TWI413613B - Carbon nanotube composite and method for preparing the same - Google Patents

Carbon nanotube composite and method for preparing the same Download PDF

Info

Publication number
TWI413613B
TWI413613B TW99115521A TW99115521A TWI413613B TW I413613 B TWI413613 B TW I413613B TW 99115521 A TW99115521 A TW 99115521A TW 99115521 A TW99115521 A TW 99115521A TW I413613 B TWI413613 B TW I413613B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
polymer
modified
composite material
plasma
Prior art date
Application number
TW99115521A
Other languages
Chinese (zh)
Other versions
TW201139264A (en
Inventor
Weijen Lai
Chuhyung Chen
Original Assignee
Taiwan Textile Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Textile Res Inst filed Critical Taiwan Textile Res Inst
Priority to TW99115521A priority Critical patent/TWI413613B/en
Publication of TW201139264A publication Critical patent/TW201139264A/en
Application granted granted Critical
Publication of TWI413613B publication Critical patent/TWI413613B/en

Links

Abstract

Disclosed herein is a method for preparing composite carbon nanotubes (CNTs). The method includes the steps as follows. CNTs are treated by plasma in a plasma process apparatus. A modifying monomer is introduced into the plasma process apparatus. The modifying monomer may react with the plasma-treated CNTs under stir to form modified CNTs. The modified CNTs are mixed with polymerizable monomers or blended with a thermoplastic polymer to form a CNT/polymer molten.

Description

奈米碳管複合材料及其製備方法Nano carbon tube composite material and preparation method thereof

本發明是有關於一種奈米碳管複合材料與其製備方法,且特別是有關於利用電漿法來改質奈米碳管複合材料。The invention relates to a carbon nanotube composite material and a preparation method thereof, and in particular to a plasma modification method for modifying a carbon nanotube composite material.

碳是一種常見的非金屬元素,碳有多種同素異形體,其中最廣為人知的有石墨、鑽石以及無定形碳如碳黑,其他還有富樂烯、奈米碳管...等多種碳的同素異形體。由於各種碳的同素異形體的晶體結構不同,也導致其物理、化學性質的不同。舉例來說,石墨、富樂烯、奈米碳管以及碳黑等碳質材料具有良好的導電性,而鑽石則不具導電性。Carbon is a common non-metallic element. Carbon has many allotropes, the most widely known of which are graphite, diamonds and amorphous carbon such as carbon black, and other carbons such as fullerene, carbon nanotubes, etc. Allotropes. Due to the different crystal structures of various carbon allotropes, their physical and chemical properties are also different. For example, carbonaceous materials such as graphite, fullerene, carbon nanotubes, and carbon black have good electrical conductivity, while diamonds are not electrically conductive.

奈米碳管是1991年才被發現的材料,是一種管狀的碳分子,其徑向長度為奈米尺度,而軸向長度則可達數十至數百微米,因此奈米碳管具有極大的長徑比。此外,奈米碳管還具備質量輕、強度高、韌性高、熱傳導性佳等特性,因此研究界及業界皆認為,奈米碳管的應用前景無可限量。舉例來說,奈米碳管可取代碳黑作為良好的導電材料,也可以取代矽材料在光電領域的用途。在紡織領域中,應用奈米碳管材料製成導電纖維,則是研發的重點之一。The carbon nanotube is a material discovered only in 1991. It is a tubular carbon molecule with a radial length of nanometer scale and an axial length of tens to hundreds of micrometers. Therefore, the carbon nanotubes have great The aspect ratio. In addition, the carbon nanotubes are also characterized by light weight, high strength, high toughness, and good thermal conductivity. Therefore, both the research community and the industry believe that the application prospects of carbon nanotubes are limitless. For example, carbon nanotubes can replace carbon black as a good conductive material, and can also replace the use of tantalum materials in the photovoltaic field. In the field of textiles, the use of carbon nanotube materials to make conductive fibers is one of the focuses of research and development.

