TWI339189B - Thermal pad with carbon nanotube array and method of making the same - Google Patents

Thermal pad with carbon nanotube array and method of making the same Download PDF

Info

Publication number
TWI339189B
TWI339189B TW96132537A TW96132537A TWI339189B TW I339189 B TWI339189 B TW I339189B TW 96132537 A TW96132537 A TW 96132537A TW 96132537 A TW96132537 A TW 96132537A TW I339189 B TWI339189 B TW I339189B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
nanotube array
conductive sheet
polymer precursor
carbon
Prior art date
Application number
TW96132537A
Other languages
Chinese (zh)
Other versions
TW200909342A (en
Inventor
Chun-Xiang Luo
Liang Liu
Kai-Li Jiang
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96132537A priority Critical patent/TWI339189B/en
Publication of TW200909342A publication Critical patent/TW200909342A/en
Application granted granted Critical
Publication of TWI339189B publication Critical patent/TWI339189B/en

Links

Description

13391891339189

[^33年12月2、s彥iE鈴頁I 六、發明說明: 【發明所屬之技術領域】 [0001]本發明涉及一種奈米碳管複合熱界面材料及其製備方法 ,尤其涉及一種奈米碳管陣列複合導熱片及其製備方法 【先前技術】 [0002] 自1991年日本NEC公司的I i j ima發現奈米碳管(Carb〇n[^33年12月2, s彦iE铃页 I VI. Description of the invention: [Technical field of invention] [0001] The present invention relates to a carbon nanotube composite thermal interface material and a preparation method thereof, and more particularly to a nai Carbon nanotube array composite thermal conductive sheet and preparation method thereof [Prior Art] [0002] Since 1991, I ij ima of NEC Corporation of Japan discovered carbon nanotubes (Carb〇n

Nanotube,CNT)以來(lilimaS.,Nature,v〇l 354,P56( 1 991)),立即引起科學界及產業界的極大重 視。奈米碳管具有優良的機械和光電性能,被認爲係複 合材料的理想添加物。奈米碟增舍材料首次報 導後已成爲世界科學研究的, Μ ctpnhQ n …· 變Since Nanotube, CNT) (lilimaS., Nature, v〇l 354, P56 (1 991)), it has immediately attracted great attention from the scientific community and industry. Nano carbon tubes have excellent mechanical and optoelectronic properties and are considered to be ideal additives for composite materials. After the first report of Nano-disc materials, it has become a world scientific research, Μ ctpnhQ n ...·

Stephan 0., Colliex C., Tranth D., Science vol 265, pl212(1994): Calvert P., Nature vol 399,p210(1999))。奈米碳管作爲增強體和導電 體,形成的複合材料具有抗靜電,吸收微波和屏蔽電磁 等性能’具有廣泛的應用前景。 [0003]奈米碳管複合材料的製備方法通常有原位聚合法、溶液 共混法和熔體共混法。原位聚合法係利用奈米碳管表面 的s能團參與聚合或利用引發劑打開奈米碳管的π鍵, 使其參與聚合反應而達到與有機相的良好相容。溶液共 混一般係把奈米礙管分散到聚合物的溶劑中,再將聚合 物溶入其中,加工成型後將溶劑清除,從而製得複合材 料。融體共混法係把奈米碳管與聚合物基體材料在大於 基體材料熔點的溫度下熔融並均勻混合而得到奈米碳管 096132537 表單編號Α0101 第4頁/共24頁 0993462899-0 1339189 099年12月28日修正替换頁 複合材料。 [0004] 由於奈米碳管具有優異的機械強度和熱導率,利用定向 排列的奈米碳管陣列結構,可製備性能優異的奈米碳管 導熱材料和奈米碳管複合增強材料。奈米碳管對複合材 料的導熱性能和機械性能增強效果與奈米碳管在複合材 料中的密度相關。 [0005] 先前技術中,奈米碳管複合熱界面材料中的奈米碳管陣 列一般採用化學氣相沈積(CVD)方法製備。然而,CVD方 法直接生長所得到的奈米碳管陣列中的奈米碳管的密度 小於0. 01克每立方厘米(g/cm3),在微觀上係較爲鬆散 的,奈米碳管之間的間距大:1¾¼¾碳管自身直徑的數倍 Λ · Τ' - 。而且CVD法直接生長所得碳管陣列受CVD方法 生長的限制,在其陣列中奈米碳管的密度基本上為確定 的,無法任意調控。以該低密度奈米碳管陣列製備的奈 米碳管複合熱界面材料,由善:中.奈米碳管導熱通道的 密度太低,從而使得其在導象或複合材料等應用中並沒 有達到理想的效果。 '々’ [0006] 對上述的低密度奈米碳管陣列複合熱界面材料進行切片 ,所製備的奈米碳管陣列複合導熱片,同樣由於其中的 奈米碳管導熱通道的密度較低,所以該奈米碳管陣列複 合導熱片的導熱係數較低,從而阻礙了奈米碳管陣列複 合導熱片在導熱領域的廣泛應用。 [〇〇〇?] 有鑒於此,確有必要提供一種奈米碳管陣列複合導熱片 及其製備方法,該奈米碳管陣列複合導熱片中的奈米碳 096132537 表單編號A0101 第5頁/共24頁 0993462899-0 1339189Stephan 0., Colliex C., Tranth D., Science vol 265, pl 212 (1994): Calvert P., Nature vol 399, p210 (1999)). As a reinforcement and an electrical conductor, the carbon nanotubes have a broad application prospect in the composite materials having antistatic properties, absorption of microwaves and shielding electromagnetic properties. [0003] The preparation methods of the carbon nanotube composite materials generally include an in-situ polymerization method, a solution blending method, and a melt blending method. The in-situ polymerization method utilizes the s energy group on the surface of the carbon nanotube to participate in the polymerization or uses the initiator to open the π bond of the carbon nanotube to participate in the polymerization reaction to achieve good compatibility with the organic phase. Solution co-mixing generally involves dispersing a nano tube into a solvent of a polymer, dissolving the polymer therein, and removing the solvent after processing to obtain a composite material. The melt blending method melts and uniformly mixes the carbon nanotubes and the polymer matrix material at a temperature greater than the melting point of the matrix material to obtain a carbon nanotube 096132537 Form No. 1010101 Page 4 / Total 24 Page 0993462899-0 1339189 099 Revised replacement page composite on December 28th. [0004] Since the carbon nanotubes have excellent mechanical strength and thermal conductivity, a carbon nanotube array structure having an excellent alignment can be used to prepare a carbon nanotube heat conductive material and a carbon nanotube composite reinforcing material having excellent properties. The thermal conductivity and mechanical properties of the carbon nanotubes on the composite are related to the density of the carbon nanotubes in the composite. [0005] In the prior art, the carbon nanotube array in the carbon nanotube composite thermal interface material is generally prepared by a chemical vapor deposition (CVD) method. However, the density of the carbon nanotubes in the carbon nanotube array obtained by direct growth of the CVD method is less than 0.01 g per cubic centimeter (g/cm 3 ), which is relatively loose on the microscopic surface, and the carbon nanotubes are The distance between the two is large: 13⁄41⁄43⁄4 times the diameter of the carbon tube itself Λ · Τ' - . Moreover, the carbon nanotube array directly grown by the CVD method is limited by the growth of the CVD method, and the density of the carbon nanotubes in the array is substantially determined and cannot be arbitrarily regulated. The carbon nanotube composite thermal interface material prepared by the low-density carbon nanotube array has a low density of the heat conduction channel of the good: medium-nano carbon nanotube, so that it is not used in applications such as guiding or composite materials. Achieve the desired results. '々' [0006] The low-density carbon nanotube array composite thermal interface material is sliced, and the prepared carbon nanotube array composite thermal conductive sheet is also low in density due to the heat conduction channel of the carbon nanotube. Therefore, the thermal conductivity of the carbon nanotube array composite thermal conductive sheet is low, thereby hindering the wide application of the carbon nanotube array composite thermal conductive sheet in the field of heat conduction. [〇〇〇?] In view of this, it is indeed necessary to provide a carbon nanotube array composite thermal conductive sheet and a preparation method thereof, the carbon carbon in the carbon nanotube array composite thermal conductive sheet 096132537 Form No. A0101 Page 5 / A total of 24 pages 0993462899-0 1339189

