TWI392722B - 具有螢蒽-巨環材料之有機發光二極體裝置 - Google Patents

具有螢蒽-巨環材料之有機發光二極體裝置 Download PDF

Info

Publication number
TWI392722B
TWI392722B TW099104409A TW99104409A TWI392722B TW I392722 B TWI392722 B TW I392722B TW 099104409 A TW099104409 A TW 099104409A TW 99104409 A TW99104409 A TW 99104409A TW I392722 B TWI392722 B TW I392722B
Authority
TW
Taiwan
Prior art keywords
layer
alkali metal
compound
fluoranthene
cathode
Prior art date
Application number
TW099104409A
Other languages
English (en)
Other versions
TW201037058A (en
Inventor
William J Begley
Natasha Andrievsky
Original Assignee
Global Oled Technology Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Oled Technology Llc filed Critical Global Oled Technology Llc
Publication of TW201037058A publication Critical patent/TW201037058A/zh
Application granted granted Critical
Publication of TWI392722B publication Critical patent/TWI392722B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

具有螢蒽-巨環材料之有機發光二極體裝置
本發明係關於具有發光層且其中電子傳遞層包括特定類型之螢蒽-巨環化合物的有機發光二極體(organic light-emitting diode,OLED)電激發光(electroluminescent,EL)裝置。
儘管有機電激發光裝置已問世超過20個年頭,所述裝置的性能限制仍代表著諸多所欲應用的障礙。於最簡型式中,有機電激發光裝置係包括用於電洞注射的陽極、用於電子注射的陰極以及夾於所述電極間以支援產生發光的電荷重組之有機介質。所述裝置亦普遍稱為有機發光二極體或OLED。早期有機電激發光裝置的代表為於1965年3月9日所核發之Gurnee等人之美國專利第3,172,862號、1965年3月9日所核發之Gurnee之美國專利第3,173,050號、Dresner於1969年RCA Review,30,322之“蒽中之雙重注射電激發光"以及1973年1月9日所核發之Dresner之美國專利第3,710,167號。所述裝置中之有機層通常包括多環芳香族碳氫化合物(polycyclic aromatic hydrocarbon)且厚度非常厚(較厚於1微米(μm))。因此,操作電壓為非常高,常高於100伏特(V)。
近期有機電激發光裝置包括於陽極與陰極間由極薄層(例如<1.0μm)組成之有機電激發光元件。於此,術語“有機電激發光元件”包含陽極與陰極間之層。減少厚度則降低有機層的電阻並使裝置於較低之電壓下操作。於美國專利第4,356,429號中首次描述之基本雙層電激發光裝置結構中,鄰近於陽極之電激發光元件的有機層係特定地選為用以傳遞電洞,並因此稱為電洞傳遞層,而其他有機層為特定地選為用以傳遞電子,並因此稱為電子傳遞層。有機電激發光元件中所注射之電洞與電子之重組導致高效的電激發光。
亦提出例如由C. Tang等人(應用物理期刊,1989年第65卷3610)所揭露之含有電洞傳遞層與電子傳遞層間之有機發光層(light-emitting layer,LEL)的三層有機電激發光裝置。所述發光層一般包含摻雜客體材料之主體材料,或稱為摻雜物。再者,於美國專利第4,769,292號中所提出之四層電激發光元件包括電洞注射層(hole-injecting layer,HIL)、電洞傳遞層(hole-transporting layer,HTL)、發光層(LEL)以及電子傳遞/注射層(electron-transporting/injecting layer,ETL)。所述結構導致優化之裝置效率。
近年的電激發光裝置已擴展至不僅包括單一色彩發光裝置,例如紅色、綠色以及藍色,更包括發射白色光之裝置。高效的產生白色光之有機發光二極體裝置為業界高度所需,並被視為數種應用之低成本替代品,例如超薄光源、液晶顯示器中之背光光源、車輛頂部燈以及辦公室照明。產生白色光之有機發光二極體裝置應為明亮、高效以及一般約具有國際照明委員會(Commission International d’Eclairage,CIE)之色度座標(0.33,0.33)。於任何事件中,根據本發明,白色光係指使用者所感知的光具有白色。
自早期發明起,裝置材料之優化已導致特質的性能優化,例如色彩、穩定度、照明效率以及可製造性,例如由其為於美國專利第5,061,569號、第5,409,783號、第5,554,450號、第5,593,788號、第5,683,823號、第5,908,581號、第5,928,802號、第6,020,078號以及第6,208,077號中之所揭露。
儘管所有所述發展,仍然對有機電激發光裝置組件的有持續需求,例如電子傳遞材料以及電子注射材料,將提供更低的裝置驅動電壓並因此於維持高度照明效率以及長壽命結合高色純度的同時降低電力消耗。
電子注射層的實例包括於美國專利第5,608,287號、第5,776,622號、第5,776,623號、第6,137,223號以及第6,140,763號中之所述。電子注射層一般包含具有小於4.0電子伏(eV)的功函數(work function)的材料。功函數之定義可見於化學與物理CRC手冊(CRC Handbook of Chemistry and Physics ,1989年至1990年,第70版,CRC Press公司)F-132頁且不同金屬之功函數的列表可見於E-93頁以及E-94頁。所述金屬的典型實例包括鋰、鈉、鉀、鈹、鎂、鈣、鍶、鋇、釔、鑭、釤、釓、鐿。包含例如鋰、銫、鈣、鎂鹼金屬或鹼土金屬之低功函數的薄膜可用於電子注射。另外,摻雜所述低功函數金屬的有機材料亦可高效地使用為電子注射層。實例為摻雜鋰或銫之喹啉鋁(Alq)。
美國專利第6,509,109號以及美國專利申請案第20030044643號描述有機電激發光裝置,其中電子注射區域包含作為主體材料的無氮芳香族化合物以及還原摻雜物,例如鹼金屬化合物。美國專利第6,396,209號描述包含鹼金屬離子、鹼土金屬離子或稀土金屬離子的至少其中之一的電子傳遞有機化合物以及有機金屬複合化合物的電子注射層。電激發光裝置之電子注射層中之有機鋰化合物的附加實例包括美國專利申請案第20060286405號、第20020086180號、第20040207318號、美國專利第6,396,209號、第6,468,676號、日本專利第2000053957號以及國際公開(WO)第9963023號。
有益類別的電子傳遞材料係衍生自金屬螫合之類奧辛(oxinoid)化合物,包括喹啉之螫合物,通常亦稱為8-喹啉酚(8-quinolinol)或8-羥喹啉(8-hydroxyquinoline)。參(8-喹啉酚)鋁(III)(Tris(8-quinolinolato)aluminum(III)),亦稱為喹啉鋁或喹啉鋁3(Alq3),以及其他金屬與非金屬喹啉螫合物為習知技術中已知之電子傳遞材料。Tang等人之美國專利第4,769,292號以及VanSlyke等人之美國專利第4,539,507號藉由敎示於發光層或發光區中使用喹啉鋁作為傳遞材料而降低電激發光裝置之驅動電壓。Baldo等人之美國專利第6,097,147號以及Hung等人之美國專利第6,172,459號中敎示鄰近於陰極之有機電子傳遞層的使用,以便當電子自陰極注射至電子傳遞層時,電子往復於電子傳遞層與發光層。
於電子傳遞層中取代之螢蒽的使用亦為已知,實例包括美國專利申請案第20080007160號、第20070252516號、第20060257684號、第20060097227號以及日本專利第200409144號中所述之裝置。
日本專利第2003123978描述包括7,14-烷苊萘[1,2-k](7,14-alkanoacenaphtho[1,2-k])螢蒽衍生物的有機電激發光元件,並且尤其揭露所述類型的材料於發光層中的使用。
儘管所有所述發展,仍然對提升有機發光二極體裝置之效率以及降低驅動電壓之新穎化合物的發展保有需求,同時為實施例提供其他優化之特徵。
本發明提供有機發光二極體裝置,包括陰極、陽極以及上述兩者間的發光層,進一步於陰極與發光層間包括包含螢蒽-巨環化合物的第一層。所述螢蒽-巨環化合物包括具有7,10-位置由連接基所連接之螢蒽核。所述螢蒽核可進一步經取代,提供為位於8-位置與9-位置的取代基無法結合以形成五員環基。所述有機發光二極體裝置至少包括位於發光層與陰極間包含鹼金屬材料的一層。
於第二實施例中,有機發光二極體裝置包括存在於第一層或位於陰極與第一層間的第二層的鹼金屬或有機鹼金屬化合物。
於第三實施例中,有機發光二極體裝置包括除螢蒽-巨環化合物之外,存在於第一層的蒽衍生物。
本發明之裝置提供例如效率與驅動電壓的優化特徵。
本發明大體而言為如上所述。本發明的有機發光二極體裝置為多層電激發光裝置,包括陰極、陽極、發光層(LEL)、電子傳遞層(ETL)以及電子注射層(EIL)與選擇性附加之層,例如電洞注射層、電洞傳遞層、激子阻斷層、間隔層、連接層以及電洞阻斷層。
發光層與陰極間的第一層包括螢蒽-巨環化合物。所述螢蒽-巨環化合物促進電子自陰極至發光層的傳遞。較佳地,第一層為電子傳遞層。電子傳遞層的厚度通常介於2奈米(nm)至750nm、較常地為5nm至50nm以及典型地為10nm至40nm。電子傳遞層可進一步細分為兩個或以上的次層,例如可細分為第一傳遞層(ETL1)與第二傳遞層(ETL2),並可進一步細分。
於一實施例中,螢蒽-巨環化合物至少存在於為非發光層的一電子傳遞層中,意即,應提供少於總裝置發光的25%。理想上,應實質上為不發光。
螢蒽-巨環化合物包括包含4個環集環的螢蒽核,核的編碼順序如下。
所述螢蒽-巨環化合物可包含附加環集至螢蒽核的環,提供為不包含環集至8,9-位置的五員環基。環集環一般亦稱為稠環,為共用螢蒽核的任何兩個碳之間的共環鍵的環。化合物的示例性實例包含具有環集至8,9-位置的五員環的螢蒽核,且不包含於本發明中之化合物為如下所示。於一實施例中,螢蒽-巨環化合物並不包含環集至螢蒽核的芳香族環。
螢蒽核的7,10-位置係由連接基所連接,其中連接基為鍵結至7-位置與10-位置的二價物種。連接基包含碳原子以及可包含例如氮、氧以及硫的雜原子。
連接7,10-位置形成環,並且連接基必須具有足夠長度以使過多的環張力不存在,否則化合物將會不穩定。因此,為避免環張力,較佳地為形成較大的環,於此稱為巨環。較佳地,選擇連接基以使所形成之巨環為十員環或更大,更佳地為十二員環或更大,更佳地為十四員環或更大。
於本發明中,連接基的長度係定義為連序原子的最低編碼,不包括於原子上創造連接螢蒽核的位置7與10的鏈的取代基。較佳地,連接基的長度為6個原子或以上,更佳地為8個原子或以上,以及更佳地為10個原子或以上。若連接基太長,則可獲得不具例如合適之昇華溫度之所欲物性的化合物。較佳地,連接基的長度為30個原子或以下,較佳地為25個原子或以下,更佳地甚至為20個原子或以下。藉由實例的方式,以下所列之連接基每個具有10個原子的長度。
有益之二價連接基的實例由化學式(1)所代表。
-(CY2 )n - 化學式(1)
於化學式(1)中,破折號代表將化學式(1)的碎片連接至螢蒽核的7-位置與10-位置的鍵。每個Y可為相同或不同,且每個Y代表氫或取代基,例如具有1個至24個碳原子的烷基或具有6個至24個碳原子的芳基。鄰近之Y基可結合以形成環基,例如五員環基或六員環基,且其中所述環基可為例如苯環基的芳香族,或例如環己烷環基的非芳香族,以及可包含雜原子的環基。於一實施例中,每個Y代表氫。於化學式(1)中,n為具有6至30的值的整數。於另一合適的實施例中,n具有8至25的值,較佳地為具有10至20的值。
另一有益之連接基的實例由化學式(2)所代表。
-(CY2 )r -[(CY2 )-(X)-(CY2 )]s -(CY2 )t - 化學式(2)
於化學式(2)中,第一個破折號與最後一個破折號代表將化學式(2)的碎片連接至螢蒽核的7-位置與10-位置的鍵。每個X可為相同或不同,且每個獨立地代表CY2 、氮、氧或硫。於化學式(2)中,每個Y獨立地代表氫或取代基,提供為鄰近之Y基可結合以形成環基。Y基的實例包括具有1個至24個碳原子的烷基或具有6個至24個碳原子的芳基。於化學式(2)中,r為0至10,t為0至10,以及s為1至10,提供為選擇r、t以及s以使由化學式(2)所代表之連接基所具有之長度為介於6個至30個原子,較佳地為8個至25個原子,更佳地為10個至20個原子。
示例性而非用於限制,特定的有益之連接基為如下所示。
於一較佳實施例中,包括螢蒽核以及其取代基的螢蒽-巨環化合物包含總數少於十個的稠芳環,或少於八個的稠芳環,或甚至少於六個的稠芳環。本發明所述螢蒽-巨環化合物可包含一個以上的螢蒽核,意即,兩個或以上的螢蒽基可透過一單鍵而連接或環集。然而,於一實施例中,螢蒽-巨環化合物僅包含一個螢蒽核。
本發明中所使用之螢蒽-巨環化合物不包括共價地附著於螢蒽核直接為聚合鏈一部分的聚合主鏈或化合物的多重螢蒽基。本發明的螢蒽-巨環化合物為小分子,其分子量為典型地為低於1500道耳頓(dalton),較佳地為低於1000道耳頓。
於一較佳實施例中,螢蒽-巨環化合物由化學式(I)所代表
於化學式(I)中,R1 至R8 每個獨立地代表氫或個別地所選擇之取代基,並且其中鄰近之取代基可結合以形成環基,提供為R1 與R2 無法結合以形成五員環基。合適的取代基包括例如甲基與三級丁基的具有1個至24個碳原子的烷基,以及例如苯基與萘基的具有6個至24個碳原子的芳基。於一實施例中,鄰近之R1 至R8 取代基可結合以形成稠苯環基,其可進一步經取代。於進一步之實施例中,螢蒽-巨環化合物並不包含稠合(fused)至螢蒽核的芳環。
於化學式(I)中,L代表形成連接基所需的原子。較佳地,L的長度為6個至30個原子,更佳地為8個至25個原子,更佳地為10個至20個原子。L的長度係定義為創造連接螢蒽核的位置7與10的鏈的連接基的連序原子的最低編碼,但不包括鏈的原子上的取代基。所述連接基可包含碳、氫以及例如氮、氧以及硫的雜原子。所述連接基亦可包含環基。於一較佳實施例中,L係由化學式(1)或化學式(2)所代表,亦已於前文有所描述。
於另一較佳實施例中,螢蒽-巨環化合物係由化學式(II)所代表。
於化學式(II)中,R1 至R3 每個獨立地代表氫或個別地所選擇之取代基。鄰近之取代基可結合以形成環基,提供為R1 與R2 無法結合以形成五員環基。然而,於一實施例中,鄰近之R1 至R8 取代基無法結合以形成任何類型的環基。因此,於一較佳實施例中,化學式(II)的螢蒽-巨環化合物不包含環集至螢蒽核的芳環。於進一步的實施例中,R1 與R2 的至少其中之一代表具有1個至24個碳原子的烷基或具有6個至24個碳原子的芳基。
於化學式(II)中,每個Y可為相同或不同,且每個獨立地代表氫或取代基,提供為鄰近之Y基可結合以形成環基。於一實施例中,每個Y獨立地代表氫、具有1個至24個碳原子的烷基或具有6個至24個碳原子的芳基,提供為鄰近之Y基可結合以形成環基。於化學式(II)中,m為4或以上,但小於30,而m較佳地為6或以上,但小於25,而m更佳地為8或以上,但小於20。
