TW200927646A - Method of making a carbon nanotube composite - Google Patents

Method of making a carbon nanotube composite Download PDF

Info

Publication number
TW200927646A
TW200927646A TW96150096A TW96150096A TW200927646A TW 200927646 A TW200927646 A TW 200927646A TW 96150096 A TW96150096 A TW 96150096A TW 96150096 A TW96150096 A TW 96150096A TW 200927646 A TW200927646 A TW 200927646A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
nanotube composite
composite material
carbon
preparing
Prior art date
Application number
TW96150096A
Other languages
Chinese (zh)
Other versions
TWI368600B (en
Inventor
Jia-Ping Wang
Qun-Feng Cheng
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW096150096A priority Critical patent/TWI368600B/en
Publication of TW200927646A publication Critical patent/TW200927646A/en
Application granted granted Critical
Publication of TWI368600B publication Critical patent/TWI368600B/en

Links

Abstract

The present invention relates to a method of making a carbon nanotube composite. The method of making the carbon nanotube composite includes the steps of: making at least one carbon nanotube film; providing at least one polymer film, and disposing at least one carbon nanotube film on the surface of polymer film to forming a carbon nanotube film structure, thereby obtain a carbon nanotube composite preform; pre-combining the carbon nanotube composite preform; hot-pressing at least one carbon nanotube composite preform to obtain a carbon nanotube composite.