\ rtrtn 气,βD itI uyy-^t- ^-^-n ^ m eyix^gr^K | 官的密度較高、排列緊密且定向排列;所述的製備方法 工序簡單且製備的奈米碳管陣列複合導熱片中的奈米碳 官的密度可以控制。 【發明内容】 [0008] 一種奈米碳管陣列複合導熱片,該奈米碳管陣列複合導 熱片包括多個奈米碳管和高分子材料,其中的多個奈米 碳管以陣列形式排列,高分子材料填充在上述的多個奈 米礙管之間的間隙中,上述的奈米碳管排列緊密且定向 排列’奈米碳管陣列複合導熱片中的奈米碳管的密度爲 〇.1〜2‘ 2g/cm3。 [0009] 所述的奈米碳管陣列複合導赛片米~5毫米 。在奈米碳管陣列複合導熱端開口, .么’_ ΐ-ί·Λ· 且奈米碳管的兩端從奈米碳管陣列複合導熱片中露出。 [0010] 一種奈米碳管陣列複合導熱片的製備方法,其包括以下 步驟:提供一形成於一基底的奈米碳管陣列和一高分子 前驅體溶液;將奈米碳管陣列和高分子前驅體溶液混合 ,形成一南分子前驅體/奈米碳管陣列混合體;沿著平行 於基底的方向擠壓該高分子前驅體/奈米碳管陣列混合體 ,形成一高分子前驅體/高密度奈米碳管陣列混合體·聚 合高分子前驅體/高密度奈米碳管陣列混合體中的高分子 前驅體溶液,形成高密度奈米碳管陣列複合材料對該 高密度奈米碳管陣列複合材料進行切片,從而形成$米 碳管陣列複合導熱片。 [0011] 096132537 與先則技術相比較’所述的奈米碳管陣列複合導熱片 其製備方法具有以下優點:其一,所述的奈 表單編號A0丨01 第6頁/共24頁 ’、'、兔S陣列 0993462899-0 1339189 099年12月28日按正替換頁 複合導熱片中,奈米碳管排列緊密且定向排列,其中的 奈米碳管的密度可根據需要控制爲CVD法直接生長所得到 的奈米碳管陣列複合導熱片的10〜200倍,即導熱片中奈 米碳管導熱通道的密度提高了 10〜200倍,從而該奈米碳 管陣列複合導熱片具有優異的導熱性能,可廣泛地應用 於導熱領域;其二,所述的奈米碳管陣列複合導熱片中 ,由於奈米碳管之間緊密地填充高分子材料,使得奈米 碳管之間連接穩定,比純奈米碳管陣列的力學性能更爲 優良;其三,所述的奈米碳管陣列複合導熱片中的奈米 碳管兩端開口,且奈米碳管的兩端從奈米碳管陣列複合 導熱片中露出;其四,所述的ί製備方法工序簡單且製備 .-V ·· >, · 的奈米碳管陣列複合導熱片翻的淹米破管的密度可以控 Έ Γ.:-. - 制。 【實施方式】 [0012] 下面將結合附圖及具體實施例,對本技術方案作進一步 的詳細說明。 「 ,.'.c [0013] 請參閱圖1,本技術方案實施确挺华了一種奈米碳管陣列 複合導熱片的製備方法,其具體包括以下步驟: [0014] (一)提供一形成於一基底的奈米碳管陣列和一高分子 前驅體溶液。 [0015] 製備該奈米碳管陣列的方法爲化學氣相沈積法。本實施 例中奈米碳管陣列的製備過程具體爲: [0016] 首先,提供一基底,該基底可選用Ρ型或Ν型矽基底,或 選用石英片,另,還可選用玻璃,本實施例優選爲採用4 096132537 表單編號Α0101 第7頁/共24頁 0993462899-0 1339189 I ^ 一 , I 内,rt,二 4 知* 1\ rtrtn gas, βD itI uyy-^t- ^-^-n ^ m eyix^gr^K | The density of the official is high, closely arranged and oriented; the preparation method is simple and the prepared carbon nanotubes The density of the carbonaceous carbon in the array composite thermally conductive sheet can be controlled. SUMMARY OF THE INVENTION [0008] A carbon nanotube array composite thermal conductive sheet, the carbon nanotube array composite thermal conductive sheet comprises a plurality of carbon nanotubes and a polymer material, wherein the plurality of carbon nanotubes are arranged in an array The polymer material is filled in the gap between the plurality of nano-tubes, and the carbon nanotubes are closely arranged and aligned. The density of the carbon nanotubes in the carbon nanotube array composite thermally conductive sheet is 〇 .1~2' 2g/cm3. [0009] The carbon nanotube array composite guide piece meters ~ 5 mm. At the composite heat conducting end of the carbon nanotube array, both ends of the carbon nanotube array are exposed from the carbon nanotube array composite thermally conductive sheet. [0010] A method for preparing a carbon nanotube array composite thermally conductive sheet, comprising the steps of: providing a carbon nanotube array and a polymer precursor solution formed on a substrate; and disposing the carbon nanotube array and the polymer The precursor solution is mixed to form a south molecular precursor/nanocarbon nanotube array mixture; the polymer precursor/nanocarbon nanotube array mixture is extruded in a direction parallel to the substrate to form a polymer precursor/ High-density carbon nanotube array hybrid/polymeric polymer precursor/high-density carbon nanotube array hybrid polymer precursor solution to form high-density carbon nanotube array composite for high-density nanocarbon The tube array composite is sliced to form a $m carbon tube array composite thermally conductive sheet. [0011] 096132537 Compared with the prior art, the preparation method of the carbon nanotube array composite thermal conductive sheet has the following advantages: First, the nai form number A0丨01 page 6 / total 24 pages', ', rabbit S array 0993462899-0 1339189 December 28, 099, according to the positive replacement page composite thermal conductive sheet, the carbon nanotubes are arranged closely and oriented, and the density of the carbon nanotubes can be controlled directly by the CVD method as needed. The carbon nanotube array composite thermal conductive sheet obtained by the growth is 10 to 200 times, that is, the density of the carbon nanotube heat conduction passage in the thermal conductive sheet is increased by 10 to 200 times, so that the carbon nanotube array composite thermal conductive sheet has excellent performance. The thermal conductivity can be widely applied to the field of heat conduction; secondly, in the carbon nanotube array composite thermal conductive sheet, since the carbon nanotubes are closely filled with the polymer material, the connection between the carbon nanotubes is stabilized. The mechanical properties of the carbon nanotube array are better than those of the pure carbon nanotube array; third, the carbon nanotubes in the carbon nanotube array composite thermal conductive sheet are open at both ends, and the carbon nanotubes are both ends from the nanometer Carbon tube array composite thermal conductive sheet Fourthly, the preparation method of the ί is simple and prepared. -V ·· >, · The density of the broken tube of the carbon nanotube array composite thermal conductive sheet can be controlled Γ.:-. system. [Embodiment] The present technical solution will be further described in detail below with reference to the accompanying drawings and specific embodiments. [0013] Please refer to FIG. 1 , the implementation of the technical solution is indeed a method for preparing a carbon nanotube array composite thermal conductive sheet, which specifically includes the following steps: [0014] (1) providing a formation a carbon nanotube array and a polymer precursor solution on a substrate. [0015] The method for preparing the carbon nanotube array is a chemical vapor deposition method. The preparation process of the carbon nanotube array in this embodiment is specifically [0016] First, a substrate is provided. The substrate may be a Ρ-type or Ν-type 矽 substrate, or a quartz plate may be used, and a glass may also be used. This embodiment preferably uses 4 096132537 Form No. Α 0101 Page 7 / Total 24 pages 0993462899-0 1339189 I ^ one, I inside, rt, two 4 know * 1

