TWI432085B - 含磷光錯合物之發光裝置 - Google Patents

含磷光錯合物之發光裝置 Download PDF

Info

Publication number
TWI432085B
TWI432085B TW096126059A TW96126059A TWI432085B TW I432085 B TWI432085 B TW I432085B TW 096126059 A TW096126059 A TW 096126059A TW 96126059 A TW96126059 A TW 96126059A TW I432085 B TWI432085 B TW I432085B
Authority
TW
Taiwan
Prior art keywords
layer
group
represented
integer
phosphorescent
Prior art date
Application number
TW096126059A
Other languages
English (en)
Other versions
TW200822796A (en
Inventor
Xiaofan Ren
Shouquan Huo
Original Assignee
Global Oled Technology Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/488,435 external-priority patent/US7718276B2/en
Application filed by Global Oled Technology Llc filed Critical Global Oled Technology Llc
Publication of TW200822796A publication Critical patent/TW200822796A/zh
Application granted granted Critical
Publication of TWI432085B publication Critical patent/TWI432085B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

含磷光錯合物之發光裝置
本發明係關於有機電致發光(EL)裝置,及其中所包含之化合物。更明確言之,本發明係關於含有某些磷光有機金屬錯合物之極有效裝置。
雖然有機電致發光(EL)裝置已被知曉超過二十年,但其性能限制已對許多想要之應用表示一項障壁。在最簡單形式中,有機EL裝置係包含供空穴注入之陽極,供電子注入之陰極,及被夾在此等電極間之有機媒質,以維持電荷重組,以產生光之發射。此等裝置亦常被稱為有機發光二極體或OLED。較早期有機EL裝置之代表例為1965年3月9日頒予Gurnee等人之US3172862;1965年3月9日頒予Gurnee之US3173050;Dresner,"於蒽中之雙重注入電致發光",RCA回顧,第30卷,第322-334頁,1969;及1973年1月9日頒予Dresner之US3710167。於此等裝置中之有機層,經常由多環芳族烴所組成,係為極厚(遠大於1微米)。因此,操作電壓係極高,經常>100V。
較為最近之有機EL裝置係包括有機EL元件,包含極端薄之層(例如<1.0微米)在陽極與陰極之間。此處,"有機EL元件"一詞係涵蓋陽極與陰極電極間之層。降低厚度會降低有機層之電阻,且已使得裝置能夠在遠為較低之電壓下操作。在一種基本兩層EL裝置結構中,首先被描述於US4356429中,EL元件鄰近陽極之一個有機層係特別地經選擇以輸送空穴,因此,其係被稱為空穴輸送層,而另一個有機層係特別地經選擇以輸送電子,被稱為電子輸送層。被注入空穴與電子在有機EL元件內之重組,會造成有效電致發光。
亦已提出三層有機EL裝置,其含有有機發光層(LEL)在空穴輸送層與電子輸送層之間,譬如由Tang等人所揭示者[J.Applied Physics ,第65卷,第3610-3616頁,1989]。發光層通常包含被客體材料所摻雜之主體材料。又再者,於US4769292中已提出四層EL元件,其包含空穴注入層(HIL)、空穴輸送層(HTL)、發光層(LEL)及電子輸送/注入層(ETL)。此等結構已造成經改良之裝置效率。
已被描述為可用於OLED裝置中之許多發射材料,係藉由螢光自其受激單重態發射光線。當在OLED裝置中形成之激發子轉移其能量至摻雜劑之受激態時,係產生受激單重態。但是,一般認為在EL裝置中所產生激發子之僅25%為單重態激發子。其餘激發子為三重態,其不能夠立即地轉移其能量至摻雜劑之單重受激態。這會造成效率上之大損失,因為激發子之75%並未被使用於光線發射程序中。
若摻雜劑具有三重受激態,其在能量上足夠低,則三重態激發子可轉移其能量至摻雜劑。若摻雜劑之三重態為發射性,則其可藉由磷光產生光。在許多情況中,單重態激發子亦可轉移其能量至相同摻雜劑之最低單重受激態。單重受激態可經常藉由系統間過渡方法鬆弛至發射三重受激態。因此,藉由主體與摻雜劑之適當選擇,可收集來自OLED裝置中產生之單重態與三重態激發子兩者之能量,並產生極有效之磷光發射。
典型磷光摻雜劑為有機金屬化合物,特定言之,銥係經常作為金屬使用。常用綠色磷光摻雜劑為fac-參(苯基吡啶)(Ir(ppy)3 ),參閱Appl.Phys.Lett. 1999 ,75 ,4。藉由改變經連接至金屬之配位體,當被使用於OLED裝置中時,材料之性質可經修正。不同之銥有機金屬化合物,譬如fac -參(2-(4',5'-二氟苯基)吡啶-C,N)銥(III)(聚合體預印刷品 2000 ,41(1),770),係發射藍色光。發射顏色並非磷光摻雜劑之唯一重要性質。摻雜劑對於OLED裝置之實用性係依裝置之驅動電壓、發光度、效率及壽命而定。
儘管此等發展,仍然還是需要新穎有機金屬化合物,其將充作具有經改良之裝置驅動電壓、發光度、效率及壽命之磷光摻雜劑。
本發明係提供OLED裝置,其包含陰極、陽極,且於其間具有發光層,此層包含以式(I)表示之磷光發射體:Ln M (I)其中各L為環金屬化配位體,具有至少一個含香豆素基團,M為Ir或Pt,且當M為Ir時,n為3,而當M為Pt時,為2。
本發明之裝置係顯示經改良之裝置驅動電壓、發光度、效率及壽命。
本發明亦提供以式(I)表示之化合物:Ln M (I)其中各L為環金屬化配位體,具有至少一個含香豆素基團,M為Ir或Pt,且當M為Ir時,n為3,而當M為Pt時,為2。
發明詳述
本發明係提供OLED裝置,其包含陰極、陽極,且於其間具有發光層,此層包含以式(I)表示之磷光發射體:Ln M (I)其中各L為環金屬化配位體,具有至少一個含香豆素基團,M為Ir或Pt,且當M為Ir時,n為3,而當M為Pt時,為2。
環金屬化配位體為經過碳金屬鍵,被連接至金屬原子者。其典型上係經過C-H氧化性加成而形成,如在有機過渡金屬化學之原理與應用 ,第298頁,Collman,Hegedus,Norton及Finke中所解釋者。碳金屬鍵可經過除了C-H氧化性加成以外之其他方式形成。使用此術語之實例係顯示於J.Am.Chem.Soc. 2001 ,123 ,4304-431中。
於一項具體實施例中,以式(I)表示之磷光發射體可為homoleptic表面異構物。於另一項具體實施例中,以式(I)表示之磷光發射體可為heteroleptic表面異構物。
於一項具體實施例中,式(I)之至少一個L基團為2-苯基-吡啶化-N,C2’ (ppy)。
於一項較佳具體實施例中,磷光發射體係以式(II)表示: 其中M為Ir或Pt;各L係獨立表示環金屬化配位體;各X係獨立表示為形成環所必須之原子;各R係獨立表示氫或取代基,其條件是兩個相鄰R基團能夠形成環;各p係獨立表示整數3至6;m為整數0至2;且q為整數1至3。
於一項具體實施例中,式(II)之M為銥。
於進一步較佳具體實施例中,磷光發射體係以式(III)表示: 其中各L係獨立表示環金屬化配位體;各R係獨立表示氫或取代基,其條件是兩個相鄰R基團能夠形成環;m為整數0至2;q為整數1至3;且m+q之總和為3。
於進一步較佳具體實施例中,磷光發射體係以式(IV)表示: 其中各L係獨立表示環金屬化配位體;m為整數0至2;q為整數1至3;且m+q之總和為3。
於另一項較佳具體實施例中,磷光發射體係以式(V)表示: 其中M為Ir或Pt;各L係獨立表示環金屬化配位體;各X係獨立表示為形成經取代或未經取代之環所必須之原子;各R係獨立表示氫或取代基,其條件是兩個相鄰R基團能夠形成環;Y與Z各獨立為氧原子與羰基,以致當一個為羰基時,另一個為氧原子;p為整數2至4;m為整數0至2;且q為整數1至3。
於一項具體實施例中,式(V)之M為銥。
於進一步較佳具體實施例中,磷光發射體係以式(VI)表示: 其中各L係獨立表示環金屬化配位體;各R係獨立表示氫或取代基,其條件是兩個相鄰R基團能夠形成環;Y與Z各獨立為氧原子與羰基,以致當一個為羰基時,另一個為氧原子;m為整數0至2;q為整數1至3;且m+q之總和為3。
於進一步較佳具體實施例中,磷光發射體係以式(VII)表示: 其中各L係獨立表示環金屬化配位體;Y與Z各獨立為氧原子與羰基,以致當一個為羰基時,另一個為氧原子;m為整數0至2;q為整數1至3;且m+q之總和為3。
於一項具體實施例中,磷光發射體佔發光層之0.5%至15%。於一項較佳具體實施例中,磷光發射體佔發光層之1%至10%或可佔發光層之6%至9%。
OLED裝置可包含至少一種其他發射體,以使得該裝置能夠發射白光。第二種或其他顏色典型上為互補色。例如,若一種化合物為藍色發射體,則第二種化合物係發射黃色,以使該裝置發射白光。各發射不同顏色光之三種發射體,譬如紅色、綠色及藍色,係為有用的。
一項有用具體實施例包括含有電子輸送主體與空穴輸送主體之發光層。可用於發光層之化合物種類之實例為:咔唑類、芳基胺類、苯并氮唑類、啡啉類,及以圖PHF-7表示之化合物 其中M1 表示Al或Ga;各R2 -R7 係獨立表示氫或取代基;其條件是相鄰取代基R2 -R7 可合併以形成環基;且L為芳族取代基,其具有6至30個碳原子。
可用於發光層之化合物之特殊實例為:9,9'-[1,1'-聯苯基]-4,4'-二基雙-9H-咔唑(CBP);2,2',2"-(1,3,5-次苯基)參(1-苯基-1H-苯并咪唑)(TPBI)與4,4',4"-參(咔唑基)-三苯基胺(TCTA);4,4',4"-參[(3-甲基苯基)苯基胺基]三苯基胺(MTDATA);4,4',4"-參(N,N-二苯胺基)三苯基胺(TDATA);四苯基-對-苯二胺(TPPD);
於一項具體實施例中,化合物係以式(I)表示:Ln M (I)其中各L為環金屬化配位體,具有至少一個含香豆素基團,M為Ir或Pt,且當M為Ir時,n為3,而當M為Pt時,為2。
本發明之具體實施例可提供有利特徵,譬如操作效率、較高發光度、顏色色調、低驅動電壓及經改良之操作安定性。可用於本發明之有機金屬化合物之具體實施例,可提供廣範圍之色調,包括可用於白光之發射者(直接地或經過濾光鏡以提供多色顯示)。
除非另有明確述及,否則"經取代"或"取代基"術語之使用,係意謂氫以外之任何基團或原子。此外,當使用"基團"一詞時,係意謂當取代基含有可取代氫時,其亦意欲涵蓋不僅取代基之未經取代形式,而且是其進一步被一或多個如本文所指出任何取代基取代之形式,只要該取代基不會破壞裝置利用性所必須之性質即可。適當地,取代基可為鹵素,或可被碳、矽、氧、氮、磷、硫、硒或硼之原子結合至此分子之其餘部份。取代基可為例如鹵素,譬如氯基、溴基或氟基;硝基;羥基;氰基;羧基;或可被進一步取代之基團,譬如烷基,包括直鏈或分枝鏈或環狀烷基,譬如甲基、三氟甲基、乙基、第三-丁基、3-(2,4-二-第三-戊基苯氧基)丙基及十四基;烯基,譬如乙烯、2-丁烯;烷氧基,譬如甲氧基、乙氧基、丙氧基、丁氧基、2-甲氧基乙氧基、第二-丁氧基、己氧基、2-乙基己氧基、十四基氧基、2-(2,4-二-第三-戊基苯氧基)乙氧基及2-十二基氧基乙氧基;芳基,譬如苯基、4-第三-丁基苯基、2,4,6-三甲基苯基、萘基;芳氧基,譬如苯氧基、2-甲基苯氧基、α-或β-萘氧基及4-甲苯氧基;醯胺基,譬如乙醯胺基、苯甲醯胺基、丁醯胺基、十四烷醯胺基、α-(2,4-二-第三-戊基-苯氧基)乙醯胺基、α-(2,4-二-第三-戊基苯氧基)丁醯胺基、α-(3-十五基苯氧基)-己醯胺基、α-(4-羥基-3-第三-丁基苯氧基)-十四烷醯胺基、2-酮基-四氫吡咯-1-基、2-酮基-5-十四基吡咯-1-基、N-甲基十四烷醯胺基、N-琥珀醯亞胺醯基、N-鄰苯二甲醯亞胺基、2,5-二酮基-1-四氫唑基、3-十二基-2,5-二酮基-1-咪唑基與N-乙醯基-N-十二基胺基、乙氧羰基胺基、苯氧基羰基胺基、苄氧羰基胺基、十六基氧羰基胺基、2,4-二-第三-丁基苯氧基羰基胺基、苯基羰基胺基、2,5-(二-第三-戊基苯基)羰基胺基、對-十二基-苯基羰基胺基、對-甲苯基羰基胺基、N-甲基脲基、N,N-二甲基脲基、N-甲基-N-十二基脲基、N-十六基脲基、N,N-二(十八基)脲基、N,N-二辛基-N'-乙基脲基、N-苯脲基、N,N-二苯基脲基、N-苯基-N-對-甲苯基脲基、N-(間-十六基苯基)脲基、N,N-(2,5-二-第三-戊基苯基)-N'-乙基脲基及第三-丁基醯胺基;磺醯胺基,譬如甲基磺醯胺基、苯磺醯胺基、對-甲苯基磺醯胺基、對-十二基苯磺醯胺基、N-甲基十四基磺醯胺基、N,N-二丙基-胺磺醯基胺基及十六基磺醯胺基;胺磺醯基,譬如N-甲基胺磺醯基、N-乙基胺磺醯基、N,N-二丙基胺磺醯基、N-十六基胺磺醯基、N,N-二甲基胺磺醯基、N-[3-(十二基氧基)丙基]胺磺醯基、N-[4-(2,4-二-第三-戊基苯氧基)丁基]胺磺醯基、N-甲基-N-十四基胺磺醯基及N-十二基胺磺醯基;胺甲醯基,譬如N-甲基胺甲醯基、N,N-二丁基胺甲醯基、N-十八基胺甲醯基、N-[4-(2,4-二-第三-戊基苯氧基)丁基]胺甲醯基、N-甲基-N-十四基胺甲醯基及N,N-二辛基胺甲醯基;醯基,譬如乙醯基、(2,4-二-第三-戊基苯氧基)乙醯基、苯氧基羰基、對-十二基氧基苯氧基羰基甲氧羰基、丁氧羰基、十四基氧基羰基、乙氧羰基、苄氧羰基、3-十五基氧基羰基及十二基氧羰基;磺醯基,譬如甲氧磺醯基、辛氧基磺醯基、十四基氧基磺醯基、2-乙基己氧基磺醯基、苯氧基磺醯基、2,4-二-第三-戊基苯氧基磺醯基、甲磺醯基、辛基磺醯基、2-乙基己基磺醯基、十二基磺醯基、十六基磺醯基、苯磺醯基、4-壬基苯磺醯基及對-甲苯基磺醯基;磺醯氧基,譬如十二基磺醯氧基與十六基磺醯氧基;亞磺醯基,譬如甲基亞磺醯基、辛基亞磺醯基、2-乙基己基亞磺醯基、十二基亞磺醯基、十六基亞磺醯基、苯亞磺醯基、4-壬基苯亞磺醯基及對-甲苯基亞磺醯基;硫基,譬如乙硫基、辛硫基、苄硫基、十四基硫基、2-(2,4-二-第三-戊基苯氧基)乙硫基、苯硫基、2-丁氧基-5-第三-辛基苯硫基及對-甲苯基硫基;醯氧基,譬如乙醯氧基、苯甲醯氧基、十八醯基氧基、對-十二基醯胺基苯甲醯基氧基、N-苯胺甲醯基氧基、N-乙基胺甲醯基氧基及環己羰基氧基;胺,譬如苯基苯胺基、2-氯基苯胺基、二乙胺、十二基胺;亞胺基,譬如1-(N-苯基醯亞胺基)乙基、N-琥珀醯亞胺醯基或3-苄基乙內醯脲基;磷酸酯,譬如磷酸二甲酯與丁基磷酸乙酯;亞磷酸酯,譬如亞磷酸二乙酯與二己酯;雜環族基團、雜環族氧基或雜環族硫基,其每一個可經取代,且其含有3至7員雜環,由碳原子與至少一個選自包括氧、氮、硫或磷之雜原子所組成,譬如吡啶基、噻吩基、呋喃基、唑基、噻唑基、唑基、咪唑基、吡唑基、吡基、嘧啶基、四氫吡咯酮基、喹啉基、異喹啉基、2-呋喃基、2-噻吩基、2-苯并咪唑基氧基或2-苯并噻唑基;四級銨,譬如三乙基銨;四級鏻,譬如三苯基鏻;及矽烷基氧基,譬如三甲基矽烷基氧基。
若需要則取代基本身可被所述取代基進一步取代一或多次。所使用之特定取代基可由熟諳此藝者選擇,以獲得對特定應用所期望之性質,且可包括例如拉電子基團、供電子基團及立體基團。當分子可具有兩個或多個取代基時,取代基可接合在一起以形成環,譬如稠合環,除非另有提供。一般而言,上述基團及其取代基可包括具有至高48個碳原子,典型上為1至36個碳原子,及經常低於24個碳原子者,但較大數目是可能的,依所選擇之特定取代基而定。
雜環之定義係為包含配位或配價鍵之環。配位鍵之定義可參閱Grant & Hackh 氏化學辭典,第91頁。本質上,配位鍵係當富含電子原子譬如O或N,供給一對電子至缺電子原子譬如Al或B時形成。
測定特定基團係為供電子抑或接受電子,係良好地在此項技藝之技術範圍內。電子供給與接受性質之最常用度量方式,係以Hammett σ值為觀點。氫具有Hammett σ值為零,然而供電子基團具有負Hammett σ值,且接受電子基團具有正Hammett σ值。Lange氏化學手冊,第12版,McGraw Hill,1979,表3-12,第3-134至3-138頁,併於本文供參考,係列出關於大數目常遭遇基團之Hammett σ值。Hammett σ值係以苯環取代為基礎被指定,但其對於以定性方式選擇電子供給與接受基團,係提供實用指引。