Description

200927646 九、發明說明: -【發明所屬之技術領域】 . 本發明涉及一種複合材料的製備方法,尤其涉及一種 奈米碳管複合材料的製備方法。 【先前技術】 奈米碳管(Carbon Nanotube,CNT)係一種新型碳材 料,;L991年由日本研究人員Iijima首次在實驗室製備獲得 (請參見,Helical Microtubules of Graphitic Carbon,Nature, ❹V354, P56-58 (1991))。奈米碳管具有與金剛石相同的熱導 和獨特的力學性能,如抗張強度達100千兆帕,模量高達 1800千兆帕,且耐強酸、強鹼,600°C以下基本不氧化等。 由於奈米碳管具有如此優異的性能,利用奈米碳管作 為填充物與其他材料複合已成為奈米碳管應用的一個重要 方向。特別地,奈米碳管與其它材料,例如:金屬、半導 體或者聚合物等的複合可以實現材料的優勢互補或加強。 近年來隨著奈米碳管產量的增大和質量的提高,奈米碳管 ®複合材料成為研究的熱點。 先前技術多以粒子填充高分子材料的形式來製備奈米 碳管複合材料,由於奈米碳管容易團聚,需先對奈米碳管 進行表面改性和功能化處理,然後採用溶液或熔融的方法 與高分子材料複合。目前,製備奈米碳管複合材料的方法 主要有溶液共混法、熔融共混法、原位聚合法、電紡絲法。 其中,溶液共混法包括以下步驟:將奈米碳管分散於熱塑 性高分子材料的溶液中形成一混合溶液;採用喷塗、提拉 等方法將該混合溶液設置於不同的基體(如Au、Ag、Cu 6 200927646 石英玻璃)上;以及讓溶劑揮發得到一奈米碳管 料。然而’這種方法僅適用于易溶於溶劑的執塑性 料’如··聚乙烯醇、熱塑性聚酿亞胺等。溶融共 用下加入不米碳営,通過模壓成型、 ;塑成型等方法得到塊體材料。這種方法主要 、二不办於常規溶劑的熱塑性高分子材料,如:聚丙 烯、聚乙婦、尼龍等。原位聚合法包括 ©碳管和埶塑性离八辜留触、3人 /鄉將不木 人,太半’η 採用引發劑引發單體聚 鍵參與鏈式聚合反應,得到奈米碳管 ^位聚合最大的特點係有助於奈米碳管的分 古^姑Ϊ合於不宜用溶液共混和溶融共混製備的熱塑性 二 =料’如:聚甲基丙烯酸甲醋(ΡΜΜΑ),聚對苯 撐本並雙惡唾(ΡΒ0),聚對苯二甲酸乙二醋(ρΕτ) =s: (pc)等。電紡絲法包括以下步驟··將奈米碳管分散 ❹==乂人熱塑性高分子材料;通過纺絲將奈米碳管 m材料複合’這樣奈米碳管在熱塑性高分子 =具有一疋的取向’可以提高熱塑性高分子材料的拉 乎石^ 述奈米碳管複合材料的製備方法主要係將奈 以填充材料的形式加入到高分子材料基體中。由於 =碳=的表面張力巨大很容易團聚,需要對奈米碳 s進仃表面處理’使奈米碳管分散,該方 ,料工藝複雜,且會破壞奈米碳管在結:二卡:; 性。而且,即使對奈米碳管進行表面處理,也很難將奈米 7 200927646 碳,均勻地分散到高分子材料基體中,更無法使奈米碳管 在局分子材料基體中有序排列。 有鐾於此,提供-種可以將奈米碳管有序排列地分佈 到馬分子基體中,又不會破壞奈米碳管在結構上的完整 性’且工藝簡單的奈米碳管複合材料的製備方法實為必要。 【發明内容】 -種奈米碳管複合材料的$備方法,其具體包括以下 步驟:製備至少一奈米碳管薄膜;提供至少一高分子薄膜, ❹並將該至少-奈米碳㈣膜設置於該高分子薄膜表面,形 成-奈米石厌官薄膜結構,從而得到一奈米碳管複合材料預 製體,對上述奈米碳官複合材料預製體進行預複合處理; 對上述預複合後的至少-奈米碳管複合材料預製體進行熱 壓成型處理,形成一奈米碳管複合材料。 相較于先前技術,本技術方案提供的奈米碳管複合材 巧製備方法具有以下優點:第―’本技術方案採用奈米 ❹石反官薄膜結構與熱塑性高分子薄臈進行複合製備奈米碳管 複合材料,可以使奈米碳管均勻,且規則分佈於熱塑性高 分子基體中,從而使得製備的奈米碳管複合材料具有更優 異的性能。第二,本技術方案無需對奈米碳管進行表面處 理’,不僅保證了奈来碳管在結構上的完整性,而且還簡化 了製備過程,又降低了生產成本,提高了複合材料的性能。 第二,本技術方案通過對奈米碳管薄膜結構與熱塑性高分 子薄臈直接進行預複合處理和熱壓成型處理製備奈米碳管 複合材料,方法簡單、容易實現、生產成本低。 8 200927646 【實施方式】 明 下面將結合附圖對本技術方案作進一步的詳細說 明參考圖1及圖2,本技術方案實施例提供一種奈米 碳管複合材料的製備方法,其具體包括以下步驟: 步驟一:製備一奈米碳管薄膜。 該奈米碳管薄膜的製備方法包括以下步驟: ❹ ,山Ϊ先,提供一奈米碳管陣列。本實施例中,所述奈 米石反官陣列為一超順排奈米碳管陣列,該超順排奈米碳 Β陣列的製備方法採用化學氣相沈積法,其具體步驟包 括:提供一平整基底,該基底可選用ρ型或Ν型矽基底, ,選用形成有氧化層㈣基底,本實施例優選為採用4 英寸的石夕基底;在基底表面均勻形成—催化劑層,該催 =劑層材料可制鐵(Fe)1 (Cq)、_ (m)或其任 φ 口的σ金之,將上述形成有催化劑層的基底在 700〜90旳的空氣中退火約3〇分鐘〜9〇分鐘;將處理過的 。土底置於反應爐甲’在保護氣體環境下加熱到5〇〇〜谓 °c,然後通入碳源氣體反應約5〜3〇分鐘,生長得到超順 排奈米碳管陣列’其高度為細〜侧微米。該超順排奈 f碳管陣列為多個彼此平行且垂直於基底生長的奈米碳 官形成的純奈米碳管陣列。通過上述控制生長條件,該 f頃排奈米碳管陣列中基本不含有雜質’如無定型碳或 殘留的催化劑金屬顆粒等。該奈米碳管陣列中的奈米碳 管彼此通過凡德瓦爾力緊密接觸形成陣列。里中,碳源 9 200927646 氣可選用乙炔、乙烯、曱烷等化學性質較活潑的碳氫化 •合物,本實施例優選的碳源氣為乙炔;保護氣體為氮氣 ,或惰性氣體,本實施例優選的保護氣體為氬氣。 可以理解,本實施例提供的奈米碳管陣列不限於上 述製備方法。本實施例提供的奈米碳管陣列為單壁奈米 碳管陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中的 一種。 其次,從上述奈米碳管陣列中拉取獲得至少一奈米 碳管薄膜。 從上述奈米碳管陣列中拉取獲得至少一奈米碳管薄 膜具體包括以下步驟··從上述奈米碳管陣列中選定一定 寬度的多個奈米碳管束片斷,本實施例優選為採用具有 —定寬度的膠帶接觸奈米碳管陣列以選定一定寬度的多 個奈米碳管束片冑;以—定速度沿I本垂直于奈米碳管 陣列生長方向拉伸該多個奈米碳管束片斷,以形成一連 ⑩續的奈米碳管薄膜。 在上述拉伸過程中,該多個奈米碳管束片斷在拉力 作用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾 ==用,該選定的多個奈米碳管束片斷分別與其他奈米 =管片斷首尾相連地連續地被拉出,從而形成一奈米碳 :薄膜。該奈米碳管薄膜為擇優取向排列的多個奈米碳 2束首尾相連形成的具有一定寬度的奈米碳管薄膜。該 '米碳管薄膜中奈米碳管束之間相互平行’奈米碳管束 的排列方向基本平行于奈米碳管薄臈的拉伸方向。 200927646 本實施例中,該奈米碳管薄臈 •列所生長的基底的尺寸有關,該夺米石山=不未碳管陣 .限,可根據實降需长制彳I ^ 丁 7、厌s 4獏的長度不 丁、需衣制得。該奈米碳管 〇.〇1~綱微求。當該奈 ^膜的厚度為 奈米碳管時,該單壁夺膜二的奈米碳管為單壁 .A兮太丄不水反官的直控為0.5奈米〜50夺 =°田…切管薄財的奈米碳 其 壁不/卡石厌吕的直徑為1·〇奈米〜50奈米。每 米碳管薄膜中的奈米碳 ~十田該不 ϋ未石反官的直徑為1.5奈米〜50奈米。 不 步驟一.提供至少一其八工巧时 女上一 μ 间刀子薄膜14,並將上述至少 碳官薄膜設置於該高分子薄膜14表面形成一夺 ^石^。薄膜結構12,從而得到一奈米碳管複合材料預製 箱®:二理解’本實施例中’製備一奈米碳管複合材料 ^ 方法可以為:將至少—上述奈求碳管薄膜直 ❹接鋪没於該面分子薄膜14表面製備奈米碳管複合材料預 製體10。也可以先採用至少—上述奈求碳管薄膜製備形 成-自支禮的奈米碳管薄膜結構12,再製備奈米碳管複 合材料預製體10。 4所述將至上述奈米碳管薄膜直接鋪設於該高分 子薄膜14表面製備奈米碳管複合材料預製體w的方法 具體包括以下步驟:提供一個高分子薄膜14;將至少一 奈米石反官薄膜直接鋪設於該高分子薄膜14表面;去除高 分子薄膜14以外多餘的奈米碳管薄膜,形成一奈米碳管 11 200927646 薄膜^構12 ’從而得到—奈米碳管複合材料預製體ι〇。 ^可=理解,本實施例中,還可以將至少兩個奈米碳 &薄膜平m無間隙鋪設或/和重曼鋪設於該高分子薄膜 =面形成一奈米碳管薄膜結構12。所述奈米;5炭管薄 膜:構12包括—奈米碳管層或至少兩個平行且重疊鋪設 的奈米碳管層’相鄰的兩個奈米碳管層中的奈米碳管排 列方向形成一夾角α,且S90。。本實施例中,相鄰 ❹的兩個不米碳官層中的奈米碳管排列方向的夹角α優選 為90度。 本實鈿例中,進一步可以將另一高分子薄膜14設置 二:奈米碳管薄膜結構12上,形成一三明治結構的奈米 二:複:5料預製體1〇。該結構可以保證後續碾壓過程 不f碳&薄膜結構12中的奈米碳管不會粘在碾壓裝置 上。可以理解,本實施例中,還可以將多個奈米碳管薄 膜與多個高分子後胺w β — 于,專膜14父互豐加,形成一多層的奈米碳 ©官複合材料預製體10。 上述先採用至少一層奈米碳管薄膜製備形成一自j ^的不米奴管薄獏結構12,再製備奈米碳管複合材料无 小體10的方法具體包括以下步驟:提供一支撐體;將』 二—個奈米碳管薄獏粘附於支撐體表面,去除支撐體夕丨 夕餘的奈米碳管薄膜;去除支撐體,形成一奈米碳管舜 膜結構12 ;提供一高分子薄膜14,並將所述奈米碳管s :結構12與該高分子薄膜14疊加,得到一奈米碳管 合材料預製體1〇。 12 200927646 上述支撐體可以為一基板,也可選用一框架結構。 由^本實施例提供的超順排奈米碳管陣列中的奈米碳管 非常純淨,且由於奈米碳管本身的比表面積非常大 以該奈米碳管薄膜本身具有較強的粘性,該奈米碳管薄 膜可利用其本身的枯性直接㈣於基板或框架。太 ==基板或框架上,基板或框架以外多餘。 ❹ Ο 膜Μ可以用小刀刮去。去除基板或框架,得 到一奈米碳管薄臈結構12。 本實知例中該基板或框架的大小可依 :定。當基板或框架的寬度大於上述奈米碳管 ς時’可以將至少兩個奈米碳管薄膜平行且無間隙或 重疊鋪設於基板或框架上,形成一奈求碳管薄膜結構 。所述奈未碳管薄膜結構12包括—奈米碳管層或至少 兩個平行且重疊鋪設的奈米碳管層, 管層中的奈米碳管排列方向形成一夹角α,且= 9〇°。請參考圖3,本實施财,優選為將四個奈米碳管 層122重疊設置’形成—奈米碳管薄膜結構12,且相 兩個奈米碳管層122中的奈米碳管的排列方向成9〇。。 本實施例中,進-步還可以包括用有機溶劑處理夺 米碳管薄膜結構12的步驟’該有機溶劑為揮發性有機溶 劑’可選用乙醇、甲醇、丙_、二氣乙燒或氣仿等= 實施例中的有㈣醇。該使用有機溶劑處理的 步驟可通過試管將有機溶劑滴落於奈米碳管薄膜結構12 表面浸潤整個奈米碳管薄膜結構12,或者,也可 13 200927646 形成有奈米碳管薄膜結構12的高分子薄膜14或支撐體 ’整個浸入盛有有機溶劑的容器中浸潤。所述的奈米碳管 ♦薄膜結構12經有機溶劑浸潤處理後,在揮發性有機溶劑 的表面張力的作用下,奈米碳管薄膜中平行的奈米碳管 片斷會部分聚集成奈米碳管束。因此,該奈米碳管薄膜 結構12表面體積比小,無粘性,且具有良好的機械強度 及勤性。 上述方法製備的奈米碳管複合材料預製體1〇中,相 鄰兩個奈来碳管層中的奈米碳管之間存在多個微孔結 構’該微孔結構均勻且規則分佈于奈米碳管薄膜結構12 中,其中微孔直徑為1奈米〜0.5微米。 所述高分子薄膜14的面積與形狀不限,可以根據實 際需要選擇。本實施例中’所述高分子薄膜14的厚度一 般為2微米〜2毫米,也可以根據實際需要採用更厚或更 薄的尚分子薄膜14。所述高分子薄膜14的材料為熱塑性 ❹高分子材料,包括聚乙烯(PE)、聚氣乙烯(pvc )、聚 四氟乙烯(PTFE )、聚丙烯(PP)、聚苯乙烯(ps)、聚甲 基丙烯酸曱酯(PMMA)、聚對苯二曱酸乙二酯(pET)、 聚碳酸酯(PC)、聚對苯二甲酸丁二酯(ρβτ)、聚醯胺 (PA)、聚醚酮(PEK)、聚砜(PS)、聚醚颯(PES)、熱 塑性聚醯亞胺(PI )、聚醚醯亞胺(PEI )、聚苯醚(pp〇 )、 聚苯硫醚(PPS)、聚乙酸乙烯醋(pvAC )、聚對苯撐苯 並雙惡唑(PBO)等的一種或者幾種混合物。 步驟三:對上述奈米碳管複合材料預製體進行預 200927646 複合處理。 請參考圖4’所述對上述奈米碳管複合材料預製體 ‘ 10進行預複合處理可以通過金屬雙輥20、平板熱壓成型 機、熱壓機、平板硫化機、烘箱或其他熱壓裝置實現, 其目的係將奈米碳管複合材料預製體夾層間的空氣儘 量排除,並使高分子薄膜14軟化為高彈態,與奈米碳管 薄膜結構12中的奈米碳管緊密接觸。優選地,本實施例 中,該步驟採用金屬雙輥2〇實現。該金屬雙輥2〇包括 兩假可以沿相反方向旋轉的金屬碾壓輥22以及一對金屬 碾壓輥22進行加熱的裝置(圖中未顯示)。將上述奈米 碳管複合材料預製體1〇慢慢通過加熱的金屬雙輥2〇,速 度控制於1毫米/分〜1〇米/分。該金屬雙輥2〇的溫度要高 於所選的高分子薄膜14的軟化溫度,目的係使得高分子 薄膜14此夠軟化並與奈米碳管薄膜結構12緊密接觸。 其中,金屬雙輥20的溫度與所選用的高分子薄膜14的 ❹材料有關,根據不同的高分子薄膜14的材料,金屬雙輥 20的溫度不同。為了儘量排除奈米碳管複合材料預製體 中的空氣,可以將該奈米碳管複合材料預製體忉反復 夕次通過金屬雙輥20進行預複合處理。 :以理解,本實施例中,對上述奈米碳管複合材料 預製體1〇進行預複合處理也可以在一真空環境下進行。 該方法可以使奈米碳管複合材料預製體 界真空之間形成一壓強差,可 T的工虱與外 合材料預製體1G中的空氣排出。將奈米石反官複 15 200927646 步驟四:對上述預複合的至少一奈米碳管複合材料 -預製體ίο進行熱壓成型處理’形成一奈米碳管複合材料。 . 請參考圖5’所述熱壓成型處理通過一熱壓裝置3〇 實現’其目的係使熱塑性高分子材料變為熔融態浸潤到 奈米礙管薄膜結構12中的奈米碳管微孔當中。所述對上 述預複合後的奈米碳管複合材料預製體1〇進行熱壓成型 處理具體包括以下步驟: 首先,將至少一個上述預複合處理後的奈米碳管複 ®合材料預製體10放置於一熱壓裝置3〇中。 所述熱壓裝置30為熱壓機、平板熱壓成型機、平板 硫化機、烘箱或其他熱壓裝置,其包括一施壓裝置(圖 中未顯示)’ 一加熱裝置(圖中未顯示)以及一模具32, 且該模具32包括一上基板34與一下基板36 〇該模具32 在放置奈米碳管複合材料預製體1〇之前已經均勻塗抹過 了脫模劑,以便獲得的連續奈米碳管複合材料可以順利 ❹脫模。所用脫模劑根據熱塑性高分子材料的類別不同而 不同,該脫模劑可以係高溫脫模劑、有機矽型脫模劑、 蠟類脫模劑、矽氧烷型脫模劑等。 其次,對奈米碳管複合材料預製體1〇加熱、加壓, 並保持一段時間。 本實苑例中,可以先對奈米碳管複合材料預製體1〇 使該奈米碳管複合材料預製體1()的溫度高於所選 冋刀子材料的溶點後’再料米碳管複合材料 加壓,並保持-段時間,使得高分子材料充分溶融,浸 16 200927646 潤到奈米妷官薄膜結構12中的奈米碳管微孔當中。可以 理解’本實施例中,也可以先對奈米碳管複合材料預製 體10/加壓,再對奈米碳管複合材料預製體10加熱,使 該不米奴官複合材料預製體1〇的溫度高於熔點後,並保 2 * &時間,使得高分子材料充分熔融,浸潤到奈米碳 ‘薄膜'纟°構12中的奈米碳管微孔當中。