丄乙为乙δα I 英吋的矽基底; [0017] 其次,在基底上沈積一個催化劑層,催化劑可以選用鐵 (Fe )、鈷(Co)、錄(Ni)或者其任意組合的合金之 一,本實施例優選爲鐵作催化劑,所形成的催化劑薄膜 的厚度爲0.5〜5奈米(nm),本實施例優選爲lnm厚度鐵催 化劑薄膜,另,形成催化劑層的方法還可為電子束蒸發 或磁控濺射; [0018] 再次,將沈積有催化劑層的基底放置在空氣中,在300°C 下退火0.2 -12h,催化劑層經退火後形成氧化顆粒; [0019] 再次,將基底放置在低壓反藏減择夺保護氣體,在 --;- Λ i .'.·'· , • :贷 >f:/ />; νΓ'. 保護氣體的保護下加熱至一 丨,一舞爲 S 輪·:臟一 鼙鋩氣’,優選地,保 護氣體爲氬氣; [0020] 再次,通入碳源氣與載氣的混合氣體,反應0. 1〜2小時生 I -- 長出奈米碳管陣列。其中,碳源氣爲碳氩化合物,可爲 乙炔、乙烯、曱烷等,優選地,碳源氣爲乙炔;載氣爲 ' K·.: 惰性氣體或者氫氣,優選地,載氣爲氩氣。 [0021] 該奈米碳管陣列爲多個彼此平行旦垂直於基底生長的奈 米碳管形成的純奈米碳管陣列,由於生成的奈米碳管長 度較長,部分奈米碳管會相互纏繞。通過控制上述生長 條件,該超順排奈米碳管陣列中基本不含有雜質,如無 定型碳或殘留的催化劑金屬顆粒等。可以理解,本實施 例提供的奈米碳管陣列不限於上述製備方法。本實施例 提供的奈米碳管陣列包括單壁奈米碳管陣列、雙壁奈米 096132537 表單編號A0101 第8頁/共24頁 0993462899-0 13.39189 [0022] [0023] [0024] [0025] [0026] 096132537丄B is a ruthenium substrate of B δα I ;; [0017] Next, a catalyst layer is deposited on the substrate, and the catalyst may be one of iron (Fe), cobalt (Co), Ni (Ni) or any combination thereof. In this embodiment, iron is preferably used as a catalyst, and the formed catalyst film has a thickness of 0.5 to 5 nanometers (nm). In this embodiment, the iron catalyst film is preferably 1 nm thick. Further, the method for forming the catalyst layer may be an electron beam. Evaporation or magnetron sputtering; [0018] Again, the substrate on which the catalyst layer is deposited is placed in air, annealed at 300 ° C for 0.2 -12 h, and the catalyst layer is annealed to form oxidized particles; [0019] again, the substrate is Placed in a low-pressure anti-seizure to remove the protective gas, in ----- Λ i .'.·'·, • : loan >f: / />; νΓ'. Heated to a protective atmosphere, 1〜2小时生I - The dance is a S-round: a dirty one-air ', preferably, the protective gas is argon; [0020] Again, a mixture of the carbon source gas and the carrier gas is introduced, the reaction is 0. - Growing a carbon nanotube array. Wherein, the carbon source gas is a carbon argon compound, which may be acetylene, ethylene, decane, etc., preferably, the carbon source gas is acetylene; the carrier gas is 'K·.: inert gas or hydrogen gas, preferably, the carrier gas is argon gas. . [0021] The carbon nanotube array is a plurality of pure carbon nanotube arrays formed by carbon nanotubes grown parallel to each other perpendicular to the substrate, and due to the long length of the generated carbon nanotubes, some of the carbon nanotubes will be Intertwined. By controlling the above growth conditions, the super-sequential carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles. It can be understood that the carbon nanotube array provided by the embodiment is not limited to the above preparation method. The carbon nanotube array provided in this embodiment comprises a single-walled carbon nanotube array, double-walled nanotube 096132537, form number A0101, page 8 / total 24 pages 0993462899-0 13.39189 [0023] [0025] 096132537