然而,在將奈米碳管製成導電纖維的過程中,通常必須先將奈米碳管形成分散液(或懸浮液),但奈米碳管通常難以有效分散於溶劑中而形成分散液,或者是所形成的分散液穩定度不佳。如此一來,當將此種分散液與高分子材料混合以製備奈米碳管-高分子複合材料時,奈米碳管非常容易團聚,因而無法和高分子材料混合均勻,這會嚴重地影響複合材料的機械特性以及後續的可紡絲性。However, in the process of forming a carbon nanotube into a conductive fiber, it is usually necessary to form a dispersion (or a suspension) of the carbon nanotube, but the carbon nanotube is usually difficult to be effectively dispersed in a solvent to form a dispersion. Or the dispersion formed is not stable. In this way, when the dispersion is mixed with a polymer material to prepare a carbon nanotube-polymer composite, the carbon nanotubes are very easy to agglomerate and thus cannot be uniformly mixed with the polymer material, which seriously affects the compounding. The mechanical properties of the material and the subsequent spinnability.

為了提升奈米碳管在分散液中的分散性與穩定性,相關領域提出了許多奈米碳管的表面改質技術,電漿改質即為其中一例。In order to improve the dispersion and stability of the carbon nanotubes in the dispersion, many surface modification techniques of the carbon nanotubes have been proposed in the related art, and plasma modification is one of them.

然而,既有的電漿改質法在改質過程中可能會破壞奈米碳管的結構。此外,在電漿改質過程中,改質單體通常僅能接觸到位於表層的奈米碳管,因而無法均勻地針對所有的奈米碳管進行改質。如此一來,所製得之奈米碳管仍舊無法均勻地和/或穩定地分散於溶劑中。However, the existing plasma modification method may destroy the structure of the carbon nanotubes during the upgrading process. In addition, in the plasma upgrading process, the modified monomer usually only contacts the carbon nanotubes located on the surface layer, and thus cannot be uniformly modified for all the carbon nanotubes. As a result, the obtained carbon nanotubes are still not uniformly and/or stably dispersed in the solvent.

有鑑於此,相關領域亟需提出一種奈米碳管的改質方法,以得到具有較佳均勻度與穩定度的奈米碳管分散液。In view of this, there is a need in the related art to propose a modification method of a carbon nanotube to obtain a carbon nanotube dispersion having better uniformity and stability.

發明內容旨在提供本揭示內容的簡化摘要,以使閱讀者對本揭示內容具備基本的理解。此發明內容並非本揭示內容的完整概述,且其用意並非在指出本發明實施例的重要/關鍵元件或界定本發明的範圍。SUMMARY OF THE INVENTION The Summary of the Disclosure is intended to provide a basic understanding of the present disclosure. This Summary is not an extensive overview of the disclosure, and is not intended to be an

本發明之一態樣係有關於一種奈米碳管複合材料的製備方法。利用此方法提出的改質步驟來改質奈米碳管時,可避免破壞奈米碳管本身的結構,且可提升改質的均勻性。如此一來,當利用此經改質的奈米碳管與來製備奈米碳管複合材料時,可提升奈米碳管於高分子基質中的分散性,避免團聚現象發生。One aspect of the present invention relates to a method of preparing a carbon nanotube composite. When the modification step proposed by the method is used to modify the carbon nanotube, the structure of the carbon nanotube itself can be avoided, and the uniformity of the modification can be improved. In this way, when the modified carbon nanotube composite material is used to prepare the carbon nanotube composite material, the dispersibility of the carbon nanotube in the polymer matrix can be improved, and the agglomeration phenomenon can be avoided.

根據本發明一具體實施例,上述方法包含以下步驟。在電漿處理設備中利用電漿來處理奈米碳管。在電漿處理設備中引入改質單體,並使得此改質單體和經電漿處理後之奈米碳管經攪拌及反應,而得到經改質之奈米碳管。將經改質之奈米碳管與可聚合單體混合,並使可聚合單體進行聚合反應,以製得奈米碳管的高分子熔體。According to an embodiment of the invention, the method comprises the following steps. The plasma is used to treat the carbon nanotubes in the plasma processing equipment. The modified monomer is introduced into the plasma processing equipment, and the modified monomer and the plasma-treated carbon nanotube are stirred and reacted to obtain a modified carbon nanotube. The modified carbon nanotubes are mixed with a polymerizable monomer, and the polymerizable monomer is subjected to polymerization to obtain a polymer melt of a carbon nanotube.