可以理解,本實 施例中,還可以同時對奈米碳管複合材料預製體ι〇加熱 ❹加壓’並在該奈米碳管複合材料預製體1〇的溫度高於熔 後保持&時間’使得高分子材料充分溶融,浸潤 到奈米碳管薄膜結構12中的奈米碳管微孔當中。 可以理解’所述溫度與所選用的高分子材料有關, 且該溫度高於所選擇的高分子材料的溶化溫度,以使熱 塑性咼分子材料充分熔融’浸潤到奈米碳管薄膜結構12 中的奈米碳管微孔當中,塑化成型。所述壓強為小於 OOMpa對奈米碳管複合材料預製體丨〇施加到預定的溫 ❹度和壓強後,保持時間小於2小時。可以理解,本實施 例中,也可以將多個上述預複合後的奈米碳管複合材料 預製體,10疊加,放入熱壓裝置30中進行熱壓成型處理。 “最後,對奈米碳管複合材料降溫,脫模,得到一奈 米石厌&複合材料。所述降溫的方法為自然降溫或水冷降 溫’且脫模的溫度低於6(rc。 請參考圖6,本技術方案實施例提供一種奈米碳管複 合材料40,其包括高分子基體46與分佈於高分子基體 46中的奈米碳管,且該奈米碳管以奈米碳管薄膜結構a 17 200927646 的形式分佈於高分子基體46中。 綜上所述,本發明確已符合發明專利之要件,遂依法 -提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不此以此限制本案之申請專利範圍。舉凡熟悉本案技藝 =人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本技術方案實施例的奈米碳管複合材料的製備 ©方法的流程圖。 -圖2為本技術方案實施例的奈米碳管複合材料預製體 的示意圖。 圖3為本技術方案實施例的碳奈米薄膜結構的示意 圖。 、圖4為本技術方案實施例製備奈米碳管複合材料的預 複合裝置的示意圖。 圖5為本技術方案實施例製備奈米碳管複合材料的熱 β壓裝置的示意圖。 圖6為本技術方案實施例的奈米碳管複合材料的示意 圖0 10 12, 42 14 【主要元件符號說明】 奈米奴官複合材料預製體 奈米碳管薄膜結構 尚分子薄膜 奈米碳管層 18 122 200927646 金屬雙輥 20 金屬碾壓輥 22 熱壓裝置 30 模具 32 上基板 34 下基板 36 奈米碳管複合材料 40 南分子基體 46 Ο ❹ 19200927646 IX. Description of the invention: - [Technical field to which the invention pertains] The present invention relates to a method for preparing a composite material, and more particularly to a method for preparing a carbon nanotube composite material. [Prior Art] Carbon Nanotube (CNT) is a new type of carbon material; it was first prepared in the laboratory by Japanese researcher Iijima in L991 (see, Helical Microtubules of Graphitic Carbon, Nature, ❹V354, P56-). 58 (1991)). The carbon nanotubes have the same thermal conductivity and unique mechanical properties as diamond, such as tensile strength up to 100 gigapascals, modulus up to 1800 gigapascals, resistance to strong acids and alkalis, and basic non-oxidation below 600 °C. . Due to the excellent performance of carbon nanotubes, the use of nanocarbon tubes as fillers in combination with other materials has become an important direction for carbon nanotube applications. In particular, the combination of carbon nanotubes with other materials, such as metals, semiconductors or polymers, can complement or enhance the advantages of the materials. In recent years, with the increase of carbon nanotube production and the improvement of quality, nanocarbon tube ® composite materials have become a research hotspot. In the prior art, the carbon nanotube composite material is prepared in the form of a particle-filled polymer material. Since the carbon nanotube is easily agglomerated, the surface modification and functionalization of the carbon nanotube must be performed first, followed by solution or melting. The method is compounded with a polymer material. At present, the methods for preparing the carbon nanotube composites mainly include solution blending, melt blending, in-situ polymerization, and electrospinning. The solution blending method comprises the steps of: dispersing a carbon nanotube in a solution of a thermoplastic polymer material to form a mixed solution; and setting the mixed solution to different substrates by spraying, pulling, etc. (such as Au, Ag, Cu 6 200927646 on quartz glass); and volatilizing the solvent to obtain a nano carbon tube. However, this method is only applicable to a plastic material that is easily soluble in a solvent, such as polyvinyl alcohol, thermoplastic polyimine, and the like. The non-carbon crucible is added by a combination of melt and melt, and a bulk material is obtained by a method such as compression molding or plastic molding. This method is mainly used for thermoplastic polymer materials such as polypropylene, polyethylene, nylon, etc., which are not used in conventional solvents. The in-situ polymerization method includes: carbon tube and bismuth plasticity away from the gossip, 3 people/township will not be wooden, too half 'η using an initiator to initiate monomeric bonding to participate in the chain polymerization reaction, to obtain a carbon nanotube ^ The biggest feature of the bit polymerization is that it helps the carbon nanotubes to be combined with thermoplastic thermoplastic materials such as polymethyl methacrylate (ΡΜΜΑ), which are not suitable for solution blending and melt blending. Benzene is a combination of bismuth (ΡΒ0), polyethylene terephthalate (ρΕτ) = s: (pc) and the like. The electrospinning method includes the following steps: dispersing the carbon nanotubes ❹==乂 thermoplastic polymer material; compounding the carbon nanotubes m material by spinning' such that the carbon nanotubes have a smear in the thermoplastic polymer Orientation can improve the preparation of the thermoplastic polymer material. The preparation method of the nano carbon tube composite material is mainly to add the form of the filler material to the matrix of the polymer material. Since the surface tension of = carbon = is very easy to agglomerate, it is necessary to treat the surface treatment of nano carbon s 'to disperse the carbon nanotubes. The side, the material process is complicated, and the carbon nanotubes are destroyed at the junction: two cards: ; Sex. Moreover, even if the surface of the carbon nanotubes is surface-treated, it is difficult to uniformly disperse the carbon in the matrix of the polymer material, and it is impossible to arrange the carbon nanotubes in the matrix of the molecular material. In view of this, there is provided a carbon nanotube composite material which can distribute the carbon nanotubes in an orderly arrangement to the matrix of the horse molecule without destroying the structural integrity of the carbon nanotubes. The preparation method is really necessary. SUMMARY OF THE INVENTION - A method for preparing a carbon nanotube composite material, comprising the steps of: preparing at least one carbon nanotube film; providing at least one polymer film, and coating the at least-nano carbon (tetra) film Provided on the surface of the polymer film to form a nano-nano-ruthenium film structure, thereby obtaining a carbon nanotube composite preform, and pre-compositing the nano-carbon composite composite preform; At least the carbon nanotube composite preform is subjected to a hot press forming process to form a carbon nanotube composite. Compared with the prior art, the nano carbon tube composite material preparation method provided by the technical solution has the following advantages: the first embodiment of the present invention adopts a nanometer vermiculite anti-official film structure and a thermoplastic polymer thin crucible for composite preparation of nanometer. The carbon tube composite material can make the carbon nanotubes uniform and regularly distributed in the thermoplastic polymer matrix, so that the prepared carbon nanotube composite material has more excellent performance. Secondly, the