仍於進一步之實施例中,本發明的螢蒽-巨環化合物不包含無論為取代基或包含於取代基中的雜原子。
合適之螢蒽-巨環化合物可利用修飾已知之合成方法而製備,例如藉由近似於Marappan Velusamy等人於2007年Dalton Trans .,3025-3034或P. Bergmann等人於1967年Chemische Berichte ,828-35中所描述之方法。以下顯示(圖解A)一般合成路徑之實例。化合物1係於例如氫氧化鉀的鹼中與酮2反應,以生成3。於高溫下,於例如鄰二氯苯或二苯基醚的高沸溶劑中,以乙炔4處理3而形成螢蒽-巨環化合物5。
應了解的是,於有機分子的合成中,特定的合成途徑可產生無論係特有或是分子的混合物的分子,所述混合物具有相同的分子化學式,而相異之處為,僅具有位於分子中之某個不同的部位的特定之取代基。換句話說,分子或混合物中之分子可藉由其取代基的排列或更普遍地藉由其一些原子於空間中之排列而彼此相異。當此發生時,材料係稱為同分異構物。同分異構物之更廣的定義可見於Grant and Hackh’s Chemical Dictionary,第五版,McGraw-Hill Book Company,第313頁 。於圖解A中所指出之合成途徑係憑藉當化合物3為非對稱時,乙炔分子4如何空間性地與化合物3反應而可產生同分異構物的途徑的實例。應了解的是,本發明不僅包括由通用化學式(I)與化學式(II)所代表的分子的實例以及其特定分子實例,亦包括所有與所述結構相關之同分異構物。此外,本發明的化合物以及其同分異構物的實例並不限於衍生自一般結構3的對稱或非對稱的化合物,而亦包括其他有益於產生化學式(I)與化學式(II)的化合物的製備的架構與方法。於一些實施例中,較佳地為使用包括同分異構物的混合物的螢蒽-巨環化合物。
示例性而非用於限制,有益之螢蒽-巨環化合物為如下所示。
所述有機發光二極體裝置包括至少位於發光層與陰極間包含鹼金屬材料的一層。於本發明中,鹼金屬材料係定義為鹼金屬、有機鹼金屬化合物或無機鹼金屬化合物。
較佳地,附加地存在有位於陰極與第一層間的第二層,且較佳地鄰接至包含鹼金屬或有機鹼金屬化合物的第一層。此層係典型地稱為電子注射層(EIL)。所述層係一般位於直接接觸陰極,並協助電子向發光層的高效傳遞。一般的層順序為LEL|ETL|EIL|陰極。所述ETL與EIL可劃分為多重次層。此三界面間的任何介面可有中間層,例如於陰極與EIL間之無機鹼金屬化合物的薄層。有益之無機鹼金屬化合物的實例包括氟化鋰(LiF)與氟化銫(CsF)。所述鹼金屬或有機鹼金屬化合物亦可存在於ETL與EIL。
所述EIL可僅為單一鹼金屬或有機鹼金屬化合物所組成,或可為兩個或以上的鹼金屬或有機鹼金屬化合物的混合物。除鹼金屬或有機鹼金屬化合物之外,所述EIL亦可包含一個或以上的附加材料,例如,可包含具有12個至50個碳原子的多環芳香族碳氫化合物。鹼金屬比附加材料的體積百分比可介於0.1%至10%的任何一處,典型地為0.5%至8%,較佳地為0.5%至5%。有機鹼金屬化合物比附加材料的體積百分比可介於0.1%至99%的任何一處,典型地為0.5%至95%,較佳地為10%至90%,更佳地為30%至70%。第一層可包括附加材料。EIL的厚度典型地可為0.1nm至20nm,較常地為0.4nm至10nm,而經常地為1nm至8nm。
有益之鹼金屬的實例包括鋰、鈉、鉀、銣以及銫金屬,而較佳地為鋰金屬。
所述有機鹼金屬化合物為有機金屬化合物,於有機金屬化合物中,有機配位基係鍵結至鹼金屬離子。鹼金屬屬於週期表的第一族。於此之中,鋰為較佳選擇。
根據化學式(III),有益之有機鹼金屬化合物包括有機鋰化合物:
(Li+ )f (Q)g  化學式(III)
其中:Q為陰離子有機配位基;以及f與g獨立地為所選擇之整數,選擇用以於錯合物上提供電中性。
所述陰離子有機配位基Q係最佳地為單陰離子,並包含至少一個包括氧、氮或碳的可離子化部位。於烯醇化物或其他包含氧的互變異構系統的情況下,即使事實上鋰可鍵結於他處以形成螫合物,將會認為與總結鋰鍵結至氧。較佳地亦為,配位基包含至少一個可與鋰離子形成配價鍵(coordinate bond)或配位鍵(dative bond)的氮原子。所述整數f與g可大於1,反映一些有機鋰化合物的已知晶癖(propensity),以形成叢集錯合物。
根據化學式(IV),有益之有機鹼金屬化合物亦包括有機鋰化合物:
其中:Z與虛弧線代表完成具有鋰陽離子的五員環至七員環所需之2個至4個原子以及鍵結;每個A代表氫或取代基,而每個B代表Z原子上的氫或獨立地所選擇之取代基,提供為兩個或以上的取代基可結合以形成稠環或稠環系統;以及j為0至3,而k為1或2;以及f與g獨立地為所選擇之整數,選擇用以於錯合物上提供電中性。
化學式(IV)之化合物,較佳地為A與B取代基一同形成附加環系統。此附加環系統可進一步包含附加雜原子以形成具有配價或配位至鋰之多牙配位基。較佳之雜原子為氮或氧。
於化學式(IV)中,較佳地為,所示之氧為氫氧基(羥基)、羧基或酮基的一部分。合適的氮配位基的實例為8-羥喹啉(8-hydroxyquinoline)、2-羥甲吡啶(2-hydroxymethylpyridine)、2-羧哌啶(pipecolinic acid)或2-吡啶甲酸(2-pyridinecarboxylic acid)。
有益之有機鹼金屬化合物的特定的示例性實例為以下所列。
有益之第二層(EIL)包括原位(insitu)形成之有機鹼金屬化合物,意即,於層之形成過程中,藉由混合鹼金屬與有機配位基而形成。例如,有益之EIL包含如啡啉(phenanthroline)衍生物之有機配位基與如鋰金屬之鹼金屬。合適之鹼金屬包括鋰、鈉、鉀、銣、銫,而較佳地為鋰金屬。合適之經取代之啡啉衍生物包括由化學式(R)所代表之物。
於化學式(R)中,R1 至R8 獨立地為氫、烷基、芳基或經取代之芳基,並且R1 至R8 的至少其中之一為芳基或經取代之芳基。
於EIL中有益之啡啉的特定的實例為2,9-二甲基-4,7-聯苯-啡啉(BCP)(見化學式(R-1))以及4,7-聯苯-1,10-啡啉(Bphen)(見化學式(R-2))。
於另一實施例中,螢蒽-巨環化合物係存在於ETL,而EIL係經細分為兩個或以上的次層,例如EIL1(鄰近於ETL)以及EIL2(鄰近於陰極)。啡啉化合物係存在於EIL1,而有機鹼金屬化合物或無機鹼金屬化合物係存在於EIL2。有益之無機鹼金屬化合物的實例包括氟化鋰與氟化銫。
圖1顯示本發明之實施例中電子傳遞層(ETL 136)以及電子注射層(EIL 138)。選擇性之電洞阻斷層(HBL 135)係顯示於發光層與電子傳遞層間。所述圖式亦顯示選擇性之電洞注射層(HIL 130)。於另一實施例中,無電洞阻斷層(HBL 135)位於ETL與LEL間。仍於其他實施例中,所述電子注射層可細分為兩個或以上的次層(圖中未示)。
於示例性實例中,有機發光二極體裝置100不具電洞阻斷層,且僅有一電洞注射層、電子注射層以及電子傳遞層。螢蒽-巨環化合物係存在於ETL(136),而例如AM-1的有機鹼金屬化合物係存在於EIL(138)。
螢蒽-巨環化合物可構成第一層的100%或所述層中可具有其他的組分,於所述情形下,螢蒽-巨環化合物可以實質上少於所述層的100%的程度存在,例如可為體積之90%、80%、70%或50%或甚至更少。較佳地,當其他組分存在於所述層中時,亦具有良好的電子傳遞特性。
如上所述,鹼金屬或有機鹼金屬化合物亦可存在於ETL與EIL。例如,尤其有益之組合包括包含螢蒽-巨環化合物與有機鋰化合物AM-2的ETL,且其中所述層係鄰近於亦包含AM-2的EIL。
於進一步的較佳實施例中,第一層除螢蒽-巨環化合物外,包括蒽衍生物。所述蒽衍生物包括具有於9-位置與10-位置獨立地所選擇之具有6個至24個碳原子的芳基之蒽核,且所述蒽核可進一步經取代。所述蒽核的編碼系統為如下所示。
有益之蒽衍生物包括如化學式(V)所代表之物。
於化學式(V)中,R1 與R6 每個獨立地代表具有6個至24個碳原子的芳基,例如苯基或萘基。R2 至R5 以及R7 至R10 每個係獨立地選自氫、具有1個至24個碳原子的烷基或具有6個至24個碳原子的芳香族基。
於一合適之實施例中,R1 與R6 每個代表獨立地所選擇的苯基、聯苯基或萘基。R3 代表氫或苯基或萘基。R2 、R4 、R5 、R7 至R10 代表氫。
有益之蒽的示例性實例為如下所列。
本發明較佳組合的實例為選自Inv-1、Inv-2、Inv-3、Inv-4以及Inv-5或其混合物的螢蒽-巨環化合物,鹼金屬為鋰金屬,有機鹼金屬化合物為選自AM-1、AM-2以及AM-3或其混合物,以及蒽衍生物(當存在時)為選自P-1、P-2、P-3以及P-4或其混合物。
於合適之實施例中,所述電激發光裝置可藉由包括互補性發射器、白色發射器或過濾器而達成發射白色光。本發明可使用於所謂的堆疊裝置架構,例如,於美國專利第5,703,436號與第6,337,492號中所敎示。本發明的實施例可用於僅包括螢光元件的堆疊裝置以產生白色光。所述裝置亦可包括螢光發射材料以及磷光發射材料的組合(有時稱為混成有機發光二極體裝置)。為生產白光發射裝置,理想上混成螢光/磷光裝置會包括藍色螢光發射器以及適當比例之綠色與紅色磷光發射器,或其他合適之色彩的組合以發出白色光。然而,混成裝置具有非白光的發射亦可為有益。混成螢光/磷光元件具有非白光的發射亦可於堆疊有機發光二極體中與附加之成串之磷光元件結合。例如,白色光的發射可藉由使用Tang等人於美國專利第6936961B2號中所揭露之p/n接面連接器,將一個或以上的混成藍色螢光/紅色磷光元件與綠色磷光元件堆疊成串而產生白色光的發射。
於一較佳實施例中,電激發光裝置為顯示裝置的一部分。於另一合適之實施例中,電激發光裝置為區域照明裝置的一部分。
本發明的電激發光裝置為有益於任何需要穩定發光之裝置,例如燈或靜止或移動的影像裝置中之組件,例如電視、行動電話、DVD播放器或電腦螢幕。
於此以及本說明書中所使用之碳環(carbocyclic)以及雜環(heterocyclic)的環(ring)或基(group)之術語,一般係由Grant & Hackh's Chemical Dictionary,第五版,McGraw-Hill Book Company 所定義。碳環為僅包含碳原子的任何芳環系統或非芳環系統,而雜環為包含碳原子以及非碳原子的任何芳環系統或非芳環系統,所述非碳原子為例如氮、氧、硫、磷、矽、鎵、硼、鈹、銦、鋁以及週期表中有益於形成環系統的其他元素。為達本發明之目的,雜環的定義亦包含包含配價鍵的環。配價鍵或配位鍵的定義可見於Grant & Hackh's Chemical Dictionary,第91頁以及第153頁 。在本質上,配價鍵係當例如氧或氮的富電子(electron rich)原子提供一對電子至例如鋁、硼或例如鋰(Li+ )、鈉(Na+ )、鉀(K+ )以及銫(Cs+ )的鹼金屬離子的缺電子(electron deficient)原子或離子時而形成。所述之一實例見於參(8-喹啉酚)鋁(III),亦稱為喹啉鋁,其中喹啉成分(moiety)上的氮提供其之孤電子對至鋁原子,因此形成雜環且因此共為喹啉鋁提供3個稠環。配位基的定義,包括多牙配位基,可分別見於Gran t& Hackh's Chemical Dictionary ,第337頁以及第176頁。
除特別說明,否則“經取代"或“取代基"之術語的使用係指非氫之基或原子。此外,當使用“基”之術語時,係指當取代基包含可取代之氫時,只要所述取代基不傷害裝置使用所需之特性,亦傾向不僅包含取代基之未經取代的型態,更包含以任何取代基或於此所述之基進一步所取代之型態。合適地,取代基可為鹵素或可藉由碳、矽、氧、氮、磷、硫、硒或硼之原子鍵結至分子的餘料。取代基可為鹵素,例如氯、溴、氟;羥基;氰基;羧基;或可進一步經取代之基,如包括直鏈或支鏈或環的烷基,例如甲基、三氟甲基、乙基、三級丁基、3-(2,4-二-三級-戊基苯氧基)丙基以及十四基;烯基,例如乙烯、2-丁烯;烷氧基,例如甲氧基、乙氧基、丙氧基、丁氧基、2-甲氧基乙氧、二級丁氧基、己氧基、2-乙基己氧、十四氧基、2-(2,4-二-三級-戊基苯氧基)乙氧基以及2-十二烷基氧基乙基;芳基,例如苯基、4-三級-丁基苯基、2,4,6-三甲基苯基、萘基;芳氧基,例如苯氧基、2-甲基苯氧基、alpha-萘氧基或beta-萘氧基以及4-甲苯氧基;碳醯胺基(carbonamido),例如乙醯胺基、苯甲醯胺基、丁醯胺基(butyramido)、十四醯胺基、alpha-(2,4-二-三級-苯基-苯氧基)乙醯胺基、alpha-(2,4-二-三級-苯基苯氧基)丁醯胺基、alpha-(3-十五苯氧基)-己醯胺基、alpha-(4-羥基-3-三級-丁基苯氧基)-十四醯胺基、2-側氧-吡咯啶-1-基、2-側氧-5-十四吡咯啶-1-基、N-甲基十四醯胺基、N-丁二醯亞胺基、N-酞醯亞胺基、2,5-二側氧-1-唑啶基、3-十二基-2,5-二側氧-1-咪唑基以及N-乙醯基-N-十二胺基、乙氧基碳醯胺基、苯氧基碳醯胺基、苯甲氧基碳醯胺基、十六氧基碳醯胺基、2,4-二-三級-丁基苯氧基碳醯胺、苯基碳醯胺基、2,5-(二-三級-戊基苯基)碳醯胺基、對-十二基-苯基碳醯胺基、對-甲苯基碳醯胺基、N-甲基脲基、N,N-二甲基脲基、N-甲基-N-十二基脲基、N-十六基脲基、N,N-雙十八基脲基、N,N-二辛基-N’-乙基脲基、N-苯基脲基、N,N-二苯基脲基、N-苯基-N-對-甲苯基脲基、N-(間-十六基苯基)脲基、N,N-(2,5-二-三級-戊基苯基)-N’-乙基脲基以及三級-丁基碳醯胺基;磺醯胺基,例如甲基磺醯胺基、苯磺醯胺基、對-甲苯基磺醯胺基、對-十二基苯磺醯胺基、N-甲基十四基磺醯胺基、N,N-二丙基-磺醯基胺基以及十六基磺醯胺基;磺醯基,例如N-甲基磺醯基、N-乙基磺醯基、N,N-二丙基磺醯基、N-十六基磺醯基、N,N-二甲基磺醯基、N-[3-(十二基氧)丙基]磺醯基、N-[4-(2,4-二-三級-戊基苯氧基)丁基]磺醯基、N-甲基-N-十四基磺醯基以及N-十二基磺醯基;胺甲醯基,例如N-甲胺甲醯基、N,N-二丁基胺甲醯基、N-十八基胺甲醯基、N-[4-(2,4-二-三級-戊基苯氧基)丁基]胺甲醯基、N-甲基-N-十四基胺甲醯基以及N,N-二辛基胺甲醯基;醯基,例如乙醯基、(2,4-二-三級-戊基苯氧基)乙醯基、苯氧羰基、對-十二基氧苯氧基羰基甲氧羰基、丁氧羰基、十四基氧羰基、乙氧羰基、苯甲基氧羰基、3-十五基氧羰基以及十二基氧羰基;磺醯基,例如甲氧磺醯基、辛氧磺醯基、十四基氧磺醯基、2-乙基己基氧磺醯基、苯氧基磺醯基、2,4-二-三級-戊基苯氧基磺醯基、甲基磺醯基、辛基磺醯基、2-乙基己基磺醯基、十二基磺醯基、十六基磺醯基、苯基磺醯基、4-壬基苯基磺醯基以及對-甲苯基磺醯基;磺醯氧基,例如十二基磺醯氧基以及十六基磺醯氧基;亞磺醯基,例如甲基亞磺醯基、辛基亞磺醯基、2-乙基己基亞磺醯基、十二基亞磺醯基、十六基亞磺醯基、苯基亞磺醯基、4-壬基苯基亞磺醯基以及對-甲苯基亞磺醯基;硫基,例如乙基硫基、辛基硫基、苯甲基硫基、十四基硫基、2-(2,4-二-三級-戊基苯氧基)乙基硫基、苯基硫基、2-丁氧基-5-三級-辛基苯基硫基以及對-甲苯基硫基;醯氧基,例如乙醯氧基、苯甲醯氧基、十八醯氧基、對-十二醯胺基苯甲醯氧基、N-苯基胺甲醯氧基、N-乙基胺甲醯氧基以及環己基羰氧基;胺類,例如苯基苯胺、2-氯苯胺、二乙胺、十二胺;亞胺基,例如1(N-苯基亞胺基)乙基、N-丁二醯亞胺基、3-苯甲基乙內醯脲基;磷酸鹽,例如二甲基磷酸鹽以及乙基丁基磷酸鹽;亞磷酸鹽,例如二乙基與二己基亞磷酸鹽;雜環基、雜環氧基或雜環硫基,每個可經取代且包含由碳原子以及至少一個選自由氧、氮、硫、磷或硼,例如2-呋喃基、2-噻吩基、2-苯并咪唑氧基或2-苯并噻唑基;四級銨,例如三乙基銨;四級鏻,例如三苯基鏻;以及矽氧基,例如三甲基矽氧基所組成之群組的雜原子所構成之三員雜環至七員雜環。