099年12月28日梭正替换頁I 故ΐ陣列及多壁奈米碳管陣列中的一種。 其中’高分子前驅體溶液爲由矽橡膠、灌封膠、環氧樹 脂及石臘中的一種或它們的組合組成的溶液之一。可以 理解’本技術方案中所涉及的高分子前驅體溶液並不僅 限於上述的溶液,只要為通過低黏度的前驅體固化方式 4合的尚分子材料、或者通過溶解或炫化的方式形成的 低黏度液體的高分子材料均可。 本實施方式採用的高分子前驅體溶液爲矽橡膠溶液。該 矽橡膠溶液的製備方法爲在矽橡膠中加入適量乙酸乙酯 稀釋,攪掉均勻後,形成一種矽橡膠的溶液。 • r .、: ···.,. 年 1·- _ s" . (二)將奈米碳管陣列和高务子前韻淹溶液混合,形成 一高分子前驅體/奈米碳管陣混^體0::· 其中,將奈米碳管陣列和高分子前驅體溶液混合爲在一 擠壓裝置中進行混合。請參閲圖2,本實施例中所述的擠 壓裝置10包括一上壓板12,一下愿ki4,兩個第一側板 • -· . > · ! * ·. 16,兩個第二側板18。上述的兩個第一側板16與上述的 兩個第二側板18設置於上壓板12和下壓板14之間,並在 上壓板12和下壓板14之間的中心位置形成一空腔22。上 壓板12通過螺絲24對稱地固定於下壓板14上,上壓板12 的面積與下壓板14相等。進一步地,兩個第一側板16沿 第一方向對稱地分布在空腔22的兩側;兩個第二側板18 沿第二方向對稱地分布在空腔22的另外兩側,其中,上 述的第一方向與第二方向相互垂直。 本實施例中’將奈米碳管陣列40和高分子前驅體溶液50 表單編號A0101 第9頁/共24頁 0993462899-0 1339189 |〇95年12月28曰孩主莕^·^] 混合包括以下步驟:將上述奈米碳管陣列40連同基底30 放置於擠壓裝置10的空腔22中,之後,將高分子前驅體 溶液50倒入放置有奈米碳管陣列40的擠壓裝置10空腔22 中進行混合後,形成一高分子前驅體/奈米碳管陣列混合 體60。 [0027] [0028] 其中,將一奈米碳管陣列40連同基底30直接放置於上述 擠壓裝置10的空腔22中,具體的,先將上述的兩個第一 側板16和兩個第二側板18放置在下壓板14上,在下壓板 14的中心位置形成一空腔22,再將奈米碳管陣列40連同 基底30直接放置到上述的空腔22中,再將高分子前驅體 溶液5 0倒入放置有奈米碳管#对戲)竭^1壤遣空腔22中 之後將再將上壓板12固定 其中,將高分子前驅體溶液50倒入擠壓裝置10空腔22中 後,進一步還包括一抽真空的過程。其包括以下步驟: 首先將放置於擠壓裝置10空腔22中的奈米碳管陣列40浸 沒在高分子前驅體溶液50中;之後,將擠壓裝置10放入 真空室抽真空,真空度小於0. 2大氣壓(atm),真空度和 抽真空的時間可根據實際需要進行選擇,抽真空過程可 以使得奈米碳管陣列40中的氣泡膨脹,從而浮出液面; 待奈米碳管陣列40中的空氣排淨後,高分子前驅體溶液 50便可充分填充奈米碳管之間的間隙,使得高分子前驅 體溶液50和奈米碳管陣列40形成良好的混合,從而形成 一種高分子前驅體/奈米碳管陣列混合體60。 [0029] 可以理解,本發明所述的製備高分子前驅體/奈米碳管陣 列混合體的步驟並不僅限於上述的製備步驟,其還可爲 096132537 表單編號A0101 第10頁/共24頁 0993462899-0 1339189 099年12月28日核正替換頁 將奈米碳管陣列40和高分子前驅體溶液50放入其他裝置 如表面皿等淺碟狀容器中進行混合、抽真空等步驟,在 上述混合及抽真空步驟完成後,高分子前驅體溶液50會 充分浸入奈米碳管陣列40,形成一高分子前驅體/奈米碳 管陣列混合體60。 [0030] (三)沿著平行於基底的方向擠壓高分子前驅體/奈米碳 管陣列混合體60,形成一高分子前驅體/高密度奈米碳管 陣列混合體70。 [0031] 本實施例中,根據製備的高分子前驅體/奈米碳管陣列混 合體60的方法不同,形成一高分子前驅、躍/高密度奈米碳 管陣列混合體70的具體製備不两。¥ —擠壓裝置 10中將奈米碳管陣列40和高潘子#糕被赛鋒50混合,製 備得到高分子前驅體/奈米碳管陣列混合體60,可以在該 擠壓裝置10中直接沿著平行於基底的方向擠壓高分子前 驅體/奈米碳管陣列混合體6 0,從而,得,到高分子前驅體/ 高密度奈米碳管陣列混合體70。另λ,還可將奈米碳管陣 • 、/· i · 列4 0和高分子前驅體溶液5 0放冬表他裝置如表面皿等淺 碟狀容器中進行混合、抽真空等步驟,形成一高分子前 驅體/奈米碳管陣列混合體60 ;之後,將上述的高分子前 驅體/奈米碳管陣列混合體60放入擠壓裝置10中,沿著平 行於基底的方向擠壓高分子前驅體/奈米碳管陣列混合體 60,從而得到高分子前驅體/高密度奈米碳管陣列混合體 70。 [0032] 請參閱圖3,對擠壓裝置10中的高分子前驅體/奈米碳管 陣列混合體60進行擠壓的過程包括:用第一側板16沿著 096132537 表單編號A0101 第11頁/共24頁 0993462899-0 1339189 按i替換頁 I r3- 099年12月2δ日 第一方向相對移動,對高分子前驅體/奈米碳管陣列混合 體60進行擠壓;之後,用第二側板18沿著第二方向相對 移動,對高分子前驅體/奈米碳管陣列混合體60進行擠壓 [0033] 所述的用第一側板16沿著第一方向相對移動,對高分子 前驅體/奈米碳管陣列混合體60進行擠壓,包括以下步驟 :首先通過兩個第二侧板18固定設置在擠壓裝置10的空 腔22中的高分子前驅體/奈米碳管陣列混合體60,之後通 過兩個第一側板16沿著第一方向相對移動,對高分子前 驅體/奈米碳管陣列混合體60進行擠壓,隨著擠壓形變程 度的增大,上述高分子前驅=!&;/畢%、¥^%^¥/混合體60中 的奈米碳管之間的間距在第述的用第 二側板18沿著第二方向相對移動,對高:分子前驅體/奈米 碳管陣列混合體60進行擠壓,包括以下步驟:用兩個第 一側板16把上述擠壓後的高分子前驅體/奈米碳管陣列混 合體60固定,通過兩個第二側板18沿著第二方向相對移 動,對上述擠壓後的高分子前藤體/奈米碳管陣列混合體 60進行擠壓,隨著擠壓形變程度的增大,上述擠壓後的 高分子前驅體/奈米碳管陣列混合體60中的奈米碳管之間 的間距在第二方向上减小。 [0034] 其中,通過對上述的高分子前驅體/奈米碳管陣列混合體 60的擠壓使得高分子前驅體/奈米碳管陣列混合體60中的 奈米碳管的密度達到預先設定的密度,從而形成高分子 前驅體/高密度奈米碳管陣列混合體70。該預先設定的密 度可根據實際需要進行選擇。可以理解,奈米碳管陣列 096132537 表單編號A0101 第12頁/共24頁 0993462899-0 1339189 099年1Z月28日核正替換頁 40中的奈米碳管之間的間距隨著擠壓形變的增大而减小 ;奈米碳管陣列40中的奈米碳管的密度隨著擠壓形變的 增大而增加。故,本實施例可通過控制對奈米碳管陣列 40施加的擠壓形變的程度的大小,進而控制所述的高分 子前驅體/高密度奈米碳管陣列混合體70中奈米碳管的密 度。 [0035] 本實施例獲得的高分子前驅體/高密度奈米碳管陣列混合 體70的奈米碳管的密度爲CVD法直接生長所得到的奈米碳 管密度的50倍;該高分子前驅體/高密度奈米碳管陣列混 合體70中的奈米碳管排列緊密且定向排列。 [0036] 另外,本發明中所採用的擠裝隹10並不破#採用圖2所 'Λ'1 示的結構,進一步,本發明;_丨等前驅密度奈米碳 管陣列混合體70的製備並不限於採用特定的擠壓裝置10 壓縮的方式,其關鍵在於能沿著平行於基底的方向對奈 米碳管陣列4 0施加一機械壓.力.,通過擠壓.使奈米碳管陣 列40中的奈米碳管之間的間距减小,密度增大,從而獲 得高分子前驅體/高密度奈_>^管陣列混合體70,故,依 據本發明精神對本發明所述擠壓裝置作其它非實質性變 化,都應包含在本發明所要求的保護範圍内。 [0037] (四)聚合高分子前驅體/高密度奈米碳管陣列混合體70 中的高分子前驅體溶液50,從而形成高密度奈米碳管陣 列複合材料80。 [0038] 其中,高分子前驅體溶液50固化步驟包括:在高分子前 驅體溶液50中預先加入少量固化劑,控制固化劑的添加 096132537 表單编珑A0101 第13頁/共24頁 0993462899-0 1339189On December 28, 099, Shuttle was replacing one of the arrays of I and the array of multi-walled carbon nanotubes. Wherein the 'polymer precursor solution is one of a solution composed of one or a combination of ruthenium rubber, potting compound, epoxy resin and paraffin wax. It can be understood that the polymer precursor solution involved in the present technical solution is not limited to the above-described solution, as long as it is a molecular material which is cured by a low-viscosity precursor curing method, or is formed by dissolution or stimuli. The polymer material of the viscosity liquid can be used. The polymer precursor solution used in the present embodiment is a ruthenium rubber solution. The ruthenium rubber solution is prepared by adding an appropriate amount of ethyl acetate to the ruthenium rubber and diluting it to form a ruthenium rubber solution. • r .,: ···.,. Year 1·- _ s" . (2) Mixing the carbon nanotube array with the high-tech sub-flooding solution to form a polymer precursor/nanocarbon array Mixture 0::· wherein the carbon nanotube array and the polymer precursor solution are mixed to be mixed in a press apparatus. Referring to FIG. 2, the pressing device 10 described in this embodiment includes an upper pressing plate 12, a wishing ki4, two first side plates. -·. > · ! * ·. 16, two second side plates 18. The two first side plates 16 and the two second side plates 18 described above are disposed between the upper platen 12 and the lower platen 14, and a cavity 22 is formed at a central position between the upper platen 12 and the lower platen 14. The upper platen 12 is symmetrically fixed to the lower platen 14 by screws 24, and the area of the upper platen 12 is equal to that of the lower platen 14. Further, the two first side plates 16 are symmetrically distributed on both sides of the cavity 22 in the first direction; the two second side plates 18 are symmetrically distributed on the other sides of the cavity 22 in the second direction, wherein the above The first direction and the second direction are perpendicular to each other. In the present embodiment, 'the carbon nanotube array 40 and the polymer precursor solution 50 form number A0101 page 9 / 24 pages 0993462899-0 1339189 | 〇 95 December 28 曰 child 荇 ^ · ^] mixed include The following steps: placing the above-described carbon nanotube array 40 together with the substrate 30 in the cavity 22 of the extrusion device 10, after which the polymer precursor solution 50 is poured into the extrusion device 10 in which the carbon nanotube array 40 is placed. After mixing in the cavity 22, a polymer precursor/carbon nanotube array mixture 60 is formed. [0028] wherein, a carbon nanotube array 40 is placed directly in the cavity 22 of the extrusion device 10 together with the substrate 30. Specifically, the first two side plates 16 and two The two side plates 18 are placed on the lower pressing plate 14, a cavity 22 is formed at the center of the lower pressing plate 14, and the carbon nanotube array 40 is placed directly into the cavity 22 together with the substrate 30, and then the polymer precursor solution is 50. After pouring the carbon nanotubes into the cavity 22, the upper platen 12 is fixed, and the polymer precursor solution 50 is poured into the cavity 22 of the extrusion device 10, Further included is a vacuuming process. It comprises the following steps: First, the carbon nanotube array 40 placed in the cavity 22 of the extrusion device 10 is immersed in the polymer precursor solution 50; after that, the pressing device 10 is placed in a vacuum chamber to evacuate the vacuum. Less than 0.2 atmospheric pressure (atm), the degree of vacuum