 μm. The carbon nanotubes in the adjacent carbon nanotube layer in the carbon nanotube film structure 12 The arrangement of the tubes forms an angle of 90°.

奈米碳管複合材料10中,奈米碳管薄膜結構12均勻設置於高分子基體14當中,高分子材料浸潤到奈米碳管薄膜結構12中相鄰的奈米碳管的間隙當中,高分子材料與奈米碳管薄膜結構12中的奈米碳管緊密結合在一起。 In the carbon nanotube composite material 10, the carbon nanotube film structure 12 is uniformly disposed in the polymer matrix 14, and the polymer material is infiltrated into the gap between the adjacent carbon nanotubes in the carbon nanotube film structure 12, which is high. The molecular material is tightly bound to the carbon nanotubes in the carbon nanotube film structure 12.

請參考圖3,本技術方案還提供一種上述奈米碳管複合材料10的製備方法,其具體包括以下步驟: Please refer to FIG. 3 , the technical solution further provides a method for preparing the above carbon nanotube composite material 10 , which specifically includes the following steps:

步驟一:製備一高分子基體14,其為一高分子薄膜。 Step 1: Prepare a polymer matrix 14, which is a polymer film.

該高分子基體14可以採用溶液成膜、熱熔刮塗、流延成膜、噴塗成膜的方法製備。 The polymer matrix 14 can be prepared by a solution film formation, hot melt coating, casting film formation, or spray coating.

本實施例採用熱熔刮塗的方法製備高分子基體14,其具體包括以下步驟:首先,將液態烯丙基苯酚置於一容器中,加熱至90~180℃,使容器維持該溫度並攪拌若干分鐘。其次,將雙馬來醯亞胺粉末加入液態烯丙基苯酚中,雙馬來醯亞胺與烯丙基苯酚的品質比於60:5~60:70範圍內,控制容器溫度於110~160℃範圍內,靜置並使容器保持該溫度,抽真空若干分鐘充分排空溶液中的氣體,得到一透明紅褐色混合液體。再次,將上述雙馬來醯亞胺與稀丙基苯酚的混合液倒入一凹槽中,待混合液降溫後得到一高分子 基體14。所述高分子基體14的厚度及形狀可以通過控制凹槽的深度與形狀控制。 In this embodiment, the polymer matrix 14 is prepared by a hot melt knife coating method, which specifically includes the following steps: First, the liquid allyl phenol is placed in a container, heated to 90-180 ° C, and the container is maintained at the temperature and stirred. A few minutes. Secondly, the bismaleimide powder is added to the liquid allyl phenol. The quality ratio of bismaleimide to allyl phenol is in the range of 60:5~60:70, and the temperature of the control vessel is 110~160. In the range of °C, the container was allowed to stand at this temperature, and the gas in the solution was sufficiently evacuated by vacuuming for several minutes to obtain a transparent reddish brown mixed liquid. Again, the mixture of the above bismaleimide and the propyl phenol is poured into a groove, and after the mixture is cooled, a polymer is obtained. Base 14. The thickness and shape of the polymer matrix 14 can be controlled by controlling the depth and shape of the grooves.

步驟二:製備一奈米碳管薄膜。 Step 2: Prepare a carbon nanotube film.

該奈米碳管薄膜的製備方法包括以下步驟:首先,製備一奈米碳管陣列。 The method for preparing the carbon nanotube film comprises the following steps: First, preparing a carbon nanotube array.

本實施例中,所述奈米碳管陣列為一超順排奈米碳管陣列,該超順排奈米碳管陣列的製備方法採用化學氣相沈積法,其具體步驟包括:(a)提供一平整基底,該基底可選用P型或N型矽基底,或選用形成有氧化層的矽基底,本實施例優選為採用4英寸的矽基底;(b)於基底表面均勻形成一催化劑層,該催化劑層材料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組合的合金之一;(c)將上述形成有催化劑層的基底於700~900℃的空氣中退火約30分鐘~90分鐘;(d)將處理過的基底置於反應爐中,於保護氣體環境下加熱到500~740℃,然後通入碳源氣體反應約5~30分鐘,生長得到超順排奈米碳管陣列,其高度為200~400微米。該超順排奈米碳管陣列為複數個彼此平行且垂直於基底生長的奈米碳管形成的純奈米碳管陣列。通過上述控制生長條件,該超順排奈米碳管陣列中基本不含有雜質,如無定型碳或殘留的催化劑金屬顆粒等。該奈米碳管陣列中的奈米碳管彼此通過凡德瓦爾力緊密接觸形成陣列。 In this embodiment, the carbon nanotube array is a super-sequential carbon nanotube array, and the method for preparing the super-sequential carbon nanotube array is a chemical vapor deposition method, and the specific steps thereof include: (a) Providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or a germanium substrate formed with an oxide layer, preferably using a 4-inch germanium substrate; (b) uniformly forming a catalyst layer on the surface of the substrate The catalyst layer material may be one selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni) or any combination thereof; (c) annealing the substrate on which the catalyst layer is formed in air at 700 to 900 ° C (d) The treated substrate is placed in a reaction furnace, heated to 500-740 ° C under a protective gas atmosphere, and then reacted with a carbon source gas for about 5 to 30 minutes to grow super-smooth. The array of carbon nanotubes has a height of 200 to 400 microns. The super-sequential carbon nanotube array is a plurality of pure carbon nanotube arrays formed of carbon nanotubes that are parallel to each other and perpendicular to the substrate. The super-sequential carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles, etc., by controlling the growth conditions described above. The carbon nanotubes in the array of carbon nanotubes are in close contact with each other to form an array by van der Waals force.

本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性質較活潑的碳氫化合物,本實施例優選的碳源氣為乙炔;保護氣體為氮氣或惰性氣體,本實施例優選的保護氣體為氬氣。 In this embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment. It is argon.