本發明之另一態樣也是有關於一種奈米碳管複合材料的製備方法。利用此方法所提出的改質步驟來改質奈米碳管時,可避免破壞奈米碳管本身的結構,且可提升改質的均勻性。如此一來,當利用此經改質的奈米碳管與來製備奈米碳管複合材料時,可提升奈米碳管於高分子基質中的分散性,避免團聚現象發生。Another aspect of the invention is also directed to a method of making a carbon nanotube composite. When the modification step proposed by the method is used to modify the carbon nanotube, the structure of the carbon nanotube itself can be avoided, and the uniformity of the modification can be improved. In this way, when the modified carbon nanotube composite material is used to prepare the carbon nanotube composite material, the dispersibility of the carbon nanotube in the polymer matrix can be improved, and the agglomeration phenomenon can be avoided.

根據本發明一具體實施例,上述方法包含以下步驟。在電漿處理設備中利用電漿來處理奈米碳管。在電漿處理設備中引入改質單體,並使得此改質單體和經電漿處理後之奈米碳管經攪拌及反應,而得到經改質之奈米碳管。將經改質之奈米碳管與熱塑性高分子混合,並進行混練,以製得奈米碳管的高分子熔體。According to an embodiment of the invention, the method comprises the following steps. The plasma is used to treat the carbon nanotubes in the plasma processing equipment. The modified monomer is introduced into the plasma processing equipment, and the modified monomer and the plasma-treated carbon nanotube are stirred and reacted to obtain a modified carbon nanotube. The modified carbon nanotubes are mixed with a thermoplastic polymer and kneaded to obtain a polymer melt of a carbon nanotube.

本發明的另一態樣係有關於一種奈米碳管複合材料。在此一奈米碳管複合材料中,奈米碳管的分散性較佳、不易發生團聚現象;因此,此一奈米碳管複合材料適用於熔融紡絲製程。Another aspect of the invention relates to a carbon nanotube composite. In this nano carbon nanotube composite material, the carbon nanotubes have better dispersibility and are less prone to agglomeration; therefore, the carbon nanotube composite material is suitable for the melt spinning process.

根據本發明一具體實施例,上述奈米碳管複合材料包含:約95-99.99wt%的高分子基質;以及約0.01-5wt%的經改質之奈米碳管分散於該高分子基質中。在約290℃、轉速約150rpm且濾網孔徑約40μm的條件下對此奈米碳管複合材料進行壓升測試,所測得的壓升小於10bar;由此可知,此奈米碳管複合材料適用於熔融紡絲製程。According to an embodiment of the present invention, the carbon nanotube composite material comprises: about 95-99.99 wt% of a polymer matrix; and about 0.01-5 wt% of the modified carbon nanotubes are dispersed in the polymer matrix. . The carbon nanotube composite material is subjected to a pressure rise test at a temperature of about 290 ° C, a rotation speed of about 150 rpm, and a sieve pore size of about 40 μm, and the measured pressure rise is less than 10 bar; thereby, it is known that the carbon nanotube composite material is suitable for Melt spinning process.

在參閱下文實施方式後,本發明所屬技術領域中具有通常知識者當可輕易瞭解本發明之基本精神及其他發明目的,以及本發明所採用之技術手段與實施態樣。The basic spirit and other objects of the present invention, as well as the technical means and implementations of the present invention, will be readily apparent to those skilled in the art of the invention.

為了使本揭示內容的敘述更加詳盡與完備,下文針對了本發明的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本發明具體實施例的唯一形式。實施方式中涵蓋了多個具體實施例的特徵以及用以建構與操作這些具體實施例的方法步驟與其順序。然而,亦可利用其他具體實施例來達成相同或均等的功能與步驟順序。The description of the embodiments of the present invention is intended to be illustrative and not restrictive. The features of various specific embodiments, as well as the method steps and sequences thereof, are constructed and manipulated in the embodiments. However, other specific embodiments may be utilized to achieve the same or equivalent function and sequence of steps.