and the time of vacuuming can be selected according to actual needs, the vacuuming process can cause the bubbles in the carbon nanotube array 40 to expand, thereby floating out of the liquid surface; After the air in the array 40 is drained, the polymer precursor solution 50 can sufficiently fill the gap between the carbon nanotubes, so that the polymer precursor solution 50 and the carbon nanotube array 40 form a good mixture, thereby forming a kind of Polymer precursor/carbon nanotube array hybrid 60. [0029] It can be understood that the step of preparing the polymer precursor/carbon nanotube array mixture according to the present invention is not limited to the above preparation steps, and may also be 096132537 Form No. A0101 Page 10 / Total 24 Page 0993462899 -0 1339189 On December 28, 099, the replacement of the carbon nanotube array 40 and the polymer precursor solution 50 in a shallow dish-shaped container such as a watch glass, mixing, vacuuming, etc. After the mixing and evacuation steps are completed, the polymer precursor solution 50 is sufficiently immersed in the carbon nanotube array 40 to form a polymer precursor/carbon nanotube array hybrid 60. [0030] (3) The polymer precursor/carbon nanotube array hybrid 60 is extruded in a direction parallel to the substrate to form a polymer precursor/high density carbon nanotube array hybrid 70. [0031] In this embodiment, according to the method for preparing the polymer precursor/carbon nanotube array hybrid 60, the specific preparation of the polymer precursor, the hop/high density carbon nanotube array mixture 70 is not formed. Two. ¥—The carbon nanotube array 40 and the Gao Panzi# cake are mixed by Saifeng 50 in the extrusion device 10 to prepare a polymer precursor/carbon nanotube array hybrid 60, which can be in the extrusion device 10. The polymer precursor/carbon nanotube array mixture 60 is extruded directly in a direction parallel to the substrate, thereby obtaining a polymer precursor/high density carbon nanotube array hybrid 70. In addition, λ, the carbon nanotube array, /·· i · column 40 and the polymer precursor solution 50 can be mixed in a shallow dish container such as a watch glass, vacuuming, etc. Forming a polymer precursor/carbon nanotube array hybrid 60; thereafter, placing the above polymer precursor/carbon nanotube array hybrid 60 into the extrusion apparatus 10, and squeezing in a direction parallel to the substrate The polymer precursor/carbon nanotube array hybrid 60 is pressed to obtain a polymer precursor/high density carbon nanotube array hybrid 70. [0032] Referring to FIG. 3, the process of extruding the polymer precursor/carbon nanotube array hybrid 60 in the extrusion apparatus 10 includes: using the first side plate 16 along 096132537 Form No. A0101, page 11 / A total of 24 pages 0993462899-0 1339189 According to i replacement page I r3- 099 December 2δ day relative movement in the first direction, the polymer precursor / carbon nanotube array hybrid 60 is extruded; after that, the second side plate 18 is relatively moved in the second direction, and the polymer precursor/carbon nanotube array hybrid 60 is extruded. [0033] The first side plate 16 is relatively moved along the first direction to the polymer precursor. The carbon nanotube array hybrid 60 is extruded, comprising the steps of first fixing a polymer precursor/carbon nanotube array mixture disposed in the cavity 22 of the extrusion device 10 by two second side plates 18. The body 60 is then relatively moved in the first direction by the two first side plates 16, and the polymer precursor/carbon nanotube array mixture 60 is extruded, and the polymer is increased as the degree of extrusion deformation increases. Precursor =! &; /%%, ¥^%^¥/Nano carbon in the mixture 60 The spacing between the two sides of the second side panel 18 is relatively moved in the second direction, and the high: molecular precursor/carbon nanotube array hybrid 60 is extruded, including the following steps: using two first side panels 16 The above-mentioned extruded polymer precursor/carbon nanotube array hybrid 60 is fixed, and relatively moved in the second direction by the two second side plates 18, and the extruded polymer front vine/nai The carbon nanotube array hybrid 60 is extruded, and as the degree of extrusion deformation increases, the spacing between the carbon nanotubes in the extruded polymer precursor/carbon nanotube array hybrid 60 is Decrease in the second direction. [0034] wherein the density of the carbon nanotubes in the polymer precursor/carbon nanotube array mixture 60 is preset by the extrusion of the polymer precursor/carbon nanotube array mixture 60 described above. The density is thereby formed into a polymer precursor/high density carbon nanotube array hybrid 70. The preset density can be selected according to actual needs. It can be understood that the carbon nanotube array 096132537 Form No. A0101 Page 12 / Total 24 Page 0993462899-0 1339189 099 1Z 28 28 The replacement of the spacing between the carbon nanotubes in the page 40 with the extrusion deformation The increase and decrease; the density of the carbon nanotubes in the carbon nanotube array 40 increases as the extrusion deformation increases. Therefore, in this embodiment, the size of the extrusion deformation applied to the carbon nanotube array 40 can be controlled, thereby controlling the carbon nanotubes in the polymer precursor/high density carbon nanotube array hybrid 70. Density. [0035] The density of the carbon nanotubes of the polymer precursor/high-density carbon nanotube array hybrid 70 obtained in the present embodiment is 50 times the density of the carbon nanotubes obtained by direct growth of the CVD method; The carbon nanotubes in the precursor/high density carbon nanotube array hybrid 70 are closely packed and oriented. [0036] In addition, the squeezing crucible 10 used in the present invention does not break the structure shown in FIG. 2, and further, the present invention; preparation of the precursor density carbon nanotube array hybrid 70 such as 丨It is not limited to the compression method using a specific pressing device 10. The key point is that a mechanical pressure can be applied to the carbon nanotube array 40 in a direction parallel to the substrate, and the carbon nanotubes can be extruded by extrusion. The spacing between the carbon nanotubes in the array 40 is reduced, and the density is increased, thereby obtaining a polymer precursor/high density nano tube assembly 70, so that the extrusion according to the present invention is in accordance with the spirit of the present invention. Other insubstantial changes of the pressure device are intended to be included in the scope of protection claimed herein. (4) The polymer precursor solution 50 in the polymer precursor/high-density carbon nanotube array mixture 70 is polymerized to form a high-density carbon nanotube array composite 80. [0038] wherein the curing step of the polymer precursor solution 50 comprises: pre-adding a small amount of curing agent to the polymer precursor solution 50 to control the addition of the curing agent. 096132537 Form Compilation A0101 Page 13 of 24 0993462899-0 1339189