可以理解,本實施例提供的奈米碳管陣列不限於上述製備方法,還可以採用電弧放電法、雷射蒸發沈積法。本實施例提供的奈米碳管陣列為單壁奈米碳管陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中的一種。 It can be understood that the carbon nanotube array provided in this embodiment is not limited to the above preparation method, and an arc discharge method or a laser evaporation deposition method may also be employed. The carbon nanotube array provided in this embodiment is one of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array.

其次,從上述奈米碳管陣列中拉取獲得至少一奈米碳管薄膜。 Next, at least one carbon nanotube film is obtained by drawing from the above carbon nanotube array.

該奈米碳管薄膜的製備具體包括以下步驟:(a)從上述奈米碳管陣列中選定一定寬度的複數個奈米碳管束片斷,本實施例優選為採用具有一定寬度的膠帶接觸奈米碳管陣列以選定一定寬度的複數個奈米碳管束片斷;(b)以一定速度沿基本垂直於奈米碳管陣列生長方向拉伸該複數個奈米碳管束片斷,以形成一連續的奈米碳管薄膜。 The preparation of the carbon nanotube film specifically includes the following steps: (a) selecting a plurality of carbon nanotube bundle segments of a certain width from the carbon nanotube array, and in this embodiment, preferably contacting the nanometer with a tape having a certain width. The carbon tube array selects a plurality of carbon nanotube bundle segments of a certain width; (b) stretching the plurality of carbon nanotube bundle segments at a constant speed along a growth direction substantially perpendicular to the carbon nanotube array growth direction to form a continuous naphthalene Carbon tube film.

上述拉伸過程中,該複數個奈米碳管束片斷於拉力作用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作用,該選定的複數個奈米碳管束片斷分別與其他奈米碳管片斷首尾相連地連續地被拉出,從而形成一奈米碳管薄膜。該奈米碳管薄膜為擇優取向排列的複數個奈米碳管束首尾相連形成的具有一定寬度的奈米碳管薄膜。該奈米碳管薄膜中的奈米碳管束之間相互平行,奈米碳管束的排列方向基本平行於奈米碳管薄膜的拉伸方向。 In the above stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the substrate in the stretching direction by the tensile force, and the selected plurality of carbon nanotube bundle segments are respectively combined with other nanoparticles due to the van der Waals force. The carbon tube segments are continuously pulled out end to end to form a carbon nanotube film. The carbon nanotube film is a carbon nanotube film having a certain width formed by connecting a plurality of carbon nanotube bundles arranged in a preferential orientation. The carbon nanotube bundles in the carbon nanotube film are parallel to each other, and the arrangement direction of the carbon nanotube bundles is substantially parallel to the stretching direction of the carbon nanotube film.

本實施例中,該奈米碳管薄膜的寬度與奈米碳管陣列所生長的基底的尺寸有關,該奈米碳管薄膜的長度不限,可根據實際需求制得。該奈米碳管薄膜的厚度為0.01~100微米。當該奈米碳管薄膜中的奈米碳管為單壁奈米碳管時,該單壁奈米碳管的直徑為0.5~50奈米。當該奈米碳管薄膜中的奈米碳管為雙壁奈米碳管時,該雙壁奈米碳管的直徑為1.0~50奈米。當該奈米碳管薄膜中的 奈米碳管為多壁奈米碳管時,該多壁奈米碳管的直徑為1.5~50奈米。 In this embodiment, the width of the carbon nanotube film is related to the size of the substrate on which the carbon nanotube array is grown. The length of the carbon nanotube film is not limited and can be obtained according to actual needs. The carbon nanotube film has a thickness of 0.01 to 100 μm. When the carbon nanotube in the carbon nanotube film is a single-walled carbon nanotube, the single-walled carbon nanotube has a diameter of 0.5 to 50 nm. When the carbon nanotube in the carbon nanotube film is a double-walled carbon nanotube, the double-walled carbon nanotube has a diameter of 1.0 to 50 nm. When in the carbon nanotube film When the carbon nanotube is a multi-walled carbon nanotube, the multi-walled carbon nanotube has a diameter of 1.5 to 50 nm.

步驟三:將至少一奈米碳管薄膜設置於高分子基體14的至少一個表面形成一奈米碳管薄膜結構12,從而形成一奈米碳管複合材料預製體20。 Step 3: At least one carbon nanotube film is disposed on at least one surface of the polymer matrix 14 to form a carbon nanotube film structure 12, thereby forming a carbon nanotube composite preform 20.

可以理解,本實施例中,製備一奈米碳管複合材料預製體20的方法可以為:將至少一層上述奈米碳管薄膜直接鋪設於該高分子基體14表面製備奈米碳管複合材料預製體20。也可以先採用至少一層上述奈米碳管薄膜製備形成一自支撐的奈米碳管薄膜結構12,再將該奈米碳管薄膜結構12設置於所述高分子基體14上形成一奈米碳管複合材料預製體20。 It can be understood that, in this embodiment, the method for preparing a carbon nanotube composite preform 20 may be: preparing at least one layer of the above carbon nanotube film directly on the surface of the polymer matrix 14 to prepare a carbon nanotube composite material. Body 20. Alternatively, at least one layer of the above carbon nanotube film can be used to form a self-supporting carbon nanotube film structure 12, and then the carbon nanotube film structure 12 is disposed on the polymer substrate 14 to form a nano carbon. Tube composite preform 20.

所述將至少一層上述奈米碳管薄膜直接鋪設於該高分子基體14表面製備奈米碳管複合材料預製體20的方法具體包括以下步驟:提供一個高分子基體14;將至少一奈米碳管薄膜直接鋪設於一高分子基體14表面,形成一奈米碳管薄膜結構12;去除高分子基體14以外多餘的奈米碳管薄膜,得到一奈米碳管複合材料預製體20。 The method for preparing the carbon nanotube composite preform 20 by directly laying at least one layer of the above-mentioned carbon nanotube film on the surface of the polymer substrate 14 comprises the following steps: providing a polymer matrix 14; and at least one nanocarbon The tube film is directly laid on the surface of a polymer matrix 14 to form a carbon nanotube film structure 12; the excess carbon nanotube film other than the polymer matrix 14 is removed to obtain a carbon nanotube composite preform 20.