technical solution does not require surface treatment of the carbon nanotubes, which not only ensures the structural integrity of the carbon nanotubes, but also simplifies the preparation process, reduces the production cost, and improves the performance of the composite material. . Secondly, the technical solution prepares the carbon nanotube composite material by directly pre-compositing and thermoforming the nano carbon tube film structure and the thermoplastic high-molecular thin film, and the method is simple, easy to implement, and low in production cost. [Embodiment] The following is a further detailed description of the technical solution with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2, the embodiment of the present invention provides a method for preparing a carbon nanotube composite material, which specifically includes the following steps: Step 1: Prepare a carbon nanotube film. The preparation method of the carbon nanotube film comprises the following steps: ❹, Hawthorn first, providing a carbon nanotube array. In this embodiment, the nano stone reverse array is a super-sequential carbon nanotube array, and the method for preparing the super-sequential nanocarbon array is a chemical vapor deposition method, and the specific steps include: providing a The substrate is flattened, and the substrate may be selected from a p-type or a ruthenium-type ruthenium substrate, and a substrate formed with an oxide layer (4) is selected. In this embodiment, a 4-inch stone substrate is preferably used; a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst is used. The layer material can be made of iron (Fe) 1 (Cq), _ (m) or σ gold of any φ mouth thereof, and the substrate on which the catalyst layer is formed is annealed in air of 700 to 90 Torr for about 3 minutes to 9 Minutes; will be processed. The bottom of the soil is placed in the reaction furnace A's heated to 5 〇〇 in the protective gas atmosphere, then °c, and then passed into the carbon source gas for about 5 to 3 minutes to grow, and the super-sequential carbon nanotube array is grown to its height. For fine ~ side micron. The super-sequential n-carbon tube array is a plurality of pure carbon nanotube arrays formed of nanocarbons that are parallel to each other and perpendicular to the substrate. By controlling the growth conditions as described above, the array of carbon nanotubes is substantially free of impurities such as amorphous carbon or residual catalyst metal particles. The carbon nanotubes in the array of carbon nanotubes are in close contact with each other to form an array by van der Waals force. In the middle, carbon source 9 200927646 gas can choose acetylene, ethylene, decane and other chemically active hydrocarbons, the preferred carbon source gas in this embodiment is acetylene; protective gas is nitrogen, or inert gas, this implementation An example of a preferred shielding gas is argon. It is to be understood that the carbon nanotube array provided in the present embodiment is not limited to the above preparation method. The carbon nanotube array provided in this embodiment is one of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. Next, at least one carbon nanotube film is obtained by drawing from the above carbon nanotube array. Obtaining at least one carbon nanotube film from the carbon nanotube array includes the following steps: selecting a plurality of carbon nanotube bundle segments of a certain width from the carbon nanotube array, and the embodiment preferably adopts A tape having a constant width contacts the array of carbon nanotubes to select a plurality of carbon nanotube bundles of a certain width; and stretching the plurality of nanocarbons along a growth direction perpendicular to the growth direction of the carbon nanotube array at a constant speed A bundle of tubes is formed to form a continuous 10 carbon nanotube film. In the above stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the substrate in the stretching direction under the action of the tensile force, and the selected plurality of carbon nanotube bundle segments are respectively combined with the others due to the use of van der Waals == Nano = tube segments are continuously pulled out end to end to form a nanocarbon: film. The carbon nanotube film is a carbon nanotube film having a certain width formed by connecting a plurality of nano carbon 2 bundles arranged in a preferred orientation. The carbon nanotube bundles in the 'meter carbon tube film are parallel to each other'. The arrangement of the carbon nanotube bundles is substantially parallel to the stretching direction of the carbon nanotube thin crucible. 200927646 In this embodiment, the size of the substrate on which the carbon nanotubes are grown in the thin column is related to the size of the substrate, and the carbon nanotubes are not limited to carbon nanotube arrays, and can be made according to the actual demand. The length of s 4貘 is not limited and needs to be made. The carbon nanotubes 〇.〇1~纲微求. When the thickness of the film is a carbon nanotube, the single-walled carbon nanotube is a single wall. The direct control of the A-to-the-water and the anti-official is 0.5 nm to 50 deg = ° ... cut the thin carbon of the nano carbon wall does not / ka Shi Lu Lu diameter of 1 · 〇 nano ~ 50 nm. The diameter of the nanocarbon in the carbon nanotube film per meter is less than the diameter of 1.5 nanometers to 50 nanometers. No. Step 1. Provide at least one of the eight knives of the knife film 14 and place the at least carbon film on the surface of the polymer film 14 to form a stone. The film structure 12, thereby obtaining a carbon nanotube composite prefabrication box: two understanding 'in this embodiment' preparing a carbon nanotube composite material ^ method can be: at least - the above-mentioned carbon tube film is directly spliced A carbon nanotube composite preform 10 is prepared on the surface of the surface molecular film 14. Alternatively, at least the above-mentioned carbon nanotube film can be used to prepare a carbon nanotube film structure 12 which is formed into a self-supporting film, and then a carbon nanotube composite material preform 10 is prepared. The method for preparing the carbon nanotube composite preform w by directly laying the carbon nanotube film on the surface of the polymer film 14 comprises the following steps: providing a polymer film 14; at least one nanometer stone The ruthenium film is directly laid on the surface of the polymer film 14; the excess carbon nanotube film other than the polymer film 14 is removed to form a carbon nanotube 11 200927646 film structure 12' to obtain a prefabricated carbon