若需要,取代基本身可進一步以所述取代基經取代一次或以上。所使用之特定的取代基可由熟悉此項技術之人士所選擇,以於應用中達所欲之特定的特性,並且可包括例如拉電子基(electron-withdrawing groups)、供電子基(electron-donating groups)以及立體(steric)基。當分子可具有兩個或以上之取代基時,除另行提供外,取代基可接合以形成如稠環的環。一般地,上述基以及取代基可包括具有直至48個碳原子的基,典型地為36個碳原子,並且常少於24個碳原子,但依照所選之特定的取代基,較多的碳原子亦為可能。
以下為對有機發光二極體裝置的層結構、材料選擇以及製程的描述。
一般有機發光二極體裝置架構
本發明可用於許多使用小分子材料、寡聚合物材料、聚合材料或其之組合的有機發光二極體組態中。所述組態包括小自具有單一陽極與陰極的簡單結構,大至較複雜之裝置,例如具有陽極與陰極的正交組列以形成像素的被動式矩陣顯示器,以及例如以薄膜電晶體(thin film transistors,TFTs)獨立地控制每個像素的主動式矩陣顯示器。有機層的組態具有多種,而本發明係成功地實施。以本發明而言,必要元件為一陰極、一陽極、一發光層(LEL)、一電子傳遞層(ETL)以及一電洞注射層(HIL)。
如上所述,根據本發明的一實施例,並且尤其地有益於小分子裝置係顯示於圖1中。有機發光二極體100包含基板110、陽極120、電洞注射層130、電洞傳遞層132、發光層134、電洞阻斷層135、電子傳遞層136、電子注射層138以及陰極140。於其他實施例中,於LEL的任一側上具有選擇性的間隔層。所述間隔層並非典型地包含發光材料。所有所述層的類型將於以下詳細描述。請注意,基板可替代地位於鄰近於陰極,或基板可實際地構成陽極或陰極。並且,有機層的總結合厚度較佳地為小於500nm。
有機發光二極體的陽極與陰極係經導電體160連接至電壓/電流源150。將電位施加於陽極與陰極間,以使陽極處於較高於陰極的正電位,以操作有機發光二極體。電洞係自陽極注射至有機電激發光元件。當有機發光二極體係操作於交流電流(AC)模式之下,於循環的某些週期中,電位偏置為反向且無電流時,增強的裝置穩定性有時可達成。美國專利第5,552,678號中描述由AC所驅動之有機發光二極體的實例。
陽極
當所欲之電激發光係經陽極而見,則陽極120應對感興趣的發射為透明或實質上透明。於本發明中所使用之常見的透明陽極材料為銦錫氧化物(ITO)、銦鋅氧化物(IZO)以及錫氧化物,但其他金屬氧化物亦可為有效,包括但不限於鋁摻雜鋅氧化物或銦摻雜鋅氧化物、鎂銦氧化物以及鎳鎢氧化物。除上述氧化物外,例如氮化鎵的金屬氮化物,以及例如硒化鋅的金屬硒化物,以及例如硫化鋅的金屬硫化物,可用作為陽極120。對於所欲之電激發光係僅經陰極140而見的應用,則陽極120的透射特性為不重要且可使用任何透明、不透明或反射的傳導材料。用於此應用之傳導體的實例包括但不限於金、銥、鉬、鈀以及鉑。典型的陽極材料,透射或其他特性,具有4.1eV或以上的功函數。所欲之陽極材料通常係藉由任何合適之技術,例如蒸發法、濺鍍法、化學汽相沉積法或電化學技術而沉積。陽極可使用已知之光刻程序而圖形化。選擇性地,陽極可於施加其他層之前拋光,以降低表面粗糙度,以便減少短路或提升反射性。
電洞注射層
雖然並非總是需要,但於有機發光二極體中提供HIL為有益。有機發光二極體中之HIL 130可用以促進自陽極至HTL的電洞注射,藉以降低有機發光二極體的驅動電壓。用於HIL 130的合適之材料包括但不限於美國專利第4,720,432號中所述之紫質(porphyrinic)化合物,以及一些芳基胺,例如4,4',4"-參[(3-乙基苯基)苯基胺基]三苯胺(m-TDATA)。歐洲專利第EP 0 891 121 A1號以及第EP 1 029 909 A1號中描述有機發光二極體中之替代性之據報有益的電洞注射材料。如下所述之芳基三級胺亦可為有益之電洞注射材料。其他有益之電洞注射材料,例如美國專利申請案第2004/0113547 A1號以及美國專利第6,720,573號中所述之二吡甲基[2,3-f:2',3'-h]喹啉六碳化腈(dipyrazino[2,3-f:2',3'-h]quinoxalinehexacarbonitrile)。此外,如美國專利第6,423,429中所述,p型摻雜有機層亦有益於HIL。“p型摻雜有機層”之術語意為此層於摻雜後具有半導體特性,並且經過此層的電流係本質上地由電洞所負載。傳導性係由由於電洞自摻雜物傳遞至主體材料之電荷傳遞錯合物之形成所提供。
HIL 130的厚度係介於0.1nm至200nm的範圍,較佳地介於0.5nm至150nm的範圍。
電洞傳遞層
HTL 132包含至少一電洞傳遞材料,例如芳基三級胺,而後者已知為包含至少一個僅鍵結至碳原子的三價氮原子,而所述碳原子的至少其中之一為芳環的一員的化合物。於一型態中的芳基三級胺為芳胺,例如單芳胺、二芳胺、三芳胺或聚芳胺。示例性的單體三芳胺於Klupfel等人之美國專利第3,180,730號中有所描述。其他以一個或以上的乙烯基(vinyl radicals)或至少一個包含活性氫的基所取代的合適之三芳胺係揭露於Brantley等人之美國專利第3,567,450號與第3,658,520號。
更佳類別的芳基三級胺為如美國專利第4,720,432號以及第5,061,569號中所述,包括至少兩個芳基三級胺的成分。所述化合物包括由結構式(A)所代表之化合物。
其中:Q1 與Q2 獨立地為所選擇之芳基三級胺成分;以及G為連接基,例如碳-碳鍵的伸芳基、環伸烷基或伸烷基。
於一實施例中,Q1 或Q2 的至少其中之一包含多環稠環結構,例如萘。當G為芳基時,便利地為伸苯基、聯伸苯基或萘成分。
滿足結構式A並包含兩個三芳胺成分的有益之類別的三芳胺係由結構式(B)所代表。
其中:R1 與R2 每個獨立地代表氫原子、芳基或烷基或R1 與R2 一併代表完成環烷基的原子;以及R3 與R4 每個獨立地代表芳基,其為以由二芳基所取代之胺基依次所取代,如結構式(C)所示。
其中:R5 與R6 獨立地為所選擇之芳基。於一實施例中,R5 或R6 的至少其中之一包含多環稠環結構,例如萘。
其他類別的芳基三級胺為四芳二胺。所欲的四芳二胺包括兩個二芳胺基,如由化學式(C)所示,透過伸芳基而連接。有益之四芳二胺包括由化學式(D)所代表之物。
其中:每個ARE獨立地為所選擇之伸芳基,例如伸苯基或蒽成分;N為1至4之整數;以及Ar、R7 、R8 以及R9 獨立地為所選擇之芳基。
於一典型之實施例中,Ar、R7 、R8 以及R9 的至少其中之一為多環稠環結構,例如萘。
另一類別的電洞傳遞材料包括化學式(E)的材料:
於化學式(E)中,Ar1 至Ar6 獨立地代表芳基,例如苯基或甲苯基;R1 至R12 獨立地代表氫或獨立地所選擇之取代基,例如包含1個至4個碳原子的烷基、芳基、經取代之芳基。
上述結構式(A)、(B)、(C)、(D)以及(E)的多種烷基、伸烷基、芳基以及伸芳基成分,每個可依次經取代。典型的取代基包括烷基、烷氧基、芳基、芳氧基以及例如氟、氯以及溴的鹵素。多種烷基、伸烷基成分典型地包含約1個至6個碳原子。環烷基成分可包含3個至約10個碳原子,但典型地包含五環、六環或七環碳原子,例如環戊基、環己基以及環庚基的環結構。芳基與伸芳基成分典型地為苯基與伸苯基成分。
HTL係由芳基三級胺化合物的單一或混合物所形成。特別地,可結合使用例如滿足化學式(B)的三芳胺的三芳胺,與例如由化學式(D)所示之四芳二胺。當結合使用三芳胺與四芳二胺時,後者係設置為介於三芳胺與電子注射和傳遞層間的層。芳基三級胺亦係有益於為電洞注射材料。以下為有益之芳基三級胺的說明例:1,1-雙(4-二-對-甲苯基胺苯基)環己烷;1,1-雙(4-二-對-甲苯基胺苯基)-4-苯環己烷;1,5-雙[N-(1-萘基)-N-苯胺基]萘;2,6-雙(二-對-甲苯基胺基)萘;2,6-雙[二-(1-萘基)胺基]萘;2,6-雙[N-(1-萘基)-N-(2-萘基)胺基]萘;2,6-雙[N,N-二(2-萘基)胺]茀;4-(二-對-甲苯基胺基)-4'-[4(二-對-甲苯基胺基)-苯乙烯基]二苯乙烯;4,4'-雙(二苯胺基)四聯苯;4,4"-雙[N-(1-蒽基)-N-苯胺基]-對-三聯苯;4,4'-雙[N-(1-蔻基)-N-苯胺基]聯苯;4,4'-雙[N-(1-naphthyl)-N-苯胺基]聯苯(NPB);4,4’-雙[N-(1-萘基)-N-(2-萘基)胺基]聯苯(TNB);4,4"-雙[N-(1-萘基)-N-苯胺基]對-三聯苯;4,4'-雙[N-(2-稠四苯基)-N-苯胺基]聯苯;4,4'-雙[N-(2-萘基)-N-苯胺基]聯苯;4,4'-雙[N-(2-苝基)-N-苯胺基]聯苯;4,4'-雙[N-(2-菲基)-N-苯胺基]聯苯;4,4'-雙[N-(2-芘基)-N-苯胺基]聯苯;4,4'-雙[N-(3-乙烷合萘基)-N-苯胺基]聯苯;4,4'-雙[N-(3-甲基苯基)-N-苯胺基]聯苯(TPD);4,4'-雙[N-(8-丙烯合茀基)-N-苯胺基]聯苯;4,4'-雙[N-(9-蒽基)-N-苯胺基]聯苯;4,4'-雙{N-苯基-N-[4-(1-萘基)-苯基]胺基}聯苯;4,4'-雙[N-苯基-N-(2-芘基)胺基]聯苯;4,4',4"-參[(3-甲基苯基)苯胺基]三苯胺(m-TDATA);雙(4-二甲胺-2-甲基苯基)-甲苯;N-苯咔唑;N,N'-雙[4-([1,1'-聯苯]-4-基苯胺基)苯基]-N,N'-二-1-聯萘基-[1,1'-聯苯]-4,4'-二胺;N,N'-雙[4-(二-1-聯萘胺基)苯基]-N,N'-二-1-聯萘基-[1,1'-聯苯]-4,4'-二胺;N,N'-雙[4-[(3-甲基苯基)苯胺基]苯基]-N,N'-二苯基-[1,1'-聯苯]-4,4'-二胺;N,N-雙[4-(二苯胺基)苯基]-N',N'-二苯基-[1,1'-聯苯]-4,4'-二胺;N,N'-二-1-聯萘基-N,N'-雙[4-(1-聯萘苯胺基)苯基]-[1,1'-聯苯]-4,4'-二胺;N,N'-di-1-聯萘基-N,N'-雙[4-(2-聯萘苯胺基)苯基]-[1,1'-聯苯]-4,4'-二胺;N,N,N-參(對-甲苯基)胺;N,N,N',N'-四-對-甲苯基-4-4'-二胺聯苯;N,N,N',N'-四苯基-4,4'-二胺聯苯;N,N,N',N'-四-1-萘基-4,4’-二胺聯苯;N,N,N',N'-四-2-萘基-4,4’-二胺聯苯;以及N,N,N',N'-四(2-萘基)-4,4"-二胺基-對-三聯苯。
另一類別的有益之電洞傳遞材料包括如歐洲專利第EP 1 009 041號中所述之多環芳基化合物。具有兩個以上之胺基的三級芳胺可包括寡聚合物材料而使用。此外,使用聚合電洞傳遞材料,例如聚(N-乙烯基咔唑)(PVK)、聚噻吩、聚吡咯、聚苯胺以及例如亦稱為PEDOT/PSS之聚(3,4-伸乙二氧基噻吩)/聚(4-苯乙烯磺酸鹽)的共聚體。
HTL 132的厚度係介於5nm至200nm的範圍間,較佳地,介於10nm至150nm的範圍間。
激子阻斷層(Exciton Blocking Layer,EBL)
選擇性之激子阻斷層或電子阻斷層(圖1中未示)可存在於HTL與LEL間。所述阻斷層的一些合適之實例係於美國專利申請案第20060134460 A1號中有所描述。
發光層
如美國專利第4,769,292號與第5,935,721號中更加詳細地描述,圖1中所示之有機電激發光元件的發光層(LEL) 134包括發光、螢光或磷光材料,而電激發光係於此區域中的電子電洞對的再結合的結果而產生。發光層可包括單一材料,但更普遍地包含以電激發光客體化合物(一般稱為摻雜物)所摻雜之非電激發光化合物(一般稱為主體),或光的發射主要係來自電激發光化合物且可為任何色彩之化合物。電激發光化合物可塗佈為0.01%至50%的非電激發光組分材料,但典型地塗佈為0.01%至30%,更典型地塗佈為0.01%至15%的非電激發光組分。LEL的厚度可為任何合適之厚度。厚度可為介於0.1毫米(mm)至100mm的範圍間。
選擇作為電激發光組分的染料的重要關係為定義為分子的最高佔有分子軌道(HOMO)與最低未占分子軌道(LUMO)間的能量差的帶隙(band gap)電位的比較。為達高效的自非電激發光化合物至電激發光化合物分子之能量傳遞,必要條件為電激發光化合物的帶隙為小於非電激發光化合物或化合物的帶隙。因此,合適之主體材料的選擇係依照主體材料相對於電激發光化合物之電子特性的電子特性,因所發射的光的本質與效能而經選擇。如下所述,螢光與磷光摻雜物典型地具有不同之電子特性,故最適用於每個發光層的主體材料會有所不同。然而於一些情況中,相同的主體材料可為有益於任一類型的摻雜物。
已使用之非電激發光化合物與發射分子包括但不限於已揭露於美國專利第5,141,671號、第5,150,006號、第5,151,629號、第5,405,709號、第5,484,922號、第5,593,788號、第5,645,948號、第5,683,823號、第5,755,999號、第5,928,802號、第5,935,720號、第5,935,721號以及第6,020,078號之物。
a)磷光發光層
應選擇合適用於磷光LEL之主體,以使三重態(triplet)激子的傳遞可高效地發生於自主體至磷光摻雜物,而無法高效地發生於自磷光摻雜物至主體。因此較佳地,主體的三重態能階為高於磷光摻雜物的三重態能階。一般而言,較大三重態能階意味著較大光學帶隙。然而,主體之帶隙不應選擇為過大而導致電洞至螢光藍色LEL之注射的不可接受之障壁,以及有機發光二極體之驅動電壓的不可接受之增加。磷光LEL中之主體可包括任何上述用於HTL 132的電洞傳遞材料,只要所述材料具有較高於層中磷光摻雜物之三重態能階的三重態能階。磷光LEL中所使用之主體可相同於或相異於HTL 132中所使用之電洞傳遞材料。於一些情況中,磷光LEL中之主體亦可適當地包括電子傳遞材料(將於後續有所討論),只要所述材料具有較高於磷光摻雜物三重態能階的三重態能階。
除上述HTL 132中之電洞傳遞材料外,亦有其他類別之電洞傳遞材料合適用作為磷光LEL中之主體。
一較佳主體包括化學式(F)的電洞傳遞材料:
於化學式(F)中,R1 與R2 代表取代基,提供為R1 與R2 可接合以形成環。例如,R1 與R2 可為甲基或接合以形成環己基;Ar1 至Ar4 代表獨立地所選擇之芳基,例如,苯基或甲苯基;R3 至R10 獨立地代表氫、烷基、經取代之烷基、芳基、經取代之芳基。
合適之材料的實例包括但不限於:1,1-雙(4-(N,N-二-對-甲苯基胺基)苯基)環己烷(TAPC);1,1-雙(4-(N,N-di-對-甲苯基胺基)苯基)環戊烷;4,4'-(9H-茀-9-亞基)雙[N,N-雙(4-甲基苯基)-苯胺;1,1-雙(4-(N,N-二-對-甲苯基胺基)苯基)-4-苯基環己烷;1,1-雙(4-(N,N-二-對-甲苯基胺基)苯基)-4-甲環己烷;1,1-雙(4-(N,N-二-對-甲苯基胺基)苯基)-3-苯丙烷;雙[4-(N,N-二乙胺基)-2-甲基苯基](4-甲基苯基)甲烷;雙[4-(N,N-二乙胺基)-2-甲基苯基](4-甲基苯基)乙烷;4-(4-二乙胺基苯基)三甲苯;4,4'-雙(4-二乙胺基苯基)二甲苯。
適用為主體之有益之類別的三芳胺包括例如由化學式(G)所代表之咔唑衍生物:
於化學式(G)中,Q獨立地代表氮、碳、芳基或經取代之芳基,較佳地為苯基;R1 較佳地為芳基或經取代之芳基,更佳地為苯基、經取代之苯基、聯苯、經取代之聯苯基;R2 至R7 獨立地為氫、烷基、苯基或經取代之苯基、芳胺基、咔唑或經取代之咔唑;以及N係選自1至4。
另一滿足結構式(G)之有益之類別的咔唑係由化學式(H)所代表:
其中:N為1至4的整數;Q為氮、碳、芳基或經取代之芳基;R2 至R7 獨立地為氫、烷基、苯基或經取代之苯基、芳胺基、咔唑或經取代之咔唑。