可以理解,本實施例中,可以將至少兩個奈米碳管薄膜平行且無間隙鋪設或/和重疊鋪設於該高分子基體14表面,形成一奈米碳管薄膜結構12。所述奈米碳管薄膜結構12包括一奈米碳管層或至少兩個平行且重疊鋪設的奈米碳管層,相鄰的兩個奈米碳管層中的奈米碳管排列方向形成一夾角α,且0°≦α≦90°。本實施例中,相鄰的兩個奈米碳管層中的奈米碳管排列方向的夾角α優選為90度。 It can be understood that, in this embodiment, at least two carbon nanotube films can be laid in parallel and without gaps on the surface of the polymer matrix 14 to form a carbon nanotube film structure 12. The carbon nanotube film structure 12 comprises a carbon nanotube layer or at least two parallel and overlapping layers of carbon nanotubes, and the arrangement of the carbon nanotubes in the adjacent two carbon nanotube layers is formed. An angle α, and 0 ° ≦ α ≦ 90 °. In the present embodiment, the angle α of the arrangement direction of the carbon nanotubes in the adjacent two carbon nanotube layers is preferably 90 degrees.

本實施例中,進一步可以將另一高分子基體14設置於該奈米碳管薄膜結構12上,形成一三明治結構的奈米碳管複合材料預製體。可以理解,本實施例中,還可以將複數個奈米碳管薄膜結構12與複數個高分子基體14交互疊加,形成一多層的奈米碳管複合材料預製體。如圖4所示,優選地,奈米碳管複合材料預製體20為一個奈米碳管薄膜結構12鋪設於一個高分子基體14上的結構。 In this embodiment, another polymer matrix 14 may be further disposed on the carbon nanotube film structure 12 to form a sandwich structure of a carbon nanotube composite preform. It can be understood that, in this embodiment, a plurality of carbon nanotube film structures 12 and a plurality of polymer substrates 14 may be alternately stacked to form a multi-layered carbon nanotube composite preform. As shown in FIG. 4, preferably, the carbon nanotube composite preform 20 is a structure in which a carbon nanotube film structure 12 is laid on a polymer matrix 14.

上述先採用至少一層奈米碳管薄膜製備形成一自支撐的奈米碳管薄膜結構12,再製備奈米碳管複合材料預製體10的方法具體包括以下步驟:提供一支撐體;將至少一個奈米碳管薄膜粘附於支撐體表面,去除支撐體外多餘的奈米碳管薄膜;去除支撐體,形成一奈米碳管薄膜結構12;提供一高分子基體14,並將所述奈米碳管薄膜結構12設置於該高分子基體14的表面,即得到一奈米碳管複合材料預製體20。 The method for preparing a self-supporting carbon nanotube film structure 12 by using at least one layer of carbon nanotube film, and then preparing the carbon nanotube composite preform 10 comprises the following steps: providing a support; at least one The carbon nanotube film adheres to the surface of the support to remove excess carbon nanotube film outside the support body; the support is removed to form a carbon nanotube film structure 12; a polymer matrix 14 is provided, and the nanometer is provided The carbon nanotube film structure 12 is disposed on the surface of the polymer matrix 14, that is, a carbon nanotube composite preform 20 is obtained.

上述支撐體可以為一基板,也可選用一框架結構。由於本實施例提供的超順排奈米碳管陣列中的奈米碳管非常純淨,且奈米碳管本身的比表面積非常大,故,該奈米碳管薄膜具有較強的粘性,該奈米碳管薄膜可利用其本身的粘性直接粘附於基板或框架上。奈米碳管薄膜黏附於基板或框架上,基板或框架以外多餘的奈米碳管薄膜部分可以用小刀刮去。去除基板或框架,即得到一奈米碳管薄膜結構12。 The support body may be a substrate or a frame structure. Since the carbon nanotube in the super-sequential carbon nanotube array provided by the embodiment is very pure, and the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film has strong viscosity. The carbon nanotube film can be directly adhered to the substrate or the frame by its own viscosity. The carbon nanotube film is adhered to the substrate or the frame, and the excess portion of the carbon nanotube film outside the substrate or frame can be scraped off with a knife. The carbon nanotube film structure 12 is obtained by removing the substrate or the frame.

本實施例中,該基板或框架的大小可依據實際需求確定。當基板或框架的寬度大於上述奈米碳管薄膜的寬度時,可以將至少兩個奈米碳管薄膜平行且無間隙或/和重疊鋪設於基板或框架上,形成一奈米碳管薄膜結構12。所述奈米碳管薄膜結構12包括一奈米 碳管層或至少兩個平行且重疊鋪設的奈米碳管層,相鄰的兩個奈米碳管層中的奈米碳管排列方向形成一夾角α,且0°≦α≦90°。 In this embodiment, the size of the substrate or the frame can be determined according to actual needs. When the width of the substrate or the frame is larger than the width of the carbon nanotube film, at least two carbon nanotube films may be laid in parallel and without gaps or/and overlapping on the substrate or the frame to form a carbon nanotube film structure. 12. The carbon nanotube film structure 12 includes a nanometer The carbon tube layer or at least two parallel and overlapping layers of carbon nanotubes, the arrangement of the carbon nanotubes in the adjacent two carbon nanotube layers form an angle α, and 0°≦α≦90°.