適當供電子基團可選自-R'、-OR'及-NR'(R"),其中R'為含有至高6個碳原子之烴,且R"為氫或R'。供電子基團之特殊實例包括甲基、乙基、苯基、甲氧基、乙氧基、苯氧基、-N(CH3 )2 、-N(CH2 CH3 )2 、-NHCH3 、-N(C6 H5 )2 、-N(CH3 )(C6 H5 )及-NHC6 H5
適當接受電子基團可選自包括氰基、α-鹵烷基、α-鹵烷氧基、醯胺基、磺醯基、羰基、羰基氧基及氧基羰基取代基,含有至高10個碳原子。特殊實例包括-CN、-F、-CF3 、-OCF3 、-CONHC6 H5 、-SO2 C6 H5 、-COC6 H5 、-CO2 C6 H5 及-OCOC6 H5
除非另有指明,否則材料之"百分率"或"百分比"及符號"%"術語係表示層中所存在材料之體積百分比。
可用於本發明之化合物包括:
本發明之一些具體實施例可提供有利特徵,譬如操作效率、較高發光度、顏色色調、低驅動電壓及經改良之操作安定性。可用於本發明之有機金屬化合物之具體實施例,可提供廣範圍之色調,包括可用於白光之發射者(直接地或經過濾光鏡以提供多色顯示)。
一般裝置構造
本發明可被採用於許多OLED裝置型態中,使用小分子物質、寡聚合材料、聚合材料或其組合。其包括極簡單結構,包含單一陽極與陰極,至較複雜裝置,譬如被動矩陣顯示器,包含陽極與陰極之正交陣列以形成像素,及主動矩陣顯示器,其中各像素係獨立地被控制,例如使用薄膜電晶體(TFT)。
有多種有機層型態。OLED之基本要求為陽極,陰極,及位於陽極與陰極間之有機發光層。附加層可如更完整地於後文所述方式採用。
尤其是可用於小分子裝置之一種典型結構,係顯示於圖1中,且包含基板101 、陽極103 、空穴注入層105 、空穴輸送層107 、激發子阻斷層108 、發光層109 、空穴或激發子阻斷層110 、電子輸送層111 及陰極113 。此等層係詳細描述於下文。應指出的是,基板可替代地位於鄰近陰極,或基板可實際上構成陽極或陰極。在陽極與陰極間之有機層係合宜地被稱為有機EL元件。而且,有機層之總合併厚度係期望低於500毫微米。
OLED之陽極與陰極係經過電導體160 連接至電壓/電流來源150 。OLED係藉由施加電位於陽極與陰極之間而進行操作,以致陽極係在比陰極較具正電位下。空穴係自陽極被注入有機EL元件中,而電子係在陰極處被注入有機EL元件中。當OLED以AC模式操作時,有時可達成經加強之裝置安定性,其中,在循環中歷經一段時間,電位偏壓係被逆轉,且無電流流動。AC驅動OLED之實例係描述於US5552678中。
基板 OLED裝置典型上係被提供於承載基板101 上,其中無論是陰極或陽極可與基板接觸。基板可為複雜結構,包含多層材料。這對主動矩陣基板典型上為此情況,其中TFT係被提供於OLED層下方。基板至少在發射像素化區域中,仍然必須包含大部份透明材料。與基板接觸之電極係合宜地被稱為底部電極。習用上,底部電極為陽極,但並不限於該型態。基板可無論是可透光或不透明,依所意欲之光線發射方向而定。可透光性質係為經過基板觀看EL發射所期望的。透明玻璃或塑膠係常用於此種情況中。對於其中EL發射係經過頂部電極觀看之應用而言,底部載體之透射特徵可為透光性、光吸收性或光反射性。供使用於此情況之基板包括但不限於玻璃、塑膠、半導體材料、矽、陶瓷材料及電路板材料。在此等裝置型態中必須提供光透明頂部電極。
陽極 當所要電致發光之光線發射(EL)係經過陽極觀看時,陽極103 對吾人感興趣之發射應為透明或實質上透明。所使用之常用透明陽極材料為銦-氧化錫(ITO)、銦-氧化鋅(IZO)及氧化錫,但其他金屬氧化物可發生作用,包括但不限於鋁-或銦-摻雜之氧化鋅、鎂-氧化銦及鎳-氧化鎢。除了此等氧化物以外,金屬氮化物,譬如氮化鎵,與金屬硒化物,譬如硒化鋅,及金屬硫化物,譬如硫化鋅,可作為陽極使用。對於其中EL發射係僅經過陰極觀看之應用而言,任何導電性材料均可使用,透明、不透明或反射。供此項應用之導體實例包括但不限於金、銥、鉬、鈀及鉑。典型陽極材料,透射或以其他方式,係具有功函數為4.1 eV或較大。所要之陽極材料通常係藉任何適當方式沉積,譬如蒸發、濺射、化學蒸氣沉積或電化學方式。陽極可使用習知光微影程序構圖。視情況,陽極可在塗敷其他層之前經拋光,以降低表面粗糙度,以致能夠使短路降至最低,或加強反射率。
空穴注入層(HIL) 空穴注入層105 可被提供於陽極與空穴輸送層之間。空穴注入層可包含超過一種注入化合物,以摻合物沉積,或被分隔成個別層。空穴注入材料可用以改良後續有機層之薄膜形成性質,且調整或幫助空穴之注入空穴輸送層中。供使用於空穴注入層中之適當材料包括但不限於卟啉化合物,如在US4720432中所述者,電漿沉積之氟碳聚合體,如在US6127004、US6208075及US6208077中所述者,一些芳族胺類,例如MTDATA(4,4',4"-參[(3-甲基苯基)苯基胺基]三苯基胺),及無機氧化物,包括氧化釩(VOx)、氧化鉬(MoOx)及氧化鎳(NiOx)。根據報告可使用於有機EL裝置中之替代空穴注入材料,係描述於EP0891121、EP1029909、US6720573中。
含有電漿沉積氟碳聚合體之空穴注入層之厚度,可在0.2毫微米至15毫微米之範圍內,且適當地在0.3至1.5毫微米之範圍內。
空穴輸送層(HTL) 具有空穴輸送層107 ,經沉積在陽極與發射層之間,通常是有利的。經沉積在陽極與發光層間之空穴輸送層中之空穴輸送材料,可與作為共主體或在激發子阻斷層中使用之空穴輸送化合物相同或不同。空穴輸送層可視情況包含空穴注入層。空穴輸送層可包含超過一種空穴輸送化合物,以摻合物沉積,或被分隔成個別層。
空穴輸送層含有至少一種空穴輸送化合物,譬如芳族三級胺,其中應明瞭後者係為含有至少一個僅結合至碳原子之三價氮原子之化合物,其中至少一個氮為芳族環之一個成員。在一種形式中,該芳族三級胺可為芳基胺,譬如單芳基胺、二芳基胺、三芳基胺或聚合芳基胺。舉例之單體性三芳基胺類係由Klupfel等人說明於US3180730中。被一或多個乙烯基取代及/或包含至少一個含活性氫基團之其他適當三芳基胺類,係由Brantley等人揭示於US3567450與US3658520中。
更佳芳族三級胺種類係為包含至少兩個芳族三級胺部份基團者,如在US4720432與US5061569中所述者。此種化合物包括以結構式(HT1)表示者: 其中Q1 與Q2 係為獨立經選擇之芳族三級胺部份基團;且G為連結基團,譬如碳對碳鍵結之次芳基、次環烷基或次烷基。於一項具體實施例中,至少一個Q1 或Q2 係含有多環狀稠合環結構,例如萘。當G為芳基時,其係合宜地為次苯基、次聯苯基或次萘基部份基團。
滿足結構式(HT1)且含有兩個三芳基胺部份基團之有用三芳基胺種類,係以結構式(HT2)表示: 其中R1 與R2 各獨立表示氫原子、芳基或烷基,或R1 與R2 一起表示完成環烷基之原子;且R3 與R4 各獨立表示芳基,其係依次被二芳基取代之胺基取代,如由結構式(HT3)所指示者: 其中R5 與R6 係為獨立經選擇之芳基。於一項具體實施例中,至少一個R5 或R6 係含有多環狀稠合環結構,例如萘。
芳族三級胺之另一種類為四芳基二胺類。所要之四芳基二胺係包含兩個二芳基胺基,譬如由式(HT3)所指示者,經過次芳基連結。有用之四芳基二胺包括以式(HT4)表示者: 其中各Are為獨立經選擇之次芳基,譬如次苯基或次蒽基部份基團;n為整數1至4;及R1 、R2 、R3 及R4 係為獨立經選擇之芳基。
在一項典型具體實施例中,至少一個R1 、R2 、R3 及R4 係為多環狀稠合環結構,例如萘。
前述結構式(HT1)、(HT2)、(HT3)、(HT4)之各種烷基、次烷基、芳基及次芳基部份基團,可各依次被取代。典型取代基包括烷基、烷氧基、芳基、芳氧基,及鹵化物,譬如氟化物、氯化物及溴化物。各種烷基與次烷基部份基團,典型上含有1至6個碳原子。環烷基部份基團可含有3至10個碳原子,但典型上含有五、六或七個環碳原子,譬如環戊基、環己基及環庚基環結構。芳基與次芳基部份基團通常為苯基與次苯基部份基團。
空穴輸送層可由單一之三級胺化合物或此種化合物之混合物形成。明確言之,吾人可採用三芳基胺,譬如滿足式(HT2)之三芳基胺,且併用四芳基二胺,譬如由式(HT4)所指示者。有用芳族三級胺類之說明例為下列:1,1-雙(4-二-對-甲苯基胺基苯基)環己烷(TAPC);1,1-雙(4-二-對-甲苯基胺基苯基)-4-苯基環己烷;N,N,N',N'-四苯基-4,4'''-二胺基-1,1':4',1":4",1'''-四苯;雙(4-二甲胺基-2-甲基苯基)苯基甲烷;雙(4-二乙胺基-2-甲基苯基)(4-甲基苯基)甲烷(MPMP);1,4-雙[2-[4-[N,N-二(對-甲苯基)胺基]苯基]乙烯基]苯(BDTAPVB);N,N,N',N'-四-對-甲苯基-4,4'-二胺基聯苯;N,N,N',N'-四苯基-4,4'-二胺基聯苯;N,N,N',N'-四-1-萘基-4,4'-二胺基聯苯;N,N,N',N'-四-2-萘基-4,4'-二胺基聯苯;4,4'-雙[N-(1-萘基)-N-苯基胺基]聯苯(NPB);4,4'-雙[N-(3-甲基苯基)-N-苯基胺基]聯苯(TPD);4,4'-雙[N-(1-萘基)-N-(2-萘基)胺基]聯苯(TNB);4,4'-雙[N-(1-萘基)-N-苯基胺基]對-三聯苯;4,4'-雙[N-(2-萘基)-N-苯基胺基]聯苯;4,4'-雙[N-(3-苊萘基)-N-苯基胺基]聯苯;1,5-雙[N-(1-萘基)-N-苯基胺基]萘;4,4'-雙[N-(9-蒽基)-N-苯基胺基]聯苯;4,4'-雙[N-(1-蒽基)-N-苯基胺基]-對-三聯苯;4,4'-雙[N-(2-菲基)-N-苯基胺基]聯苯;4,4'-雙[N-(8-茀蒽基)-N-苯基胺基]聯苯;4,4'-雙[N-(2-蒎基)-N-苯基胺基]聯苯;4,4'-雙[N-(2-萘基)-N-苯基胺基]聯苯;4,4'-雙[N-(2-基)-N-苯基胺基]聯苯;4,4'-雙[N-(1-苛基)-N-苯基胺基]聯苯;2,6-雙(二-對-甲苯基胺基)萘;2,6-雙[二-(1-萘基)胺基]萘;2,6-雙[N-(1-萘基)-N-(2-萘基)胺基]萘;N,N,N',N'-四(2-萘基)-4,4"-二胺基-對-三聯苯;4,4'-雙{N-苯基-N-[4-(1-萘基)-苯基]胺基}聯苯;2,6-雙[N,N-二(2-萘基)胺基]茀;4,4',4"-參[(3-甲基苯基)苯基胺基]三苯基胺(MTDATA);N,N-雙[2,5-二甲基-4-[(3-甲基苯基)苯基胺基]苯基]-2,5-二甲基-N'-(3-甲基苯基)-N'-苯基-1,4-苯二胺;-4-(9H-咔唑-9-基)-N,N-雙[4-(9H-咔唑-9-基)苯基]-苯胺(TCTA);4-(3-苯基-9H-咔唑-9-基)-N,N-雙[4(3-苯基-9H-咔唑-9-基)苯基]-苯胺;9,9'-(2,2'-二甲基[1,1'-聯苯基]-4,4'-二基)雙-9H-咔唑(CDBP);9,9'-[1,1'-聯苯基]-4,4'-二基雙-9H-咔唑(CBP);9,9'-(1,3-次苯基)雙-9H-咔唑(mCP);9-[4-(9H-咔唑-9-基)苯基]-N,N-二苯基-9H-咔唑-3-胺;9,9'-(1,4-次苯基)雙[N,N-二苯基-9H-咔唑-3-胺;9-[4-(9H-咔唑-9-基)苯基]-N,N,N',N'-四苯基-9H-咔唑-3,6-二胺。
另一有用之空穴輸送材料種類,包括多環狀芳族化合物,如在EP1009041中所述者。在EP0891121與EP1029909中所述之一些空穴注入材料,亦可製造有用之空穴輸送材料。此外,可使用聚合空穴輸送材料,包括聚(N-乙烯基咔唑)(PVK)、聚噻吩、聚吡咯、聚苯胺,及共聚物,包括聚(3,4-次乙二氧基噻吩)/聚(4-苯乙烯磺酸酯),亦稱為PEDOT/PSS。
激發子/電子阻斷層 OLED裝置可包含一或多個激發子/電子阻斷層108(圖1) ,鄰近發光層109 ,置於陽極側面上,以幫助限制三重態激發子至發光層。為使激發子阻斷層能夠限制三重態激發子,此層之一或多種材料應具有大於或等於磷光發射體三倍能量之三重態能量。若鄰近發光層之層中之任何材料之三重態能階低於磷光發射體之能階,則該材料經常會使發光層中之激發狀態淬滅,降低裝置發光效率。於一項較佳具體實施例中,激發子/電子阻斷層亦藉由阻斷電子自發光層逃逸至激發子阻斷層中,幫助限制電子-空穴重組事件至發光層。為使激發子阻斷層具有此電子阻斷性質,此層之材料應具有最低未佔有分子軌道(LUMO)能階,其係大於發光層中主體材料之能階達至少0.2 eV。於一項具體實施例中,其中主體包括主體材料之混合物,激發子阻斷層之LUMO能階應大於具有最低LUMO能階之主體材料之能階達至少0.2 eV,以具有較佳電子阻斷性質。
材料之最高佔有分子軌道(HOMO)與LUMO之相對能階,可藉由此項技藝中已知之數種方法估計。當比較兩種材料之能階時,重要的是,利用藉由關於HOMO之單一方法與關於LUMO之單一方法所獲得之估計能階,但利用關於HOMO與LUMO兩者之相同方法並非必須。關於估計HOMO能階之兩種方法,係包括藉由紫外光電子光譜術度量材料之電離電位,及藉由電化學技術譬如環式伏安法度量氧化電位。然後,LUMO能階可經由加入光學帶隙能量至先前所測得之HOMO能階估計。在LUMO與HOMO間之能量差係被估計為光學帶隙。材料之相對LUMO能階亦可估計自材料之還原電位,其係在溶液中藉由電化學技術譬如環式伏安法度量。
吾人已發現,若經選擇之一或多種激發子阻斷材料具有三重態能量大於或等於2.5 eV,則採用磷光發射體於發光層中之OLED裝置內之發光率與功率效率可經顯著地改良,尤其是對於發射綠色或藍色磷光發射體之情況而言。
激發子阻斷層係經常在1與500毫微米厚之間,且適當地在10與300毫微米厚之間。在此範圍內之厚度係相對較容易在製造中控制。除了具有高三重態能量以外,激發子阻斷層108 必須能夠輸送空穴至發光層109 。激發子阻斷層108 可單獨或與空穴輸送層107 一起使用。激發子阻斷層可包含超過一種化合物,以摻合物沉積,或被分隔成個別亞層。被沉積於陽極與發光層間之激發子阻斷層中之空穴輸送材料,可與作為主體或共主體使用之空穴輸送化合物相同或不同。激發子阻斷材料可包括含有一或多個三芳基胺基之化合物,條件是其三重態能量超過磷光材料之三重態能量。於具有發射綠或藍光之裝置之一項較佳具體實施例中,在激發子阻斷層中之所有材料之三重態能量係大於或等於2.5 eV。為符合對於2.5 eV或較大之較佳具體實施例之三重態能量需要條件,該化合物不應含有芳族烴稠合環(例如萘基)。
充作激發子阻斷材料之經取代三芳基胺類可選自具有化學式(EBF-1)之化合物:
在式(EBF-1)中,Are係獨立選自烷基、經取代之烷基、芳基或經取代之芳基;R1 -R4 係為獨立經選擇之芳基;n為整數1至4。
於一項較佳具體實施例中,Are與R1 -R4 未包含芳族烴稠合環。
可用於激發子阻斷層108 之材料,其實例包括但不限於:2,2'-二甲基-N,N,N',N'-肆(4-甲基苯基)-1,1'-聯苯基-4,4'-二胺;4,4',4"-參[(3-甲基苯基)苯基胺基]三苯基胺(MTDATA);4,4',4"-參(N,N-二苯基-胺基)三苯基胺(TDATA);N,N-雙[2,5-二甲基-4-[(3-甲基苯基)苯基胺基]苯基]-2,5-二甲基-N'-(3-甲基苯基)-N'-苯基-1,4-苯二胺;及四苯基-對-苯二胺(TPPD);雙[4-(N,N-二乙胺基)-2-甲基苯基](4-甲基苯基)甲烷;雙[4-(N,N-二乙胺基)-2-甲基苯基](4-甲基苯基)乙烷;(4-二乙胺基苯基)三苯甲烷;雙(4-二乙胺基苯基)二苯甲烷。
在一項所期望之具體實施例中,於激發子阻斷層中之材料係選自式(EBF-2):
在式(EBF-2)中,R1 與R2 表示取代基,其條件是R1 與R2 可接合以形成環。例如,R1 與R2 可為甲基,或接合以形成環己基環。Ar1 -Ar4 表示獨立經選擇之芳族基團,例如苯基或甲苯基。R3 -R10 係獨立表示氫、烷基、經取代之烷基、芳基、經取代之芳基。在一項所期望之具體實施例中,R1 -R2 、Ar1 -Ar4 及R3 -R10 未含有稠合芳族環。
此種材料之一些非限制性實例為:1,1-雙(4-(N,N-二-對-甲苯基胺基)苯基)環己烷(TAPC);1,1-雙(4-(N,N-二-對-甲苯基胺基)苯基)環戊烷;4,4'-(9H-亞茀-9-基)雙[N,N-雙(4-甲基苯基)-苯胺;1,1-雙(4-(N,N-二-對-甲苯基胺基)苯基)-4-苯基環己烷;1,1-雙(4-(N,N-二-對-甲苯基胺基)苯基)-4-甲基環己烷;1,1-雙(4-(N,N-二-對-甲苯基胺基)苯基)-3-苯基丙烷。
在一項適當具體實施例中,激發子阻斷材料係包括式(EBF-3)之材料: 其中n為整數1至4;Q為N、C、芳基或經取代之芳基;R1 為苯基、經取代之苯基、聯苯基、經取代之聯苯基、芳基或經取代之芳基;R2 至R7 係獨立為氫、烷基、苯基或經取代之苯基、芳基胺、咔唑或經取代之咔唑;其條件是R2 -R7 未含有芳族烴稠合環。
此種材料之一些非限制性實例為:4-(9H-咔唑-9-基)-N,N-雙[4-(9H-咔唑-9-基)苯基]-苯胺(TCTA);4-(3-苯基-9H-咔唑-9-基)-N,N-雙[4(3-苯基-9H-咔唑-9-基)苯基]-苯胺;9,9'-[5'-[4-(9H-咔唑-9-基)苯基][1,1':3',1"-三聯苯]-4,4"-二基]雙-9H-咔唑。