為了促進奈米碳管在奈米碳管-高分子複合材料中的分散性,以提升此一複合材料的可紡絲性,本發明之一態樣係有關於一種奈米碳管複合材料的製備方法。In order to promote the dispersibility of the carbon nanotubes in the carbon nanotube-polymer composite material to improve the spinnability of the composite material, one aspect of the present invention relates to a carbon nanotube composite material. Preparation.

利用此方法提出的改質步驟來改質奈米碳管時,可避免破壞奈米碳管本身的結構,且可提升改質的均勻性。此外,當利用此經改質的奈米碳管與來製備奈米碳管複合材料時,可提升奈米碳管於高分子基質中的分散性,避免團聚現象發生。When the modification step proposed by the method is used to modify the carbon nanotube, the structure of the carbon nanotube itself can be avoided, and the uniformity of the modification can be improved. In addition, when the modified carbon nanotube composite material is prepared by using the modified carbon nanotubes, the dispersibility of the carbon nanotubes in the polymer matrix can be improved, and agglomeration can be avoided.

下文將參照第1圖所示的電漿處理設備100與第2圖所示的流程圖,來描述根據本發明一具體實施例之奈米碳管複合材料的製備方法200。A method 200 of preparing a carbon nanotube composite material according to an embodiment of the present invention will be described hereinafter with reference to the plasma processing apparatus 100 shown in FIG. 1 and the flowchart shown in FIG.

請參見第2圖,根據本發明的原理與精神,方法200係在一電漿處理設備中處理(步驟202)並改質(步驟204)奈米碳管,之後將經改質之奈米碳管與可聚合單體混合,並使可聚合單體進行聚合反應(步驟206),以製得奈米碳管的高分子熔體;茲將上述步驟分述如下。Referring to Figure 2, in accordance with the principles and spirit of the present invention, method 200 is processed (step 202) in a plasma processing apparatus and modified (step 204) carbon nanotubes, followed by modified nanocarbon The tube is mixed with the polymerizable monomer, and the polymerizable monomer is subjected to polymerization (step 206) to obtain a polymer melt of a carbon nanotube; the above steps are described as follows.

首先,步驟202為電漿處理步驟,其係在第1圖所示的電漿處理設備100中利用電漿來處理奈米碳管110。First, step 202 is a plasma processing step in which the carbon nanotubes 110 are treated with plasma in the plasma processing apparatus 100 shown in Fig. 1.

更詳細地說,可將奈米碳管110引入電漿處理設備100中的承載台105上。接著,操作抽真空設備120,以使電漿處理設備100之反應室130中呈真空狀態。其後,由氣體源140將處理氣體142引入反應室130中,並啟動電漿產生器150。如第1圖所示,電漿產生器150包括上電極152與下電極154,兩者可分別連接至外部電源156與158。電漿產生器150經啟動後,可將氣體源140所提供的氣體142離子化而形成電漿,並利用此一電漿來處理奈米碳管110。在上述電漿處理過程中,可藉由攪拌件160來攪拌奈米碳管110,以使得位於下層的奈米碳管110也有機會移動到上層而暴露於電漿中,進而提升電漿處理的效率與均勻性。In more detail, the carbon nanotubes 110 can be introduced into the carrier 105 in the plasma processing apparatus 100. Next, the vacuuming device 120 is operated such that the reaction chamber 130 of the plasma processing apparatus 100 is in a vacuum state. Thereafter, the process gas 142 is introduced into the reaction chamber 130 by the gas source 140, and the plasma generator 150 is activated. As shown in FIG. 1, the plasma generator 150 includes an upper electrode 152 and a lower electrode 154, which may be connected to external power sources 156 and 158, respectively. After the plasma generator 150 is activated, the gas 142 supplied from the gas source 140 can be ionized to form a plasma, and the plasma can be used to treat the carbon nanotubes 110. In the above plasma treatment process, the carbon nanotubes 110 can be stirred by the stirring member 160, so that the carbon nanotubes 110 located in the lower layer also have the opportunity to move to the upper layer and be exposed to the plasma, thereby improving the plasma treatment. Efficiency and uniformity.