本實施例中,進一步還可以包括用有機溶劑處理奈米碳管薄膜結構12的步驟,該有機溶劑為揮發性有機溶劑,可選用乙醇、甲醇、丙酮、二氯乙烷或氯仿等,本實施例中的有機溶劑採用乙醇。該使用有機溶劑處理的步驟可通過試管將有機溶劑滴落於奈米碳管薄膜結構12表面浸潤整個奈米碳管薄膜結構12,或者,也可將上述形成有奈米碳管薄膜結構12的基板或固定框架整個浸入盛有有機溶劑的容器中浸潤。待溶劑滲透至基板表面後,將奈米碳管薄膜結構12的一端用小刀翹起,從而可以將整個奈米碳管薄膜結構12從基板或固定框架表面取下。所述的奈米碳管薄膜結構12經有機溶劑浸潤處理後,於揮發性有機溶劑的表面張力的作用下,奈米碳管薄膜中平行的奈米碳管片斷會部分聚集成奈米碳管束。因此,該奈米碳管薄膜結構12表面體積比小,且具有良好的機械強度及韌性。 In this embodiment, the method further includes the step of treating the carbon nanotube film structure 12 with an organic solvent, which is a volatile organic solvent, optionally using ethanol, methanol, acetone, dichloroethane or chloroform. The organic solvent in the example uses ethanol. The step of treating with an organic solvent may immerse the organic solvent on the surface of the carbon nanotube film structure 12 through a test tube to infiltrate the entire carbon nanotube film structure 12, or the above-described carbon nanotube film structure 12 may be formed. The substrate or the fixing frame is entirely immersed in a container containing an organic solvent to be infiltrated. After the solvent has penetrated the surface of the substrate, one end of the carbon nanotube film structure 12 is lifted with a knife, so that the entire carbon nanotube film structure 12 can be removed from the surface of the substrate or the fixing frame. After the carbon nanotube film structure 12 is infiltrated by an organic solvent, the parallel carbon nanotube segments in the carbon nanotube film are partially aggregated into the carbon nanotube bundle under the surface tension of the volatile organic solvent. . Therefore, the carbon nanotube film structure 12 has a small surface volume ratio and good mechanical strength and toughness.

上述方法製備的奈米碳管複合材料預製體20中,相鄰兩個奈米碳管層中的奈米碳管之間存在複數個微孔結構,該微孔結構均勻且規則分佈於奈米碳管薄膜結構12中,其中微孔直徑為1奈米~0.5微米。 In the carbon nanotube composite preform 20 prepared by the above method, a plurality of microporous structures exist between the carbon nanotubes in the adjacent two carbon nanotube layers, and the microporous structure is uniform and regularly distributed in the nanometer. In the carbon tube film structure 12, the micropore diameter is from 1 nm to 0.5 μm.

步驟四:加熱奈米碳管複合材料預製體20,將奈米碳管薄膜結構12與高分子基體14複合,從而得到一奈米碳管複合材料10。 Step 4: heating the carbon nanotube composite preform 20, and combining the carbon nanotube film structure 12 with the polymer matrix 14, thereby obtaining a carbon nanotube composite material 10.

如圖5所示,該奈米碳管複合材料10的製備方法具體包括以下步驟: 首先,將至少一奈米碳管複合材料預製體20放置於一模具30中,閉合模具的上基板31與下基板33。該模具30於放置奈米碳管複合材料預製體20之前已經均勻塗抹了脫模劑,以便獲得奈米碳管複合材料10後可以順利脫模,該模具30側壁設有流膠槽35,以便多餘的液態高分子流出。所用脫模劑根據高分子的類別不同而不同,該脫模劑包括高溫脫模劑、有機矽型脫模劑、蠟類脫模劑或者矽氧烷型脫模劑。 As shown in FIG. 5, the preparation method of the carbon nanotube composite material 10 specifically includes the following steps: First, at least one carbon nanotube composite preform 20 is placed in a mold 30 to close the upper substrate 31 and the lower substrate 33 of the mold. The mold 30 has been evenly coated with a release agent before the carbon nanotube composite preform 20 is placed, so that the carbon nanotube composite 10 can be smoothly demolded, and the side wall of the mold 30 is provided with a flow tank 35. Excess liquid polymer flows out. The release agent used varies depending on the type of the polymer, and the release agent includes a high temperature release agent, an organic oxime release agent, a wax release agent, or a siloxane type release agent.

可以理解,本實施例中,也可以將複數個奈米碳管複合材料預製體20疊加或平行放置於該模具30中。 It can be understood that, in this embodiment, a plurality of carbon nanotube composite preforms 20 may also be stacked or placed in the mold 30 in parallel.

其次,加熱該模具30,使高分子基體14變為液態浸潤到奈米碳管薄膜結構12中的奈米碳管間隙當中。先將該模具30放入加熱裝置40中,將低於100Mpa的壓力作用於模具30的上基板31,對模具30中的複合材料預製體20加壓。然後,使加熱裝置40升溫至100~150℃,再對模具30抽真空,使其絕對真空度低於-0.01Mpa,並維持該狀態1-5小時。完成液態高分子基體14與奈米碳管薄膜結構12的複合後,停止抽真空。所述加熱裝置40可為加熱板、熱壓機、平板硫化機、熱壓罐或者烘箱。高分子基體14於100~150℃時為液態,於該溫度下液態高分子基體14的粘度很低。對模具30加壓,液態高分子基體14於壓力的作用下能夠很好的浸潤到奈米碳管薄膜結構12中的奈米碳管間隙當中,多餘的液態高分子會從流膠槽35中流出。對加熱裝置40抽真空,使其絕對真空度低於-0.01Mpa,奈米碳管薄膜結構12中的奈米碳管間隙中的空氣被抽出,使得到的奈米碳管複合材料10中不存在空氣,並且該奈米碳管複合材料10不存在結構缺陷。 Next, the mold 30 is heated to cause the polymer matrix 14 to be infiltrated into the carbon nanotube gap in the carbon nanotube film structure 12. The mold 30 is first placed in the heating device 40, and a pressure of less than 100 MPa is applied to the upper substrate 31 of the mold 30 to pressurize the composite preform 20 in the mold 30. Then, the heating device 40 is heated to 100 to 150 ° C, and the mold 30 is evacuated to have an absolute vacuum of less than -0.01 MPa, and this state is maintained for 1-5 hours. After the liquid polymer matrix 14 is combined with the carbon nanotube film structure 12, the vacuuming is stopped. The heating device 40 can be a heating plate, a hot press, a flat vulcanizing machine, an autoclave or an oven. The polymer matrix 14 is in a liquid state at 100 to 150 ° C, and the viscosity of the liquid polymer matrix 14 is low at this temperature. When the mold 30 is pressurized, the liquid polymer matrix 14 can be infiltrated into the carbon nanotube gap in the carbon nanotube film structure 12 under the action of pressure, and the excess liquid polymer will flow from the glue tank 35. Flow out. The heating device 40 is evacuated so that the absolute vacuum is lower than -0.01 MPa, and the air in the carbon nanotube gap in the carbon nanotube film structure 12 is extracted, so that the obtained carbon nanotube composite material 10 is not Air is present and the carbon nanotube composite 10 is free of structural defects.