在一項適當具體實施中,激發子阻斷材料係包括式(EBF-4)之材料: 其中n為整數1至4;Q為苯基、經取代之苯基、聯苯基、經取代之聯苯基、芳基或經取代之芳基;R1 至R6 係獨立為氫、烷基、苯基或經取代之苯基、芳基胺、咔唑或經取代之咔唑;其條件是R1 -R6 未含有芳族烴稠合環。
適當材料之非限制性實例為:9,9'-(2,2'-二甲基[1,1'-聯苯基]-4,4'-聯苯基]-4,4'-二基)雙-9H-咔唑(CDBP);9,9'-[1,1'-聯苯基]-4,4'-二基雙-9H-咔唑(CBP);9,9'-(1,3-次苯基)雙-9H-咔唑(mCP);9,9'-(1,4-次苯基)雙-9H-咔唑;9,9',9"-(1,3,5-苯低甲基)參-9H-咔唑;9,9'-(1,4-次苯基)雙[N,N,N',N'-四苯基-9H-咔唑-3,6-二胺;9-[4-(9H-咔唑-9-基)苯基]-N,N-二苯基-9H-咔唑-3-胺;9,9'-(1,4-次苯基)雙[N,N-二苯基-9H-咔唑-3-胺;9-[4-(9H-咔唑-9-基)苯基]-N,N,N',N'-四苯基-9H-咔唑-3,6-二胺;9-苯基-9H-咔唑。
金屬錯合物亦可充作激發子阻斷層,只要其具有所要之三重態能量及空穴輸送與電子阻斷性質即可。其實例為fac-參(1-苯基吡唑化-N,C2)銥(III)(Ir(ppz)3 ),如在US20030175553中所述者。
發光層(LEL) 適當地,OLED裝置之發光層係包含一或多種主體材料及一或多種客體材料,以供發射光線。至少一種客體材料係適當地為螢光或磷光材料。發光客體材料通常係以小於主體材料量之量存在,且典型上係以主體之至高20重量%之量存在,更典型上為主體之0.1-10重量%。為方便起見,發光客體材料可被稱為發光摻雜劑。磷光客體材料可於本文中稱為磷光材料或磷光摻雜劑。磷光材料較佳為低分子量化合物,但其亦可為寡聚物或聚合體。其可以被分散於主體材料中之不連續材料提供,或其可以某種方式結合至主體材料,例如共價結合至聚合主體中。
螢光材料可於相同層中,於相鄰層中,於非相鄰層中,於相鄰像素或任何組合中,作為磷光材料使用。必須小心選擇不會不利地影響OLED裝置中磷光材料性能之材料。熟諳此藝者將明瞭的是,在相同層中或在相鄰層中作為磷光材料之材料,其濃度與三重態能量必須經適當地設定,以致能夠防止不想要之磷光淬滅作用。
關於磷光材料之主體材料 適當主體材料係具有三重態能量(在主體之最低三重受激態與單重基態間之能量上之差異)大於或等於磷光發射體之三重態能量。此能階條件係為必須的,以致三重態激發子係被轉移至磷光發射體分子,且在磷光發射體分子上直接形成之任何三重態激發子仍然存在,直到發射發生為止。但是,自其中主體材料具有比磷光發射體較低三重態能量之裝置之有效發射,在一些情況中仍然為可能,如由C.Adachi等人於Appl.Phys.Lett .,79,2082-2084(2001)中所報告者。三重態能量係可合宜地藉由數種方式之任一種度量,例如於S.L.Murov,I.Carmichael及G.L.Hug,光化學手冊 ,第2版(Marcel Dekker,New York,1993)中所討論者。
於實驗數據不存在下,三重態能量可以下述方式估計。分子之三重態能量係被定義為分子之基態能量(E(gs))與分子之最低三重態(E(ts))能量間之差異,兩者均以eV表示。此等能量可使用B3LYP方法計算而得,如在Gaussian98(Gaussian公司,Pittsburgh,PA)電腦程式中所施行者。供與B3LYP方法一起使用之基礎設定係定義如下:對於其中MIDI!係經定義之所有原子為MIDI!,對於以6-31G 而非以MIDI!定義之所有原子為6-31G ,及對於非以MIDI!或6-31G 定義之原子,為無論是LACV3P或LANL2DZ基礎設定與假電位,其中LACV3P為較佳方法。對於任何其餘原子,可使用任何已發表之基礎設定與假電位。使用MIDI!、6-31G 及LANL2DZ,如在Gaussian98計算機代碼中所施行者,且使用LACV3P,如在Jaguar 4.1(Schrodinger公司,Portland,Oregon)計算機代碼中所施行者。各狀態之能量係在該狀態之最低能量幾何形狀下計算。在該兩種狀態間之能量上差異,係藉由方程式1進一步修正,而得三重態能量(E(t)):E(t)=0.84*(E(ts)-E(gs))+0.35 (1)
對於聚合或寡聚合材料,其係足以計算涵蓋足夠大小之單體或寡聚物之三重態能量,以致其他單位不會實質上改變材料之經計算三重態能量。
所要之主體材料係能夠形成連續薄膜。發光層可含有超過一種主體材料,以改良裝置之薄膜形態學、電性質、光線發射效率及壽命。適當主體材料係被描述於WO00/70655;WO01/39234;WO01/93642;WO02/074015;WO02/15645及US20020117662中。
三重態主體材料之類型可根據其電荷輸送性質分類。兩種主要類型係為主要為電子輸送者,與主要為空穴輸送者。應注意的是,一些可被分類為主要輸送一種類型電荷之主體材料,可輸送兩種類型之電荷,尤其是在某些裝置結構中,例如CBP,其係描述於C.Adachi,R.Kwong及S.R.Forrest,有機電子學 ,2,37-43(2001)中。另一類型之主體係為具有HOMO與LUMO間之寬廣能隙者,以致其不會立即地輸送任一類型之電荷,反而倚賴電荷直接地注入磷光摻雜劑分子中。
所要之電子輸送主體可為任何適當電子輸送化合物,譬如苯并氮唑、啡啉、1,3,4-二唑、***、三或三芳基硼烷,只要其具有三重態能量高於欲被採用之磷光發射體即可。
較佳苯并氮唑種類係由Jianmin Shi等人描述於US5645948與US5766779中。此種化合物係以結構式(PHF-1)表示:
在式(PHF-1)中,n係選自2至8;Z係獨立為O、NR或S;R與R'係個別為氫;1至24個碳原子之烷基,例如丙基、第三-丁基、庚基等;5至20個碳原子之芳基或雜原子取代之芳基,例如苯基與萘基、呋喃基、噻吩基、吡啶基、喹啉基及其他雜環系統;或鹵基,譬如氯基、氟基;或完成稠合芳族環所必須之原子;及X為鏈結單位,包括碳、烷基、芳基、經取代之烷基或經取代之芳基,其係共軛地或未共軛地使多個苯并氮唑連接在一起。
可使用苯并氮唑之一項實例為2,2',2"-(1,3,5-次苯基)參[1-苯基-1H-苯并咪唑](TPBI),以下文所示之式(PHF-2)表示:
適合作為主體使用之電子輸送材料之另一種類,包括以式(PHF-3)表示之各種經取代啡啉類:
在式(PHF-3)中,R1 -R8 係獨立為氫、烷基、芳基或經取代之芳基,且至少一個R1 -R8 為芳基或經取代之芳基。
適當材料之實例為2,9-二甲基-4,7-二苯基-1,10-啡啉(BCP)(參閱式(PH-1))與4,7-二苯基-1,10-啡啉(Bphen)(參閱式(PH-2))。
充作電子輸送主體之三芳基硼烷可選自具有化學式(PHF-4)之化合物: 其中Ar1 至Ar3 係獨立為芳族氫碳環族基團或芳族雜環基團,其可具有一或多個取代基。具有上文結構之化合物較佳係選自式(PHF-5): 其中R1 -R15 係獨立為氫、氟基、氰基、三氟甲基、磺醯基、烷基、芳基或經取代之芳基。
三芳基硼烷之特定代表性具體實施例包括:
電子輸送主體可選自經取代之1,3,4-二唑。有用經取代二唑之說明例為下列:
電子輸送主體可選自經取代之1,2,4-***。有用***之實例為3-苯基-4-(1-萘基)-5-苯基-1,2,4-***,以式(PHF-6)表示:
電子輸送主體可選自經取代之1,3,5-三類。適當材料之實例為:2,4,6-參(二苯胺基)-1,3,5-三;2,4,6-三咔唑-1,3,5-三;2,4,6-參(N-苯基-2-萘基胺基)-1,3,5-三;2,4,6-參(N-苯基-1-萘基胺基)-1,3,5-三;4,4',6,6'-四苯基-2,2'-雙-1,3,5-三;2,4,6-參([1,1':3,1"-三聯苯]-5'-基)-1,3,5-三
於一項具體實施例中,適當主體材料為鋁或鎵錯合物。特別有用之主體材料係以式(PHF-7)表示。
在式(PHF-7)中,M1 表示Al或Ga。R2 -R7 表示氫或獨立經選擇之取代基。期望上,R2 表示供電子基團,譬如甲基。適當地,R3 與R4 各獨立表示氫或供電子基團。R5 、R6 及R7 較佳係各獨立表示氫或接受電子基團。相鄰取代基R2 -R7 可合併以形成環基。L為芳族部份基團,藉由氧連結至鋁,其可被取代基取代,以致L係具有6至30個碳原子。式(PHF-7)材料之說明例係列示於下文。
所要之空穴輸送主體可為任何適當空穴輸送化合物,譬如三芳基胺或咔唑,只要其具有三重態能量高於欲被採用之磷光發射體即可。作為主體使用之空穴輸送化合物之適當種類為芳族三級胺類。此等化合物係含有至少一個三價氮原子,其僅結合至碳原子,其中至少一個為芳族環之一個成員。在一種形式中,芳族三級胺可為芳基胺,譬如單芳基胺、二芳基胺、三芳基胺或聚合芳基胺。舉例之單體性三芳基胺類係由Klupfel等人說明於US3180730中。被一或多個乙烯基取代及/或包含至少一個含活性氫基團之其他適當三芳基胺類,係由Brantley等人揭示於US3567450與US3658520中。
較佳芳族三級胺種類係為包含至少兩個芳族三級胺部份基團者,如在US4720432與US5061569中所述者。所要之四芳基二胺係包含兩個二芳基胺基,譬如由式(PHF-8)所指示者: 其中各Are係為獨立經選擇之次芳基,譬如次苯基或蒽部份基團,n係選自1至4,及R1 -R4 係為獨立經選擇之芳基。
於一項典型具體實施例中,至少一個R1 -R4 為多環狀稠合環結構,例如萘。但是,當摻雜劑之發射為藍色或綠色時,對於芳基胺主體材料具有多環狀稠合環取代基並非較佳。
有用化合物之代表性實例係包括下列:4,4'-雙[N-(1-萘基)-N-苯基胺基]聯苯(NPB);4,4'-雙[N-(1-萘基)-N-(2-萘基)胺基]聯苯(TNB);4,4'-雙[N-(3-甲基苯基)-N-苯基胺基]聯苯(TPD);4,4'-雙-二苯胺基-三聯苯;2,6,2',6'-四甲基-N,N,N',N'-四苯基-聯苯胺;4,4',4"-參[(3-甲基苯基)苯基胺基]三苯基胺(MTDATA);4,4',4"-參(N,N-二苯基-胺基)三苯基胺(TDATA);N,N-雙[2,5-二甲基-4-[(3-甲基苯基)苯基胺基]苯基]-2,5-二甲基-N'-(3-甲基苯基)-N'-苯基-1,4-苯二胺。
在一項所期望之具體實施例中,空穴輸送主體係包括式(PHF-9)之材料:
在式(PHF-9)中,R1 與R2 表示取代基,其條件是R1 與R2 可接合以形成環。例如,R1 與R2 可為甲基,或接合以形成環己基環;Ar1 -Ar4 表示獨立經選擇之芳族基團,例如苯基或甲苯基;R3 -R10 係獨立表示氫、烷基、經取代之烷基、芳基、經取代之芳基。
適當材料之實例包括但不限於:1,1-雙(4-(N,N-二-對-甲苯基胺基)苯基)環己烷(TAPC);1,1-雙(4-(N,N-二-對-甲苯基胺基)苯基)環戊烷;4,4'-(9H-亞茀-9-基)雙[N,N-雙(4-甲基苯基)-苯胺;1,1-雙(4-(N,N-二-對-甲苯基胺基)苯基)-4-苯基環己烷;1,1-雙(4-(N,N-二-對-甲苯基胺基)苯基)-4-甲基環己烷;1,1-雙(4-(N,N-二-對-甲苯基胺基)苯基)-3-苯基丙烷;雙[4-(N,N-二乙胺基)-2-甲基苯基](4-甲基苯基)甲烷;雙[4-(N,N-二乙胺基)-2-甲基苯基](4-甲基苯基)乙烷;(4-二乙胺基苯基)三苯甲烷;雙(4-二乙胺基苯基)二苯甲烷。
作為空穴輸送主體使用之有用化合物種類,係包括咔唑衍生物,譬如以式(PHF-10)表示者:
在式(PHF-10)中,Q係獨立表示氮、碳、矽、經取代之矽基、芳基或經取代之芳基,較佳為苯基;R1 較佳為芳基或經取代之芳基,而更佳為苯基、經取代之苯基、聯苯基、經取代之聯苯基;R2 至R7 係獨立為氫、烷基、苯基或經取代之苯基、芳基胺、咔唑或經取代之咔唑;及n係選自1至4。
說明性有用之經取代咔唑係為下列;4-(9H-咔唑-9-基)-N,N-雙[4-(9H-咔唑-9-基)苯基]-苯胺(TCTA);4-(3-苯基-9H-咔唑-9-基)-N,N-雙[4(3-苯基-9H-咔唑-9-基)苯基]-苯胺;9,9'-[5'-[4-(9H-咔唑-9-基)苯基][1,1':3',1"-三聯苯]-4,4"-二基]雙-9H-咔唑;3,5-雙(9-咔唑基)四苯基矽烷(SimCP)。
於一項適當具體實施例中,空穴輸送主體係包括式(PHF-11)之材料:
在式(PHF-11)中,n係選自1至4;Q係獨立表示苯基、經取代之苯基、聯苯基、經取代之聯苯基、芳基或經取代之芳基;R1 至R6 係獨立為氫、烷基、苯基或經取代之苯基、芳基胺、咔唑或經取代之咔唑。
適當材料之實例為下列:9,9'-(2,2'-二甲基[1,1-聯苯基]-4,4'-二基)雙-9H-咔唑(CDBP);9,9'-[1,1'-聯苯基]-4,4'-二基雙-9H-咔唑(CBP);9,9'-(1,3-次苯基)雙-9H-咔唑(mCP);9,9'-(1,4-次苯基)雙-9H-咔唑;9,9',9"-(1,3,5-苯低甲基)參-9H-咔唑;9,9'-(1,4-次苯基)雙[N,N,N',N'-四苯基-9H-咔唑-3,6-二胺;9-[4-(9H-咔唑-9-基)苯基]-N,N-二苯基-9H-咔唑-3-胺;9,9'-(1,4-次苯基)雙[N,N-二苯基-9H-咔唑-3-胺;9-[4-(9H-咔唑-9-基)苯基]-N,N,N',N'-四苯基-9H-咔唑-3,6-二胺。
為具有一些電子輸送性質之電子輸送或空穴輸送之主體材料,譬如咔唑類,當作為單一主體材料使用時,一般較令人期望。對於為空穴捕獲或能夠接受經注入空穴之典型磷光摻雜劑而言,其係尤其真實。主要為空穴輸送且具有極少電子輸送性質之主體材料,譬如三芳基胺類,係為較不佳。注入電子於此等後述空穴輸送主體中可能很困難,因其相對較高LUMO能量所致。
主體材料可包括兩種或多種主體材料之混合物。特別有用者為包含至少一個各電子輸送與空穴輸送共主體之混合物。空穴輸送共主體之最適宜濃度可藉由實驗術測定,且可在發光層中之全部空穴-與電子輸送共主體材料之10至90重量%之範圍內,並經常發現係在15至30重量%之範圍內。應進一步注意的是,電子輸送分子與空穴輸送分子可以共價方式接合在一起,以形成具有電子輸送與空穴輸送兩性質之單一主體分子。
寬廣能隙主體材料可為具有大HOMO-LUMO間隙之任何適當化合物,以致磷光發射材料之HOMO與LUMO係在主體之HOMO與LUMO間之間隙內。於此情況中,磷光發射材料係充作電子與空穴兩者之主要電荷載流子,以及供激發子捕獲之位置。與寬廣能隙主體一起使用之磷光摻雜劑通常係經選擇,以具有拉電子取代基,以幫助電子注入。"寬廣能隙"主體材料係在系統中充作非帶有電荷材料。此種組合可能會導致裝置之高操作電壓,因帶有電荷摻雜劑之濃度在發射層中典型上係低於10%。
Thompson等人於US 2004/0209115與US 2004/0209116中係揭示具有適合藍色磷光OLED之三重態能量之寬廣能隙主體組群。此種化合物包括以結構式(PHF-12)表示者: 其中:X為Si或Pb;Ar1 、Ar2 、Ar3 及Ar4 各為芳族基團,獨立選自苯基與高三重態能量雜環族基團,譬如吡啶、吡唑、噻吩等。咸認此等材料中之HOMO-LUMO間隙係為很大,此係由於電子上隔離之芳族單元及缺少任何共軛取代基所致。
此類型主體之說明例包括:
磷光材料 EL裝置之發光層109 係包含一或多種主體材料及一或多種磷光客體材料。在與前文所述之磷光摻雜劑合併上,可將其他摻雜劑另外使用於發光層中。發光磷光客體材料典型上係以發光層重量之1至20%之量存在,且可合宜地為發光層重量之2至8%。於一些具體實施例中,磷光客體材料可連接至一或多種主體材料。為方便起見,磷光錯合物客體材料可於本文中稱為磷光材料。
其他有用之磷光材料係藉由式(PDF-1)描述: 其中A為經取代或未經取代之雜環,含有至少一個N原子;B為經取代或未經取代之芳族或雜芳族環,或含有經結合至M之乙烯基碳之環;X-Y為陰離子性二齒合配位體;m為整數1至3,且n為整數0至2,以致當M為Rh或Ir時,m與n之總和為3;或m為整數1至2,且n為整數0至1,以致當M為Pt或Pd時,m與n之總和為2。
根據式(PDF-1)之化合物可被稱為C,N-環金屬化錯合物,以顯示中心金屬原子係被包含在環狀單元中,該單元係經由將金屬原子結合至一或多個配位體之碳與氮原子所形成。在式(PDF-1)中之雜環A之實例包括經取代或未經取代之吡啶、喹啉、異喹啉、嘧啶、吡、吲哚、吲唑、噻唑及唑環。在式(PDF-1)中之環B之實例包括經取代或未經取代之苯基、萘基、噻吩基、苯并噻吩基、呋喃基環。在式(PDF-1)中之環B亦可為含N環,譬如吡啶,其附帶條件是含N環係經過C原子結合至M,如式(PDF-1)中所示,而非經過N原子。
根據式(PDF-1)之參-C,N-環金屬化錯合物,其中m=3,且n=0,其實例為參(2-苯基-吡啶化-N,C2’ -)銥(III),於下文立體圖中顯示為表面(fac -)或子午線(mer -)異構物。