有益之經取代之咔唑的說明例為如下:4-(9H-咔唑-9-基)-N,N-雙[4-(9H-咔唑-9-基)苯基]-苯胺(TCTA);4-(3-苯基-9H-咔唑-9-基)-N,N-雙[4(3-苯基-9H-咔唑-9-基)苯基]-苯胺;9,9'-[5'-[4-(9H-咔唑-9-基)苯基][1,1':3',1"-三苯]-4,4"-二基]雙-9H-咔唑;9,9'-(2,2'-二甲基[1,1'-聯苯]-4,4'-二基)雙-9H-咔唑(CDBP);9,9'-[1,1'-聯苯]-4,4'-二基雙-9H-咔唑(CBP);9,9'-(1,3-伸苯基)雙-9H-咔唑(mCP);9,9'-(1,4-伸苯基)雙-9H-咔唑;9,9',9"-(1,3,5-苯次甲基)參-9H-咔唑;9,9'-(1,4-伸苯基)雙[N,N,N',N'-四苯基-9H-咔唑-3,6-二胺;9-[4-(9H-咔唑-9-基)苯基]-N,N-二苯基-9H-咔唑-3-胺;9,9'-(1,4-伸苯基)雙[N,N-二苯基-9H-咔唑-3-胺;9-[4-(9H-咔唑-9-基)苯基]-N,N,N',N'-四苯基-9H-咔唑-3,6-二胺。
適用於之磷光LEL的上述類別之主體亦可用作為螢光LEL中之主體。
適用於磷光LEL中之磷光摻雜物可選自由以下化學式(J)所述之磷光材料:
其中:A為包含至少一個氮原子的經取代或未經取代之雜環;B為經取代或未經取代之芳環或雜芳環,或包含鍵結至M的乙烯基碳的環;X-Y為陰離子二牙配位基;m為1至3的整數且n為0至2的整數,當M為銠(Rh)或銥(Ir)時,m+n=3;或m為1至2的整數且n為0至1的整數,當M為鉑(Pt)或鈀(Pd)時,m+n=2。
根據化學式(J)之化合物可稱為C,N-(或C^N-)環金屬化(cyclometallated)錯合物,以表明中心金屬原子係包含於藉由將金屬原子鍵結至一個或以上的配位基的碳原子與氮原子所形成之環單元中。化學式(J)中之雜環A的實例包括經取代或未經取代之吡啶環、喹啉環、異喹啉環、嘧啶環、吲哚環、吲唑環、噻唑環以及噁唑環。化學式(J)中之雜環B的實例包括經取代或未經取代苯環、萘環、噻吩環、苯并噻吩環、呋喃環。化學式(J)中之環B亦可為包含N之環,例如吡啶,但化學式(J)中所示之包含N之環係經由碳原子而鍵結至M,而非經由N原子。
根據化學式(J),具有m=3且n=0的參-C,N-環金屬化錯合物的實例為參(2-苯基-吡啶-N,C2’-)銥(III),於以下立體圖中示為面式(fac-)或經式(mer-)同分異構物。
一般地,較佳地為面式同分異構物,因面式同分異構物相較於經式同分異構物通常具有較高的磷光量子產率。根據化學式(J),參-C,N-環金屬化磷光材料的附加實例為參(2-(4’-甲基苯基)吡啶-N,C2’)銥(III)、參(3-苯基異喹啉基-N,C2’ )銥(III)、參(2-苯基喹啉基-N,C2’ )銥(III)、參(1-苯基異喹啉基-N,C2’ )銥(III)、參(1-(4’-甲基苯基)異喹啉基-N,C2’ )銥(III)、參(2-(4’,6’-二氟苯基)-吡啶-N,C2’ )銥(III)、參(2-((5’-苯基)-苯基)吡啶-N,C2’ )銥(III)、參(2-(2’-苯并噻吩基)吡啶-N,C3’ )銥(III)、參(2-苯基-3,3’二甲基)吲哚基-N,C2’ )銥(III)、參(1-苯基-1H-吲唑基-N,C2’ )銥(III)。
於此之中,參(1-苯基異喹啉基)銥(III)(亦稱為Ir(piq)3)與參(2-苯基吡啶基)銥(亦稱為Ir(ppy)3)尤其適用於本發明。
參-C,N-環金屬化磷光材料亦包括根據化學式(J)的化合物,其中,單陰離子二牙配位基X-Y為另一C,N-環金屬化配位基。實例包括雙(1-苯基異喹啉基-N,C2’)(2-苯基吡啶-N,C2’ )銥(III)與雙(2-苯基吡啶-N,C2’ )(1-苯基異喹啉基-N,C2’ )銥(III)。所述包含兩個相異之C,N-環金屬化配位基的參-C,N-環金屬化錯合物的合成可藉由以下之步驟方便地合成。首先,雙-C,N-環金屬化二銥二鹵化錯合物(或類似二銠錯合物)係根據野野山(Nonoyama)之方法(1974年,Bull. Chem. Soc. Jpn.,47,767)而製造。第二,相異之第二C,N-環金屬化配位基之鋅錯合物係藉由鋅鹵化物與鋰錯合物或環金屬化配位基的格林納試劑(Grignard reagent)之反應而製備。第三,如此所形成之第二C,N-環金屬化配位基之鋅錯合物係與先前所獲之雙-C,N-環金屬化二銥二鹵化錯合物反應,以形成包含兩個相異之C,N-環金屬化配位基的參-C,N-環金屬化錯合物。較佳地,如此所獲之包含兩個相異之C,N-環金屬化配位基的參-C,N-環金屬化錯合物可轉換為同分異構物,其中鍵結至金屬(例如銥)的碳原子彼此均藉由於例如二甲基亞碸之合適的溶劑中加熱而為順式(cis)。
根據化學式(J),合適之磷光材料除C,N-環金屬化配位基外,亦包含非C,N-環金屬化的單陰離子二牙配位基X-Y。常見實例為例如乙醯丙酮酸鹽(acetylacetonate)的β-二酮酸鹽,以及例如吡啶甲酸鹽(picolinate)的希夫鹼(Schiff bases)。根據化學式(J),如此混合之配位基錯合物的實例包括雙(2-苯基吡啶-N,C2’ )銥(III)(乙醯丙酮酸)、雙(2-(2’-苯并噻吩基)吡啶-N,C3’ )銥(III)(乙醯丙酮酸)以及雙(2-(4’,6’-二氟苯基)-吡啶-N,C2’ )銥(III)(吡啶甲酸)。
根據化學式(J),其他重要的磷光材料包括C,N-環金屬化鉑(II)錯合物,例如順-雙(2-苯基吡啶-N,C2’ )鉑(II)、順-雙(2-(2’-噻吩基)吡啶-N,C3’ )鉑(II)、順-雙(2-(2’-噻吩基)喹啉基-N,C5’ )鉑(II)或(2-(4’,6’-二氟苯基)吡啶-N,C2’ )鉑(II)(乙醯丙酮酸)。
根據化學式(J),C,N-環金屬化磷光材料的發射波長(色彩)主要地係由錯合物之最低能量光學躍遷(optical transition)所支配,並因此由C,N-環金屬化配位基的選擇所支配。例如,2-苯基-吡啶-N,C2’ 錯合物係典型地為發射綠色,而1-苯基-異喹啉基-N,C2’ 錯合物係典型地為發射紅色。於錯合物具有一個以上之C,N-環金屬化配位基的情況中,所述發射將是具有最長波長發射之特性的配位基之發射。發射波長可進一步由C,N-環金屬化配位基上之取代基的效應而位移。例如,供電子基於包含N之環A上之適當位置的取代,或於包含C之環B上之受電子基(electron accepting groups)傾向於將所述發射相對於未經取代之C,N-環金屬化配位基錯合物而藍移。於具有較高受電子特性之化學式(J)中選擇單牙陰離子配位基X,Y亦傾向將C,N-環金屬化配位基錯合物之發射藍移。具有兩者於包含C之環B上具有受電子特性與受電子取代基之單陰離子二牙配位基之錯合物的實例包括雙(2-(4’,6’-二氟苯基)-吡啶-N,C2’ )銥(III)(吡啶甲酸)以及雙(2-(4’,6’-二氟苯基)-吡啶-N,C2’ )銥(III)(肆(1-吡唑基)硼酸)。
根據化學式(J),磷光材料中之中心金屬原子可為銠或銥(m+n=3)以及鈀或鉑(m+n=2)。較佳之金屬原子為銥與鉑,係由於根據通常地獲得自第三過渡系之元素的較強之自旋軌道耦合交互作用,所述原子傾向供給較高之磷光量子效率。
除由化學式(J)所代表之二牙C,N-環金屬化錯合物外,眾多合適之磷光材料包含多牙C,N-環金屬化配位基。具有適用於本發明之三牙配位基的磷光材料係揭露於美國專利第6,824,895 B1號中。具有適用於本發明之四牙配位基的磷光材料係揭露於以下之化學式:
其中:M為鉑或鈀;R1 至R7 代表氫或獨立地所選擇之取代基,提供為R1 與R2 、R2 與R3 、R3 與R4 、R4 與R5 、R5 與R6 以及R6 與R7 可接合以形成環基;R8 至R14 代表氫或獨立地所選擇之取代基,提供為R8 與R9 、R9 與R10 、R10 與R11 、R11 與R12 、R12 與R13 以及R13 與R14 可接合以形成環基;E代表選自下列之橋接基:
其中:R與R’代表氫或獨立地所選擇之取代基;提供為R與R’可結合以形成環基。
適用為磷光摻雜物的較佳之四牙C,N-環金屬化磷光材料係由下列化學式所代表:
其中:R1 至R7 代表氫或獨立地所選擇之取代基,提供為R1 與R2 、R2 與R3 、R3 與R4 、R4 與R5 、R5 與R6 以及R6 與R7 可結合以形成環基;R8 至R14 代表氫或獨立地所選擇之取代基,提供為R8 與R9 、R9 與R10 、R10 與R11 、R11 與R12 、R12 與R13 以及R13 與R14 可結合以形成環基;Z1 至Z5 代表氫或獨立地所選擇之取代基,提供為Z1 與Z2 、Z2 與Z3 、Z3 與Z4 以及Z4 與Z5 可結合以形成環基。
適用於本發明之具有四牙C,N-環金屬化配位基的磷光材料的特定實例包括下列所代表之化合物(M-1)、(M-2)以及(M-3)。
具有四牙C,N-環金屬化配位基的磷光材料可藉由於例如冰醋酸之適當的有機溶劑中將四牙C,N-環金屬化配位基與例如K2 PtCl4 之所欲的金屬鹽反應而合成,以形成具有四牙C,N-環金屬化配位基的磷光材料。例如氯化四丁基銨的四烷基銨鹽可用作為相間轉移催化劑以加速反應。
其他不包含C,N-環金屬化配位基的磷光材料為已知。具有順丁烯腈二硫醇的鉑(II)、銥(I)以及銠(I)的磷光錯合物為已報導(Johnson等人,1983年,J. Am. Chem. Soc. ,105,1795)。錸(I)三羰基二亞胺錯合物亦已知為高度磷光(Wrighton與Morse,1974年,J. Am. Chem. Soc ,96,998;Stufkens,1992年,Comments Inorg. Chem. ,13,359;2001年,Yam,Chem. Commun. ,789)。包含包括氰基配位基以及聯吡啶基配位基或啡啉配位基之配位基的組合的鋨(II)錯合物亦已於高分子有機發光二極體有所描述(Ma等人,1998年,Synthetic Metals ,94,245)。
例如2,3,7,8,12,13,17,18-八乙基-21H,23H-卟吩鉑(II)的紫質錯合物亦為有益之磷光摻雜物。
其他有益之磷光材料的實例包括例如鋱3+ 與銪3+ 之三價鑭系元素的配位錯合物(Kido等人,1990年,Chem .Lett .,657;1993年,J .Alloys and Compounds ,192,30;1996年,Jpn .J .Appl .Phys .,35,L394以及1994年,Appl .Phys .Lett .,65,2124).
磷光LEL中之磷光摻雜物係典型地以LEL的體積百分比的1%至20%的量而存在,便利地為LEL的體積百分比的2%至8%。於一些實施例中,磷光摻雜物可附加至一個或以上的主體材料。主體材料可進一步為聚合物。第一磷光發光層中之磷光摻雜物係選自於綠色與紅色磷光材料。
磷光LEL的厚度為大於0.5nm,較佳地為介於1.0nm至40nm的範圍。
b)螢光發光層
雖然“螢光”的術語係常用於描述任何發光材料,但於此係指由一重(singlet)激發態發射光的材料。螢光材料可用於相同於磷光材料的層中、鄰近的層中、鄰近的像素中或任何組合。須小心勿選擇會對本發明之磷光材料的性能有產生不利影響的材料。熟悉此項技術之人士將了解,需適當地設定相同於磷光材料的層中或鄰近的層中之材料的濃度與三重態能階,以避免不想要之磷光之驟熄。
典型地,螢光LEL包括至少一主體以及至少一螢光摻雜物。所述主體可為電洞傳遞材料或任何如上所定義的適用於磷光摻雜物的主體,或可為以下所定義的電子傳遞材料。
摻雜物係典型地選擇自高度螢光染料,例如,於國際公開(WO)第98/55561 A1號;國際公開第WO 00/18851 A1號;國際公開第00/57676 A1號以及國際公開第WO 00/70655號中所述之過渡金屬錯合物。
有益之螢光摻雜物包括但不限於蒽、稠四苯、二苯并哌喃、苝、伸苯基之衍生物、二氰亞甲基哌喃化合物、硫基哌喃化合物、聚次甲基化合物、吡喃與噻吡喃化合物、芳基芘化合物、亞芳基伸乙烯基化合物、迫亞呋囒(periflanthene)衍生物、茚苝衍生物、雙()胺硼化合物、雙()甲硼化合物、二苯乙烯苯衍生物、二苯乙烯聯苯衍生物、二苯乙烯胺衍生物以及喹諾酮(carbostyryl)化合物。
一些螢光發射材料包括但不限於蒽、稠四苯、二苯并哌喃、苝、紅螢烯、香豆素、玫瑰紅以及喹吖酮之衍生物、二氰亞甲基哌喃化合物、硫基哌喃化合物、聚次甲基化合物、吡喃與噻吡喃化合物、茀衍生物、迫亞呋囒衍生物、茚苝衍生物、雙()胺硼化合物、雙()甲烷化合物(於美國專利第5,121,029號中有所描述)以及喹諾酮化合物。有益之材料的說明性實例包括但不限於以下:
較佳之螢光藍色摻雜物可見於1997年Chen、Shi以及Tang,“Recent Developments in Molecular Organic Electroluminescent Materials”,Macromol. Symp. 125,1以及其中之參考資料;2002年Hung與Chen,“Recent Progress of Molecular Organic Electroluminescent Materials and Devices”,Mat. Sci. and Eng. R39,143以及其中之參考資料。
尤其較佳的類別的藍色發射螢光摻雜物係由化學式(N)所代表,已知為雙()胺硼錯合物,並於美國專利第6,661,023號中有所描述。
其中:A與A'代表獨立氮雜苯(azine)環系統,相當於包含至少一個氮的六員芳環系統;每個Xa 與Xb 獨立地為所選擇之取代基,其兩者可接合以形成稠合至A或A'的稠環;M與n獨立地為0至4;Za 與Zb 獨立地為所選擇之取代基;以及1、2、3、4、1'、2'、3'以及4'獨立地為選擇為碳或氮原子。
較佳地,氮雜苯環為喹啉基環或異喹啉基環,1、2、3、4、1'、2'、3'以及4'均為碳;m與n為等於或大於2;以及Xa 與Xb 代表至少兩個接合以形成芳環的碳取代基。較佳地,Za 與Zb 為氟原子。
較佳實施例進一步包括兩個稠環系統為喹啉或異喹啉系統之裝置;芳基或雜環取代基為苯基;存在至少接合以形成6-6稠環的兩個Xa 基與兩個Xb 基,所述稠環系統係個別地稠合於1-2、3-4、1'-2'或3'-4'位置;一個或兩者稠環係由苯基所取代;以及所述摻雜物係描述於化學式(N-a)、(N-b)或(N-c)中。
其中:每個Xc 、Xd 、Xe 、Xf 、Xg 以及Xh 為氫或獨立地所選擇之取代基,其中之一必須為芳基或雜環基。
較佳地,氮雜苯環為喹啉基環或異喹啉基環,1、2、3、4、1'、2'、3'以及4'均為碳;m與n為等於或大於2;以及Xa 與Xb 代表至少兩個接合以形成芳環的碳取代基,並且一個為芳基或經取代之芳基。較佳地,Za 與Zb 為氟原子。
於此之中,化合物FD-54係特別地有益。
香豆素代表如Tan等人於美國專利第4,769,292號以及第6,020,078號中所述之有益之類別的綠色發射摻雜物。綠色摻雜物或發光材料可以重量的0.01%至50%塗佈至主體材料中,但典型地塗佈為0.01%至30%,而更典型地以重量的0.01%至15%塗佈至主體材料中。有益之綠色發射香豆素的實例包括C545T以及C545TB。喹吖酮代表另一有益之類別的綠色發射摻雜物。有益之喹吖酮為已描述於美國專利第5,593,788號,日本公開第JP 09-13026A號以及由Lelia Cosimbescu於2002年6月27日所提出之已放棄之美國專利申請案第10/184,356號“Device Containing Green Organic Light-Emitting Diode”。
尤其有益之綠色發射喹吖酮的實例為FD-7與FD-8。
以下之化學式(N-d)代表有益於本發明的另一類別的綠色發射摻雜物。
其中:A與A'代表獨立之氮雜苯環系統,相當於包含至少一個氮的六員芳環系統;每個Xa 與Xb 獨立地為所選擇之取代基,其兩者可接合以形成稠合至A或A'的稠環;M與n獨立地為0至4;Y為H或取代基;Za 與Zb 獨立地為所選擇之取代基;以及1、2、3、4、1'、2'、3'以及4'獨立地為選擇為碳或氮原子。