最後,使高分子基體14固化成型,待加熱裝置40降溫後,將模具30從加熱裝置40中取出,脫模可得奈米碳管複合材料10。 Finally, the polymer matrix 14 is solidified and formed. After the heating device 40 is cooled, the mold 30 is taken out from the heating device 40, and the carbon nanotube composite material 10 is obtained by demolding.

本實施例中,使得高分子基體14固化成型的方法依據高分子基體14材料的不同而不同。 In the present embodiment, the method of curing the polymer matrix 14 is different depending on the material of the polymer matrix 14.

當高分子基體14材料為熱固性高分子時,高分子基體14的固化又進一步包括一升溫的過程。升溫過快會導致熱固性高分子爆聚,從而影響材料性能,故,熱固性液態高分子的固化需要逐步升溫的步驟。首先,使加熱裝置40繼續升溫至150~180℃,於該溫度下高分子基體14為凝膠狀,維持該溫度2~4小時,使得高分子基體14繼續吸熱以增加其固化度。其次,繼續升溫至180~200℃,於該溫度下高分子基體14為固態,維持該溫度1~5小時,使得高分子基體14繼續吸熱以增加其固化度。再次,繼續升溫至200~230℃,維持該溫度2~20小時,使得高分子基體14繼續吸熱以增加其固化度。最後,將加熱裝置40降溫後,將模具30從加熱裝置40中取出,脫模可得奈米碳管複合材料10。 When the polymer matrix 14 material is a thermosetting polymer, the curing of the polymer matrix 14 further includes a temperature rising process. If the temperature rises too fast, the thermosetting polymer will be exploded, which will affect the material properties. Therefore, the curing of the thermosetting liquid polymer requires a step of gradually increasing the temperature. First, the heating device 40 is further heated to 150 to 180 ° C. At this temperature, the polymer matrix 14 is in the form of a gel, and the temperature is maintained for 2 to 4 hours, so that the polymer matrix 14 continues to absorb heat to increase the degree of solidification. Next, the temperature is further raised to 180 to 200 ° C. At this temperature, the polymer matrix 14 is solid, and the temperature is maintained for 1 to 5 hours, so that the polymer matrix 14 continues to absorb heat to increase the degree of solidification. Again, the temperature is continued to 200 to 230 ° C, and the temperature is maintained for 2 to 20 hours, so that the polymer matrix 14 continues to absorb heat to increase its degree of solidification. Finally, after the heating device 40 is cooled, the mold 30 is taken out from the heating device 40, and the carbon nanotube composite material 10 is obtained by demolding.

當高分子基體14材料為熱塑性高分子時,高分子基體14的固化無需進一步升溫,只需將加熱裝置40降溫後,將模具30從加熱裝置40中取出,脫模可得奈米碳管複合材料10。 When the polymer matrix 14 material is a thermoplastic polymer, the curing of the polymer matrix 14 does not require further temperature increase, and after the heating device 40 is cooled, the mold 30 is taken out from the heating device 40, and the mold release can be obtained by using a carbon nanotube composite. Material 10.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

10‧‧‧奈米碳管複合材料 10‧‧‧Nano Carbon Tube Composites

12‧‧‧奈米碳管薄膜結構 12‧‧‧Nano Carbon Tube Thin Film Structure

14‧‧‧高分子基體 14‧‧‧ polymer matrix

Claims (25)