[όϋ年1Z月Ζδ日孩主香換頁I 量以使高分子前驅體溶液5 0的固化時間多於兩個小時爲 准;按該高分子材料的適當固化方法,如加熱,使高分 子前驅體溶液50聚合固化。另,高分子前驅體溶液50爲 單組分的高分子前驅體溶液50時,還可以採用室溫靜置 固化的方式進行聚合,即在室溫下,靜置該單組分的高 分子前驅體溶液50進行固化聚合。 [0039] [0040] 固化劑包括環氧樹脂固化劑、鹼性類固化劑或酸性類固 化劑,其中鹼性類固化劑包括脂肪族二胺、芳香族多胺 、改性脂肪胺或其它含氮化合物,酸性類固化劑包括有 機酸、酸酐、三氟化硼或其絡合物。 本實施例所得到的高密度奈賢陣却複合_料80的熱 導率爲3瓦/米.K (W/mK) .Ufc法長所得到的 奈米碳管陣列複合材料的熱導率僅爲lW/mK,故,本實施 例的高密度奈米碳管陣列複合材料80與CVD法直接生長所 得到的奈米碳管陣列複合材料相:比,導熱性能更好。 [0041] 利用本發明所提供的方法,製備的高密度奈米碳管陣列 複合材料80中,奈米碳管的密度可達到CVD法直接生長所 得到的奈米碳管密度的1 0-200倍。本實施例所製備的高 密度奈米碳管陣列複合材料80,因爲其中的奈米碳管的 密度根據需要控制爲CVD法直接生長所得到的奈米碳管陣 列複合材料的50倍,從而該高奈米碳管陣列複合材料80 具有良好的導熱性能;另,本實施例所製備的高密度奈 米碳管陣列複合材料80,由於其中的奈米碳管之間緊密 填充有矽橡膠材料,使得奈米碳管之間連接穩定,比純 奈米碳管陣列的力學性能更爲優良,在導熱領域具有很 096132537 表單編號A0101 第14頁/共24頁 0993462899-0 1339189 [0042] [0043] [0044] [0045] [0046] 的9年12月後正替換頁I 好的應用。 可以理解,本發明所述的高密度奈米碳管陣列複合材料 的製備方法並不只限於上述的製備步驟,也可係先對 奈米碳管陣列40進行擠壓,之後將高分子前驅體溶液5〇 灌入擠壓後的奈米碳管陣列40中,聚合高分子前驅體溶 液50中的高分子前驅體,形成高密度奈米碳管複合材料80 〇 (五)對高密度奈米碳管陣列複合材料8〇進行切片,從 而形成奈米碳管陣列複合導熱片1 〇 〇。 其中,對咼密度奈米碳管陣歹|複合材料8〇進行切片的具 體步驟爲用一刀月90切割的方向爲沿著垂直於 奈米碳管陣列40軸向的方向,:切▲後,即可得到奈米碳 管陣列複合導熱片100。 本發明所得到的奈求碳管陣列複合導熱片100包括多個奈 米碳管和高分子材料,其中,多;ί固奈米碳管以陣列形式 排列’且南分子材料填充辛物奈来碳管之間的間隙中 。奈求碳管陣列複合導熱片100中的奈米碳管排列緊密且 定向排列,且奈米碳管的密度爲〇卜2 2g/cm3。在上述 的不米故g陣列複合導熱片⑽中的奈米碳管兩端開口, 且奈米破管的兩端從奈米碳管陣列複合導熱片⑽中露出 〇 另’還可以對上述的奈米碳管陣列複合導熱 片1 00進行進 步的表面處理’其中,表面處理方法包括等離子刻# '化學修飾、金較積或它們的任意組合的方式之一。 096132537 表單编號A0101 第丨5頁/共24頁 0993462899-0 1339189 [0047] [^93年1Z月日触替挨百j 表面處理的具體方法不同,其産生作用的具體方式也不 同。如,採用等離子刻蝕處理奈米碳管陣列複合導熱片 100,可以使得奈米碳管的兩端從奈米碳管陣列複合導熱 片100中更加充分的露出,從而使得奈米碳管複合導熱片 100具有更加優異的導熱性能。採用化學修飾處理奈米碳 管陣列複合導熱片100,可以使得奈米碳管的兩端根據需 要選擇吸附的化學基團,從而使得奈米碳管陣列複合導 熱片100在導熱應用時,具有更加優異的導熱性能。採用 金屬沈積處理奈米碳管陣列複合導熱片100,可以使得奈 米碳管陣列複合導熱片! 00的表面在導熱應用時具有更大 的接觸面積,且沈積的金屬碟聲陣.摩痒合導熱片 100的奈米碳管具有很好的得|米碳管陣列 複合導熱片100導熱性能’ AC罗' [0048] 本實施例中奈米碳管陣列複合導熱片100及其製備方法具 有以下優點:其一,所述的奈米碳管陣列複合導熱片丨〇 〇 中,奈米碳管排列緊密且定向排列,本發明所製備的奈 米碳管陣列複合導熱片100中,:声米碳管的密度可根據需 要控制爲CVD法直接生長所得到的奈米碳管陣列複合導熱 片的10〜200倍,即導熱片中奈米碳管導熱通道的密度提 南了 10〜200倍,從而該奈米碳管陣列複合導熱片1〇〇且 有優異的導熱性能,可廣泛地應用於導熱材料等方面; 其二,所述的奈米碳管陣列複合導熱片1〇〇,由於奈米碳 管之間緊密地填充高分子材料,使得奈米碳管之間連接 穩定,比純奈米碳管陣列的力學性能更爲優良;其三, 在奈米碳管陣列複合導熱片100中的奈米碳管兩端開口, 096132537 表單編號Α0Ι0Ι 第16頁/共24頁 0993462899-0 1339189 099年12月28日梭正替换頁 [0049] [0050] [0051] [0052] [0053] [0054] [0055] [0056] [0057] [0058] 且從奈米碳管的兩端從奈米碳管陣列複合導熱片1 00中露 出;其四,所述的製備方法工序簡單且製備的奈米碳管 陣列複合導熱片100中的奈米碳管的密度可以控制。 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本發明實施例奈米碳管陣列複合導熱片的製備方法 ; :-' ' 'v , 的流程示意圖。 圖2係本發明實施例奈米碳管陣列:複合^熱片的擠壓裝置 的結構示意圖。 圖3係本發明實施例奈米碳管陣列複合導熱片的製備過程 的示意圖。 j ' 【主要元件符號說明】, 10 :擠壓裝置 k 12 :上壓板 14 :下壓板 16 :第一側板 18 :第二側板 22 :空腔 096132537 表單編號A0101 第17頁/共24頁 0993462899-0 1339189 [0059] [0060] [0061] [0062] [0063] [0064] [0065] [0066] [0067] 90 : 100 |〇33年月Ζό日修足替换頁| 24 :螺絲 30 :基底 40 :奈米碳管陣列 50 :高分子前驅體溶液 60:高分子前驅體/奈米碳管陣列混合體 70 :高分子前驅體/高密度奈米碳管陣列混合體 80 :高密度奈米碳管陣列複合材料 刀片 :奈米碳管陣列複合導熱[Year of the year 1Z month Ζ δ day child fragrant page change I amount to make the polymer precursor solution 50 curing time more than two hours; according to the appropriate curing method of the polymer material, such as heating, make polymer precursor The bulk solution 50 is polymerized and cured. In addition, when the polymer precursor solution 50 is a one-component polymer precursor solution 50, it can also be polymerized by static curing at room temperature, that is, the single component polymer precursor is allowed to stand at room temperature. The bulk solution 50 is subjected to curing polymerization. [0040] The curing agent includes an epoxy resin curing agent, a basic curing agent or an acidic curing agent, wherein the basic curing agent includes an aliphatic diamine, an aromatic polyamine, a modified aliphatic amine or the like. The nitrogen compound, the acidic curing agent includes an organic acid, an acid anhydride, boron trifluoride or a complex thereof. The high-density Nissan array obtained in this embodiment has a thermal conductivity of 3 W/m·K (W/mK). The thermal conductivity of the carbon nanotube array composite obtained by the Ufc method is only For the lW/mK, the high-density carbon nanotube array composite 80 of the present embodiment has better thermal conductivity than the carbon nanotube array composite obtained by direct growth of the CVD method. [0041] In the high-density carbon nanotube array composite 80 prepared by the method provided by the invention, the density of the carbon nanotubes can reach the density of the carbon nanotubes obtained by direct growth of the CVD method of 10-20. Times. The high-density carbon nanotube array composite 80 prepared in this embodiment, because the density of the carbon nanotubes therein is controlled to be 50 times that of the carbon nanotube array composite obtained by direct growth of the CVD method, thereby The high carbon nanotube array composite 80 has good thermal conductivity; in addition, the high density carbon nanotube array composite 80 prepared in this embodiment is closely filled with a ruthenium rubber material because the carbon nanotubes are closely packed. The connection between the carbon nanotubes is stabilized, and the mechanical properties of the carbon nanotube array are better than those of the pure carbon nanotube array. In the field of heat conduction, there is 096132537 Form No. A0101 Page 14/24 pages 0993462899-0 1339189 [0043] [0046] [0046] After 9 years of December, I am replacing the good application of Page I. It can be understood that the preparation method of the high-density carbon nanotube array composite material of the present invention is not limited to the above preparation steps, and the carbon nanotube array 40 may be first extruded, and then the polymer precursor solution is prepared. 