於裝置中,1、2、3、4、1'、2'、3'以及4'係便利地均為碳原子。所述裝置可較佳地包含包含接合以形成稠環的取代基環A或A'的至少其中之一或兩者。於有益之實施例中,存在至少一個選擇自由鹵化物與烷基、芳基、烷氧基以及芳氧基所組成之群組的Xa 或Xb 基。於另一實施例中,存在獨立地選擇自由氟與烷基、芳基、烷氧基以及芳氧基所組成之群組的Za 與Zb 基。較佳的實施例係Za 與Zb 為F。Y係較佳地為氫或取代基,例如烷基、芳基或雜環基。
所述化合物的發射波長可藉由中心雙()胺硼基周圍之適當地取代而調整至某程度以達到色彩目標,意即綠色。有益之材料的一些實例為FD-50、FD-51以及FD-52。
其稠四苯與衍生物亦代表有益之類別的發射摻雜物,亦可用作為穩定劑。所述摻雜物材料可以重量的0.01%至50%塗佈至主體材料中,但典型地塗佈為0.01%至30%,而更典型地以重量的0.01%至15%塗佈至主體材料中。以下之稠四苯衍生物YD-1(t-BuDPN)為用作為穩定劑的摻雜物材料的實例。
此類別的材料的一些實例亦合適為主體材料與摻雜物。例如,見美國專利第6,773,832號或美國專利第6,720,092號。此特定實例為紅螢烯(FD-5)。
另一類別的有益之摻雜物為苝衍生物;例如見美國專利第6,689,493號。特定實例為FD-46。
8-羥喹啉與相似衍生物(化學式O)之金屬錯合物構成有益之類別的非電激發光主體化合物,可支援電激發光,並尤其適用於波長長於500nm的光發射,例如綠色、黃色、橘色以及紅色。
其中:M代表金屬;n為1至4的整數;以及Z獨立地於每個事件中代表完成具有至少兩個稠合芳環的核的原子。
由上述可明顯得知,金屬可為單價、二價、三價或四價金屬。例如,所述金屬可為如鋰、鈉或鉀的鹼金屬;如鎂或鈣的鹼土金屬;如鋁或鎵的土金屬;或如鋅或鋯的過渡金屬。一般地,可使用已知為有益之螯合金屬的任何單價、二價、三價或四價金屬。
Z完成包含至少兩個稠合芳環的雜環核,其中的至少一個為唑環或氮雜苯環。附加包括脂環(aliphatic rings)與芳環兩者的環,如必要,可與兩個必要的環稠合。為避免增加分子體積而無增進功能,環原子的數量通常係維持於18個或以下。
有益之經螫合之類奧辛化合物的說明例為下:O-1:參奧辛鋁(Aluminum trisoxine)[別名,參(8-喹啉酚)鋁(III)]
O-2:雙奧辛鎂(Magnesium bisoxine)[別名,雙(8-喹啉酚)鎂(II)]
O-3:雙[苯并{f}-8-喹啉酚]鋅(II)
O-4:雙(2-甲基-8-喹啉酚)鋁(III)-μ-側氧基-雙(2-甲基-8-喹啉酚)鋁(III)
O-5:參奧辛銦(Indium trisoxine)[別名,參(8-喹啉酚)銦]
O-6:參(5-甲基奧辛)鋁(Aluminum tris(5-methyloxine))[別名,參(5-甲基-8-喹啉酚)鋁(III)]
O-7:奧辛鋰(Lithium oxine)[別名,(8-喹啉酚)鋰(I)]
O-8:奧辛鎵(Gallium oxine)[別名,參(8-喹啉酚)鎵(III)]
O-9:奧辛鋯(Zirconium oxine)[別名,肆(8-喹啉酚)鋯(IV)]
O-10:雙(2-甲基-8-喹啉酚)-4-苯基苯酚鋁(III)(Bis(2-methyl-8-quinolinato)-4-phenylphenolato-aluminum(III))
根據化學式(P),蒽衍生物亦為LEL中之有益之主體材料:
其中:R1 至R10 獨立地為選自氫、1個至24個碳原子的烷基或6個至24個碳原子的芳基。尤其較佳地為R1 與R6 為苯基、聯苯基或萘基,R3 為苯基、經取代之苯基或萘基,R2 、R4 、R5 、R7 至R10 均為氫的化合物。所述之蒽主體已知為具有極佳的電子傳遞特性。
尤其較佳地為9,10-二-(2-萘基)蒽的衍生物。說明實例包括9,10-二-(2-萘基)蒽(ADN)與2-三級-丁基-9,10-二-(2-萘基)蒽(TBADN)。如美國專利第5,927,247號中所述,其他蒽衍生物可為有益之LEL中之非電激發光化合物,例如二苯蒽及其衍生物。如美國專利第5,121,029號以及日本專利第08333569號中所述之苯乙烯伸芳基(styrylarylene)衍生物亦為有益之非電激發光材料。如歐洲專利第EP 681,019號中所述之例如,9,10-雙[4-(2,2-二苯乙烯基)苯基]蒽、4,4'-雙(2,2-二苯乙烯基)-1,1'-聯苯(DPVBi)以及苯蒽衍生物亦為有益之非電激發光材料。
合適之蒽的一些實例為:
間隔層
當間隔層存在時,間隔層係直接接觸LEL。間隔層可位於陽極或陰極上,或甚至LEL的兩側。間隔層典型地不包含任何發光摻雜物。可使用一個或多個材料,並可為如上所定義之電洞傳遞材料或如下所定義之電子傳遞材料。若位於緊鄰磷光LEL,則間隔層中之材料應具有較高於LEL中之磷光摻雜物的三重態能階的三重態能階。最為較佳地,間隔層中之材料將相同於用於鄰近之LEL中之主體。因此,所述之任何主體材料亦適用於間隔層。間隔層應為薄,至少為0.1nm,但較佳地為介於1.0nm至20nm的範圍。
電洞阻斷層(Hole-Blocking Layer,HBL)
當包含磷光發射器之LEL存在時,較佳地為將電洞阻斷層135置於電子傳遞層136與發光層134間以協助限制激子與對LEL的再結合事件。於此情況中,應有用於自共主(co-hosts)材料至電洞阻斷層之電洞遷移的能量障壁,而電子應立即自電洞阻斷層通過至包括共主材料與磷光發射器的發光層。更為較佳地,電洞阻斷材料的三重態能階為大於磷光材料的三重態能階。合適之電洞阻斷材料係描述於國際公開第WO 00/70655A2號、國際公開第WO 01/41512號以及國際公開第WO 01/93642 A1號中。有益之電洞阻斷材料的兩個實例為浴銅靈(bathocuproine)(BCP)與雙(2-甲基-8-喹啉酚)(4-苯基苯酚)鋁(III)(BAlq)。除BAlq外,亦已知用於阻斷電洞與激子之金屬錯合物係描述於美國專利申請案第20030068528號中。當使用電洞阻斷層時,其之厚度可介於2nm至100nm間,而較佳地為介於5nm至10nm間。
電子傳遞層
如上所述,電子傳遞層136較佳地包含螢蒽-巨環化合物,或可為螢蒽-巨環化合物與其他適當之材料的混合物。
於一些實施例中,附加的電子傳遞材料可適用於ETL中或附加的電子傳遞層中。包括而不限於如經螫合之類奧辛化合物、蒽衍生物、吡啶型材料、咪唑、噁唑、噻唑及其衍生物的材料、聚苯并雙唑、含氰聚合物以及全氟化(perfluorinated)材料。其他電子傳遞材料包括美國專利第4,356,429號中所揭露之各種丁二烯衍生物以及美國專利第4,539,507號中所描述之各種雜環光學亮光劑。
較佳類別的苯唑於Shi等人之美國專利第5,645,948號與第5,766,779號中有所描述。所述化合物係由結構式(Q)所代表:
於化學式(Q)中,n係選自2至8而i係選自1至5;Z係獨立地O、NR或S;R係獨立地氫;1個至24個碳原子的烷基,例如丙基、三級-丁基、庚基以及類似物;5個至20個碳原子的芳基或經雜原子所取代之芳基,例如苯基與萘基、呋喃基、噻吩基、吡啶基、喹啉基以及其他雜環系統;或鹵基,例如氯基、氟基;或完成稠合芳環所需的原子;以及X係由碳、烷基、芳基、經取代之烷基或經取代之芳基所組成之鍵聯單元,共軛地或非共軛地將多個苯唑連接。
有益之苯唑的實例為由以下所示化學式(Q-1)所代表的2,2’,2”-(1,3,5-伸苯基)參[1-苯基-1H-苯并咪唑](TPBI):
另一合適之類別的電子傳遞材料包括如化學式(R)所代表的各種經取代之啡啉。
於化學式(R)中,R1 至R8 獨立地為氫、烷基、芳基或經取代之芳基,且R1 至R8 的至少其中之一為芳基或經取代之芳基。
EIL中有益之啡啉的特定實例為2,9-二甲基-4,7-二苯基-啡啉(BCP)(見化學式(R-1))與4,7-二苯基-1,10-啡啉(Bphen)(見化學式(R-2))。
作為電子傳遞材料的合適之三芳基硼烷(triarylboranes)可選自具有化學式(S)的化合物:
其中:Ar1 至Ar3 獨立地為可具有取代基的芳環烴(aromatic hydrocarbocyclic)基或芳雜環(aromatic heterocyclic)基。較佳地,具有上述結構的化合物係選自化學式(S-1):
其中:R1 至R15 獨立地為氫、氟基、氰基、三氟甲基、磺醯基、烷基、芳基或經取代之芳基。
三芳基硼烷的特定代表性實施例包括:
電子傳遞材料亦可選自化學式(T)的經取代之1,3,4-二唑:
其中:R1 與R2 各自為氫;1個至24個碳原子的烷基,例如丙基、三級-丁基、庚基以及類似物;5個至20個碳原子的芳基或經雜原子所取代之芳基,例如苯基與萘基、呋喃基、噻吩基、吡啶基、喹啉基以及其他雜環系統;或鹵基,例如氯基、氟基;或完成稠合芳環所需的原子。
有益之經取代之二唑的說明例為如下:
根據化學式(U),電子傳遞材料亦可選自經取代之1,2,4-***:
其中:R1 、R2 與R3 獨立地為氫、烷基芳基或經取代之芳基,且R1 至R3 的至少其中之一為芳基或經取代之芳基。有益之***的實例為由化學式(U-1)所代表的3-苯基-4-(1-萘基)-5-苯基-1,2,4-***:
電子傳遞材料亦可選自經取代之1,3,5-三氮雜苯。合適之材料的實例為:2,4,6-參(二苯胺基)-1,3,5-三氮雜苯;2,4,6-三咔唑基-1,3,5-三氮雜苯;2,4,6-參(N-苯基-2-萘胺基)-1,3,5-三氮雜苯;2,4,6-參(N-苯基-1-萘胺基)-1,3,5-三氮雜苯;4,4',6,6'-四苯基-2,2'-二-1,3,5-三氮雜苯;2,4,6-參([1,1':3',1"-三苯基]-5'-基)-1,3,5-三氮雜苯。
此外,任何包括於LEL中作為有益之主體材料的化學式(O)的奧辛(oxine)本身的螫合物(通常亦稱為8-喹啉酚或8-羥喹啉)的金屬螫合類奧辛化合物,亦適用於ETL中。
一些具有高三重態能階的金屬螫合類奧辛化合物可作為尤其有益之電子傳遞材料。尤其有益之具有高三重態能階的鋁或鎵錯合物主體材料係由化學式(W)所代表。
於化學式(W)中,M1 代表鋁或鎵。R2 至R7 代表氫或獨立地所選擇之取代基。較佳地,R2 代表供電子基。合適地,R3 與R4 每個獨立地代表氫或供電子取代基。較佳之供電子基為例如甲烷的烷基。較佳地,R5 、R6 以及R7 每個獨立地代表氫或受電子基。鄰近之取代基,R2 至R7 ,可結合以形成環基。L為藉由氧而鍵聯至鋁的芳族成分,可經取代基而取代,以使L具有6個至30個碳原子。
適用於ETL的螫合類奧辛化合物的說明例為鋁(III)雙(2-甲基-8-羥喹啉)-4-苯基苯酚[別名,Balq]。
根據化學式(P),適合於LEL作為主體材料的蒽衍生物,同樣亦適用於ETL中。
ETL的厚度係典型地介於5nm至200nm的範圍,較佳地介於10nm至150nm的範圍。
電子注射層
如上所述,於一些實施例中,例如,如AM-1或AM-2的有機鋰化合物的鹼金屬或有機鹼金屬化合物,係存在於EIL 138中。於進一步的實施例中,EIL可細分為兩個或以上的次層,例如EIL1(鄰近ETL)以及EIL2(鄰近陰極),其中EIL1與EIL2可包含鹼金屬、無機鹼金屬化合物或有機鹼金屬化合物或其混合物。仍於進一步的實施例中,螢蒽-巨環化合物係存在於ETL中,由化學式(R)所代表的啡啉化合物,例如Bphen,係存在於EIL中,而鹼金屬亦存在於EIL中。仍於另一實施例中,螢蒽-巨環化合物係存在於ETL中,啡啉化合物係存在於EIL1中,而如AM-1的有機鹼金屬化合物或如LiF的無機鋰化合物係存在於EIL2中。
於一些實施例中,附加之電子注射材料可適用於EIL中或附加之電子注射層中。包括而不限於例如包含至少一個作為主體的電子傳遞材料以及至少一個n型摻雜物之n型摻雜層的材料。摻雜物能夠藉由電荷轉移而還原(reduce)主體。“n型摻雜層”之術語意指在摻雜之後此層具有半導體特性,且通過此層之電流本質上係由電子所負載。
EIL中之主體可為能夠支援電子注射與電子傳遞的電子傳遞材料。所述電子傳遞材料可選自如以上所定義用於ETL區域中之電子傳遞材料。
n型摻雜EIL中之所述n型摻雜物可選自鹼金屬、鹼金屬化合物、鹼土金屬或鹼土金屬化合物或其之組合。“金屬化合物”之術語包括有機金屬錯合物、金屬-有機鹽與無機鹽、氧化物以及鹵化物。於含金屬n型摻雜物的類別中,鋰、鈉、鉀、銣、銫、鎂、鈣、鍶、鋇、鑭、鈰、釤、銪、鋱、鏑或鐿及其化合物,為尤其有益。The於n型摻雜EIL中用做為n型摻雜物的材料亦包括具有強供電子特性之有機還原劑。“強供電子特性”係指有機摻雜物應能夠供給至少一些電荷至主體以與主體形成電荷轉移錯合物。有機分子的未受限實例包括雙(亞乙基二硫基)四硫代富瓦烯(bis(ethylenedithio)-tetrathiafulvalene)(BEDT-TTF)、四硫代富瓦烯(tetrathiafulvalene)(TTF)以及其衍生物。在高分子主體的情況中,摻雜物為任何上述之物或亦為分子性地散佈或作為次要組分與主體共聚的材料。較佳地,n型摻雜EIL中之n型摻雜物包括鋰、鈉、鉀、銣、銫、鎂、鈣、鍶、鋇、鑭、鈰、釹、釤、銪、鋱、鏑或鐿及其化合物。n型摻雜濃度係較佳地介於此層體積之0.01%至20%的範圍。
EIL的厚度係典型地小於20nm,通常小於10nm,或甚至5nm或更小。
陰極
當光發射為完全透過陽極而視時,陰極140包括幾乎任何傳導材料。較佳之材料具有有效之膜形成特性,以確保與下方的有機層之有效接觸、促進低電壓下之電子注射以及具有有效之穩定度。有益之陰極材料通常包含低功函數金屬(<4.0eV)或金屬合金。較佳的陰極材料包括如美國專利案第4,885,221號的鎂:銀合金。另一合適之類別的陰極材料包括包含與有機層(例如,有機EIL或ETL)接觸之薄無機EIL的雙層,其受較厚之傳導金屬的層所覆蓋。於此,無機EIL較佳地包括低功函數金屬或金屬鹽,並且若為如此,所述之較厚覆蓋層不需具有低功函數。所述之陰極包括LiF的薄層,隨後如美國專利第5,677,572號所述由鋁的較厚層所覆蓋。其他有益之陰極材料組包括但不限於於美國專利第5,059,861號、第5,059,862號以及第6,140,76號所述之物。
當光發射係透過陰極而視時,陰極140應為透明或近乎透明。於所述應用中,金屬應為薄或應使用透明傳導氧化物,或包括此等材料。光學地透明陰極已詳述於美國專利第4,885,211號、第5,247,190號、第5,703,436號、第5,608,287號、第5,837,391號、第5,677,572號、第5,776,622號、第5,776,623號、第5,714,838號、第5,969,474號、第5,739,545號、第5,981,306號、第6,137,223號、第6,140,763號、第6,172,459號、第6,278,236號、第6,284,393以及歐洲專利第EP 1 076 368號。陰極材料典型地係由熱蒸發法、電子束蒸發法、離子濺鍍法或化學汽相沉積法所沉積。當需要時,圖形化係藉由許多已知之方法而達成,所述方法包括但不限於穿越遮罩沉積法、整合蔽蔭遮罩法,例如於美國專利第5,276,380號以及歐洲專利第EP 0 732 868號中所述,雷射剝離法以及選擇性化學汽相沉積法。
EIL的厚度通常係介於0.1nm至20nm的範圍,並典型地介於1nm至5nm的範圍。
基板
有機發光二極體100係典型地提供於支撐基板110上,而陽極120或陰極140可接觸所述基板。與基板所接觸之電極係便利地稱為底電極。傳統上,底電極為陽極120,但本發明並不侷限於所述組態。取決於光發射的預期方向,基板可為透光或不透明。對於透過基板而視電激發光發射而言,透光特性為眾所期待。透明玻璃或塑膠係常於所述情況中所使用。基板可為包括多層之材料的錯合物結構。此為主動式矩陣基板的典型情況,其中TFTs係提供於有機發光二極體層的下方。仍然需要基板,至少於發射像素化區域中,為包括例如玻璃或聚合物的高度透明材料。於電激發光發射係透過頂電極而視之應用中,底支撐的透射特徵為不重要,因此基板可為透光、光吸收或光反射。用於此情況之基板包括但不限於玻璃、塑膠、例如矽的半導體材料、陶瓷以及電路板材料。再次,基板可為包括如主動式矩陣TFT設計中所見多層之材料的錯合物結構。於所述裝置組態中必須提供透光頂電極。