一般而言,表面異構物為較佳,因經常發現其具有比子午線異構物較高之磷光量子產量。根據式1之參-C,N-環金屬化磷光材料之其他實例為參(2-(4'-甲基苯基)吡啶化-N,C2’ )銥(III)、參(3-苯基異喹啉化-N,C2’ )銥(III)、參(2-苯基喹啉化-N,C2’ )銥(III)、參(1-苯基異喹啉化-N,C2’ )銥(III)、參(1-(4'-甲基苯基)異喹啉化-N,C2’ )銥(III)、參(2-(4',6'-二氟苯基)-吡啶化-N,C2’ )銥(III)、參(2-(5'-苯基-4',6'-二氟苯基)-吡啶化-N,C2’ )銥(III)、參(2-(5'-苯基-吡啶化-N,C2’ )銥(III)、參(2-(2'-苯并噻吩基)吡啶化-NC3’ )銥(III)、參(2-苯基-3,3'-二甲基)吲哚化-NC2’ )銥(III)及參(1-苯基-1H-吲唑化-NC2’ )銥(III)。
參-C,N-環金屬化磷光材料亦包括根據式1之化合物,其中單陰離子性二齒合配位體X-Y為另一種C,N-環金屬化配位體。實例包括雙(1-苯基異喹啉化-N,C2’ )(2-苯基吡啶化-N,C2’ )銥(III)、雙(2-苯基吡啶化-N,C2’ )(1-苯基異喹啉化-N,C2’ )銥(III)、雙(1-苯基異喹啉化-N,C2’ )(2-苯基-5-甲基-吡啶化-N,C2’ )銥(III)、雙(1-苯基異喹啉化-N,C2’ )(2-苯基-4-甲基-吡啶化-N,C2’ )銥(III)及雙(1-苯基異喹啉化-N,C2’ )(2-苯基-3-甲基-吡啶化-N,C2’ )銥(III)。
一些參-C,N-環金屬化銥錯合物之結構式係示於下文。
根據式PDF-11之適當磷光材料,除了C,N-環金屬化配位體以外,亦可含有不為C,N-環金屬化之單陰離子性二齒合配位體X-Y。常見實例為β-二酮酸鹽,譬如乙醯基丙酮酸鹽,與Schiff氏鹼,譬如吡啶羧酸鹽。此種根據式1之混合配位體錯合物之實例包括雙(2-苯基吡啶化-N,C2’ )銥(III)(乙醯基丙酮酸鹽)、雙(2-(2'-苯并噻吩基)吡啶化-NC3’ )銥(III)(乙醯基丙酮酸鹽)及雙(2-(4',6'-二氟苯基)-吡啶化-N,C2’ )銥(III)(吡啶羧酸鹽)。
根據式PDF-1之其他重要磷光材料包括C,N-環金屬化Pt(II)錯合物,譬如順式-雙(2-苯基吡啶化-N,C2’ )鉑(II)、順式-雙(2-(2'-噻吩基)吡啶化-N,C3’ )鉑(II)、順式-雙(2-(2'-噻吩基)喹啉化-N,C5’ )鉑(II)或(2-(4',6'-二氟苯基)吡啶化-N,C2’ )鉑(II)(乙醯基丙酮酸鹽)。
除了以式PDF-1表示之二齒合C,N-環金屬化錯合物以外,許多適當磷光發射體係含有多齒合C,N-環金屬化配位體。具有三齒合配位體之磷光發射體係揭示於US6824895與US10/729238及其中之參考資料內,以其全文併於本文供參考。具有四齒合配位體之磷光發射體係藉由下列化學式描述: 其中M為Pt或Pd;R1 -R7 表示氫或獨立經選擇之取代基,其條件是R1 與R2 、R2 與R3 、R3 與R4 、R4 與R5 、R5 與R6 及R6 與R7 可接合以形成環基;R8 -R14 表示氫或獨立經選擇之取代基,其條件是R8 與R9 、R9 與R10 、R10 與R11 、R11 與R12 、R12 與R13 及R13 與R14 可接合以形成環基;E表示橋接基團,選自下列: 其中R與R'表示氫或獨立經選擇之取代基,其條件是R與R'可合併以形成環基。
於一項具體實施例中,四齒合C,N-環金屬化磷光發射體係以下式表示: 其中R1 -R7 表示氫或獨立經選擇之取代基,其條件是R1 與R2 、R2 與R3 、R3 與R4 、R4 與R5 、R5 與R6 及R6 與R7 可合併以形成環基;R8 -R14 表示氫或獨立經選擇之取代基,其條件是R8 與R9 、R9 與R10 、R10 與R11 、R11 與R12 、R12 與R13 及R13 與R14 可合併以形成環基;Z1 -Z5 表示氫或獨立經選擇之取代基,其條件是Z1 與Z2 、Z2 與Z3 、Z3 與Z4 及Z4 與Z5 可合併以形成環基。
具有四齒合C,N-環金屬化配位體之磷光發射體之實例包括下文表示之(PD-16)至(PD-18)。
根據式(PDF-1)至(PDF-4)之C,N-環金屬化磷光材料之發射波長(顏色),係主要藉由錯合物之最低能量光學轉變,且因此藉由C,N-環金屬化配位體之選擇而支配。例如,2-苯基-吡啶化-N,C2’ 錯合物典型上為綠色發射,然而1-苯基-異喹啉醇化-N,C2’ 錯合物典型上為紅色發射。在具有超過一種C,N-環金屬化配位體之錯合物之情況中,發射將為具有最長波長發射性質之配位體之發射。發射波長可藉由取代基對C,N-環金屬化配位體之作用而進一步被位移。例如,供電子基在環A上之適當位置處,或拉電子基在環B上之取代,係傾向於使相對於未經取代之C,N-環金屬化配位錯合物之發射藍色位移。在具有較具拉電子性質之式(PDF-1)中選擇單陰離子性二齒合配位體X,Y,係傾向於使C,N-環金屬化配位錯合物之發射藍色位移。在環A上具有拉電子性質,及在環B上具有拉電子取代基之具有兩種單陰離子性二齒合配位體之錯合物,其實例包括雙(2-(4',6'-二氟苯基)-吡啶化-N,C2’ )銥(III)(吡啶羧酸鹽);雙(2-(5'-(4"-三氟甲基苯基)-4',6'-二氟苯基)-吡啶化-N,C2’ )銥(III)(吡啶羧酸鹽);雙(2-(5'-苯基-4',6'-二氟苯基)-吡啶化-N,C2’ )銥(III)(吡啶羧酸鹽);雙(2-(5'-氰基-4',6'-二氟苯基)-吡啶化-N,C2’ )銥(III)(吡啶羧酸鹽);雙(2-(4',6'-二氟苯基)-吡啶化-N,C2’ )銥(III)(肆(1-吡唑基)硼酸鹽);雙(2-(4',6'-二氟苯基)-吡啶化-N,C2’ )(2-((3-三氟甲基)-1H-吡唑-5-基)-吡啶化-N,N')銥(III);雙(2-(4',6'-二氟苯基)-4-甲基吡啶化-N,C2’ )(2-((3-三氟甲基)-1H-吡唑-5-基)-吡啶化-N,N')銥(III);及雙(2-(4',6'-二氟苯基)-4-甲氧基吡啶化-N,C2’ )(2-((3-三氟甲基)-1H-吡唑-5-基)吡啶化-N,N')銥(III)。
在根據式(PDF-1)之磷光材料中之中心金屬原子可為Rh、Ir、Pd或Pt。較佳金屬原子為Ir與Pt,因為根據一般性地以第三過渡系列中之元素所獲得之較強旋轉軌道偶合交互作用,此等係傾向於獲得較高磷光量子效率。
未涉及C,N-環金屬化配位體之其他磷光材料係為已知。Pt(II)、Ir(I)及Rh(I)與順丁烯二腈二硫羥酸鹽之磷光錯合物已被報告(C.E.Johnson等人,J.Am.Chem.Soc.,105 ,1795-1802(1983))。亦已知Re(I)三羰基二亞胺錯合物為高度地磷光性(M.Wrighton與D.L.Morse,J.Am.Chem.Soc.,96 ,998-1003(1974);D.J.Stufkens,Comments Inorg.Chem.,13 ,359-385(1992);V.W.W.Yam,Chem.Commun.,2001 ,789-796))。含有包含氰基配位體與聯吡啶或啡啉配位體之配位體組合之Os(II)錯合物,亦已被証實於聚合體OLED中(Y.Ma等人,合成金屬,94 ,245-248(1998))。
卟啉錯合物,譬如2,3,7,8,12,13,17,18-八乙基-21H,23H-卟吩鉑(II),亦為有用之磷光材料。
有用磷光材料之又其他實例包括三價鑭系元素之配位錯合物,譬如Tb3+ 與Eu3+ (J.Kido等人,Chem Lett.,657(1990);J Alloys and Compounds,192 ,30-33(1993);Jpn J Appl Phys,35 ,L394-6(1996)及Appl.Phys.Lett .,65 ,2124(1994))。
關於適當磷光材料之其他資訊,可參閱US6303238,WO00/57676,WO00/70655,WO01/41512,US2002/0182441,US2003/0017361,US2003/0072964,US6413656,US6687266,US2004/0086743,US2004/0121184,US2003/0059646,US2003/0054198,EP1239526,EP1238981,EP1244155,US2002/0100906,US2003/0068526,US2003/0068535,JP2003073387,JP2003/073388,US6677060,US2003/0235712,US2004/0013905,US6733905,US6780528,US2003/0040627,JP2003059667,JP2003073665,US2002/0121638,EP1371708,US2003/010877,WO03/040256,US2003/0096138,US2003/0173896,US6670645,US2004/0068132,WO2004/015025,US2004/0072018,US2002/0134984,WO03/079737,WO2004/020448,WO03/091355,US10/729402,US10/729712,US10/729738,US10/729238,US10/729246,US10/729207及US10/729263。
阻斷層 除了適當主體與輸送材料以外,採用磷光材料之OLED裝置經常需要至少一個激發子或空穴阻斷層,以幫助限制激發子或電子-空穴重組事件至包含主體與磷光材料之發光層。於一項具體實施例中,此種阻斷層110 係被置於電子輸送層與發光層之間-參閱圖1。於此情況中,阻斷層之電離電位,應致使對於從發光層進入電子輸送層中之空穴潛移有一個能量障壁,同時電子親和力應致使電子立即從電子輸送層通入發光層中。進一步想要但並非絕對需要的是,阻斷材料之三重態能量應大於磷光材料。適當空穴阻斷材料係描述於US20020015859、WO 00/70655及WO 01/93642中。可使用材料之兩種實例為浴銅靈(bathocuproine)(BCP)與雙(2-甲基-8-喹啉醇化)(4-苯基酚基)鋁(III)(BAlQ或1)。亦已知BAlQ以外之金屬錯合物會阻斷空穴與激發子,如在US 20030068528中所述者。US 20030175553係描述fac-參(1-苯基吡唑化-N,C2)銥(III)(Irppz)之使用於電子/激發子阻斷層中。
電子輸送層(ETL) 經沉積在陰極與發光層間之電子輸送層中之電子輸送材料,可與電子輸送共主體材料相同或不同。電子輸送層可包含超過一種電子輸送化合物,以摻合物沉積,或被分隔成個別層。
供使用於建構有機EL裝置之電子輸送層之較佳可形成薄膜材料,係為金屬螯合之類8-羥基喹啉化合物,包括8-羥基喹啉本身(亦常被稱為8-喹啉醇或8-羥喹啉)之螯合物。此種化合物有助於注入與輸送電子,顯示高程度之性能,且容易地製造,呈薄膜形式。意欲涵蓋在內之類8-羥基喹啉化合物之舉例係為滿足下文結構式(ET1)者: 其中M表示金屬;n為整數1至4;及Z於各存在處係獨立表示完成具有至少兩個稠合芳族環之核之原子。
自前述,顯而易見該金屬可為單價、二價、三價或四價金屬。該金屬可為例如鹼金屬,譬如鋰、鈉或鉀;鹼土金屬,譬如鈹、鎂或鈣;土金屬,譬如鋁或鎵,或過渡金屬,譬如鋅或鋯。一般而言,已知可使用之螯合金屬之任何單價、二價、三價或四價金屬,均可採用。
Z係完成含有至少兩個稠合芳族環之雜環核,其中至少一個為唑或環。其他環,包括脂族與芳族環兩者,若需要可與兩個所需要之環稠合。為避免增加分子膨鬆性卻未改良功能,環原子之數目經常被保持在18或較少之下。
有用經螯合類8-羥基喹啉化合物之說明例係為下列:CO-1:參8-羥基喹啉鋁[別名,參(8-喹啉醇化)鋁(III);Alq];CO-2:雙8-羥基喹啉鎂[別名,雙(8-喹啉醇化)鎂(II)];CO-3:雙[苯并{f}-8-喹啉醇化]鋅(II);CO-4:雙(2-甲基-8-喹啉醇化)鋁(III)-μ-酮基-雙(2-甲基-8-喹啉醇化)鋁(III);CO-5:參8-羥基喹啉銦[別名,參(8-喹啉醇化)銦];CO-6:參(5-甲基-8-羥基喹啉)鋁[別名,參(5-甲基-8-喹啉醇化)鋁(III)];CO-7:8-羥基喹啉鋰[別名,(8-喹啉醇化)鋰(I)];CO-8:8-羥基喹啉鎵[別名,參(8-喹啉醇化)鎵(III)];CO-9:8-羥基喹啉鋯[別名,肆(8-喹啉醇化)鋯(IV)]。
適用於電子輸送層之其他電子輸送材料,包括各種丁二烯衍生物,如在US4356429中所揭示者,及各種雜環族螢光增白劑,如在US4539507中所述者。滿足結構式(ET2)之苯并氮唑亦為可用之電子輸送材料: 其中n為整數3至8;Z為O、NR或S;且R與R'係個別為氫;1至24個碳原子之烷基,例如丙基、第三-丁基、庚基等;5至20個碳原子之芳基或雜原子取代之芳基,例如苯基與萘基、呋喃基、噻吩基、吡啶基、喹啉基及其他雜環系統;或鹵基,譬如氯基、氟基;或完成稠合芳族環所必須之原子;及X為鏈結單位,包括碳、烷基、芳基、經取代之烷基或經取代之芳基,其係共軛地或未共軛地使多個苯并氮唑連接在一起。可使用苯并氮唑之一項實例為2,2',2"-(1,3,5-次苯基)參[1-苯基-1H-苯并咪唑](TPBI),揭示於Shi等人之US5766779中。
適用於電子輸送層之其他電子輸送材料可選自三類、***類、咪唑類、唑類、噻唑類及其衍生物、聚苯并雙唑類、吡啶與喹啉為基料之物質、含氰基物質、全氟化物質及蒽類。
相鄰陰極之電子輸送層或一部份電子輸送層可進一步以鹼金屬摻雜,以減少電子注入障壁,且因此降低裝置之驅動電壓。供此項目的使用之適當鹼金屬包括鋰與銫。
陰極 當光線發射僅僅經過陽極103觀看時,陰極可包含幾乎任何導電性材料。所要之材料具有良好可形成薄膜性質,以確保與其下方之有機層良好接觸,促進低電壓下之電子注入,及具有良好安定性。可使用之陰極材料經常含有低功函數金屬(<4.0 eV)或金屬合金。一種可使用之陰極材料包含Mg:Ag合金,其中銀之百分比係在1至20%之範圍內,如在US4885221中所述者。另一適當陰極材料種類包括雙層,包含與有機層接觸之薄電子注入層(EIL)(例如電子輸送層(ETL)),其係以較厚導電性金屬層罩蓋。此處,EIL較佳係包含低功函數金屬或金屬鹽,而若如此,則較厚罩蓋層不必具有低功函數。一種此類陰極包含薄LiF層,接著為較厚Al層,如在US5677572中所述者。以鹼金屬摻雜之ETL材料,例如Li-摻雜之Alq,如在US6013384中所揭示者,係為可使用EIL之另一項實例。其他可使用之陰極材料組合包括但不限於US5059861、US5059862及US6140763中所揭示者。
當光線發射係經過陰極觀看時,陰極必須是透明或接近透明。對此種應用而言,金屬必須是薄的,或吾人必須使用透明導電性氧化物,或此等材料之組合。光學上透明陰極已更詳細地被描述於US4885211,US5247190,JP3234963,US5703436,US5608287,US5837391,US5677572,US5776622,US5776623,US5714838,US5969474,US5739545,US5981306,US6137223,US6140763,US6172459,EP1076368,US6278236及US62843936中。陰極材料典型上係藉任何適當方法沉積,譬如蒸發、濺射或化學蒸氣沉積。當需要時,構圖可經過許多習知方法達成,包括但不限於經過罩蓋沉積、完整陰影遮蓋,如在US5276380與EP0732868中所述者,雷射燒蝕及選擇性化學蒸氣沉積。
其他常見有機層與裝置構造 於一些情況中,層109與111可視情況被陷縮成單層,其係充作支援光線發射與電子輸送兩者之功能。於此項技藝中亦已知可將發射摻雜劑添加至空穴輸送中,其可充作主體。可將多種摻雜劑添加至一或多層中,以產生發射白光之OLED,例如藉由合併藍色-與黃色-發射材料,藍綠色-與紅色-發射材料,或紅色-、綠色-及藍色-發射材料。發射白光裝置係描述於例如EP1187235,EP1182244,US5683823,US5503910,US5405709與US5283182,US20020186214,US20020025419,US20040009367及US6627333中。
堆疊裝置構造為另一項實例,如在US5703436與US6337492中所陳述者。
有機層之沉積 上文所提及之有機材料係適當地經過氣相方法譬如昇華作用沉積,但可自流體例如自具有選用黏合劑之溶劑沉積,以改良薄膜形成。若材料為聚合體,則溶劑沉積係為有用,但可使用其他方法,譬如濺射或自供體薄片之熱轉移。欲藉由昇華作用沉積之材料,可自昇華器"船形物"汽化,其經常包含石英或鉭材料,例如在US6237529中所述者,或可首先被塗覆於供體薄片上,然後較接近基板昇華。具有材料混合物之層可利用個別昇華器船形物,或可將材料預混合並自單一船形物或供體薄片塗覆。構圖沉積可使用陰影罩蓋、整合陰影罩蓋(US5294870)、空間上界定之熱染料從供體薄片之轉移(US5688551、US5851709與US6066357)及噴墨方法(US6066357)達成。