5〇 poured into the extruded carbon nanotube array 40, polymerizing the polymer precursor in the polymer precursor solution 50 to form a high-density carbon nanotube composite material 80 〇 (5) for high-density nanocarbon The tube array composite material was sliced to form a carbon nanotube array composite thermally conductive sheet 1 . Wherein, the specific step of slicing the tantalum density carbon nanotubes 复合|composite material 8 为 is to cut in a direction perpendicular to the axial direction of the carbon nanotube array 40 by using a knife 90 cutting direction: after cutting ▲ The carbon nanotube array composite thermally conductive sheet 100 is obtained. The carbon nanotube array composite thermal conductive sheet 100 obtained by the invention comprises a plurality of carbon nanotubes and a polymer material, wherein, a plurality of; the nano carbon nanotubes are arranged in an array form and the south molecular material is filled with the Xinnerai In the gap between the carbon tubes. The carbon nanotubes in the carbon tube array composite thermally conductive sheet 100 are arranged closely and in an aligned manner, and the density of the carbon nanotubes is 2 2 g/cm 3 . The carbon nanotubes in the above-mentioned non-g-g array composite thermally conductive sheet (10) are open at both ends, and both ends of the nanotube are exposed from the carbon nanotube array composite thermally conductive sheet (10). The carbon nanotube array composite thermal conductive sheet 100 is subjected to an improved surface treatment. Among them, the surface treatment method includes one of the methods of plasma etching, chemical comparison, or any combination thereof. 096132537 Form No. A0101 Page 5 of 24 0993462899-0 1339189 [0047] [^93年1日月日日挨jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj For example, the carbon nanotube array composite thermal conductive sheet 100 is treated by plasma etching, so that both ends of the carbon nanotubes are more fully exposed from the carbon nanotube array composite thermal conductive sheet 100, thereby making the carbon nanotube composite heat conduction. The sheet 100 has more excellent thermal conductivity. By chemically modifying the carbon nanotube array composite thermal conductive sheet 100, the two ends of the carbon nanotube can be selected to adsorb the chemical groups as needed, so that the carbon nanotube array composite thermal conductive sheet 100 has a more heat-conducting application. Excellent thermal conductivity. The carbon nanotube array composite thermal conductive sheet 100 is treated by metal deposition, so that the carbon nanotube array composite thermal conductive sheet can be made! The surface of 00 has a larger contact area in the application of heat conduction, and the deposited metal disk array. The carbon nanotubes of the heat-insulating sheet 100 have a good thermal conductivity of the carbon nanotube array composite thermal sheet 100. [0048] The carbon nanotube array composite thermal conductive sheet 100 and the preparation method thereof have the following advantages in the embodiment: First, the carbon nanotube array composite thermal conductive sheet, the carbon nanotube In the arrangement of the carbon nanotube array composite thermal conductive sheet 100 prepared by the present invention, the density of the acoustic carbon nanotubes can be controlled as needed to directly grow the carbon nanotube array composite thermal conductive sheet obtained by the CVD method. 10~200 times, that is, the density of the carbon nanotube heat conduction channel in the thermal conductive sheet is increased by 10 to 200 times, so that the carbon nanotube array composite thermal conductive sheet has excellent thermal conductivity and can be widely applied. The heat conductive material and the like; the second, the carbon nanotube array composite thermal conductive sheet 1〇〇, because the carbon nanotubes are closely filled with the polymer material, the connection between the carbon nanotubes is stable, compared with the pure nai Mechanical properties of carbon nanotube arrays It is excellent; thirdly, the carbon nanotubes in the carbon nanotube array composite thermal conductive sheet 100 are open at both ends, 096132537 Form No. Ι0Ι0Ι Page 16/24 pages 0993462899-0 1339189 December 28, 2008 [0058] [0058] [0058] [0058] [0058] from the carbon nanotubes from both ends of the carbon nanotube array composite thermal conductive sheet 1 Exposed in 00; fourth, the preparation method is simple and the density of the carbon nanotubes in the prepared carbon nanotube array composite thermally conductive sheet 100 can be controlled. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic flow chart of a method for preparing a carbon nanotube array composite thermally conductive sheet according to an embodiment of the present invention; :-' ' 'v . Fig. 2 is a schematic view showing the structure of a carbon nanotube array: a composite heat sheet extrusion apparatus according to an embodiment of the present invention. Fig. 3 is a schematic view showing the preparation process of a carbon nanotube array composite thermally conductive sheet according to an embodiment of the present invention. j ' [Main component symbol description], 10: Extrusion device k 12 : Upper platen 14 : Lower platen 16 : First side plate 18 : Second side plate 22 : Cavity 096132537 Form No. A0101 Page 17 / Total 24 pages 0993462899- [0059] [0061] [0062] [0062] [0063] [0064] [0067] [0067] 90: 100 | 〇 33 years of the next day to repair the replacement page | 24: Screw 30: base 40: Carbon nanotube array 50: polymer precursor solution 60: polymer precursor/nanocarbon nanotube array hybrid 70: polymer precursor/high density carbon nanotube array hybrid 80: high density nano Carbon tube array composite blade: carbon nanotube array composite heat conduction