一種奈米碳管複合材料,包括奈米碳管和高分子基體,其改良在於,所述的奈米碳管以奈米碳管薄膜結構的形式設置於高分子基體中,所述的奈米碳管薄膜結構包括一個奈米碳管層或重疊的複數個奈米碳管層,每個奈米碳管層中包括多個奈米碳管首尾相連地形成一個薄膜結構,每個奈米碳管層中的奈米碳管平行於所述高分子基體的表面且沿同一方向擇優取向排列。 A carbon nanotube composite material comprising a carbon nanotube and a polymer matrix, wherein the carbon nanotube is disposed in a polymer matrix in the form of a carbon nanotube film structure, the nanometer The carbon tube film structure comprises a carbon nanotube layer or a plurality of overlapping carbon nanotube layers, and each of the carbon nanotube layers comprises a plurality of carbon nanotubes connected end to end to form a thin film structure, each nano carbon The carbon nanotubes in the tube layer are arranged parallel to the surface of the polymer matrix and in a preferred orientation along the same direction. 如請求項1所述的奈米碳管複合材料,其中,所述的高分子基體為熱固性高分子基體,該熱固性高分子基體的材料為酚醛樹脂、環氧樹脂、雙馬來醯亞胺樹脂、聚苯並惡嗪樹脂、氰酸酯樹脂、聚醯亞胺樹脂和不飽和聚醯樹脂中的一種或者幾種的混合物。 The carbon nanotube composite material according to claim 1, wherein the polymer matrix is a thermosetting polymer matrix, and the thermosetting polymer matrix material is a phenol resin, an epoxy resin, or a bismaleimide resin. A mixture of one or more of a polybenzoxazine resin, a cyanate resin, a polyimide resin, and an unsaturated polyfluorene resin. 如請求項1所述的奈米碳管複合材料,其中,所述的高分子基體為熱塑性高分子基體,該熱塑性高分子基體的材料為聚乙烯、聚氯乙烯、聚四氟乙烯、聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚對苯二甲酸乙二酯、聚碳酸酯、聚對苯二甲酸丁二酯、聚醯胺、聚醚酮、聚碸、聚醚碸、熱塑性聚醯亞胺、聚醚醯亞胺、聚苯醚、聚苯硫醚、聚乙酸乙烯酯、聚對苯撐苯並雙惡唑中的一種或者幾種的混合物。 The carbon nanotube composite material according to claim 1, wherein the polymer matrix is a thermoplastic polymer matrix, and the thermoplastic polymer matrix is made of polyethylene, polyvinyl chloride, polytetrafluoroethylene, or polypropylene. , polystyrene, polymethyl methacrylate, polyethylene terephthalate, polycarbonate, polybutylene terephthalate, polydecylamine, polyether ketone, polyfluorene, polyether oxime, thermoplastic A mixture of one or more of polyimine, polyetherimide, polyphenylene ether, polyphenylene sulfide, polyvinyl acetate, polyparaphenylene benzobisoxazole. 如請求項1所述的奈米碳管複合材料,其中,所述的高分子基體浸潤到奈米碳管薄膜結構中相鄰的奈米碳管的間隙中。 The carbon nanotube composite material according to claim 1, wherein the polymer matrix is infiltrated into a gap of adjacent carbon nanotubes in the carbon nanotube film structure. 如請求項1所述的奈米碳管複合材料,其中,所述的奈米碳管層包括一奈米碳管薄膜或平行且無間隙鋪設的複數個奈米碳管薄膜。 The carbon nanotube composite material according to claim 1, wherein the carbon nanotube layer comprises a carbon nanotube film or a plurality of carbon nanotube films laid in parallel and without gaps. 如請求項5所述的奈米碳管複合材料,其中,所述的奈米碳管薄膜的厚度為0.01~100微米。 The carbon nanotube composite material according to claim 5, wherein the carbon nanotube film has a thickness of 0.01 to 100 μm. 如請求項5所述的奈米碳管複合材料,其中,所述的奈米碳管薄膜包括複數個首尾相連且擇優取向排列的奈米碳管束,相鄰奈米碳管束之間通過凡得瓦力相互連接。 The carbon nanotube composite material according to claim 5, wherein the carbon nanotube film comprises a plurality of carbon nanotube bundles arranged end to end and arranged in a preferred orientation, and the adjacent carbon nanotube bundles are passed between The tiles are connected to each other. 如請求項7所述的奈米碳管複合材料,其中,所述的奈米碳管束包括複數個具有相同長度且平行排列的奈米碳管。 The carbon nanotube composite according to claim 7, wherein the carbon nanotube bundle comprises a plurality of carbon nanotubes having the same length and arranged in parallel. 如請求項8所述的奈米碳管複合材料,其中,所述的奈米碳管為單壁奈米碳管、雙壁奈米碳管、多壁奈米碳管中的一種。 The carbon nanotube composite material according to claim 8, wherein the carbon nanotube is one of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. 如請求項9所述的奈米碳管複合材料,其中,所述單壁奈米碳管的直徑為0.5~50奈米,所述雙壁奈米碳管的直徑為1.0~50奈米,所述多壁奈米碳管的直徑為1.5~50奈米。 The carbon nanotube composite material according to claim 9, wherein the single-walled carbon nanotube has a diameter of 0.5 to 50 nm, and the double-walled carbon nanotube has a diameter of 1.0 to 50 nm. The multi-walled carbon nanotube has a diameter of 1.5 to 50 nm. 如請求項1所述的奈米碳管複合材料,其中,相鄰的奈米碳管層中奈米碳管的排列方向形成一夾角α,且0°≦α≦90°。 The carbon nanotube composite material according to claim 1, wherein the arrangement direction of the carbon nanotubes in the adjacent carbon nanotube layers forms an angle α and 0°≦α≦90°. 一種如請求項1所述的奈米碳管複合材料的製備方法,包括以下步驟:製備一高分子基體;製備一奈米碳管薄膜,該奈米碳管薄膜為擇優取向排列的複數個奈米碳管束首尾相連形成的具有一定寬度的薄膜;將至少一個奈米碳管薄膜設於高分子基體的至少一個表面形成一奈米碳管薄膜結構,從而形成一奈米碳管複合材料預製體;以及,加熱奈米碳管複合材料預製體,使所述高分子基體變為液態浸潤到奈米碳管薄膜結構中的奈米碳管間隙當中,使奈米碳管薄膜結構與高分子基體複合,從而得到一奈米碳管複合材料。 A method for preparing a carbon nanotube composite material according to claim 1, comprising the steps of: preparing a polymer matrix; preparing a carbon nanotube film, wherein the carbon nanotube film is a plurality of layers arranged in a preferred orientation a carbon nanotube bundle formed by a film having a certain width; at least one carbon nanotube film is disposed on at least one surface of the polymer matrix to form a carbon nanotube film structure, thereby forming a carbon nanotube composite preform And heating the carbon nanotube composite preform to make the polymer matrix infiltrate into the carbon nanotube gap in the carbon nanotube film structure, so that the carbon nanotube film structure and the polymer matrix Compounding to obtain a carbon nanotube composite. 如請求項12所述的奈米碳管複合材料的製備方法,其中,所述的高分子基體為一高分子薄膜,該高分子基體的製備方法包括溶液成膜法、熱熔刮塗法、流延成膜法或噴塗成膜法中的一種。 The method for preparing a carbon nanotube composite material according to claim 12, wherein the polymer matrix is a polymer film, and the method for preparing the polymer matrix comprises a solution film forming method, a hot melt coating method, One of a cast film forming method or a spray film forming method. 如請求項12所述的奈米碳管複合材料的製備方法,其中,所述的奈米碳 管薄膜的製備方法包括以下步驟:製備一奈米碳管陣列;以及,從上述奈米碳管陣列中選定一定寬度的複數個奈米碳管片斷,沿垂直於奈米碳管陣列生長方向拉伸該複數個奈米碳管片斷,形成一連續的奈米碳管薄膜,該奈米碳管薄膜中奈米碳管的排列方向平行於奈米碳管薄膜的拉伸方向。 