一種沉積材料之較佳方法係描述於US 2004/0255857與USSN 10/945,941中,其中係使用不同來源蒸發器,以蒸發各種材料。第二種較佳方法係涉及利用閃蒸,其中材料係經計量,沿著材料進料路徑,其中材料進料路徑係經溫度控制。此種較佳方法係描述於下列共同歸屬之專利申請案中:USSN 10/784,585;USSN 10/805,980;USSN 10/945,940;USSN 10/945,941;USSN 11/050,924;及USSN 11/050,934。使用此第二種方法,各材料可使用不同來源蒸發器蒸發,或固體材料可在使用相同來源蒸發器蒸發之前混合。
包覆 大部份OLED裝置係對水份或氧或兩者敏感,因此其通常係被密封在惰性大氣中,譬如氮或氬。在密封OLED裝置於惰性環境中時,保護性覆蓋層可使用有機黏著劑、金屬軟焊料或低熔解溫度玻璃連接。通常,吸氣劑或乾燥劑亦被提供於密封空間內。可用吸氣劑與乾燥劑包括鹼金屬與鹼土金屬、氧化鋁、鋁土礦、硫酸鈣、黏土、矽膠、沸石、鹼金屬氧化物、鹼土金屬氧化物、硫酸鹽或金屬鹵化物及過氯酸鹽。供包覆與乾燥之方法,包括但不限於US6226890中所述者。此外,障壁層,譬如SiOx 、鐵弗龍及交替無機/聚合體層,係為此項技藝中已知用於包覆。
光學最佳化 OLED裝置,若需要可採用各種習知光學作用,以加強其性質。這包括使層厚達最佳化,以產生最高透光率,提供介電反射鏡結構,以光吸收性電極置換反射電極,提供抗閃耀或抗反射塗層於顯示器上,提供偏光介質於顯示器上,或提供與顯示器之發光區域有功能性關係之有色、中性密度或顏色轉換濾光鏡。濾光鏡、偏光鏡及抗閃耀或抗反射塗層亦可被提供於覆蓋層上或作為覆蓋層之一部份。
OLED裝置可具有微孔穴結構。在一項有用實例中,金屬電極之一為基本上不透明且反射性;另一個為反射性且半透明。反射電極較佳係選自Au、Ag、Mg、Ca、Al或其合金。由於兩個反射性金屬電極之存在,故裝置具有微孔穴結構。在此結構中之強光學干擾會造成共振情況。接近共振波長之發射係經增強,且遠離共振波長之發射係被抑制。光路徑長度可藉由選擇有機層之厚度,或經由將透明光學隔體放置在電極之間作調整。例如,OLED裝置可具有ITO隔體層,置於反射陽極與有機EL介質之間,具有半透明陰極在有機EL介質上。
實例
2H-1-苯并哌喃-2-酮,3-(2-吡啶基(3-(2-吡啶基)香豆素或pcm)之製備 :將鄰-羥基羰基苯(40毫莫耳)與2-吡啶基乙腈(40毫莫耳)添加至NaOH水溶液(0.05N,200毫升)中。將混合物在90℃下激烈攪拌3.5小時。於冷卻後,將固體過濾,以冷水洗滌,並乾燥。使粗製化合物自乙醇藉結晶純化。產率:92% MS:m/z計算值223;實測值224[M+1].
Ir(3-吡啶基香豆素) 2 (acac)(Ir(pcm)2 acac)(化合物-1)之合成 :(pcm)2 Ir(μ-Cl)2 Ir(pcm)2 之環金屬化Ir(III)μ-氯-橋接二聚體係根據Nonoyama途徑合成,其方式是使IrCl3 .nH2 O與2-2.5當量3-吡啶基香豆素,在2-乙氧基乙醇與水之3:1混合物中回流。將氯橋接之二聚體複合物(0.08毫莫耳)、0.2毫莫耳乙醯丙酮及85-90毫克碳酸鈉於二氯乙烷中,在惰性大氣下加熱至回流,歷經12-15小時。於冷卻後,將混合物以水萃取,以MgSO4 脫水乾燥,並濃縮。使粗產物於矽膠管柱上,以二氯甲烷,藉急驟式層析純化,而產生85%純Ir(pcm)2 acac。MS:m/z計算值736;實測值737[M+1].
mer-Ir(pcm) 3 (INV-3)之合成 :將(pcm)2 Ir(μ-Cl)2 Ir(pcm)2 (3毫莫耳)、2.5當量配位體及5-10當量碳酸鈉於2-乙氧基乙醇中,在惰性大氣下加熱至回流過夜。使混合物冷卻至室溫後,添加蒸餾水;將所形成之沉澱物過濾,再以兩份蒸餾水洗滌,並風乾。使粗產物於矽膠管柱上,以二氯甲烷,藉急驟式層析純化,並自二氯甲烷/甲醇混合物再結晶,而產生72%純mer-Ir(pcm)3 。MS:m/z計算值859;實測值860[M+1].
mer-Ir(2-苯基吡啶基) 2 (3-吡啶基香豆素)(mer-Ir(ppy)2 pcm)之合成 :將(ppy)2 Ir(μ-Cl)2 Ir(ppy)2 (2毫莫耳)、2.5當量配位體及5-10當量碳酸鈉於2-乙氧基乙醇中,在惰性大氣下加熱至回流過夜。使混合物冷卻至室溫後,添加蒸餾水;將所形成之沉澱物過濾,再以兩份蒸餾水洗滌,並風乾。使粗產物於矽膠管柱上,以二氯甲烷,藉急驟式層析純化,並自二氯甲烷/甲醇混合物再結晶,而產生72%純mer-Ir(ppy)2 pcm。MS:m/z計算值722;實測值723[M+1].
子午線銥錯合物mer-Ir(ppy) 2 (pcm)在密封系統中之異構化作用 :將mer-Ir(1-piq)2 (ppy)(5克,mer/fac比例>99:1)之試樣放置在小安瓿瓶中。將安瓿瓶在高真空下密封,並放置在烘箱中。將烘箱之溫度設定為320℃。於16小時後,將安瓿瓶取出,並冷卻至室溫,試樣之mer/fac比例係藉HPLC測定為14:66(藉由面積度量)。此外,係形成具有稍微較短滯留時間(12面積%)之新穎化合物。產物分離係於矽膠管柱上,以二氯甲烷中5%甲醇,藉急驟式層析經過純化達成。
fac-Ir(ppy) 2 (pcm)(INV-2) (2.5克)MS:m/z計算值722;實測值723[M+1].
fac-Ir(pcm) 2 (ppy)(INV-1) (0.6克)MS:m/z計算值791;實測值792[M+1].
實例1-1至1-6
滿足本發明要求條件之EL裝置(實例1-1至1-6)係以下述方式建構:1.將已塗覆大約25毫微米銦-氧化錫(ITO)層作為陽極之玻璃基材,相繼地在市售清潔劑中超音波處理,於去離子水中沖洗,在甲苯蒸氣中脫脂,及曝露至氧電漿,歷經約1分鐘。
2.於ITO上,藉由CHF3 之電漿輔助沉積,按US 6,208,075中所述,沉積1毫微米氟碳(CFx )空穴注入層(HIL)。
3.接著,真空沉積N,N'-二-1-萘基-N,N'-二苯基-4,4'-二胺基聯苯(NPB)之空穴輸送層(HTL),至厚度為75毫微米(對於實例1-1至1-4)與95毫微米(對於實例1-5與1-6)。
4.然後,包含CBP與INV-1之混合物作為磷光發射體之40毫微米發光層(LEL)係被真空沉積至空穴輸送層上。磷光發射體之重量%係示於表1中。
5.具有厚度10毫微米之BAlq之空穴阻斷層係被真空沉積於LEL上。
6.具有厚度40毫微米之Alq之電子輸送層(ETL)係被真空沉積於空穴阻斷層上。
7. 0.5毫微米氟化鋰係被真空沉積至ETL上,接著為100毫微米鋁層,以形成雙層陰極。
上述順序係完成EL裝置之沉積。因此,實例1-1具有下列層結構:ITO| CFx (1毫微米)| NPB(75毫微米)| CBP+4重量%INV-1(40毫微米)| BAlq(10毫微米)| Alq(40毫微米)| LiF| Al。然後,將此裝置與乾燥劑一起,不透氣地包裝在乾燥手套箱中,供保護以隔離周圍環境。
將如此形成之單元在操作電流密度為1 mA/平方公分下測試效率與顏色,並將結果報告於表1中,以發光率(cd/A)、電壓(V)、功率效率(lm/W)及CIE(國際de l'Eclairage委員會)座標之形式。亦測試裝置之操作壽命。其係在20mA/平方公分下,於室溫下,以在100 Hz下使用-14V逆偏壓之AC驅動操作。對T60 之壽命係示於表1中,為裝置在光輸出降至其最初光輸出之60%前所操作之小時數。
實例2-1至2-2
滿足本發明要求條件之EL裝置(實例2-1與2-2)係以下述方式建構:1.將已塗覆大約25毫微米銦-氧化錫(ITO)層作為陽極之玻璃基材,相繼地在市售清潔劑中超音波處理,於去離子水中沖洗,在甲苯蒸氣中脫脂,及曝露至氧電漿,歷經約1分鐘。
2.於ITO上,藉由CHF3 之電漿輔助沉積,按US6208075中所述,沉積1毫微米氟碳(CFx )空穴注入層(HIL)。
3.接著,真空沉積N,N'-二-1-萘基-N,N'-二苯基-4,4'-二胺基聯苯(NPB)之空穴輸送層(HTL),至厚度為95毫微米。
4. TCTA之激發子阻斷層(EBL)係被真空沉積於HTL上,至厚度為10毫微米。
5.然後,包含TPBI、TCTA及INV-1之混合物作為磷光發射體之35毫微米發光層(LEL)係被真空沉積至激發子阻斷層上。該層包含30重量% TCTA,磷光發射體之量係示於表2中,且該層之其餘部份為TPBI。
5.具有厚度10毫微米之TPBI之空穴阻斷層係被真空沉積於LEL上。
6.具有厚度40毫微米之Alq之電子輸送層(ETL)係被真空沉積於空穴阻斷層上。
7.0.5毫微米氟化鋰係被真空沉積至ETL上,接著為100毫微米鋁層,以形成雙層陰極。
上述順序係完成EL裝置之沉積。因此,實例2-1具有下列層結構:ITO| CFx (1毫微米)| NPB(95毫微米)| TCTA(10毫微米)| TCTA(30%)+TPBI(62%)+INV-1(8%)(35毫微米)| TPBI(10毫微米)| Alq(40毫微米)| LiF| Al。然後,將此裝置與乾燥劑一起,不透氣地包裝在乾燥手套箱中,供保護以隔離周圍環境。
將如此形成之單元在操作電流密度為1 mA/平方公分下測試效率與顏色,且結果係報告於表2中,以發光率(cd/A)、電壓(V)、功率效率(lm/W)及CIE(國際de l'Eclairage委員會)座標之形式。
實例3-1至3-6
滿足本發明要求條件之EL裝置(實例3-1與3-6)係以下述方式建構:1.將已塗覆大約25毫微米銦-氧化錫(ITO)層作為陽極之玻璃基材,相繼地在市售清潔劑中超音波處理,於去離子水中沖洗,在甲苯蒸氣中脫脂,及曝露至氧電漿,歷經約1分鐘。
2.於ITO上,藉由CHF3 之電漿輔助沉積,按US6208075中所述,沉積1毫微米氟碳(CFx )空穴注入層(HIL)。
3.接著,真空沉積N,N'-二-1-萘基-N,N'-二苯基-4,4'-二胺基聯苯(NPB)之空穴輸送層(HTL),至厚度為75毫微米(對於實例3-1至3-4)與95毫微米(對於實例3-5與3-6)。
4.然後,包含CBP與INV-2之混合物作為磷光發射體之40毫微米發光層(LEL)係被真空沉積至空穴輸送層上。磷光發射體之重量%係示於表3中。
5.具有厚度10毫微米之BAlq之空穴阻斷層係被真空沉積於LEL上。
6.具有厚度40毫微米之Alq之電子輸送層(ETL)係被真空沉積於空穴阻斷層上。
7. 0.5毫微米氟化鋰係被真空沉積至ETL上,接著為100毫微米鋁層,以形成雙層陰極。
上述順序係完成EL裝置之沉積。因此,實例3-1具有下列層結構:ITO| CFx (1毫微米)| NPB(75毫微米)| CBP+4重量% INV-2(40毫微米)| BAlq(10毫微米)| Alq(40毫微米)| LiF| Al。然後,將此裝置與乾燥劑一起,不透氣地包裝在乾燥手套箱中,供保護以隔離周圍環境。
將如此形成之單元在操作電流密度為1 mA/平方公分下測試效率與顏色,且結果係報告於表3中,以發光率(cd/A)、電壓(V)、功率效率(lm/W)及CIE(國際de l'Eclairage委員會)座標之形式。亦測試裝置操作壽命。其係在20 mA/平方公分下,於室溫下,以在100 Hz下使用-14V逆偏壓之AC驅動操作。對T50 之壽命係示於表3中,為裝置在光輸出降至其最初光輸出之50%前所操作之小時數。
實例4-1至4-2
滿足本發明要求條件之EL裝置(實例4-1與4-2)係以下述方式建構:1.將已塗覆大約25毫微米銦-氧化錫(ITO)層作為陽極之玻璃基材,相繼地在市售清潔劑中超音波處理,於去離子水中沖洗,在甲苯蒸氣中脫脂,及曝露至氧電漿,歷經約1分鐘。
2.於ITO上,藉由CHF3 之電漿輔助沉積,按US6208075中所述,沉積1毫微米氟碳(CFx )空穴注入層(HIL)。
3.接著,真空沉積N,N'-二-1-萘基-N,N'-二苯基-4,4'-二胺基聯苯(NPB)之空穴輸送層(HTL),至厚度為95毫微米。
4. TCTA之激發子阻斷層(EBL)係被真空沉積於HTL上,至厚度為10毫微米。
5.然後,包含TPBI、TCTA及INV-2之混合物作為磷光發射體之35毫微米發光層(LEL)係被真空沉積至激發子阻斷層上。該層包含30重量% TCTA,磷光發射體之量係示於表4中,且該層之其餘部份為TPBI。
5.具有厚度10毫微米之TPBI之空穴阻斷層係被真空沉積於LEL上。
6.具有厚度40毫微米之Alq之電子輸送層(ETL)係被真空沉積於空穴阻斷層上。
7. 0.5毫微米氟化鋰係被真空沉積至ETL上,接著為100毫微米鋁層,以形成雙層陰極。
上述順序係完成EL裝置之沉積。因此,實例4-1具有下列層結構:ITO| CFx (1毫微米)| NPB(95毫微米)| TCTA(10毫微米)TCTA(30%)+TPBI(62%)+INV-2(8%)(35毫微米)| TPBI(10毫微米)| Alq(40毫微米)| LiF| Al。然後,將此裝置與乾燥劑一起,不透氣地包裝在乾燥手套箱中,供保護以隔離周圍環境。
將如此形成之單元在操作電流密度為1 mA/平方公分下測試效率與顏色,且結果係報告於表4中,以發光率(cd/A)、電壓(V)、功率效率(lm/W)及CIE(國際de l'Eclairage委員會)座標之形式。
實例5-1至5-5
滿足本發明要求條件之EL裝置(實例5-1至5-5)係以下述方式建構:1.將已塗覆大約25毫微米銦-氧化錫(ITO)層作為陽極之玻璃基材,相繼地在市售清潔劑中超音波處理,於去離子水中沖洗,在甲苯蒸氣中脫脂,及曝露至氧電漿,歷經約1分鐘。
2.於ITO上,藉由CHF3 之電漿輔助沉積,按US6208075中所述,沉積1毫微米氟碳(CFx )空穴注入層(HIL)。
3.接著,真空沉積N,N'-二-1-萘基-N,N'-二苯基-4,4'-二胺基聯苯(NPB)之空穴輸送層(HTL),至厚度為75毫微米(對於實例5-1至5-4)與95毫微米(對於實例5-5)。
4.然後,包含CBP與INV-3之混合物作為磷光發射體之40毫微米發光層(LEL)係被真空沉積至空穴輸送層上。磷光發射體之重量%係示於表5中。
5.具有厚度10毫微米之BAlq之空穴阻斷層係被真空沉積於LEL上。
6.具有厚度40毫微米之Alq之電子輸送層(ETL)係被真空沉積於空穴阻斷層上。
7. 0.5毫微米氟化鋰係被真空沉積至ETL上,接著為100毫微米鋁層,以形成雙層陰極。
上述順序係完成EL裝置之沉積。因此,實例5-1具有下列層結構:ITO| CFx (1毫微米)| NPB(75毫微米)| CBP+4重量%INV-3(40毫微米)| BAlq(10毫微米)| Alq(40毫微米)| LiF| Al。然後,將此裝置與乾燥劑一起,不透氣地包裝在乾燥手套箱中,供保護以隔離周圍環境。
將如此形成之單元在操作電流密度為1 mA/平方公分下測試效率與顏色,且結果係報告於表5中,以發光率(cd/A)、電壓(V)、功率效率(lm/W)及CIE(國際de l'Eclairage委員會)座標之形式。亦測試裝置操作壽命。其係在20 mA/平方公分下,於室溫下,以在100 Hz下使用-14V逆偏壓之AC驅動操作。對T50 之壽命係示於表5中,為裝置在光輸出降至其最初光輸出之50%前所操作之小時數。
實例6-1至6-2
滿足本發明要求條件之EL裝置(實例6-1與6-2)係以下述方式建構:1.將已塗覆大約25毫微米銦-氧化錫(ITO)層作為陽極之玻璃基材,相繼地在市售清潔劑中超音波處理,於去離子水中沖洗,在甲苯蒸氣中脫脂,及曝露至氧電漿,歷經約1分鐘。
2.於ITO上,藉由CHF3 之電漿輔助沉積,按US6208075中所述,沉積1毫微米氟碳(CFx )空穴注入層(HIL)。
3.接著,真空沉積N,N'-二-1-萘基-N,N'-二苯基-4,4'-二胺基聯苯(NPB)之空穴輸送層(HTL),至厚度為95毫微米。
4. TCTA之激發子阻斷層(EBL)係被真空沉積於HTL上,至厚度為10毫微米。
5.然後,包含TPBI、TCTA及INV-3之混合物作為磷光發射體之35毫微米發光層(LEL)係被真空沉積至激發子阻斷層上。該層包含30重量% TCTA,磷光發射體之量係示於表6中,且該層之其餘部份為TPBI。
5.具有厚度10毫微米之TPBI之空穴阻斷層係被真空沉積於LEL上。
6.具有厚度40毫微米之Alq之電子輸送層(ETL)係被真空沉積於空穴阻斷層上。
7. 0.5毫微米氟化鋰係被真空沉積至ETL上,接著為100毫微米鋁層,以形成雙層陰極。
上述順序係完成EL裝置之沉積。因此,實例6-1具有下列層結構:ITO| CFx (1毫微米)| NPB(95毫微米)| TCTA(10毫微米)| TCTA(30%)+TPBI(62%)+INV-3(8%)(35毫微米)| TPBI(10毫微米)| Alq(40毫微米)| LiF| Al。然後,將此裝置與乾燥劑一起,不透氣地包裝在乾燥手套箱中,供保護以隔離周圍環境。