有機層之沉積
上述之有機材料係透過昇華適當地沉積,但可以選用黏合劑自溶劑沉積以增進膜形成。若材料為聚合物,較佳地為溶劑沉積。由昇華而沉積之材料可例如於美國專利第6,237,529號中所述,自通常包括鉭材料的昇華器“舟皿”而汽化,或可為首先塗佈於施體薄片上並隨後較接近地昇華至基板。具有材料之混合物的層可利用個別昇華器舟皿或材料可自單一舟皿或施體薄片而預混合並塗佈。圖形化沉積可使用蔽蔭遮罩法、整合蔽蔭遮罩法(美國專利第5,294,870號)、自施體薄片轉移之空間定義熱染料法(美國專利第5,851,709號與第6,066,357號)以及噴墨法(美國專利第6,066,357號)而達成。
有益於製造有機發光二極體的有機材料,例如有機電洞傳遞材料、摻雜有機電激發光組分之有機發光材料,具有附有相對微弱之分子鍵結力的相對複雜之分子結構,故需留意避免於物理汽相沉積時有機材料的分解。上述有機材料係合成為相對高純度,並提供為粉末、薄片或顆粒。所述粉末或薄片已使用迄今以置入物理汽相沉積源中,其中施加熱以用於藉由有機材料之昇華或汽化而形成蒸汽,蒸汽凝結於基板上以提供有機層。
於物理汽相沉積中,已觀察到有機粉末、薄片或顆粒的使用之諸多問題。所述粉末、薄片或顆粒難於處理。尤其當置於處於降壓至10-6 托(Torr)之真空室中之物理汽相沉積源中時,所述有機材料一般具有相對低物理密度以及不佳之低熱傳導性。因此,粉末粒子、薄片或顆粒僅由自熱源的輻射熱以及由直接接觸源之加熱表面的粒子或薄片之傳導熱而加熱。未接觸源之加熱表面的粉末粒子、薄片或顆粒由於相對低度之粒子至粒子接觸面積而無法有效地由傳導熱而加熱;此可致物理汽相沉積源中,所述有機材料的非均勻加熱。因此,此可導致潛在地形成於基板上之非均勻蒸汽沉積有機層。
所述有機粉末可集結為固態粒錠。所述自可昇華之有機材料粉末之混合物集結為固態粒錠的固態粒錠為較易處理。有機粉末至固態粒錠的集結可以簡易工具而達成。自包括一個或多個非發光有機非電激發光組分材料或發光電激發光組分材料的混合物,或非電激發光組分與電激發光組分材料的混合物所形成之固態粒錠,可置入物理汽相沉積源中用以製造有機層。所述集結粒錠可使用於物理汽相沉積裝置中。
於一特點中,本發明提供自有機材料之壓實粒錠於基板上製造有機層的方法,其將形成有機發光二極體的部分。
用於沉積本發明之材料的較佳方法係描述於美國專利申請案第20040255857號以及美國專利申請案第10/945,941號,使用不同的源汽化器以汽化本發明之每個材料。第二較佳方法涉及急驟蒸發法的使用,其中材料沿送料路徑而測量,所述送料路徑經溫度控制。所述較佳方法係描述於美國專利第7,232,588號、第7,238,389號、第7,288,285號、第7,288,286號、第7,165,340號以及美國專利申請案第11/050,924號。使用所述第二方法,每個材料可以使用不同的源汽化器而汽化,或固態材料可使用相同的源汽化器而於蒸發法前混合。
封裝
多數的有機發光二極體裝置對溼氣與氧敏感,所以通常與如氧化鋁、鋁礬土、硫酸鈣、矽膠、沸石、沸石、鹼金屬氧化物、鹼土金屬氧化物、硫酸鹽或金屬鹵化物以及過氯酸鹽的乾燥劑一同密封於如氮或氬的惰性氣氛中。封裝與乾燥的方法包括但不限於美國專利第6,226,890號中之所述。
有機發光二極體裝置設計基準
對於全彩顯示器,可需要LELs的像素化。LELs的此像素化沉積係使用蔽蔭遮罩法、整合蔽蔭遮罩法(美國專利第5,294,870號)、自施體薄片轉移之空間定義熱染料法(美國專利第5,688,551號、第5,851,709號與第6,066,357號)以及噴墨法(美國專利第6,066,357號)而達成。
若有需要,本發明之有機發光二極體可使用各種已知之光學效果以強化發射特性。此包括最佳化層厚度以產生最大透光度、提供介電鏡面結構、以光吸收電極取代反射電極、於顯示器上提供防眩光或防反射塗膜、於顯示器上提供偏光介質或於顯示器上提供彩色、中性密度或色彩轉換濾光器。濾光器、偏光器以及防眩光或防反射塗膜可特定地提供於有機發光二極體上或作為有機發光二極體的部分。
若有需要,本發明之有機發光二極體裝置可使用各種已知之光學效果以強化特性。此包括最佳化層厚度以產生最大透光度、提供介電鏡面結構、以光吸收電極取代反射電極、於顯示器上提供防眩光或防反射塗膜、於顯示器上提供偏光介質或於顯示器上提供彩色、中性密度或色彩轉換濾光器。濾光器、偏光器以及防眩光或防反射塗膜可特定地提供於蓋體上或作為蓋體的部分。
本發明之實施例可提供具有優良照明效率、優良操作穩定性以及降低之驅動電壓的電激發光裝置。本發明之實施例亦可提供降低之隨裝置之壽命而升高之電壓,並可持續地以高度再現性而生產以提供優良照明效率。可具有較低之功耗要求,並且當使用電池時提供較長之電池壽命。
於以下之特定實例中進一步說明本發明以及其優點。“百分比"或“百分之"之術語以及“%”之符號意指本發明之層的總材料之特定的第一或第二化合物以及裝置中之其他組分的體積百分比(或於薄膜厚度顯示器上所測量之厚度比)。若一個以上的第二化合物存在時,第二化合物的總體積亦可表示為本發明的層的總材料的百分比。
例1:發明例化合物Inv-2之合成
Inv-2如架構1中所示而合成並描述於下。
架構1
化合物3之製備
環十二烷酮(Cpd 2,11克(g),60.3毫莫耳(mMole))於甲醇(120毫升(mL))中經加熱至65℃以及添加1,2-二氫苊酮(1,2-acenaphthylenedione)(Cpd 1,10g,54.9mMole)。隨著均勻攪拌,一滴滴地添加氫氧化鉀之水溶液(1莫耳濃度(M)的20mL溶液,20mMole)。於添加的最後,呈褐色之溶液於65℃下加熱約36小時。隨後冷卻溶液並濾去沉澱物,以甲醇洗滌並於空氣中乾燥以提供8,9,10,11,12,13,14,15,16-九水-7,17-甲基環十三[a]苊-18-酮(8,9,10,11,12,13,14,15,16-nonahydro-7,17-methanocyclotridec[a]acenaphthylen-18-one)(Cpd 3,產生6.4g)。
化合物Inv-2之製備
化合物3(8,9,10,11,12,13,14,15,16-九水-7,17-甲基環十三[a]苊-18-酮,5.4g,16.4mMoles)以及4-乙炔基-1,1’-聯苯(Cpd 4,2.9g,16.3mMoles)於1,2-二氯苯(150mL)中,於20℃下加熱12小時。隨後冷卻溶液,於減壓下移除溶劑以留下約50mL的溶劑。添加甲醇(50mL)以誘發結晶化。濾去所得之黃色固態,以甲醇洗滌並於空氣中乾燥以提供6.4g之Inv-2,熔點為340℃並於220℃收縮。Inv-2於180℃至210℃/3x10-1 Torr昇華。氫核磁共振(1 H NMR)光譜的分析意指獲得所欲之產物。
實例2:藍色光發射有機發光二極體裝置2.1至2.11之製備
有機發光二極體裝置(2.1至2.6)系列係由以下方式製造:
1. 覆蓋有85nm的銦錫氧化物(indium-tin oxide,ITO)之層的玻璃基板作為陽極,連續地於工業用清潔劑中超音速化、於去離子水中淋洗以及暴露於氧電漿中約1分鐘。
2. ITO上藉由如美國專利第6,208,075號中所述電漿輔助沉積CHF3 而沉積有1nm的氟碳(CFX )電洞注射層(HIL)。
3. 接著,電洞傳遞材料4,4'-雙[N-(1-萘基)-N-苯胺]聯苯(NPB)的層係沉積為95nm的厚度。
4. 沉積相當於主體材料P-4與體積5.0%的摻雜物FD-53的20nm之發光層(LEL)。
5. 於LEL上沉積包含相當於Inv-1之第一電子傳遞材料(ETM1)或相當於P-4或如[表1]所示的Inv-1與P-4之混合物之第二電子傳遞材料(ETM2)的35.0nm電子傳遞層(ETL)。
6. 隨後沉積相當於AM-1之3.5nm電子注射層(EIL)。
7. 最後,於EIL上沉積100nm之鋁的層以形成陰極。
上述程序完成電激發光裝置的沉積。所述裝置隨後於乾手套箱中密封地封裝以預防週遭環境。
裝置2.7至2.11係以相同於製造裝置2.1至2.6的方式而製造,除當Inv-1存在時,係於電子傳遞層中以如[表1]所示的C-1所取代。
於製備的過程中,每個實例的每個裝置均複製以提供四個相同地製造的裝置。如此製造之裝置均於20毫安培/平方公分(mA/cm2 )的操作電流下測試驅動電壓以及照明效率。將四個複製裝置的結果平均,並紀錄於[表1]中。
從[表1]可見,相較於僅於ETL中包含P-4之比較例裝置2.6,無論於電子傳遞層中(裝置2.1至2.5)單獨包括Inv-1或與蒽衍生物P-4組合的裝置,提供較高照明度以及相似或較低驅動電壓。
比較例裝置2.7至2.11係以相同於製造裝置2.1至2.5的方式而製造,除Inv-1係以螢蒽衍生物C-1所取代。化合物C-1超出本發明之範圍,並可描述為具有7,10-鍵聯基螢的蒽核,但具有稠合至核之8,9-位置的五員環基。化合物C-1與其於有機發光二極體裝置中之使用已所有揭露(日本專利第2003123978號)。可自[表1]得知,於每個對應之等級,相較於包含C-1之裝置,包含Inv-1之裝置提供較低驅動電壓與較高照明效率。此外,相較於於ETL中僅包含蒽衍生物P-4的比較例裝置2.6,比較例裝置2.7至2.11為略遜一籌;相較於裝置2.6,裝置2.7至2.11提供較高驅動電壓但僅相等或較低照明度。
實例3:紅光發射裝置3.1至3.6之製備
有機發光二極體裝置(3.1至3.6)系列係由以下方式製造:
1. 覆蓋有85nm的銦錫氧化物(indium-tin oxide,ITO)之層的玻璃基板作為陽極,連續地於工業用清潔劑中超音速化、於去離子水中淋洗以及暴露於氧電漿中約1分鐘。
2. ITO上藉由如美國專利第6,208,075號中所述電漿輔助沉積CHF3 而沉積有1nm的氟碳(CFX )電洞注射層(HIL)。
3. 接著,電洞傳遞材料4,4'-雙[N-(1-萘基)-N-苯胺]聯苯(NPB)的層係沉積為144.0nm的厚度。
4. 隨後沉積包含相當於紅螢烯(FD-5)之第一主體材料(Host1)或相當於Inv-1之FD-5與第二主體材料(Host2)之混合物,如[[表2]]所示,以及體積0.5%的摻雜物FD-46的40nm之發光層(LEL)。
5. 於LEL上真空沉積厚度為31.5nm的Inv-1之電子傳遞層(ETL)。
6. 於ETL上以厚度為3.5nm真空沉積相當於AM-1的電子注射層(EIL)。
7. 最後,於EIL上沉積100nm之鋁的層以形成陰極。
上述程序完成電激發光裝置的沉積。所述裝置隨後於乾手套箱中密封地封裝以預防週遭環境。
於製備的過程中,每個實例的每個裝置均複製以提供四個相同地製造的裝置。如此製造之裝置均於20毫安培/平方公分(mA/cm2 )的操作電流下測試驅動電壓以及照明效率。將四個複製裝置的結果平均,並紀錄於[表2]中。
從[表2]可見,若除於ETL中使用Inv-1外,於LEL中Inv-1亦為共主(裝置3.2至3.6),除裝置3.4外,獲得相較於於LEL中不包含Inv-1之裝置3.1之具有較佳照明效率以及相等或較低驅動電壓之裝置。所有裝置均具有相同的總厚度。
實例4:藍光發射裝置4.1至4.6之製備
有機發光二極體裝置(4.1至4.6)系列係由以下方式製造:
1. 覆蓋有85nm的銦錫氧化物(indium-tin oxide,ITO)之層的玻璃基板作為陽極,連續地於工業用清潔劑中超音速化、於去離子水中淋洗以及暴露於氧電漿中約1分鐘。
2. ITO上藉由如美國專利第6,208,075號中所述電漿輔助沉積CHF3 而沉積有1nm的氟碳(CFX )電洞注射層(HIL)。
3. 接著,電洞傳遞材料4,4'-雙[N-(1-萘基)-N-苯胺]聯苯(NPB)的層係沉積為95nm的厚度。
4. 沉積相當於主體材料P-4與體積5.0%的摻雜物FD-53的20nm之發光層(LEL)。
5. 於LEL上沉積包含相當於如[表3]所示之等級的Inv-2之第一電子傳遞材料(ETM1)或Inv-2與相當於如[表3]所示之等級的AM-2之第二電子傳遞材料(ETM2)之混合物的電子傳遞層(ETL)。
6. 對裝置4.2至4.6而言,隨後於ETL上沉積相當於如[表3]所示之等級的AM-2之電子注射層(EIL)。
7. 最後,於EIL上沉積100nm之鋁的層以形成陰極。對裝置4.1而言,此層係直接沉積於ETL上。
上述程序完成電激發光裝置的沉積。所述裝置隨後於乾手套箱中密封地封裝以預防週遭環境。
於製備的過程中,每個實例的每個裝置均複製以提供四個相同地製造的裝置。如此製造之裝置均於20毫安培/平方公分(mA/cm2 )的操作電流下測試驅動電壓以及照明效率。將四個複製裝置的結果平均,並紀錄於[表3]中。
所有所製造以及所測試的裝置均具有相同的總厚度。由[表3]可知,具有包含AM-2之EIL以及包含nv-1或Inv-1與AM-2之組合之ETL的裝置4.2至4.6,提供相較於不包含鹼金屬材料之裝置4.1優良照明度以及相對低驅動電壓。
實例5:藍光發射裝置5.1至5.11之製備
有機發光二極體裝置(5.1至5.5)系列係由以下方式製造:
1. 覆蓋有85nm的銦錫氧化物(indium-tin oxide,ITO)之層的玻璃基板作為陽極,連續地於工業用清潔劑中超音速化、於去離子水中淋洗以及暴露於氧電漿中約1分鐘。
2. ITO上藉由如美國專利第6,208,075號中所述電漿輔助沉積CHF3 而沉積有1nm的氟碳(CFX )電洞注射層(HIL)。
3. 接著,電洞傳遞材料4,4'-雙[N-(1-萘基)-N-苯胺]聯苯(NPB)的層係沉積為95nm的厚度。
4. 沉積相當於主體材料P-4與體積1.5%的摻雜物FD-54的20nm之發光層(LEL)。
5. 於LEL上沉積包含相當於Inv-1之第一電子傳遞材料(ETM1)或相當於P-4或如[表4]所示的Inv-1與P-4之混合物之第二電子傳遞材料(ETM2)的35.0nm電子傳遞層(ETL)。
6. 隨後於ETL上沉積相當於AM-1之3.5nm電子注射層(EIL)。
7. 最後,於EIL上沉積100nm之鋁的層以形成陰極。
上述程序完成電激發光裝置的沉積。所述裝置隨後於乾手套箱中密封地封裝以預防週遭環境。
第二系列的有機發光二極體裝置(5.6至5.11)係以相同於製造裝置5.1至5.5(見[表4])的方式而製造,除當Inv-1存在時,係由Inv-2所取代。
於製備的過程中,每個實例的每個裝置均複製以提供四個相同地製造的裝置。如此製造之裝置均於20毫安培/平方公分(mA/cm2 )的操作電流下測試驅動電壓以及照明效率。將四個複製裝置的結果平均,並紀錄於[表4]中。
所有的裝置均具有相同的總厚度。比較例裝置5.5與5.11並無包含Inv-1或Inv-2,並使用蒽衍生物P-4為電子傳遞材料。由[表4]可知,藉由使用包含Inv-1或Inv-2之ETL,無論單獨或與P-4組合,平均獲得提供優良照明度以及驅動電壓之裝置。
前文係針對本發明之較佳實施例為本發明之技術特徵進行具體之說明,唯熟悉此項技術之人士當可在不脫離本發明之精神與原則下對本發明進行變更與修改,而該等變更與修改,皆應涵蓋於如下申請專利範圍所界定之範疇中。
100...有機發光二極體
110...基板
120...陽極
130...電洞注射層
132...電洞傳遞層
134...發光層
135...電洞阻斷層
136...電子傳遞層
138...電子注射層
140...陰極
150...電壓/電流源
160...導電體
圖1顯示本發明有機發光二極體裝置的一實施例之剖面示意圖;應理解的為,由於各層為極薄且各層間之厚度差異甚巨,故圖1中所示並非依比例繪製。
100...有機發光二極體
110...基板
120...陽極
130...電洞注射層
132...電洞傳遞層
134...發光層
135...電洞阻斷層
136...電子傳遞層
138...電子注射層
140...陰極
150...電壓/電流源
160...導電體