根據本發明不同的具體實施例,在電漿處理步驟202中,所用的處理溫度約15-40℃。舉例來說,處理溫度可以是約15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39或40℃。在較佳的情形中,上述處理溫度可以是室溫,亦即,約23-28℃。In accordance with various embodiments of the present invention, in the plasma processing step 202, the processing temperature employed is about 15-40 °C. For example, the processing temperature can be about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 , 36, 37, 38, 39 or 40 ° C. In the preferred case, the above treatment temperature may be room temperature, that is, about 23-28 °C.

此外,在電漿處理步驟202中,所用的處理壓力可任選地為約1-10-3 torr。更詳細地說,上述處理壓力可以是約1、10-1 、10-2 或10-3 torr。Additionally, in the plasma processing step 202, the processing pressure used may optionally be from about 1 to about 3 torr. In more detail, the above treatment pressure may be about 1 , 10 -1 , 10 -2 or 10 -3 torr.

另外,電漿處理步驟202進行的時間通常取決於待處理物(即奈米碳管110)的用量,以及所欲達到的處理程度。舉例來說,處理時間可為約1-30分鐘;例如1、5、10、15、20、25或30分鐘。Additionally, the time during which the plasma processing step 202 is performed will generally depend on the amount of material to be treated (i.e., carbon nanotubes 110) and the degree of processing desired. For example, the treatment time can be from about 1 to 30 minutes; for example 1, 5, 10, 15, 20, 25 or 30 minutes.

可利用任何適當的氣體來作為處理氣體142,作為例示而非限制,處理氣體142可以是氬氣、氮氣或氬氣與氮氣的混合氣體。Any suitable gas may be utilized as the process gas 142, which by way of illustration and not limitation, may be argon, nitrogen, or a mixture of argon and nitrogen.

步驟204為改質反應步驟,其係將改質單體引入172電漿處理設備100中,並使得此改質單體172和經電漿處理後之奈米碳管經攪拌及反應,而得到經改質之奈米碳管。Step 204 is a reforming reaction step, which introduces the modified monomer into the 172 plasma processing apparatus 100, and causes the modified monomer 172 and the plasma-treated nano carbon tube to be stirred and reacted to obtain Modified carbon nanotubes.

更詳細地說,可由第1圖所示的進料設備170,將改質單體172引入處理設備100的承載台105上。當改質單體172進入承載台105之後,改質單體172可和經電漿處理後之奈米碳管反應,而進行奈米碳管的表面改質。在此一改質的過程中,可持續攪拌經電漿處理後之奈米碳管,以使得位於下層的奈米碳管也有機會移動到上層而與改質單體172接觸,進而提升改質的效率與均勻性。In more detail, the modified monomer 172 can be introduced into the carrier 105 of the processing apparatus 100 by the feeding device 170 shown in FIG. After the modified monomer 172 enters the loading platform 105, the modified monomer 172 can react with the plasma-treated carbon nanotube to perform surface modification of the carbon nanotube. In this process of upgrading, the plasma-treated carbon nanotubes can be continuously stirred, so that the carbon nanotubes located in the lower layer also have the opportunity to move to the upper layer to contact the modified monomer 172, thereby improving the upgrading. Efficiency and uniformity.