將如此形成之單元在操作電流密度為1 mA/平方公分下測試效率與顏色,且結果係報告於表6中,以發光率(cd/A)、電壓(V)、功率效率(lm/W)及CIE(國際de l'Eclairage委員會)座標之形式。
實例7-1
未滿足本發明要求條件之EL裝置(實例7-1)係以下述方式建構:1.將已塗覆大約25毫微米銦-氧化錫(ITO)層作為陽極之玻璃基材,相繼地在市售清潔劑中超音波處理,於去離子水中沖洗,在甲苯蒸氣中脫脂,及曝露至氧電漿,歷經約1分鐘。
2.於ITO上,藉由CHF3 之電漿輔助沉積,按US6208075中所述,沉積1毫微米氟碳(CFx )空穴注入層(HIL)。
3.接著,真空沉積N,N'-二-1-萘基-N,N'-二苯基-4,4'-二胺基聯苯(NPB)之空穴輸送層(HTL),至厚度為95毫微米(對於實例7-1)。
4.然後,包含CBP與6重量% Ir(ppy)3 之混合物作為磷光發射體之35毫微米發光層(LEL)係被真空沉積至空穴輸送層上。
5.具有厚度10毫微米之BAlq之空穴阻斷層係被真空沉積於LEL上。
6.具有厚度40毫微米之Alq之電子輸送層(ETL)係被真空沉積於空穴阻斷層上。
7. 0.5毫微米氟化鋰係被真空沉積至ETL上,接著為100毫微米鋁層,以形成雙層陰極。
上述順序係完成EL裝置之沉積。因此,實例7-1具有下列層結構:ITO| CFx (1毫微米)| NPB(95毫微米)| CBP+6重量% Ir(ppy)3 (35毫微米)| BAlq(10毫微米)| Alq(40毫微米)| LiF| Al。然後,將此裝置與乾燥劑一起,不透氣地包裝在乾燥手套箱中,供保護以隔離周圍環境。
將如此形成之單元在操作電流密度為1 mA/平方公分下測試效率與顏色,且結果係報告於表7中,以發光率(cd/A)、電壓(V)、功率效率(lm/W)及CIE(國際de l'Eclairage委員會)座標之形式。亦測試裝置操作壽命。其係在20 mA/平方公分下,於室溫下,以在100 Hz下使用-14V逆偏壓之AC驅動操作。對T50 之壽命係示於表7中,為裝置在光輸出降至其最初光輸出之50%前所操作之小時數。
實例8-1
未滿足本發明要求條件之EL裝置(實例8-1)係以下述方式建構:1.將已塗覆大約25毫微米銦-氧化錫(ITO)層作為陽極之玻璃基材,相繼地在市售清潔劑中超音波處理,於去離子水中沖洗,在甲苯蒸氣中脫脂,及曝露至氧電漿,歷經約1分鐘。
2.於ITO上,藉由CHF3 之電漿輔助沉積,按US6208075中所述,沉積1毫微米氟碳(CFx )空穴注入層(HIL)。
3.接著,真空沉積N,N'-二-1-萘基-N,N'-二苯基-4,4'-二胺基聯苯(NPB)之空穴輸送層(HTL),至厚度為95毫微米。
4. TCTA之激發子阻斷層(EBL)係被真空沉積於HTL上,至厚度為10毫微米。
5.然後,包含TPBI、TCTA及Ir(ppy)3 之混合物作為磷光發射體之35毫微米發光層(LEL)係被真空沉積至激發子阻斷層上。該層包含30重量% TCTA、6重量% Ir(ppy)3 ,且該層之其餘部份為TPBI。
5.具有厚度10毫微米之TPBI之空穴阻斷層係被真空沉積於LEL上。
6.具有厚度40毫微米之Alq之電子輸送層(ETL)係被真空沉積於空穴阻斷層上。
7. 0.5毫微米氟化鋰係被真空沉積至ETL上,接著為100毫微米鋁層,以形成雙層陰極。
上述順序係完成EL裝置之沉積。因此,實例8-1具有下列層結構:ITO| CFx (1毫微米)| NPB(95毫微米)| TCTA(10毫微米)TCTA(30%)+TPBI(62%)+Ir(ppy)3 (6%)(35毫微米)| TPBI(10毫微米)| Alq(40毫微米)| LiF| Al。然後,將此裝置與乾燥劑一起,不透氣地包裝在乾燥手套箱中,供保護以隔離周圍環境。
將如此形成之單元在操作電流密度為1 mA/平方公分下測試效率與顏色,且結果係報告於表8中,以發光率(cd/A)、電壓(V)、功率效率(lm/W)及CIE(國際de l'Eclairage委員會)座標之形式。
比較實例9-1
未滿足本發明要求條件之EL裝置(實例9-1)係以下述方式建構:1.將已塗覆大約25毫微米銦-氧化錫(ITO)層作為陽極之玻璃基材,相繼地在市售清潔劑中超音波處理,於去離子水中沖洗,在甲苯蒸氣中脫脂,及曝露至氧電漿,歷經約1分鐘。
2.於ITO上,藉由CHF3 之電漿輔助沉積,按US6208075中所述,沉積1毫微米氟碳(CFx )空穴注入層(HIL)。
3.接著,真空沉積N,N'-二-1-萘基-N,N'-二苯基-4,4'-二胺基聯苯(NPB)之空穴輸送層(HTL),至厚度為40毫微米。
4.然後,包含CBP與8重量%化合物-1之混合物作為磷光發射體之40毫微米發光層(LEL)係被真空沉積至空穴輸送層上。
5.具有厚度10毫微米之BAlq之空穴阻斷層係被真空沉積於LEL上。
6.具有厚度40毫微米之Alq之電子輸送層(ETL)係被真空沉積於空穴阻斷層上。
7. 0.5毫微米氟化鋰係被真空沉積至ETL上,接著為100毫微米鋁層,以形成雙層陰極。
上述順序係完成EL裝置之沉積。因此,實例9-1具有下列層結構:ITO| CFx (1毫微米)| NPB(40毫微米)| CBP+8重量%化合物-1(40毫微米)| BAlq(10毫微米)| Alq(40毫微米)| LiF| Al。然後,將此裝置與乾燥劑一起,不透氣地包裝在乾燥手套箱中,供保護以隔離周圍環境。
將如此形成之單元在操作電流密度為1 mA/平方公分下測試效率與顏色,且結果係報告於表9中,以發光率(cd/A)、電壓(V)、功率效率(lm/W)及CIE(國際de l'Eclairage委員會)座標之形式。亦測試裝置操作壽命。其係在20 mA/平方公分下,於室溫下,以在100 Hz下使用-14V逆偏壓之AC驅動操作。對T50 之壽命係示於表9中,為裝置在光輸出降至其最初光輸出之50%前所操作之小時數。
比較實例9-1証實具有有機金屬配位體之有機金屬香豆素化合物係比具有非有機金屬配位體之有機金屬香豆素化合物有利。特定言之,電壓、發光率、功率效率、壽命;或所有上述均經改良。
比較實例10
含有香豆素以及非環金屬化配位體之磷光銥材料之第二個實例係被顯示為化合物-2。經度量之量子產量(QY)很低,在0.25下。當磷光材料具有低量子產量時,在OLED裝置中作為摻雜劑,並不預期會表現得良好。
6H-[2]苯并哌喃[4,3-b]吡啶-6-酮之製備 :於3-甲氧基-2-(1H)-吡啶酮(10毫莫耳)在10莫耳丙酮中之懸浮液內,添加K2 CO3 (20毫莫耳)與TBAB(1.0毫莫耳)。於室溫下攪拌30分鐘後,小心添加氯化2-溴基苯甲醯(10毫莫耳)。將混合物攪拌過夜。於濃反應混合物中,添加水,並將混合物以CH2 Cl2 萃取。將有機層以NH4 Cl水溶液洗滌,以MgSO4 脫水乾燥,並在真空下濃縮。使粗產物以己烷/醋酸乙酯(80/20),藉急驟式管柱層析純化,而得O-醯化作用產物。於上文製成之溴化物之回流溶液(1當量)中,添加(CH3 Si)3 SiH(1.5當量)與AIBN(0.05當量)。於2小時後,添加第二份AIBN(0.05當量),並使反應混合物再回流4-10小時。將濃反應混合物以BuCl研製,或藉急驟式層析進一步純化,而得環化作用產物(氮苯并異香豆素或abic)。MS:m/z計算值196;實測值197[M+1].
fac-Ir(氮苯并異香豆素) 2 (ppy)(fac-Ir(abic)2 ppy)(INV-21) 之合成:(abic)2 Ir(μ-Cl)2 Ir(abic)2 之環金屬化Ir(III)μ-氯-橋接二聚體係根據Nonoyama途徑合成,其方式是使IrCl3 .nH2 O以2-2.5當量氮苯并異香豆素,在2-乙氧基乙醇與水之3:1混合物中回流。將氯-橋接二聚體複合物(1克)與三氟甲烷磺酸銀(0.44克)及30毫升乙腈一起放置在100毫升圓底燒瓶中,並使混合物脫氣,然後在氮大氣下回流4小時。於冷卻後,將黃色溶液過濾,以移除不溶性物質,並在真空下移除溶劑。使所形成之固體乾燥,而得0.76克黃色產物。藉由質量光譜法分析,確認此物質為雙(乙腈)雙[(abic)2 ]銥(III)三氟甲烷磺酸鹽。
將雙(乙腈)雙[(abic)2 ]銥(III)三氟甲烷磺酸鹽與2-苯基吡啶(0.29毫升)及35毫升1,2-丙二醇一起放置在100毫升圓底燒瓶中,並使混合物脫氣,然後在氮大氣下回流12小時,於此段時間內橘色沉澱物出現。於冷卻後,藉過濾收集沉澱物,以乙醇洗滌,並乾燥,而得0.5克產物。藉由NMR、質量光譜法及高性能HPLC分析,確認此物質為高純度之fac-Ir(氮苯并異香豆素)2 (ppy)。MS:m/z計算值740;實測值741[M+1]。此化合物在CH2 Cl2 中之光致發光量子產量為40%,具有最大發射波長在544毫微米下。
fac-Ir(氮苯并異香豆素) 3 (INV-20)之合成 :(abic)2 Ir(μ-Cl)2 Ir(abic)2 之環金屬化Ir(III)μ-氯-橋接二聚體係根據Nonoyama途徑合成,其方式是使IrCl3 .nH2 O以2-2.5當量氮苯并異香豆素,在2-乙氧基乙醇與水之3:1混合物中回流。將氯-橋接二聚體複合物(0.9克)與三氟甲烷磺酸銀(0.40克)及30毫升乙腈一起放置在100毫升圓底燒瓶中,並使混合物脫氣,然後在氮大氣下回流4小時。於冷卻後,將黃色溶液過濾,以移除不溶性物質,並在真空下移除溶劑。使所形成之固體乾燥,而得0.56克黃色產物。藉由質量光譜法分析,確認此物質為雙(乙腈)雙[(abic)2 ]銥(III)三氟甲烷磺酸鹽。
將雙(乙腈)雙[(abic)2 ]銥(III)三氟甲烷磺酸鹽與氮苯并異香豆素(0.36克)及35毫升1,2-丙二醇一起放置在100毫升圓底燒瓶中,並使混合物脫氣,然後在氮大氣下回流12小時,於此段時間內橘色沉澱物出現。於冷卻後,藉過濾收集沉澱物,以乙醇洗滌,並乾燥,而得0.2克產物。藉由NMR、質量光譜法及高性能HPLC分析,確認此物質為高純度之fac-Ir(氮苯并異香豆素)3 。MS:m/z計算值781;實測值782[M+1]。此化合物在CH2 Cl2 中之光致發光量子產量為42%,具有最大發射波長在515毫微米下。
實例10-1至10-6
滿足本發明要求條件之EL裝置(實例10-1至10-6)係以下述方式建構:1.將已塗覆大約25毫微米銦-氧化錫(ITO)層作為陽極之玻璃基材,相繼地在市售清潔劑中超音波處理,於去離子水中沖洗,在甲苯蒸氣中脫脂,及曝露至氧電漿,歷經約1分鐘。
2.於ITO上,藉由CHF3 之電漿輔助沉積,按US 6,208,075中所述,沉積1毫微米氟碳(CFx )空穴注入層(HIL)。
3.接著,真空沉積N,N'-二-1-萘基-N,N'-二苯基-4,4'-二胺基聯苯(NPB)之空穴輸送層(HTL),至厚度為75毫微米(對於實例10-1至10-4)與95毫微米(對於實例10-5至10-6)。
4.然後,包含CBP與INV-21之混合物作為磷光發射體之40毫微米發光層(LEL)係被真空沉積至空穴輸送層上。磷光發射體之重量%係示於表10中。
5.具有厚度10毫微米之BAlq之空穴阻斷層係被真空沉積於LEL上。
6.具有厚度40毫微米之Alq之電子輸送層(ETL)係被真空沉積於空穴阻斷層上。
7. 0.5毫微米氟化鋰係被真空沉積至ETL上,接著為100毫微米鋁層,以形成雙層陰極。
上述順序係完成EL裝置之沉積。因此,實例10-1具有下列層結構:ITO| CFx (1毫微米)| NPB(75毫微米)| CBP+4重量% INV-21(40毫微米)| B Alq(10毫微米)| Alq(40毫微米)| LiF| Al。然後,將此裝置與乾燥劑一起,不透氣地包裝在乾燥手套箱中,供保護以隔離周圍環境。
將如此形成之單元在操作電流密度為1 mA/平方公分下測試效率與顏色,且結果係報告於表10中,以發光率(cd/A)、電壓(V)、功率效率(lm/W)及CIE(國際de l'Eclairage委員會)座標之形式。亦測試裝置操作壽命。其係在20 mA/平方公分下,於室溫下,以在100 Hz下使用-14V逆偏壓之AC驅動操作。對T60 之壽命係示於表10中,為裝置在光輸出降至其最初光輸出之60%前所操作之小時數。
實例11-1至11-2
滿足本發明要求條件之EL裝置(實例11-1與11-2)係以下述方式建構:1.將已塗覆大約25毫微米銦-氧化錫(ITO)層作為陽極之玻璃基材,相繼地在市售清潔劑中超音波處理,於去離子水中沖洗,在甲苯蒸氣中脫脂,及曝露至氧電漿,歷經約1分鐘。
2.於ITO上,藉由CHF3 之電漿輔助沉積,按US6208075中所述,沉積1毫微米氟碳(CFx )空穴注入層(HIL)。
3.接著,真空沉積N,N'-二-1-萘基-N,N'-二苯基-4,4'-二胺基聯苯(NPB)之空穴輸送層(HTL),至厚度為95毫微米。
4. TCTA之激發子阻斷層(EBL)係被真空沉積於HTL上,至厚度為10毫微米。
5.然後,包含TPBI、TCTA及INV-21之混合物作為磷光發射體之35毫微米發光層(LEL)係被真空沉積至激發子阻斷層上。該層包含30重量% TCTA,磷光發射體之量係示於表2中,且該層之其餘部份為TPBI。
5.具有厚度10毫微米之TPBI之空穴阻斷層係被真空沉積於LEL上。
6.具有厚度40毫微米之Alq之電子輸送層(ETL)係被真空沉積於空穴阻斷層上。
7. 0.5毫微米氟化鋰係被真空沉積至ETL上,接著為100毫微米鋁層,以形成雙層陰極。
上述順序係完成EL裝置之沉積。因此,實例11-1具有下列層結構:ITO| CFx (1毫微米)| NPB(95毫微米)| TCTA(10毫微米)| TCTA(30%)+TPBI(62%)+INV-21(8%)(35毫微米)| TPBI(10毫微米)| Alq(40毫微米)| LiF| Al。然後,將此裝置與乾燥劑一起,不透氣地包裝在乾燥手套箱中,供保護以隔離周圍環境。
將如此形成之單元在操作電流密度為1 mA/平方公分下測試效率與顏色,且結果係報告於表11中,以發光率(cd/A)、電壓(V)、功率效率(lm/W)及CIE(國際de l'Eclairage委員會)座標之形式。
實例12-1
未滿足本發明要求條件之EL裝置(實例12-1)係以下述方式建構:1.將已塗覆大約25毫微米銦-氧化錫(ITO)層作為陽極之玻璃基材,相繼地在市售清潔劑中超音波處理,於去離子水中沖洗,在甲苯蒸氣中脫脂,及曝露至氧電漿,歷經約1分鐘。
2.於ITO上,藉由CHF3 之電漿輔助沉積,按US6208075中所述,沉積1毫微米氟碳(CFx )空穴注入層(HIL)。
3.接著,真空沉積N,N'-二-1-萘基-N,N'-二苯基-4,4'-二胺基聯苯(NPB)之空穴輸送層(HTL),至厚度為95毫微米(對於實例12-1)。
4.然後,包含CBP與6重量% Ir(ppy)3 之混合物作為磷光發射體之35毫微米發光層(LEL)係被真空沉積至空穴輸送層上。
5.將具有厚度10毫微米之BAlq之空穴阻斷層真空沉積於LEL上。
6.具有厚度40毫微米之Alq之電子輸送層(ETL)係被真空沉積於空穴阻斷層上。
7. 0.5毫微米氟化鋰係被真空沉積至ETL上,接著為100毫微米鋁層,以形成雙層陰極。
上述順序係完成EL裝置之沉積。因此,實例12-1具有下列層結構:ITO| CFx (1毫微米)| NPB(95毫微米)| CBP+6重量%Ir(ppy)3 (35毫微米)| BAlq(10毫微米)| Alq(40毫微米)| LiF| Al。然後,將此裝置與乾燥劑一起,不透氣地包裝在乾燥手套箱中,供保護以隔離周圍環境。
將如此形成之單元在操作電流密度為1 mA/平方公分下測試效率與顏色,且結果係報告於表12中,以發光率(cd/A)、電壓(V)、功率效率(lm/W)及CIE(國際de l'Eclairage委員會)座標之形式。亦測試裝置操作壽命。其係在20 mA/平方公分下,於室溫下,以在100 Hz下使用-14V逆偏壓之AC驅動操作。對T50 之壽命係示於表3中,為裝置在光輸出降至其最初光輸出之50%前所操作之小時數。
以發明實例10-2相對於比較實例12-1之結果,係証實有機金屬香豆素化合物比未具有香豆素配位體之類似物質有利。特定言之,壽命係經改良,達大約6x。
本發明已特別參考其某些較佳具體實施例詳細描述,但應明瞭的是,變型與修正可在本發明之精神與範圍內達成。專利及其他前文所提及之出版物均併於本文供參考。
101...基材
103...陽極
105...空穴注入層(HIL)
107...空穴輸送層(HTL)
108...激發子阻斷層(EBL)
109...發光層(LEL)
110...空穴阻斷層(HBL)
111...電子輸送層(ETL)
113...陰極
150...電流/電壓來源
160...電導體
圖1係顯示其中可利用本發明之典型OLED裝置之示意橫截面。
101...基材
103...陽極
105...空穴注入層(HIL)
107...空穴輸送層(HTL)
108...激發子阻斷層(EBL)
109...發光層(LEL)
110...空穴阻斷層(HBL)
111...電子輸送層(ETL)
113...陰極
150...電流/電壓來源
160...電導體