The method for preparing a carbon nanotube composite material according to claim 12, wherein the nanocarbon is The method for preparing a tube film comprises the steps of: preparing an array of carbon nanotubes; and selecting a plurality of carbon nanotube segments of a certain width from the array of carbon nanotubes, and pulling along a growth direction perpendicular to the array of carbon nanotubes Extending the plurality of carbon nanotube segments to form a continuous carbon nanotube film, wherein the arrangement of the carbon nanotubes in the carbon nanotube film is parallel to the stretching direction of the carbon nanotube film. 如請求項12所述的奈米碳管複合材料的製備方法,其中,所述形成一奈米碳管複合材料預製體的步驟具體包括以下步驟:將至少一奈米碳管薄膜直接鋪設於一高分子基體表面;去除高分子基體以外多餘的奈米碳管薄膜,形成一奈米碳管薄膜結構,從而得到一奈米碳管複合材料預製體。 The method for preparing a carbon nanotube composite material according to claim 12, wherein the step of forming a carbon nanotube composite preform comprises the following steps: directly laying at least one carbon nanotube film on the first The surface of the polymer matrix; removing the excess carbon nanotube film other than the polymer matrix to form a carbon nanotube film structure, thereby obtaining a carbon nanotube composite preform. 如請求項15所述的奈米碳管複合材料的製備方法,其中,所述形成一奈米碳管複合材料預製體的步驟進一步包括將至少兩個奈米碳管薄膜平行且無間隙鋪設或/和重疊鋪設於該高分子基體上的步驟。 The method for preparing a carbon nanotube composite according to claim 15, wherein the step of forming a carbon nanotube composite preform further comprises laying at least two carbon nanotube films in parallel and without gaps or / and a step of overlapping the polymer substrate. 如請求項12所述的奈米碳管複合材料的製備方法,其中,所述形成一奈米碳管複合材料預製體的步驟具體包括以下步驟:提供一支撐體;將至少一個奈米碳管薄膜粘附於支撐體表面,去除支撐體外多餘的奈米碳管薄膜;去除支撐體,形成一奈米碳管薄膜結構;將該奈米碳管薄膜結構設置於所述高分子基體表面,得到一奈米碳管複合材料預製體。 The method for preparing a carbon nanotube composite material according to claim 12, wherein the step of forming a carbon nanotube composite preform comprises the following steps: providing a support; and at least one carbon nanotube The film adheres to the surface of the support body to remove the excess carbon nanotube film supported on the outside of the body; the support body is removed to form a carbon nanotube film structure; and the carbon nanotube film structure is disposed on the surface of the polymer substrate to obtain A carbon nanotube composite preform. 如請求項17所述的奈米碳管複合材料的製備方法,其中,所述形成一奈米碳管複合材料預製體的步驟進一步包括將至少兩個奈米碳管薄膜平行且無間隙鋪設或/和重疊鋪設於該支撐體表面的步驟。 The method for preparing a carbon nanotube composite material according to claim 17, wherein the step of forming a carbon nanotube composite preform further comprises laying at least two carbon nanotube films in parallel and without gaps or / and the step of overlapping the surface of the support. 如請求項12所述的奈米碳管複合材料的製備方法,其中,所述的奈米碳管薄膜結構的製備步驟進一步包括使用有機溶劑處理該奈米碳管薄膜結構的步驟。 The method for preparing a carbon nanotube composite according to claim 12, wherein the step of preparing the carbon nanotube film structure further comprises the step of treating the carbon nanotube film structure with an organic solvent. 如請求項19所述的奈米碳管複合材料的製備方法,其中,所述的有機溶劑為乙醇、甲醇、丙酮、二氯乙烷和氯仿中一種或者幾種的混合物。 The method for producing a carbon nanotube composite according to claim 19, wherein the organic solvent is one or a mixture of ethanol, methanol, acetone, dichloroethane and chloroform. 如請求項19所述的奈米碳管複合材料的製備方法,其中,所述的使用有機溶劑處理奈米碳管薄膜結構的步驟包括通過試管將有機溶劑滴落在奈米碳管薄膜結構表面浸潤整個奈米碳管薄膜結構或者將整個奈米碳管薄膜結構浸到盛有有機溶劑的容器中浸潤。 The method for preparing a carbon nanotube composite material according to claim 19, wherein the step of treating the carbon nanotube film structure using the organic solvent comprises dropping an organic solvent on the surface of the carbon nanotube film structure through a test tube. Infiltrate the entire carbon nanotube film structure or immerse the entire carbon nanotube film structure in a container containing an organic solvent. 如請求項12所述的奈米碳管複合材料的製備方法,其中,所述的將奈米碳管薄膜結構與高分子基體複合的步驟具體包括以下步驟:將至少一奈米碳管複合材料預製體放置於一模具中;將該模具放置於一加熱裝置中,對該模具施加小於100Mpa的壓力,加熱升溫使該模具的溫度低於400℃,然後對加熱裝置抽真空,使模具的相對真空度低於-0.01Mpa,使高分子基體變為液態從而與奈米碳管薄膜結構複合至少10分鐘;以及,固化液態高分子,並脫模。 The method for preparing a carbon nanotube composite material according to claim 12, wherein the step of combining the carbon nanotube film structure with the polymer matrix comprises the following steps: at least one carbon nanotube composite material The preform is placed in a mold; the mold is placed in a heating device, a pressure of less than 100 MPa is applied to the mold, the temperature is raised by heating to make the temperature of the mold lower than 400 ° C, and then the heating device is evacuated to make the mold relatively The degree of vacuum is lower than -0.01 MPa, and the polymer matrix is changed to a liquid state to be composited with the carbon nanotube film structure for at least 10 minutes; and the liquid polymer is solidified and demolded. 如請求項22所述的奈米碳管複合材料的製備方法,其中,所述的加熱裝置包括加熱板、熱壓機、平板硫化機、熱壓罐或者烘箱。 The method for preparing a carbon nanotube composite material according to claim 22, wherein the heating device comprises a heating plate, a hot press, a flat vulcanizing machine, an autoclave or an oven. 如請求項22所述的奈米碳管複合材料的製備方法,其中,所述的固化熱塑性高分子的步驟為降溫固化高分子。 The method for producing a carbon nanotube composite material according to claim 22, wherein the step of curing the thermoplastic polymer is a temperature-lowering cured polymer. 如請求項22所述的奈米碳管複合材料的製備方法,其中,所述的固化熱固性高分子的步驟為逐步階梯升溫固化高分子,並降溫該高分子。 The method for preparing a carbon nanotube composite material according to claim 22, wherein the step of curing the thermosetting polymer is to gradually cure the polymer by stepwise heating, and to lower the polymer.
TW097104014A 2008-02-01 2008-02-01 Carbon nanotube composite and method for making the same TWI476147B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097104014A TWI476147B (en) 2008-02-01 2008-02-01 Carbon nanotube composite and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097104014A TWI476147B (en) 2008-02-01 2008-02-01 Carbon nanotube composite and method for making the same