nanotube composite material Body 〇. ^ It can be understood that, in this embodiment, at least two nanocarbon & film layers can be laid without gaps or/and heavy manned on the polymer film = surface to form a carbon nanotube film structure 12. The nanometer; 5 carbon tube film: the structure 12 comprises a carbon nanotube layer or at least two carbon nanotube layers in parallel and overlapping laying carbon nanotube layers 'nano carbon nanotube layers in the adjacent two carbon nanotube layers The alignment direction forms an angle α, and S90. . In the present embodiment, the angle α of the arrangement of the carbon nanotubes in the two carbon-free layers of the adjacent crucibles is preferably 90 degrees. In this embodiment, another polymer film 14 can be further disposed on the carbon nanotube film structure 12 to form a sandwich structure of nanometer 2: complex: 5 material preform 1 〇. This structure can ensure that the subsequent carbonizing process does not adhere to the carbon nanotubes in the film structure. It can be understood that, in this embodiment, a plurality of carbon nanotube films and a plurality of polymer post-amines w β can be added to each other to form a multi-layered nano carbon-based composite material. Preform 10 . The method for preparing a nano tube structure 12 by using at least one layer of carbon nanotube film, and then preparing the carbon nanotube composite material without body 10 comprises the following steps: providing a support; The second carbon nanotube thin layer is adhered to the surface of the support body, and the carbon nanotube film of the support body is removed; the support body is removed to form a carbon nanotube film structure 12; The molecular film 14 is superposed on the carbon nanotube s: structure 12 and the polymer film 14 to obtain a carbon nanotube composite preform. 12 200927646 The support body may be a substrate or a frame structure. The carbon nanotubes in the super-sequential carbon nanotube array provided by the present embodiment are very pure, and since the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film itself has strong viscosity. The carbon nanotube film can utilize its own dryness directly (four) to the substrate or frame. Too == on the substrate or frame, excess outside the substrate or frame. ❹ Ο The membrane can be scraped off with a knife. The substrate or frame is removed to obtain a carbon nanotube thin crucible structure 12. The size of the substrate or frame in this embodiment can be determined. When the width of the substrate or the frame is larger than the above-mentioned carbon nanotubes, at least two carbon nanotube films can be laid in parallel and without gaps or overlapping on the substrate or the frame to form a carbon nanotube film structure. The nai carbon nanotube film structure 12 comprises a carbon nanotube layer or at least two parallel and overlapping layers of carbon nanotubes, wherein the arrangement of the carbon nanotubes in the tube layer forms an angle α, and = 9〇 °. Referring to FIG. 3 , in the implementation, it is preferable to dispose the four carbon nanotube layers 122 in a 'forming-carbon nanotube film structure 12 and the carbon nanotubes in the two carbon nanotube layers 122 . Arrange the direction to 9〇. . In this embodiment, the further step may further comprise the step of treating the carbon nanotube film structure 12 with an organic solvent, wherein the organic solvent is a volatile organic solvent, and the solvent may be selected from the group consisting of ethanol, methanol, C-, E 2 or Ethylene. Etc. = (IV) alcohol in the examples. The step of treating with an organic solvent may immerse the organic solvent on the surface of the carbon nanotube film structure 12 through a test tube to infiltrate the entire carbon nanotube film structure 12, or may form a carbon nanotube film structure 12 at 13200927646. The polymer film 14 or the support body is entirely immersed in a container containing an organic solvent. After the nanocarbon tube membrane structure 12 is infiltrated by an organic solvent, the parallel carbon nanotube fragments in the carbon nanotube film partially aggregate into the nanocarbon under the surface tension of the volatile organic solvent. Tube bundle. Therefore, the carbon nanotube film structure 12 has a small surface volume ratio, is non-tacky, and has good mechanical strength and flexibility. In the carbon nanotube composite preform prepared by the above method, a plurality of microporous structures exist between the adjacent carbon nanotubes in the adjacent two carbon nanotube layers. The microporous structure is uniform and regularly distributed in the nanocapsules. In the carbon nanotube film structure 12, the micropore diameter is from 1 nm to 0.5 μm. The area and shape of the polymer film 14 are not limited and can be selected according to actual needs. In the present embodiment, the thickness of the polymer film 14 is generally 2 μm to 2 mm, and a thicker or thinner molecular film 14 may be used as needed. The material of the polymer film 14 is a thermoplastic bismuth polymer material, including polyethylene (PE), polyethylene (PVC), polytetrafluoroethylene (PTFE), polypropylene (PP), polystyrene (ps), Polymethyl methacrylate (PMMA), polyethylene terephthalate (pET), polycarbonate (PC), polybutylene terephthalate (ρβτ), polydecylamine (PA), poly Ether ketone (PEK), polysulfone (PS), polyether oxime (PES), thermoplastic polyimine (PI), polyether phthalimide (PEI), polyphenylene ether (pp〇), polyphenylene sulfide ( One or a mixture of PPS), polyvinyl acetate vinegar (pvAC), polyparaphenylene benzobisoxazole (PBO), and the like. Step 3: The above-mentioned carbon nanotube composite preform is subjected to a pre-200927646 composite treatment. Referring to FIG. 4', the pre-compounding treatment of the above-mentioned carbon nanotube composite preform '10 can be carried out by a metal double roll 20, a flat hot press forming machine, a hot press, a flat vulcanizing machine, an oven or other hot pressing device. The purpose is to eliminate the air between the sandwich layers of the carbon nanotube composite material as much as possible, and soften the polymer film 14 into a high elastic state, which is in close contact with the carbon nanotubes in the carbon nanotube film structure 12. Preferably, in the present embodiment, this step is carried out using a metal double roll 2 。. The metal twin roll 2 includes two metal rolling rolls 22 which are rotatable in opposite directions and a pair of metal rolling rolls 22 for heating (not shown). The above-mentioned carbon nanotube composite preform 1 was slowly passed through a heated