Claims (10)

  1. 一種OLED裝置,其包含陰極、陽極,且於其間具有發光層,此層包含以式(III)表示之磷光發射體: 其中;各L係獨立表示環金屬化配位體;各R係獨立表示取代基,其條件是兩個相鄰R基團能夠形成環;m為整數0至2;q為整數1至3;且m+q之總和為3。
  2. 如請求項1之OLED裝置,其中以式(III)表示之磷光發射體係為表面異構物。
  3. 如請求項1之OLED裝置,其中磷光發射體係以式(IV)表示: 其中;各L係獨立表示環金屬化配位體;m為整數0至2;q為整數1至3;且m+q之總和為3。
  4. 如請求項1之OLED裝置,其中發光層係另外含有咔唑。
  5. 如請求項1之OLED裝置,其中發光層係另外含有以圖PHF-7表示之化合物 其中:M1 表示Al或Ga;各R2 -R7 係獨立表示氫或取代基;其條件是相鄰取代基R2 -R7 可合併以形成環基;且L為芳族取代基,其具有6至30個碳原子。
  6. 如請求項1之OLED裝置,其中發光層包含一或多種化合 物,選自包括:9,9'-[1,1'-聯苯基]-4,4'-二基雙-9H-咔唑(CBP);2,2',2"-(1,3,5-次苯基)參(1-苯基-1H-苯并咪唑)(TPBI)與4,4',4"-參(咔唑基)-三苯基胺(TCTA);4,4',4"-參[(3-甲基苯基)苯基胺基]三苯基胺(MTDATA);4,4',4"-參(N,N-二苯胺基)三苯基胺(TDATA);四苯基-對-苯二胺(TPPD);
  7. 一種OLED裝置,其包含陰極、陽極,且於其間具有發光層,此層包含以式(V)表示之磷光發射體: 其中;M為Ir或Pt;各L係獨立表示環金屬化配位體;各X係獨立表示為形成經取代或未經取代之環所必須之原子; 各R係獨立表示氫或取代基,其條件是兩個相鄰R基團能夠形成環;Y與Z各獨立為氧原子與羰基,以致當一個為羰基時,另一個為氧原子;p為整數2至4;m為整數0至2;且q為整數1至3。
  8. 如請求項7之OLED裝置,其中磷光發射體係以式(VI)表示: 其中;各L係獨立表示環金屬化配位體;各R係獨立表示氫或取代基,其條件是兩個相鄰R基團能夠形成環;Y與Z各獨立為氧原子與羰基,以致當一個為羰基時,另一個為氧原子;m為整數0至2;q為整數1至3;且m+q之總和為3。
  9. 如請求項7之OLED裝置,其中磷光發射體係以式(VII)表 示: 其中;各L係獨立表示環金屬化配位體;Y與Z各獨立為氧原子與羰基,以致當一個為羰基時,另一個為氧原子;m為整數0至2;q為整數1至3;且m+q之總和為3。
  10. 如請求項7之OLED裝置,其中磷光發射體係選自下列:
TW096126059A 2006-07-18 2007-07-17 含磷光錯合物之發光裝置 TWI432085B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/488,435 US7718276B2 (en) 2006-07-18 2006-07-18 Light emitting device containing phosphorescent complex
US11/680,663 US7736756B2 (en) 2006-07-18 2007-03-01 Light emitting device containing phosphorescent complex