Claims (17)

  1. 一種有機發光二極體裝置,包括一陰極、一陽極以及一位於該陰極與該陽極之間的發光層,並進一步包括一位於該發光層與該陰極之間的第一層,該第一層包括一包含具有由一連接基所連接之7,10-位置的螢蒽核的螢蒽-巨環化合物,且其中該螢蒽核可進一步經取代,提供為位於8-位置與9-位置的取代基無法結合以形成一五員環基;以及其中該有機發光二極體裝置包括至少位於該發光層與該陰極之間包括一鹼金屬材料的一層,其中該螢蒽-巨環化合物係由化學式(I)所代表, 其中:R1 至R8 獨立地代表氫或一取代基,並且其中鄰近之R1 至R8 取代基可結合以形成一環基,提供為R1 與R2 無法結合以形成一五員環基;以及L為-(CY2 )n -;其中:每個Y可為相同或不同,且每個Y代表一氫或一取代基,提供為鄰近之複數個取代基可結合以形成一環基;以及n為8至25。
  2. 如申請專利範圍第1項所述之有機發光二極體裝置,其中該連接基具有一為10個原子或以上以及少於20個原子的長度。
  3. 如申請專利範圍第1項所述之有機發光二極體裝置,其中該螢蒽-巨環化 合物僅包含一螢蒽核。
  4. 如申請專利範圍第1項所述之有機發光二極體裝置,其中該螢蒽核不具芳環環集。
  5. 如申請專利範圍第1項所述之有機發光二極體裝置,其中R1 至R8 獨立地代表氫、一具有1個至24個碳原子的烷基或一具有6個至24個碳原子的芳基,提供為鄰近之複數個基無法結合以形成一稠合至該螢蒽核的芳環基。
  6. 如申請專利範圍第1項所述之有機發光二極體裝置,其中該鹼金屬材料包括鋰金屬或一有機鋰化合物。
  7. 如申請專利範圍第1項所述之有機發光二極體裝置,其中該第一層包括一鹼金屬或一有機鹼金屬化合物。
  8. 如申請專利範圍第1項所述之有機發光二極體裝置,其中該第一層與該陰極之間具有一相連至該第一層的第二層,該第二層包括一鹼金屬或一有機鹼金屬化合物。
  9. 如申請專利範圍第1項所述之有機發光二極體裝置,其中該第一層包括一鹼金屬或一有機鹼金屬化合物,且一位於該第一層與該陰極之間並相連至該第一層的第二層包括一獨立地所選擇之鹼金屬或一獨立地所選擇之有機鹼金屬化合物。
  10. 如申請專利範圍第1項所述之有機發光二極體裝置,其中該鹼金屬材料包括一由化學式(III)所代表之化合物,(Li+ )f (Q)g 化學式(III) 其中:Q為一陰離子有機配位基;以及f與g獨立地為所選擇之整數,選擇用以於錯合物上提供電中性。
  11. 如申請專利範圍第1項所述之有機發光二極體裝置,其中該鹼金屬材料包括一由化學式(IV)所代表之化合物, 其中:Z與虛弧線代表完成具有鋰陽離子的五員環至七員環所需之2個至4個原子以及複數個鍵結;每個A代表氫或一取代基,而每個B代表Z原子上的氫或一獨立地所選擇之取代基,提供為兩個或以上的取代基可結合以形成一稠環或一稠環系統;以及j為0至3,而k為1或2;以及f與g獨立地為所選擇之整數,選擇用以於錯合物上提供電中性。
  12. 如申請專利範圍第1項所述之有機發光二極體裝置,其中該第一層除該螢蒽-巨環化合物外,包括一根據化學式(V)之蒽衍生物, 其中:R1 與R6 每個獨立地代表一具有6個至24個碳原子的芳基;R2 至R5 以及R7 至R10 每個係獨立地選自氫、複數個具有1個至24個碳原子的烷基或複數個具有6個至24個碳原子的芳香族基。
  13. 如申請專利範圍第1項所述之有機發光二極體裝置,其中該螢蒽-巨環化合物係存在於該第一層中以及該發光層中。
  14. 一種有機發光二極體裝置,包括一陰極、一陽極以及一位於該陰極與該陽極之間的發光層,並進一步包括一位於該發光層與該陰極之間的第一層,該第一層包括一包含具有由一連接基所連接之7,10-位置的螢蒽核的螢蒽-巨環化合物,且其中該螢蒽核可進一步經取代,提供為位於8-位置與9-位置的取代基無法結合以形成一五員環基;以及其中該有機發光二極體裝置包括至少位於該發光層與該陰極之間包括一鹼金屬材料的一層,其中該螢蒽-巨環化合物係由化學式(II)所代表, 其中:每個R1 至R8 獨立地代表氫、一具有1個至24個碳原子的烷基或一具有6個至24個碳原子的芳基,提供為鄰近之複數個基無法結合以形成一稠合至該螢蒽核的芳環基;每個Y可為相同或不同,且每個代表氫、一具有1個至24個碳原子的烷基或一具有6個至24個碳原子的芳基,提供為鄰近之複數個Y基可結合以形成一環基;以及m為4或以上,但小於30。
  15. 如申請專利範圍第14項所述之有機發光二極體裝置,其中該m為6或以上,但小於25。
  16. 一種有機發光二極體裝置,包括一陰極、一陽極以及一位於該陰極與該陽極之間的發光層,並進一步包括一位於該發光層與該陰極之間的第一層,其中該第一層為一非發光電子傳遞層,以及其中:a)該第一層包括一包括具有由一連接基所連接之7,10-位置的螢蒽核的螢蒽-巨環化合物,其中該連接基具有一至少8個原子的長度,且其中該螢蒽核可進一步經取代,提供為位於8-位置與9-位置的取代基無法結合以形成五員環基;以及b)該第一層包括一鹼金屬或一有機鹼金屬化合物;或一位於該第一層與該陰極之間並鄰接至該第一層的第二層,包括一鹼金屬或有機鹼金屬化合物,提供為該第一層與該第二層均可包括一獨立地所選擇之鹼金屬或有機鹼金屬化合物,其中該螢蒽-巨環化合物係由化學式(I)所代表, 其中:R1 至R8 獨立地代表氫或一取代基,並且其中鄰近之R1 至R8 取代基可結合以形成一環基,提供為R1 與R2 無法結合以形成一五員環基;以及L為-(CY2 )n -;其中:每個Y可為相同或不同,且每個Y代表一氫或一取代基,提供為 鄰近之複數個取代基可結合以形成一環基;以及n為8至25。
  17. 一種有機發光二極體裝置,包括一陰極、一陽極以及一位於該陰極與該陽極之間的發光層,並進一步包括一位於該發光層與該陰極之間的第一層,其中該第一層為一非發光電子傳遞層,以及其中:a)該第一層包括一包括具有由一連接基所連接之7,10-位置的螢蒽核的螢蒽-巨環化合物,其中該連接基具有一至少8個原子的長度,且其中該螢蒽核可進一步經取代,提供為位於8-位置與9-位置的取代基無法結合以形成五員環基;以及b)該第一層包括一鹼金屬或一有機鹼金屬化合物;或一位於該第一層與該陰極之間並鄰接至該第一層的第二層,包括一鹼金屬或有機鹼金屬化合物,提供為該第一層與該第二層均可包括一獨立地所選擇之鹼金屬或有機鹼金屬化合物,其中該螢蒽-巨環化合物係由化學式(II)所代表, 其中:每個R1 至R8 獨立地代表氫、一具有1個至24個碳原子的烷基或一具有6個至24個碳原子的芳基,提供為鄰近之複數個基無法結合以形成一稠合至該螢蒽核的芳環基;每個Y可為相同或不同,且每個代表氫、一具有1個至24個碳原子的烷基或一具有6個至24個碳原子的芳基,提供為鄰近之複數個Y基可結合以形成一環基;以及m為4或以上,但小於30。
TW099104409A 2009-02-13 2010-02-11 具有螢蒽-巨環材料之有機發光二極體裝置 TWI392722B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/370,696 US8216697B2 (en) 2009-02-13 2009-02-13 OLED with fluoranthene-macrocyclic materials