metal twin roll 2 Torr, and the speed was controlled at 1 mm/min to 1 mm/min. The temperature of the metal double roll 2 is higher than the softening temperature of the selected polymer film 14, so that the polymer film 14 is softened and brought into close contact with the carbon nanotube film structure 12. Here, the temperature of the metal double roll 20 is related to the bismuth material of the polymer film 14 to be used, and the temperature of the metal double roll 20 is different depending on the material of the polymer film 14. In order to eliminate the air in the carbon nanotube composite preform as much as possible, the carbon nanotube composite preform may be pre-composited by the metal double roll 20 repeatedly. It is understood that in the present embodiment, the pre-composite treatment of the above-mentioned carbon nanotube composite preform 1 也 can also be carried out under a vacuum environment. The method can form a pressure difference between the vacuum of the carbon nanotube composite prefabricated body boundary, and the air in the T1 and the external material preform 1G is discharged. Reversing the nano stone 15 200927646 Step 4: The above pre-composited at least one carbon nanotube composite material - the preform is subjected to a hot press forming process to form a carbon nanotube composite material. Referring to FIG. 5', the hot press forming process is realized by a hot pressing device 3', which aims to melt the thermoplastic polymer material into a carbon nanotube microporous in a molten state. among. The hot press forming treatment of the pre-composited carbon nanotube composite preform 1 includes the following steps: First, at least one of the pre-composited carbon nanotube composite materials pre-form 10 Placed in a hot pressing device 3〇. The hot pressing device 30 is a hot press, a flat hot press forming machine, a flat vulcanizing machine, an oven or other hot pressing device, and includes a pressing device (not shown) 'a heating device (not shown) And a mold 32, and the mold 32 includes an upper substrate 34 and a lower substrate 36. The mold 32 has been evenly coated with a release agent before placing the carbon nanotube composite preform 1 to obtain continuous nanometers. The carbon tube composite can be smoothly demolded. The release agent to be used differs depending on the type of the thermoplastic polymer material, and the release agent may be a high temperature release agent, an organic release agent, a wax release agent, a siloxane type release agent, or the like. Next, the carbon nanotube composite preform is heated and pressurized for a while. In the case of the real court, the carbon nanotube composite preform may be first prepared so that the temperature of the carbon nanotube composite preform 1 () is higher than the melting point of the selected boring tool material. The tube composite is pressurized and maintained for a period of time, so that the polymer material is fully melted, and the dip 16 200927646 is immersed in the micropores of the carbon nanotubes in the nanometer film structure 12. It can be understood that in the present embodiment, the carbon nanotube composite preform 10 may be pressurized first, and then the carbon nanotube composite preform 10 is heated to make the preform of the non-nano-composite composite. After the temperature is higher than the melting point, and maintaining 2 * & time, the polymer material is fully melted and infiltrated into the micropores of the carbon nanotubes in the nano-carbon 'film' structure. It can be understood that, in this embodiment, the carbon nanotube composite prefabricated body 〇 can be simultaneously heated and pressurized, and the temperature of the carbon nanotube composite preform 1 高于 is higher than the post-fusion retention time. 'The polymer material is fully melted and infiltrated into the micropores of the carbon nanotubes in the carbon nanotube film structure 12. It can be understood that the temperature is related to the selected polymer material, and the temperature is higher than the melting temperature of the selected polymer material, so that the thermoplastic cerium molecular material is sufficiently melted to infiltrate into the carbon nanotube film structure 12. Among the micropores of carbon nanotubes, plastic molding. The pressure is less than 2 hours after the OOMpa is applied to the predetermined temperature and pressure of the carbon nanotube composite preform. It can be understood that in the present embodiment, a plurality of the pre-composited carbon nanotube composite preforms 10 may be stacked and placed in a hot press device 30 for hot press forming. “Finally, the carbon nanotube composite is cooled and demolded to obtain a nano-stone anaerobic composite. The cooling method is natural cooling or water cooling, and the temperature of demolding is lower than 6 (rc. Referring to FIG. 6 , an embodiment of the present technical solution provides a carbon nanotube composite material 40 including a polymer matrix 46 and a carbon nanotube distributed in the polymer matrix 46, and the carbon nanotube is a carbon nanotube. The form of the film structure a 17 200927646 is distributed in the polymer matrix 46. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only preferred of the present invention. The embodiments are not intended to limit the scope of the patent application of the present invention. Any equivalent modifications or variations made by the person skilled in the art to the spirit of the present invention should be included in the scope of the following patent application. 1 is a flow chart of a method for preparing a carbon nanotube composite material according to an embodiment of the present invention. FIG. 2 is a schematic view of a carbon nanotube composite material preform according to an embodiment of the present technical solution. FIG. 4 is a schematic diagram of a pre-compositing device for preparing a carbon nanotube composite material according to an embodiment of the present technical solution. FIG. 5 is a schematic diagram of preparing a carbon nanotube composite material according to an embodiment of the present technical solution. Schematic diagram of a thermal beta device. Figure 6 is a schematic diagram of a carbon nanotube composite of the embodiment of the present invention. 0 10 12, 42 14 [Key element symbol description] Nano slave composite prefabricated carbon nanotube film Structure of molecular thin film carbon nanotube layer 18 122 200927646 Metal double roll 20 Metal roll roll 22 Hot press device 30 Mold 32 Upper substrate 34 Lower substrate 36 Carbon nanotube composite 40 South molecular matrix 46 Ο ❹ 19