Publications (2)

Publication Number Publication Date
TW200822796A TW200822796A (en) 2008-05-16
TWI432085B true TWI432085B (zh) 2014-03-21

Family

ID=38920738

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096126059A TWI432085B (zh) 2006-07-18 2007-07-17 含磷光錯合物之發光裝置

Country Status (5)

Country Link
US (1) US7736756B2 (zh)
EP (1) EP2041818B1 (zh)
JP (1) JP5243422B2 (zh)
TW (1) TWI432085B (zh)
WO (1) WO2008010915A2 (zh)

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129039B2 (en) * 2007-10-26 2012-03-06 Global Oled Technology, Llc Phosphorescent OLED device with certain fluoranthene host
GB2456787B (en) * 2008-01-23 2010-06-02 Cambridge Display Tech Ltd Pulsed driven displays
US20090191427A1 (en) * 2008-01-30 2009-07-30 Liang-Sheng Liao Phosphorescent oled having double hole-blocking layers
DE102008039361A1 (de) * 2008-05-30 2009-12-03 Osram Opto Semiconductors Gmbh Elektronische Vorrichtung
GB0906554D0 (en) * 2009-04-16 2009-05-20 Cambridge Display Tech Ltd Organic electroluminescent device
WO2011134013A1 (en) * 2010-04-28 2011-11-03 Commonwealth Scientific And Industrial Research Organisation Electroluminescent devices based on phosphorescent iridium and related group viii metal multicyclic compounds
WO2012170463A1 (en) 2011-06-08 2012-12-13 Universal Display Corporation Heteroleptic iridium carbene complexes and light emitting device using them
WO2015064432A1 (ja) * 2013-10-30 2015-05-07 シャープ株式会社 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス表示パネル
DE102013225682A1 (de) 2013-12-12 2015-06-18 Friedrich-Alexander-Universität Erlangen-Nürnberg Metallionaddukte von neutralen phosphoreszenten Emittern zur Verwendung in lichtemittierenden organischen optoelektronischen Bauteilen
KR102101202B1 (ko) * 2013-12-30 2020-04-17 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광다이오드 표시장치
US10053479B2 (en) 2014-01-10 2018-08-21 Tanaka Kikinzoku Kogyo K.K. Raw material and production method for cyclometalated iridium complex
KR20160103144A (ko) * 2014-01-17 2016-08-31 메르크 파텐트 게엠베하 유기 전계발광 소자용 재료
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
US10672996B2 (en) 2015-09-03 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
CN108463465A (zh) 2016-01-14 2018-08-28 国立研究开发法人产业技术综合研究所 环金属化铱配合物的制造方法
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
GB2554422A (en) * 2016-09-27 2018-04-04 Sumitomo Chemical Co Organic microcavity photodetectors with narrow and tunable spectral response
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US20180130956A1 (en) 2016-11-09 2018-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US10844085B2 (en) 2017-03-29 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US20180370999A1 (en) 2017-06-23 2018-12-27 Universal Display Corporation Organic electroluminescent materials and devices
CN110945669B (zh) * 2017-07-19 2024-03-08 香港大学 基于单发射体的颜色-可调谐有机发光二极管装置及其方法
US11228010B2 (en) 2017-07-26 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11744142B2 (en) 2017-08-10 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US20190161504A1 (en) 2017-11-28 2019-05-30 University Of Southern California Carbene compounds and organic electroluminescent devices
EP3492480B1 (en) 2017-11-29 2021-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11937503B2 (en) 2017-11-30 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11542289B2 (en) 2018-01-26 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US20200075870A1 (en) 2018-08-22 2020-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US11737349B2 (en) 2018-12-12 2023-08-22 Universal Display Corporation Organic electroluminescent materials and devices
US11780829B2 (en) 2019-01-30 2023-10-10 The University Of Southern California Organic electroluminescent materials and devices
US20200251664A1 (en) 2019-02-01 2020-08-06 Universal Display Corporation Organic electroluminescent materials and devices
CN111586537B (zh) 2019-02-19 2021-08-24 纬创资通股份有限公司 具有可替换式导音组件的扬声器
JP2020158491A (ja) 2019-03-26 2020-10-01 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
US20210032278A1 (en) 2019-07-30 2021-02-04 Universal Display Corporation Organic electroluminescent materials and devices
US20210047354A1 (en) 2019-08-16 2021-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US20210135130A1 (en) 2019-11-04 2021-05-06 Universal Display Corporation Organic electroluminescent materials and devices
US20210217969A1 (en) 2020-01-06 2021-07-15 Universal Display Corporation Organic electroluminescent materials and devices
US20220336759A1 (en) 2020-01-28 2022-10-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
KR20230068390A (ko) 2020-09-18 2023-05-17 삼성디스플레이 주식회사 청색광을 발광하는 유기전계발광소자
KR20220052404A (ko) * 2020-10-20 2022-04-28 삼성디스플레이 주식회사 유기 전계 발광 소자
US20220158096A1 (en) 2020-11-16 2022-05-19 Universal Display Corporation Organic electroluminescent materials and devices
US20220165967A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220162243A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220271241A1 (en) 2021-02-03 2022-08-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A3 (en) 2021-02-26 2023-03-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A3 (en) 2021-02-26 2022-12-28 Universal Display Corporation Organic electroluminescent materials and devices
US20220298192A1 (en) 2021-03-05 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298190A1 (en) 2021-03-12 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298193A1 (en) 2021-03-15 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220340607A1 (en) 2021-04-05 2022-10-27 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US20220352478A1 (en) 2021-04-14 2022-11-03 Universal Display Corporation Organic eletroluminescent materials and devices
US20220407020A1 (en) 2021-04-23 2022-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US20230006149A1 (en) 2021-04-23 2023-01-05 Universal Display Corporation Organic electroluminescent materials and devices
US20230133787A1 (en) 2021-06-08 2023-05-04 University Of Southern California Molecular Alignment of Homoleptic Iridium Phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A3 (en) 2022-02-16 2023-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US20230292592A1 (en) 2022-03-09 2023-09-14 Universal Display Corporation Organic electroluminescent materials and devices
US20230337516A1 (en) 2022-04-18 2023-10-19 Universal Display Corporation Organic electroluminescent materials and devices
US20230389421A1 (en) 2022-05-24 2023-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
US20240016051A1 (en) 2022-06-28 2024-01-11 Universal Display Corporation Organic electroluminescent materials and devices
US20240107880A1 (en) 2022-08-17 2024-03-28 Universal Display Corporation Organic electroluminescent materials and devices
US20240196730A1 (en) 2022-10-27 2024-06-13 Universal Display Corporation Organic electroluminescent materials and devices
US20240188419A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240188316A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240188319A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240180025A1 (en) 2022-10-27 2024-05-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4386065A1 (en) 2022-12-14 2024-06-19 Universal Display Corporation Organic electroluminescent materials and devices

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172862A (en) 1960-09-29 1965-03-09 Dow Chemical Co Organic electroluminescent phosphors
US3173050A (en) 1962-09-19 1965-03-09 Dow Chemical Co Electroluminescent cell
US3710167A (en) 1970-07-02 1973-01-09 Rca Corp Organic electroluminescent cells having a tunnel injection cathode
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
WO2001041512A1 (en) 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
EP2566302B1 (en) 2000-08-11 2015-12-16 The Trustees of Princeton University Organometallic compounds and emission-shifting organic electrophosphorence
SG148030A1 (en) * 2000-12-28 2008-12-31 Semiconductor Energy Lab Luminescent device
JP2003007469A (ja) * 2001-06-25 2003-01-10 Canon Inc 発光素子及び表示装置
KR101079607B1 (ko) * 2001-12-13 2011-11-03 (주)하야시바라 생물화학연구소 쿠마린 화합물
EP1398363B1 (en) * 2002-08-29 2016-03-23 UDC Ireland Limited Light emitting element and iridium complex
JP4145280B2 (ja) 2004-02-27 2008-09-03 富士フイルム株式会社 発光素子
KR101030011B1 (ko) * 2004-08-28 2011-04-20 삼성모바일디스플레이주식회사 시클로메탈화 전이금속 착물 및 이를 이용한 유기 전계발광 소자
JP2006278781A (ja) * 2005-03-29 2006-10-12 Fuji Photo Film Co Ltd 有機電界発光素子

Also Published As

Publication number Publication date
JP5243422B2 (ja) 2013-07-24
US20080020237A1 (en) 2008-01-24
JP2009544167A (ja) 2009-12-10
WO2008010915A3 (en) 2008-03-27
EP2041818B1 (en) 2015-06-03
TW200822796A (en) 2008-05-16
WO2008010915A2 (en) 2008-01-24
US7736756B2 (en) 2010-06-15
EP2041818A2 (en) 2009-04-01

Similar Documents

Publication Publication Date Title
TWI432085B (zh) 含磷光錯合物之發光裝置
KR101182700B1 (ko) 전자발광 호스트 물질
KR101365424B1 (ko) 유기 eil 층을 포함하는 전기발광 디바이스
JP5744713B2 (ja) アントラセン誘導体ホストを有するエレクトロルミネッセンス・デバイス
KR101221533B1 (ko) 여기자 차단 층을 갖는 인광성 유기 발광 다이오드
JP4965266B2 (ja) エレクトロルミネッセンス・デバイスのための有機素子
TWI431096B (zh) 使用鹼金屬簇化合物之oled裝置
WO2007047129A1 (en) Electroluminescent device
JP2009516390A (ja) 二核銅化合物を含む有機発光デバイス
EP1954782A1 (en) Electroluminescent device with quinazoline complex emitter
JP2007531315A (ja) エレクトロルミネッセンス・デバイスのための有機要素
WO2007027440A1 (en) Organic phosphorescent light emitting device
KR101234755B1 (ko) 전계발광 디바이스용 유기 소자
TWI392722B (zh) 具有螢蒽-巨環材料之有機發光二極體裝置
EP1920481B1 (en) Electroluminescent device with red triplet emitter
TWI394483B (zh) 具有穩定綠光發射層的有機發光二極體裝置
KR20120034594A (ko) 실릴-플루란텐 유도체를 포함하는 oled 디바이스
JP2007528124A (ja) エレクトロルミネッセンス・デバイスのための有機素子
US7553556B2 (en) Organometallic materials and electroluminescent devices