096132537 表單編號A0101 第18頁/共24頁 0993462899-0096132537 Form No. A0101 Page 18 of 24 0993462899-0

Claims (1)

1JJ9189 厂099年12另28 B後正雜頁| 七、申請專利範圍: ^=米碳管陣職合導熱片,包括多個奈米碳管和高分 ;其改良在於,該奈米碳管陣列複合導熱片中的多 碳管轉咖式制,且高分子材料填充在多個奈 Ά官之間的間隙_,奈米碳管陣列複合導熱月中的奈米 碳管的密度爲0.卜2.2克每立方厘米。 如_請專㈣圍第W所述的奈米碳管陣列複合導熱片, 其中’奈来碳f陣列複合導熱片的厚度爲2()微米〜5毫米 申明專利範圍第2項所述的奈米碳管陣列複合導熱片, 其中,奈米碳管陣列複合導熱片中的f米擎兩端開口, 且奈来碳管的兩端從奈米碳管陣祕中露出。 •如申請專利範圍第i項所述的奈米合導熱片, 其中,奈米碳管陣列複合導熱片巾的奈米碳管排列緊密且 定向排列。 •如申請專利範圍第1項所述的奈米「陣列i合導熱片, 其中,所述的奈米碳管爲單壁奈米:读;管、雙壁奈米碳管及 多壁奈米碳管中的一種。 .如申請專利範圍第1項所述的奈米碳管陣列複合導熱片, 其中’所述的高分子材料爲石夕橡膠、灌封勝、環氣樹脂及 石臘中的一種或他們的任意組合之一。 .一種奈米碳管陣列複合導熱片的製備方法,其包括以下步 驟: 提供-形成於-基底的奈米碳管陣列和__高分子前驱體溶 液; 09β132537 表單編號Α0101 第19買/共24頁 0993462899-0 1339189 I 033年12月A曰麼l£替换頁 將奈米碳管陣列和高分子前驅體溶液混合,形成一高分子 前驅體/奈米碳管陣列混合體; 沿著平行於基底的方向擠壓該高分子前驅體/奈米碳管陣 列混合體,形成一高分子前驅體/高密度奈米碳管陣列混 合體; 聚合高分子前驅體/高密度奈米碳管陣列混合體中的高分 子前驅體溶液,形成高密度奈米碳管陣列複合材料;及 對該高密度奈米碳管陣列複合材料進行切片,從而形成奈 米碳管陣列複合導熱片。 8 .如申請專利範圍第7項所述的奈米碳管陣列複合導熱片的 製備方法,其中,將奈米碳管:陣壤:和高;前驅體溶液混 合的步驟係在一擠壓裝置中進衍鉤〜大 . 9 .如申請專利範圍第8項所述:管 II合導熱片的 製備方法,其中,所述的擠壓裝置包括一下壓板,一上壓 板,兩個第一側板與兩個第二側板設置於上壓板和下壓板 之間,並在上壓板和下壓板之T4的中心位置形成一空腔; 上壓板通過螺絲對稱地固定於下壓板上,上壓板的面積與 下壓板相等;兩個第一側板沿第一方向對稱地分布於空腔 的兩側,兩個第二側板沿第二方向對稱地分布於空腔的另 外兩側,且,第一方向與第二方向相互垂直。 10 .如申請專利範圍第9項所述的奈米碳管陣列複合導熱片的 製備方法,其中,沿著平行於基底的方向擠壓高分子前驅 體/奈米碳管陣列混合體爲採用上述的擠壓裝置進行擠壓 ,該擠壓過程包括:用第一側板沿著第一方向相對移動, 對高分子前驅體/奈米碳管陣列混合體進行擠壓;之後, 用第二侧板沿著第二方向相對移動,對高分子前驅體/奈 096132537 表單編號A0101 第20頁/共24頁 0993462899-0 1339.189 米碳管陣列混合體進行擠壓。 11,如申請專利範圍第7項所述的奈米碳管陣列複合導熱片的 I 製備方法’其中,將奈米碳管陣列和高分子前驅體溶液混 合後,進一步包括一抽真空處理過程。 12 .如申請專利範圍第丨丨項所述的奈米碳管陣列複合導熱片的 製備方法’其中,所述的抽真空處理過程,包括以下步驟 :首先將放置於擠壓裝置空腔中的奈米碳管陣列浸沒在高 分子前驅體溶液中;之後,將上述的擠壓裝置放入真空室 抽真空,真空度小於〇. 2大氣壓。 13 .如申請專利範圍第7項所述的奈米碳管陣列複合導熱片的 製備方法’其中’聚合高分子前驅趙 高纟签專奈米碳管陣 列混合體中的高分子前驅體溶液的過包括以下步驟:摻 入固化劑,混合均勻,加熱聚合固化。;" 14 .如申請專利範圍第丨3項所述的奈米碳管陣列複合導熱片的 製備方法,其中,固化劑包括環氧樹脂固化劑、鹼性類固 化劑或酸性類固化劑’其中鹼性類固化劑包括脂肪族二胺 、芳香族多胺、改性脂肪胺或其它含£化合物,酸性類固 化劑包括有機酸、酸酐、三氟把相或其絡合物。 1 5 .如申請專利範圍第7項所述的奈米碳管陣列複合導熱片的 製備方法,其中,進一步包括對切片後的高密度奈米碳管 陣列複合材料進行表面處理。 16 .如申請專利範圍第15項所述的奈米碳管陣列複合導熱片的 製備方法,其t,所述的表面處理方法包括等離子刻蝕、 化學修飾、金屬沈積或它們的任意組合之_ ^ 096132537 表單編號A0101 第21頁/共24頁 0993462899-01JJ9189 Factory 099 12 other 28 B after the miscellaneous page | VII, the scope of application for patents: ^ = m carbon tube array thermal film, including a number of carbon nanotubes and high scores; its improvement lies in the carbon nanotube The multi-carbon tube in the array composite thermal conductive sheet is made into a coffee-making system, and the polymer material is filled in the gap between the plurality of na[iota], and the density of the carbon nanotubes in the composite heat conduction month of the carbon nanotube array is 0. Bu 2.2 grams per cubic centimeter. Such as _ please special (four) around the W carbon nanotube array composite thermal conductive sheet, wherein the thickness of the 'nai carbon f array composite thermal conductive sheet is 2 () micron ~ 5 mm claimed in the scope of the second paragraph of the patent The carbon nanotube array composite thermal conductive sheet, wherein the carbon nanotube array composite thermal conductive sheet has two ends open, and both ends of the carbon nanotubes are exposed from the carbon nanotube array. The nano-conductive thermally conductive sheet according to claim i, wherein the carbon nanotubes of the carbon nanotube array composite thermally conductive sheet are arranged closely and oriented. • The nanometer “array i-conductive sheet” according to claim 1, wherein the carbon nanotube is a single-walled nanometer: read; tube, double-walled carbon nanotube and multi-walled nanometer A carbon nanotube array composite thermally conductive sheet according to claim 1, wherein the polymer material is Shixi rubber, potting, gas and resin. One of or any combination thereof. A method for preparing a carbon nanotube array composite thermally conductive sheet, comprising the steps of: providing a carbon nanotube array formed on a substrate and a polymer precursor solution; 09β132537 Form No. 1010101 19th Buy/Total 24 Pages 0993462899-0 1339189 I December 033A 曰 l££ Replacement page Mixing the carbon nanotube array with the polymer precursor solution to form a polymer precursor/nano a carbon tube array mixture; pressing the polymer precursor/carbon nanotube array mixture in a direction parallel to the substrate to form a polymer precursor/high density carbon nanotube array mixture; polymer polymer precursor Bulk/high density carbon nanotube array The polymer precursor solution in the body forms a high-density carbon nanotube array composite; and the high-density carbon nanotube array composite is sliced to form a carbon nanotube array composite thermally conductive sheet. The method for preparing a carbon nanotube array composite thermally conductive sheet according to the seventh aspect of the invention, wherein the step of mixing the carbon nanotubes: the soil: and the high; the precursor solution is carried out in a pressing device 〜大. 9 . The preparation method of the tube II combined heat conductive sheet, wherein the pressing device comprises a lower pressing plate, an upper pressing plate, two first side plates and two second portions. The side plate is disposed between the upper pressing plate and the lower pressing plate, and forms a cavity at a center position of the upper pressing plate and the lower pressing plate T4; the upper pressing plate is symmetrically fixed to the lower pressing plate by screws, and the area of the upper pressing plate is equal to the lower pressing plate; The first side plates are symmetrically distributed on both sides of the cavity in the first direction, the two second side plates are symmetrically distributed on the other sides of the cavity in the second direction, and the first direction and the second direction are perpendicular to each other. If applying The method for preparing a carbon nanotube array composite thermally conductive sheet according to item 9, wherein the extrusion of the polymer precursor/carbon nanotube array in a direction parallel to the substrate is performed by using the above-mentioned extrusion device Extrusion, the extrusion process comprising: relatively moving the first side plate in a first direction to press the polymer precursor/carbon nanotube array mixture; and then, using the second side plate along the second Relative movement of the direction, extrusion of the polymer precursor / Nai 096132537 Form No. A0101 Page 20 / 24 pages 0993462899-0 1339.189 m carbon tube array mixture. 11, as described in claim 7 of the scope of the nano A method for preparing a carbon tube array composite thermally conductive sheet, wherein after the carbon nanotube array and the polymer precursor solution are mixed, a vacuum process is further included. 12. The method for preparing a carbon nanotube array composite thermally conductive sheet according to the invention of claim 2, wherein the vacuuming process comprises the steps of: first placing in a cavity of the extrusion device; The carbon nanotube array is immersed in the polymer precursor solution; after that, the above-mentioned extrusion device is placed in a vacuum chamber to evacuate, and the degree of vacuum is less than 大. 2 atm. 13. The method for preparing a carbon nanotube array composite thermally conductive sheet according to claim 7 of the patent application, wherein the polymer precursor precursor Zhao Gaoqi signed the polymer precursor solution in the carbon nanotube array mixture The method comprises the steps of: incorporating a curing agent, mixing uniformly, and heating and curing. ; " 14 . The preparation method of the carbon nanotube array composite thermally conductive sheet according to claim 3, wherein the curing agent comprises an epoxy curing agent, a basic curing agent or an acidic curing agent. The alkaline curing agent includes an aliphatic diamine, an aromatic polyamine, a modified aliphatic amine or other containing a compound, and the acidic curing agent includes an organic acid, an acid anhydride, a trifluorophase or a complex thereof. The method for preparing a carbon nanotube array composite thermally conductive sheet according to claim 7, further comprising surface treating the sliced high density carbon nanotube array composite. The method for preparing a carbon nanotube array composite thermally conductive sheet according to claim 15, wherein the surface treatment method comprises plasma etching, chemical modification, metal deposition or any combination thereof. ^ 096132537 Form Number A0101 Page 21 / Total 24 Page 0993462899-0
TW96132537A 2007-08-31 2007-08-31 Thermal pad with carbon nanotube array and method of making the same TWI339189B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96132537A TWI339189B (en) 2007-08-31 2007-08-31 Thermal pad with carbon nanotube array and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96132537A TWI339189B (en) 2007-08-31 2007-08-31 Thermal pad with carbon nanotube array and method of making the same

Publications (2)

Publication Number Publication Date
TW200909342A TW200909342A (en) 2009-03-01
TWI339189B true TWI339189B (en) 2011-03-21

Family

ID=44723987

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96132537A TWI339189B (en) 2007-08-31 2007-08-31 Thermal pad with carbon nanotube array and method of making the same

Country Status (1)

Country Link
TW (1) TWI339189B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172044B (en) 2011-12-21 2015-07-01 清华大学 Carbon nanotube paper preparation method
CN103178027B (en) * 2011-12-21 2016-03-09 清华大学 Radiator structure and apply the electronic equipment of this radiator structure
CN103178026B (en) * 2011-12-21 2016-03-09 清华大学 Radiator structure and apply the electronic equipment of this radiator structure

Also Published As

Publication number Publication date
TW200909342A (en) 2009-03-01

Similar Documents

Publication Publication Date Title
CN101372614B (en) Carbon nano-tube array composite heat-conducting fin and manufacturing method thereof
Ying et al. Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates
Liu et al. Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications
CN101054467B (en) Carbon nano-tube composite material and preparation method thereof
US8052825B2 (en) Method for making composite material having carbon nanotube array
JP5254819B2 (en) Carbon nanotube composite material and manufacturing method thereof
CN101353785B (en) Preparation of high-density carbon nano-tube array composite material
Xu et al. Vertically aligned graphene for thermal interface materials
CN101868068B (en) Plane heat source
TWI339189B (en) Thermal pad with carbon nanotube array and method of making the same
TWI476147B (en) Carbon nanotube composite and method for making the same
TW200929292A (en) Super capacitor
JP2010251327A (en) Linear heat source
JP2010257973A (en) Surface heat source
CN101868060B (en) Three-dimensional heat source
TWI331132B (en) Method of fabricating thermal interface material
TWI362429B (en) Method of making high-density carbon nanotube array composite material
JP2010257970A (en) Wire heat source
CN101868058A (en) Preparation method of three-dimensional heat source
JP2010251326A (en) Line heat source
TWI386447B (en) Method for making carbon nanotube array composite
JP5281034B2 (en) Manufacturing method of wire heat source
CN101868061A (en) Three-dimensional heat source
JP2010257972A (en) Surface heat source
CN101868057B (en) Three-dimensional heat source