Claims (1)

200927646 十、申請專利範圍 -1. 一種奈米碳管複合材料的製備方法,其具體包括以下 - 步驟: 製備至少一奈米碳管薄膜; 提供至少一高分子薄膜,並將所述至少一奈米碳管 薄膜n又置於該冋分子薄膜表面,形成一奈米碳管薄膜 結構,從而得到一奈米碳管複合材料預製體; ❹=上述奈米碳管複合材料預製體進行預複合處理;以 進- 1复:後的至少一奈米碳管複合材料預製體 2. 成型處理,形成一奈米碳管複合材料。 ==利=第1項所述的奈米碳管複合材料的 下:述製備奈米碳管薄膜的方法具 ❹ 斷’沿垂直于奈米碳管陣列末月 米碳管束片齡 ' 長方向拉伸該多個奈 f ^ ^'連續的奈米碳管薄膜,該夺 木奴官溥臈中奈米碳管 只不 方向。 的排列方向平行於上述拉伸 3. 如申睛專利範圍第1項戶斤、+、 製備方法,其中,所述製碳管複合材料的 製體的方法具體包括以下半奈米碳管複合材料預 膜’將至少—奈米碳管薄 刀子4 膜表面;去除令八罝接鋪玟於該鬲分子薄 20 200927646 膜,形成一奈米碳管薄媒結構 一 管複合材料預製體。 于j不米石厌 4. 5. ❹ 6. 圍Λ:項所述的奈米碳管複合材料的 ;=,其中’所述製備-奈米碳管複合材』 製體的步驟進一步包括: 叶預 平行且無間隙麟或/和碳管薄膜 上,形成-奈米碳管薄膜結:。°又於該冋分子薄膜 製第1項所述的奈米碳管複合材料的 == 述製備-奈米碳管複合材料預 =的方法具體包括以下步驟:提供一支撲體;將 至乂 一個奈米碳管薄臈粘附 撐體外多餘的去除支 卜讀υ μ相;去除支禮體,得到一 =碳管薄膜結構;提供―高分子薄膜,並將所述 不:t碳管薄膜結構與該高分子薄膜疊加,得到-奈 米碳管複合材料預製體。 =申請專利範圍第5項所述的奈米碳管複合材料的 ,方法其中,所述製備一奈米碳管複合材料預 製體的步驟進一步包括:將至少兩個奈米碳管薄膜 平仃且無間隙鋪設或/和重疊鋪設於該支撐體上,形 成一奈米碳管薄膜結構。 如申切專利範圍第4項或第6項所述的奈米碳管複 合材料的製備方法,其中,所述奈米碳管薄膜結構 包括:奈米碳管層或至少兩個平行且重疊鋪設的奈 米碳管層’每個奈米碳管層包括至少一個奈米碳管 21 200927646 膜’相鄰的兩個奈米碳管層中的奈米碳管排列方 向形成一夾角α,且0oSa $ 9〇。。 、8.=請專㈣圍第!項所述的奈米碳管複合材料的 方法,其中’所述製備—奈米碳管複合材料預 =體的步驟進-步包括:採用有機溶劑處理所述奈 米碳管薄膜結構。 9. 如申請專圍第8項所述的奈米碳管複合材料的 製備方法,其中’所述有機溶劑為乙醇、甲醇、丙 U _、二氯乙烷或氯仿。 10. 如申喷專利乾圍第8項所述的奈米碳管複合材料的 製備方法其中,所述採用有機溶劑處理奈米碳管 薄膜結構的方法包括:通過試管將有機溶劑滴落於 上述奈米碳管薄膜結構表面浸潤整個奈米碳管薄膜 結構或將上述奈米礙管薄膜結構整個浸人盛有有機 溶劑的容器中浸潤奈米碳管薄膜结構。 ❹11.如申請專利範圍第i項所述的奈米碳管複合材料的 製備方法,其中,所述高分子薄膜的材料為聚乙烯、 聚氣乙烯、聚四氟乙烯、聚丙4、聚苯乙稀、聚甲 基丙烯酸曱酯、聚對苯二曱酸乙二酯、聚碳酸酯、 聚對苯二甲酸丁二醋、聚醯胺、聚醚酮、聚颯、聚 謎職、熱塑性聚酿亞、聚謎醯亞胺、聚笨醚、聚 苯硫醚、聚乙酸乙烯酯或聚對笨撐苯並雙惡唑中的 一種或者幾種的混合物。 12.如申請專利範圍第1項所述的奈米碳管複合材料的 22 200927646 製備方法’其中’所述高分子薄膜的厚度為2微米 〜2毫米。 -13. 14. ❹ 15. 16. 17. ,申明專利範圍第1項所述的奈米碳管複合材料的 製備方法,其中,所述對奈米碳管複合材料預製體 進仃預複合處理的裝置為金屬雙輥、平板熱壓成型 機、熱壓機、平板硫化機或烘箱。 如申清專利範圍第13項所述的奈米碳管複合材料的 ^備方法’其中’所述採用金屬雙輥對上述奈米碳 &複《材料預製體進行預複合處理時,奈米碳管複 t材料預製體通過金屬雙輥的速度為1毫米/分〜10 米/分。 製借j耗圍第13項所述的奈米碳管複合材料的 所述_金屬雙μ上述奈米碳 材料,進行預複合處理的步驟進一步包 雙=該奈未碳管複合材料預製體反復多次通過金屬 如申請專利範圍第 製備方法,其中, 進行預複合處理的 的軟化溫度。 13項所述的奈米碳管複合材料的 所述對奈米碳管複合材料預製體 溫度高於所選的高分子薄膜材料 如申請專利範圍第1項 製備方法,其中 :的奈米碳管複合材 進行預複合處理的步驟在二米碳管複合材料預 如申請專㈣圍氣或真空下進行。 項斤述的奈米碳管複合材 18. 200927646 製備方法,其中,所述對上述奈米碳管複合材料 、 製體進打熱壓成型處理的步驟具體包括以下步驟: 、 將至少一個1述預複合後的冑米碳管複合材料預製 體放置於-熱壓裝置中;對奈米碳管複合材料預製 體加熱、加壓,並保持一段時間;對奈米碳管複合 材料降溫,脫模,得到一奈米碳管複合材料。 19. 如申請專利範圍帛18項所述的奈米石炭管複合材料的 «備方法’其中’所述熱壓裝置為平板熱壓成型機、 熱壓機、平板硫化機或烘箱。 20. 如中凊專利㈣第18項所述的奈求碳管複合材料的 製備方法’其中,所述對奈米碳管複合材料預製體 加熱、加壓的步驟具體包括:先對奈米碳管複合材 料預製體加熱後再加壓或先對奈米碳管複合材料預 製體加壓後再加熱或同時對奈米碳管複合材料預製 體加熱、加壓。 ❹21. #申請專利範圍帛18項所料奈来碳管複合材料的 製備方法,其中,所述採用一熱壓裝置對奈米碳管 複=材料預製體進行熱壓成型處理的溫度高於所選 的局分子薄膜材料的熔點。 22.如申請專利範圍帛18$所述的奈米碳管複合材料的 製備方法,其中,所述採用一熱壓裝置對奈米碳管 複合材料預製體進行熱壓成型處理的壓強小於 l〇〇Mpa 〇 .如申明專利範圍第18項所述的奈米碳管複合材料的 24 200927646 製備方法,其中,所述採用一熱壓裝置對奈米碳管 ' 複合材料預製體進行熱壓成型處理的保持時間小於 ^ 2小時。 24. 如申請專利範圍第18項所述的奈米碳管複合材料的 製備方法,其中,所述降溫的步驟通過自然降溫或 水冷降溫實現。 25. 如申請專利範圍第18項所述的奈米碳管複合材料的 製備方法’其中,所述的脫模溫度低於6〇 ❹ 25200927646 X. Patent application scope - 1. A method for preparing a carbon nanotube composite material, which specifically comprises the following steps: preparing at least one carbon nanotube film; providing at least one polymer film, and said at least one The carbon nanotube film n is placed on the surface of the ruthenium molecular film to form a carbon nanotube film structure, thereby obtaining a carbon nanotube composite preform; ❹ = the above-mentioned carbon nanotube composite preform pre-composite treatment At least one nano carbon tube composite prefabricated body after the first -1 complex: forming treatment to form a carbon nanotube composite material. ==利=The following is a description of the carbon nanotube composite material described in the first item: the method for preparing the carbon nanotube film is as follows: the length of the carbon nanotube bundle is perpendicular to the end of the carbon nanotube array. Stretching the plurality of nano-f ^ ^ 'continuous carbon nanotube films, the nanotubes in the scorpion are only in the direction of the carbon nanotubes. The alignment direction is parallel to the above-mentioned stretching 3. The method for preparing the carbon nanotube composite material specifically includes the following semi-nano carbon nanotube composite material, for example, the method of preparing the body of the carbon tube composite material. The pre-film will be at least - the surface of the thin film of the carbon nanotubes; the removal of the tantalum will be applied to the film of the bismuth molecule 20 200927646 to form a nanotube composite material pre-formed body. The step of: the preparation of the carbon nanotube composite material; =, wherein the step of the preparation of the carbon nanotube composite material further comprises: The leaves are pre-parallel and have no gaps on the lining or / and carbon nanotube film to form a carbon nanotube film junction:. The method of preparing the carbon nanotube composite material according to the first embodiment of the carbon nanotube composite material according to the first aspect of the invention includes the following steps: providing a bump body; A carbon nanotube thin crucible adheres to the external support to remove the excess 支 μ phase; removes the ritual body to obtain a = carbon tube film structure; provides a "polymer film, and the non-t carbon tube film The structure is superimposed on the polymer film to obtain a pre-formed body of a carbon nanotube composite. The method for preparing a carbon nanotube composite material according to claim 5, wherein the step of preparing a carbon nanotube composite preform further comprises: flattening at least two carbon nanotube films and The gap is laid or/and overlapped on the support to form a carbon nanotube film structure. The method for preparing a carbon nanotube composite material according to the fourth or sixth aspect of the invention, wherein the carbon nanotube film structure comprises: a carbon nanotube layer or at least two parallel and overlapping laying layers The carbon nanotube layer 'each carbon nanotube layer includes at least one carbon nanotube 21 200927646 membrane 'the two carbon nanotube layers in the adjacent two carbon nanotube layers form an angle α, and 0oSa $9〇. . , 8.= Please special (four) Wai! The method of the carbon nanotube composite of the invention, wherein the step of preparing the carbon nanotube composite pre-form comprises: treating the carbon nanotube film structure with an organic solvent. 9. The method for preparing a carbon nanotube composite material according to Item 8, wherein the organic solvent is ethanol, methanol, propionium, dichloroethane or chloroform. 10. The method for preparing a carbon nanotube composite material according to the eighth aspect of the patent application, wherein the method for treating a carbon nanotube film structure by using an organic solvent comprises: dropping an organic solvent into the above by a test tube; The surface of the carbon nanotube film structure infiltrates the entire carbon nanotube film structure or infiltrates the nanocarbon film structure into the container in which the nano-membrane film structure is entirely immersed in an organic solvent. The method for preparing a carbon nanotube composite material according to claim i, wherein the polymer film is made of polyethylene, polyethylene, polytetrafluoroethylene, polypropylene 4, polyphenylene Dilute, polymethyl methacrylate, polyethylene terephthalate, polycarbonate, polybutylene terephthalate, polydecylamine, polyether ketone, polyfluorene, polyphonic, thermoplastic brewing A mixture of one or more of a subtropical imine, a polyether, a polyphenylene sulfide, a polyvinyl acetate or a poly(p-benzoic benzobisoxazole). 12. The method for producing a carbon nanotube composite according to claim 1, wherein the thickness of the polymer film is 2 μm to 2 mm. -13. 14. ❹ 15. 16. 17. The method for preparing a carbon nanotube composite according to claim 1, wherein the pre-composite treatment of the carbon nanotube composite preform The device is a metal double roll, a flat hot press, a hot press, a flat vulcanizer or an oven. For example, in the method of preparing the carbon nanotube composite material according to claim 13 of the patent scope, wherein the metal double-roller is used for pre-compositing the nanocarbon & The speed of the carbon tube complex t material preform passing through the metal twin rolls is 1 mm/min to 10 m/min. The step of pre-compositing the carbon nanomaterial of the carbon nanotube composite material described in Item 13 is carried out, and the step of pre-compositing is further carried out; the preform of the nano-carbon tube composite material is repeatedly repeated. The secondary pass metal is as in the preparation method of the patent scope, wherein the softening temperature of the pre-composite treatment is performed. The carbon nanotube composite preform preform temperature of the above-mentioned carbon nanotube composite material is higher than that of the selected polymer film material, as in the preparation method of the first application of the patent scope, wherein: the carbon nanotube The step of pre-compositing the composite material is carried out in a two-meter carbon tube composite material as specified in the application (IV) by air or vacuum. The method for preparing the nano carbon tube composite material of the above-mentioned carbon nanotube composite material, wherein the step of the above-mentioned carbon nanotube composite material and the body forming hot press forming process specifically includes the following steps: The pre-composited glutinous carbon tube composite preform is placed in a hot pressing device; the carbon nanotube composite preform is heated and pressurized for a period of time; the carbon nanotube composite is cooled, and the mold is released. , get a carbon nanotube composite. 19. The "preparation method" of the nano-carboniferous pipe composite according to claim 18, wherein the hot pressing device is a flat hot press, a hot press, a flat vulcanizer or an oven. 20. The method for preparing a carbon nanotube composite material according to Item 18 of the Chinese Patent (4), wherein the step of heating and pressurizing the carbon nanotube composite preform comprises: firstly, nano carbon The tube composite preform is heated and then pressurized or first pressurized with the carbon nanotube composite preform before heating or simultaneously heating and pressurizing the carbon nanotube composite preform. ❹ 21. #申请专利范围帛18 The preparation method of the carbon nanotube composite material, wherein the temperature of the carbon nanotube composite material material by using a hot pressing device is higher than that of the material The melting point of the selected molecular film material. 22. The method for preparing a carbon nanotube composite material according to the patent application 帛18$, wherein the pressure of the hot press forming process of the carbon nanotube composite preform by using a hot pressing device is less than l〇 〇Mpa 〇. The method of preparing a carbon nanotube composite material according to claim 18, wherein the carbon nanotube composite material preform is hot pressed by a hot pressing device. The hold time is less than ^ 2 hours. 24. The method for preparing a carbon nanotube composite according to claim 18, wherein the step of lowering the temperature is achieved by natural cooling or water cooling. 25. The method for preparing a carbon nanotube composite material according to claim 18, wherein the mold release temperature is less than 6 〇 ❹ 25
TW096150096A 2007-12-26 2007-12-26 Method of making a carbon nanotube composite TWI368600B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096150096A TWI368600B (en) 2007-12-26 2007-12-26 Method of making a carbon nanotube composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096150096A TWI368600B (en) 2007-12-26 2007-12-26 Method of making a carbon nanotube composite