Publications (2)

Publication Number Publication Date
TW201037058A TW201037058A (en) 2010-10-16
TWI392722B true TWI392722B (zh) 2013-04-11

Family

ID=42559276

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099104409A TWI392722B (zh) 2009-02-13 2010-02-11 具有螢蒽-巨環材料之有機發光二極體裝置

Country Status (7)

Country Link
US (1) US8216697B2 (zh)
EP (1) EP2396801B1 (zh)
JP (1) JP5108154B2 (zh)
KR (1) KR101238309B1 (zh)
CN (1) CN102349129B (zh)
TW (1) TWI392722B (zh)
WO (1) WO2010093457A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102036635B1 (ko) * 2011-03-28 2019-10-28 삼성디스플레이 주식회사 금속배선 구조체, 이를 이용한 유기발광표시장치 및 그 제조방법
JP6335428B2 (ja) * 2012-12-21 2018-05-30 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
KR102054155B1 (ko) * 2013-04-09 2019-12-12 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102048036B1 (ko) * 2013-05-29 2019-11-22 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR101704879B1 (ko) 2013-09-30 2017-02-09 주식회사 엘지화학 헤테로환 화합물 및 이를 이용한 유기 발광 소자
JP7325731B2 (ja) 2018-08-23 2023-08-15 国立大学法人九州大学 有機エレクトロルミネッセンス素子
KR102583620B1 (ko) * 2018-11-23 2023-09-26 엘지디스플레이 주식회사 발광다이오드 및 이를 포함하는 발광장치
KR20210004748A (ko) 2019-07-05 2021-01-13 삼성전자주식회사 발광 소자와 이를 포함한 표시 장치
KR20230063947A (ko) * 2021-10-29 2023-05-10 삼성디스플레이 주식회사 다환 화합물 및 이를 포함하는 발광 소자

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070252516A1 (en) * 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent devices including organic EIL layer
CN101142294A (zh) * 2005-03-16 2008-03-12 默克专利有限公司 用于有机电致发光器件的新颖材料

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL250330A (zh) * 1959-04-09
US3172862A (en) * 1960-09-29 1965-03-09 Dow Chemical Co Organic electroluminescent phosphors
US3173050A (en) * 1962-09-19 1965-03-09 Dow Chemical Co Electroluminescent cell
US3658520A (en) * 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3567450A (en) * 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3710167A (en) * 1970-07-02 1973-01-09 Rca Corp Organic electroluminescent cells having a tunnel injection cathode
US4356429A (en) * 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
US4539507A (en) * 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
US4885221A (en) * 1986-12-06 1989-12-05 Kabushiki Kaisha Toshiba Electrophotography apparatus and electrophtographic process for developing positive image from positive or negative film
US4885211A (en) * 1987-02-11 1989-12-05 Eastman Kodak Company Electroluminescent device with improved cathode
US4720432A (en) * 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US4769292A (en) * 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
US5121029A (en) * 1987-12-11 1992-06-09 Idemitsu Kosan Co., Ltd. Electroluminescence device having an organic electroluminescent element
GB8909011D0 (en) * 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
US5059861A (en) * 1990-07-26 1991-10-22 Eastman Kodak Company Organic electroluminescent device with stabilizing cathode capping layer
US5061569A (en) * 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
US5059862A (en) * 1990-07-26 1991-10-22 Eastman Kodak Company Electroluminescent device with improved cathode
US5150006A (en) * 1991-08-01 1992-09-22 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (II)
US5141671A (en) * 1991-08-01 1992-08-25 Eastman Kodak Company Mixed ligand 8-quinolinolato aluminum chelate luminophors
US5151629A (en) * 1991-08-01 1992-09-29 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (I)
US5276380A (en) * 1991-12-30 1994-01-04 Eastman Kodak Company Organic electroluminescent image display device
US5294870A (en) * 1991-12-30 1994-03-15 Eastman Kodak Company Organic electroluminescent multicolor image display device
DE69305262T2 (de) * 1992-07-13 1997-04-30 Eastman Kodak Co Einen inneren Übergang aufweisende organisch elektrolumineszierende Vorrichtung mit einer neuen Zusammensetzung
US5405709A (en) * 1993-09-13 1995-04-11 Eastman Kodak Company White light emitting internal junction organic electroluminescent device
US5409783A (en) * 1994-02-24 1995-04-25 Eastman Kodak Company Red-emitting organic electroluminescent device
JP3813217B2 (ja) 1995-03-13 2006-08-23 パイオニア株式会社 有機エレクトロルミネッセンスディスプレイパネルの製造方法
EP0681019B1 (en) 1994-04-26 1999-09-01 TDK Corporation Phenylanthracene derivative and organic EL element
US5552678A (en) * 1994-09-23 1996-09-03 Eastman Kodak Company AC drive scheme for organic led
US5703436A (en) * 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
US5608287A (en) * 1995-02-23 1997-03-04 Eastman Kodak Company Conductive electron injector for light-emitting diodes
US5554450A (en) * 1995-03-08 1996-09-10 Eastman Kodak Company Organic electroluminescent devices with high thermal stability
JP3175816B2 (ja) 1995-04-04 2001-06-11 出光興産株式会社 有機エレクトロルミネッセンス素子
JP3509383B2 (ja) 1995-04-28 2004-03-22 東洋インキ製造株式会社 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
US5593788A (en) * 1996-04-25 1997-01-14 Eastman Kodak Company Organic electroluminescent devices with high operational stability
US5688551A (en) * 1995-11-13 1997-11-18 Eastman Kodak Company Method of forming an organic electroluminescent display panel
JP4477150B2 (ja) * 1996-01-17 2010-06-09 三星モバイルディスプレイ株式會社 有機薄膜el素子
US5683823A (en) * 1996-01-26 1997-11-04 Eastman Kodak Company White light-emitting organic electroluminescent devices
US5776622A (en) * 1996-07-29 1998-07-07 Eastman Kodak Company Bilayer eletron-injeting electrode for use in an electroluminescent device
US5677572A (en) * 1996-07-29 1997-10-14 Eastman Kodak Company Bilayer electrode on a n-type semiconductor
US5776623A (en) * 1996-07-29 1998-07-07 Eastman Kodak Company Transparent electron-injecting electrode for use in an electroluminescent device
US5645948A (en) * 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
US5766779A (en) * 1996-08-20 1998-06-16 Eastman Kodak Company Electron transporting materials for organic electroluminescent devices
US5714838A (en) * 1996-09-20 1998-02-03 International Business Machines Corporation Optically transparent diffusion barrier and top electrode in organic light emitting diode structures
JPH10103115A (ja) * 1996-09-26 1998-04-21 Sanshin Ind Co Ltd 筒内燃料噴射式2サイクルエンジン
JPH10125469A (ja) * 1996-10-24 1998-05-15 Tdk Corp 有機el発光素子
EP0845924B1 (en) * 1996-11-29 2003-07-16 Idemitsu Kosan Company Limited Organic electroluminescent device
US5981306A (en) * 1997-09-12 1999-11-09 The Trustees Of Princeton University Method for depositing indium tin oxide layers in organic light emitting devices
US5776523A (en) * 1996-12-27 1998-07-07 Axelrod; Herbert R. Method for preserving baits
EP0891121B8 (en) 1996-12-28 2013-01-02 Futaba Corporation Organic electroluminescent elements
US5739545A (en) * 1997-02-04 1998-04-14 International Business Machines Corporation Organic light emitting diodes having transparent cathode structures
US5908581A (en) * 1997-04-07 1999-06-01 Eastman Kodak Company Red organic electroluminescent materials
US5935720A (en) * 1997-04-07 1999-08-10 Eastman Kodak Company Red organic electroluminescent devices
US5928802A (en) * 1997-05-16 1999-07-27 Eastman Kodak Company Efficient blue organic electroluminescent devices
US5755999A (en) * 1997-05-16 1998-05-26 Eastman Kodak Company Blue luminescent materials for organic electroluminescent devices
US6337492B1 (en) * 1997-07-11 2002-01-08 Emagin Corporation Serially-connected organic light emitting diode stack having conductors sandwiching each light emitting layer
US5851709A (en) * 1997-10-31 1998-12-22 Eastman Kodak Company Method for selective transfer of a color organic layer
JP3690926B2 (ja) * 1997-12-12 2005-08-31 三井化学株式会社 有機電界発光素子
JPH11251067A (ja) * 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
US5935721A (en) * 1998-03-20 1999-08-10 Eastman Kodak Company Organic electroluminescent elements for stable electroluminescent
JP3266573B2 (ja) * 1998-04-08 2002-03-18 出光興産株式会社 有機エレクトロルミネッセンス素子
JP3302945B2 (ja) 1998-06-23 2002-07-15 ネースディスプレイ・カンパニー・リミテッド 新規な有機金属発光物質およびそれを含む有機電気発光素子
JP4246816B2 (ja) * 1998-07-09 2009-04-02 三井化学株式会社 炭化水素化合物および有機電界発光素子
US6137223A (en) * 1998-07-28 2000-10-24 Eastman Kodak Company Electron-injecting layer formed from a dopant layer for organic light-emitting structure
US6140763A (en) * 1998-07-28 2000-10-31 Eastman Kodak Company Interfacial electron-injecting layer formed from a doped cathode for organic light-emitting structure
US6172459B1 (en) * 1998-07-28 2001-01-09 Eastman Kodak Company Electron-injecting layer providing a modified interface between an organic light-emitting structure and a cathode buffer layer
KR100837029B1 (ko) 1998-09-09 2008-06-10 이데미쓰 고산 가부시키가이샤 유기 전자발광 소자 및 페닐렌디아민 유도체
US6097147A (en) * 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
US6037223A (en) * 1998-10-23 2000-03-14 Taiwan Semiconductor Manufacturing Company, Ltd. Stack gate flash memory cell featuring symmetric self aligned contact structures
US6208077B1 (en) * 1998-11-05 2001-03-27 Eastman Kodak Company Organic electroluminescent device with a non-conductive fluorocarbon polymer layer
US6361886B2 (en) 1998-12-09 2002-03-26 Eastman Kodak Company Electroluminescent device with improved hole transport layer
JP4505067B2 (ja) * 1998-12-16 2010-07-14 淳二 城戸 有機エレクトロルミネッセント素子
US6020078A (en) * 1998-12-18 2000-02-01 Eastman Kodak Company Green organic electroluminescent devices
US6066357A (en) * 1998-12-21 2000-05-23 Eastman Kodak Company Methods of making a full-color organic light-emitting display
US6468676B1 (en) * 1999-01-02 2002-10-22 Minolta Co., Ltd. Organic electroluminescent display element, finder screen display device, finder and optical device
EP1076368A2 (en) 1999-08-11 2001-02-14 Eastman Kodak Company A surface-emitting organic light-emitting diode
US6278236B1 (en) * 1999-09-02 2001-08-21 Eastman Kodak Company Organic electroluminescent devices with electron-injecting layer having aluminum and alkali halide
KR100377321B1 (ko) * 1999-12-31 2003-03-26 주식회사 엘지화학 피-형 반도체 성질을 갖는 유기 화합물을 포함하는 전기소자
US7560175B2 (en) * 1999-12-31 2009-07-14 Lg Chem, Ltd. Electroluminescent devices with low work function anode
US6689493B2 (en) * 2000-02-18 2004-02-10 Nec Corporation Organic electroluminescent element and organic electroluminescent display
US6237529B1 (en) * 2000-03-03 2001-05-29 Eastman Kodak Company Source for thermal physical vapor deposition of organic electroluminescent layers
US6226890B1 (en) * 2000-04-07 2001-05-08 Eastman Kodak Company Desiccation of moisture-sensitive electronic devices
EP1347031A4 (en) * 2000-09-07 2007-07-04 Idemitsu Kosan Co ORGANIC ELECTROLUMINESCENT ELEMENT
SG138467A1 (en) * 2000-12-28 2008-01-28 Semiconductor Energy Lab Luminescent device
JPWO2003002687A1 (ja) * 2001-06-27 2004-10-21 富士通株式会社 有機エレクトロルミネッセンス素子及びそれを用いた有機エレクトロルミネッセンスディスプレイ
EP1421827B1 (en) * 2001-08-29 2012-02-22 The Trustees Of Princeton University Organic light emitting devices having carrier blocking layers comprising metal complexes
JP3926126B2 (ja) 2001-10-10 2007-06-06 三井化学株式会社 有機電界発光素子
US6661023B2 (en) * 2002-02-28 2003-12-09 Eastman Kodak Company Organic element for electroluminescent devices
JP3929337B2 (ja) * 2002-03-14 2007-06-13 三井化学株式会社 有機電界発光素子
JP2004009144A (ja) 2002-06-03 2004-01-15 Disco Abrasive Syst Ltd マイクロ部品の製造方法
US6720092B2 (en) * 2002-07-08 2004-04-13 Eastman Kodak Company White organic light-emitting devices using rubrene layer
JP4261855B2 (ja) * 2002-09-19 2009-04-30 キヤノン株式会社 フェナントロリン化合物及びそれを用いた有機発光素子
CN1703937B (zh) 2002-10-09 2010-11-24 出光兴产株式会社 有机电致发光的器件
KR100560778B1 (ko) * 2003-04-17 2006-03-13 삼성에스디아이 주식회사 유기 전계 발광 디스플레이 장치
US6936961B2 (en) * 2003-05-13 2005-08-30 Eastman Kodak Company Cascaded organic electroluminescent device having connecting units with N-type and P-type organic layers
KR101137901B1 (ko) * 2003-05-16 2012-05-02 에스브이티 어소시에이츠, 인코포레이티드 박막 증착 증발기
MXPA06004463A (es) * 2003-10-28 2006-06-27 Novozymes North America Inc Enzimas hibridas.
US6824895B1 (en) * 2003-12-05 2004-11-30 Eastman Kodak Company Electroluminescent device containing organometallic compound with tridentate ligand
US7232588B2 (en) * 2004-02-23 2007-06-19 Eastman Kodak Company Device and method for vaporizing temperature sensitive materials
US7238389B2 (en) * 2004-03-22 2007-07-03 Eastman Kodak Company Vaporizing fluidized organic materials
US7288286B2 (en) * 2004-09-21 2007-10-30 Eastman Kodak Company Delivering organic powder to a vaporization zone
US7288285B2 (en) * 2004-09-21 2007-10-30 Eastman Kodak Company Delivering organic powder to a vaporization zone
US7597967B2 (en) * 2004-12-17 2009-10-06 Eastman Kodak Company Phosphorescent OLEDs with exciton blocking layer
US7165340B2 (en) * 2005-02-04 2007-01-23 Eastman Kodak Company Feeding organic material to a heated surface
US20060286405A1 (en) * 2005-06-17 2006-12-21 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US20070092759A1 (en) * 2005-10-26 2007-04-26 Begley William J Organic element for low voltage electroluminescent devices
US20080007160A1 (en) * 2006-02-28 2008-01-10 Idemitsu Kosan Co., Ltd. Organic electroluminescent device using fluoranthene derivative and indenoperylene derivative

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101142294A (zh) * 2005-03-16 2008-03-12 默克专利有限公司 用于有机电致发光器件的新颖材料
US20070252516A1 (en) * 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent devices including organic EIL layer

Also Published As

Publication number Publication date
US20100207513A1 (en) 2010-08-19
KR20110128835A (ko) 2011-11-30
CN102349129A (zh) 2012-02-08
WO2010093457A1 (en) 2010-08-19
EP2396801A4 (en) 2013-10-30
KR101238309B1 (ko) 2013-02-28
EP2396801A1 (en) 2011-12-21
JP2012518275A (ja) 2012-08-09
US8216697B2 (en) 2012-07-10
CN102349129B (zh) 2014-10-22
TW201037058A (en) 2010-10-16
JP5108154B2 (ja) 2012-12-26
EP2396801B1 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
TWI459857B (zh) 含有熒蒽電子傳遞材料之有機發光二極體(oled)裝置
TWI392722B (zh) 具有螢蒽-巨環材料之有機發光二極體裝置
TWI431096B (zh) 使用鹼金屬簇化合物之oled裝置
EP2218123B1 (en) Phosphorescent oled device with certain fluoranthene host
KR20090007734A (ko) 유기 eil 층을 포함하는 전기발광 디바이스
US7931975B2 (en) Electroluminescent device containing a flouranthene compound
EP2417647B1 (en) Organic element for electroluminescent devices
US8420229B2 (en) OLED device with certain fluoranthene light-emitting dopants
CN102369102A (zh) 含有甲硅烷基荧蒽衍生物的oled器件
TWI394483B (zh) 具有穩定綠光發射層的有機發光二極體裝置
US7842406B2 (en) OLED device with substituted acridone compounds