Publications (2)

Publication Number Publication Date
TW200934725A TW200934725A (en) 2009-08-16
TWI476147B true TWI476147B (en) 2015-03-11

Family

ID=44866364

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097104014A TWI476147B (en) 2008-02-01 2008-02-01 Carbon nanotube composite and method for making the same

Country Status (1)

Country Link
TW (1) TWI476147B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11195686B2 (en) 2020-01-15 2021-12-07 Tsinghua University Thermionic emission device and method for making the same
TWI761771B (en) * 2020-01-15 2022-04-21 鴻海精密工業股份有限公司 Field effect transistor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400807B (en) * 2009-09-01 2013-07-01 Hon Hai Prec Ind Co Ltd Thin film transistor
CN102133634B (en) 2010-01-22 2015-08-26 清华大学 The preparation method of carbon nano tube metal powder mix and metallic composite
CN103359718B (en) * 2012-04-05 2015-07-01 清华大学 Preparation method of narrow graphene nanoribbons

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070238826A1 (en) * 2004-08-31 2007-10-11 Hyperion Catalysis International, Inc. Conductive thermosets by extrusion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070238826A1 (en) * 2004-08-31 2007-10-11 Hyperion Catalysis International, Inc. Conductive thermosets by extrusion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. Phys. D: Appl. Phys. 36 (2003) 573–582 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11195686B2 (en) 2020-01-15 2021-12-07 Tsinghua University Thermionic emission device and method for making the same
TWI761771B (en) * 2020-01-15 2022-04-21 鴻海精密工業股份有限公司 Field effect transistor

Also Published As

Publication number Publication date
TW200934725A (en) 2009-08-16

Similar Documents

Publication Publication Date Title
CN101480858B (en) Carbon nano-tube composite material and preparation method thereof
JP5032454B2 (en) Method for producing carbon nanotube composite material
CN101456277B (en) Method for preparing carbon nanotube composite material
US11458718B2 (en) Nanostructure-reinforced composite articles and methods
US11787691B2 (en) Continuous process for the production of nanostructures including nanotubes
Liu et al. Producing superior composites by winding carbon nanotubes onto a mandrel under a poly (vinyl alcohol) spray
US8231965B2 (en) Resin complex containing carbon nanotube and method for production thereof
CN102292281A (en) Multifunctional composites based on coated nanostructures
US11167991B2 (en) Method for preparing carbon nanotube/polymer composite
TWI476147B (en) Carbon nanotube composite and method for making the same
CN104176722B (en) High-intensity array drawing-off carbon nano-tube film of a kind of high orientation and preparation method thereof
AU2010235123A1 (en) Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
Dassios et al. Compressive behavior of MWCNT/epoxy composite mats
Hu et al. Ultrastrong and excellent dynamic mechanical properties of carbon nanotube composites
TWI626212B (en) Carbon nanotube composite structure and method for making thereof
US20090029052A1 (en) Method for making composite material with a high-density array of carbon nanotubes
Lin et al. Mechanical properties of carbon nanotube fibers reinforced epoxy resin composite films prepared by wet winding
TWI422524B (en) Method for making carbon nanotube composite
TWI339189B (en) Thermal pad with carbon nanotube array and method of making the same
Patel et al. Synthesis and microstructure analysis of aligned carbon nanotube/pyrocarbon composites
TW200927646A (en) Method of making a carbon nanotube composite
EP2070978B1 (en) Carbon nanotube-based composite material and method for fabricating same
TWI386447B (en) Method for making carbon nanotube array composite
TW200907092A (en) Method of making high-density carbon nanotube array composite material
Kim Incorporation of carbon nanotubes in epoxy polymer composites