Publications (2)

Publication Number Publication Date
TW200927646A true TW200927646A (en) 2009-07-01
TWI368600B TWI368600B (en) 2012-07-21

Family

ID=44863709

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096150096A TWI368600B (en) 2007-12-26 2007-12-26 Method of making a carbon nanotube composite

Country Status (1)

Country Link
TW (1) TWI368600B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485099B (en) * 2012-05-04 2015-05-21 Hon Hai Prec Ind Co Ltd Carbon nanotube structure and method for making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485099B (en) * 2012-05-04 2015-05-21 Hon Hai Prec Ind Co Ltd Carbon nanotube structure and method for making the same

Also Published As

Publication number Publication date
TWI368600B (en) 2012-07-21

Similar Documents

Publication Publication Date Title
CN101462391B (en) Method for preparing carbon nano-tube composite material
CN101480858B (en) Carbon nano-tube composite material and preparation method thereof
Shim et al. Multiparameter structural optimization of single-walled carbon nanotube composites: toward record strength, stiffness, and toughness
CN102161814B (en) Preparation method of oriented carbon nano tube/ polymer composite membrane
CN102292281A (en) Multifunctional composites based on coated nanostructures
Boncel et al. Infiltration of highly aligned carbon nanotube arrays with molten polystyrene
US8318295B2 (en) Carbon nanotube composite structure
US8518206B2 (en) Method for making carbon nanotube composite structure
US11167991B2 (en) Method for preparing carbon nanotube/polymer composite
CN101456277A (en) Method for preparing carbon nanotube composite material
TWI491561B (en) Preparation of carbon nanotube paper
TWI626212B (en) Carbon nanotube composite structure and method for making thereof
TWI476147B (en) Carbon nanotube composite and method for making the same
CN103144310B (en) A kind of preparation method of high-content carbon nanotube/thermoplastresin resin composite material
TW201016598A (en) Carbon nanotube composite material and method for making the same
TW200927646A (en) Method of making a carbon nanotube composite
TWI585039B (en) Method for making transparent carbon nanotube composite film
TWI422524B (en) Method for making carbon nanotube composite
TWI339189B (en) Thermal pad with carbon nanotube array and method of making the same
TWI342266B (en) Carbon nanotube composite film
Antonucci et al. Review of polymer composites with carbon nanotubes
TWI362429B (en) Method of making high-density carbon nanotube array composite material
CN107201485A (en) It is a kind of to be used to strengthen the graphene masterbatch and preparation method and application method of copper-based material
Shirvanimoghaddam et al. Surface Functionality through Periodical Patterning on Carbon Nanotubes
TWI421365B (en) Method for making carbon nanotube composite film