根據本發明具體實施例,可利用任何適用以改質奈米碳管的材料來作為改質單體172,其實施例包括但不限於:順丁烯二酐(maleic anhydride)、苯乙烯(styrene)、甲基丙烯酸甲酯(methyl methacrylate)、甲基丙烯酸丁酯(butyl methacrylate)、丙烯酸甲酯(methacrylate)、丙烯酸乙酯(ethyl acrylate)、丙烯酸丁酯(butyl acrylate)、丙烯醯胺(acrylamide)、乙酸乙烯酯(vinyl acetate)、丙烯酸乙烯酯(vinyl acrylate)、丙烯酸(methacrylic acid)、甲基丙烯酸(methacrylic acid)、丙烯磺酸鈉(sodium allylsulfonate)、甲基丙烯磺酸鈉(sodium methylacrylsulfonate)與甲基丙烯酸縮水甘油酯(glycidyl methacrylate)。According to a specific embodiment of the present invention, any material suitable for modifying carbon nanotubes may be utilized as the modifying monomer 172, and examples thereof include, but are not limited to, maleic anhydride, styrene (styrene) ), methyl methacrylate, butyl methacrylate, methacrylate, ethyl acrylate, butyl acrylate, acrylamide ), vinyl acetate, vinyl acrylate, methacrylic acid, methacrylic acid, sodium allylsulfonate, sodium methylacrylsulfonate ) with glycidyl methacrylate.

此外,在本發明任選的具體實施例中,可先將改質單體溶於一溶劑中,而後再將其引入至處理設備100中;如此一來在改質完成後即可直接得到奈米碳管的分散液。In addition, in an optional embodiment of the present invention, the modified monomer may be first dissolved in a solvent and then introduced into the processing apparatus 100; thus, the modification can be directly obtained after the modification is completed. A dispersion of carbon nanotubes.

此處所述的溶劑並無特殊的限制,只要此一溶劑能夠與可聚合單體均勻混合即可。在較佳的情形中,所用的溶劑甚至可和可聚合單體反應而生成聚合物。或者是,在另一種較佳的情形中,所用的溶劑可在聚合反應過程之中或之後被輕易移除。舉例來說,上述溶劑可為乙二醇、1,3丙二醇、1,4丁二醇、乙醇、苯、甲苯或水。The solvent described herein is not particularly limited as long as the solvent can be uniformly mixed with the polymerizable monomer. In the preferred case, the solvent used may even react with the polymerizable monomer to form a polymer. Alternatively, in another preferred embodiment, the solvent used can be easily removed during or after the polymerization. For example, the above solvent may be ethylene glycol, 1,3 propanediol, 1,4 butanediol, ethanol, benzene, toluene or water.

再者,根據本發明具體實施例,在進行改質反應步驟204時,改質反應的溫度可為約15-40℃。舉例來說,改質反應溫度可以是約15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39或40℃。在較佳的情形中,上述改質反應溫度可以是室溫,亦即,約23-28℃。Further, according to a specific embodiment of the present invention, the temperature of the upgrading reaction may be about 15 to 40 ° C when the upgrading reaction step 204 is performed. For example, the upgrading reaction temperature may be about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 , 35, 36, 37, 38, 39 or 40 °C. In a preferred embodiment, the above modification reaction temperature may be room temperature, that is, about 23-28 °C.

與電漿處理時間相似,改質反應步驟204進行的時間通常也是取決於待處理物(即經電漿處理之奈米碳管)的用量,以及所欲達到的改質程度。舉例來說,改質時間可為約30-150分鐘;例如30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145或150分鐘。Similar to the plasma treatment time, the time during which the upgrading reaction step 204 is performed is also generally dependent on the amount of material to be treated (i.e., the plasma treated carbon nanotubes) and the degree of modification desired. For example, the modification time can be about 30-150 minutes; for example, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145 or 150 minutes.

步驟206為聚合反應步驟,其係將經改質之奈米碳管與可聚合單體混合,並使可聚合單體進行聚合反應,以製得奈米碳管的高分子熔體。Step 206 is a polymerization step in which a modified carbon nanotube is mixed with a polymerizable monomer, and a polymerizable monomer is subjected to polymerization to obtain a polymer melt of a carbon nanotube.

更詳細地說,可將經改質之奈米碳管由處理設備100的反應室130中移出,並使可聚合單體與經改質之奈米碳管置於適當的反應槽中混合,且可根據可聚合單體的種類而採用適當的聚合條件以使可聚合單體進行聚合反應而製得奈米碳管的高分子熔體。In more detail, the modified carbon nanotubes can be removed from the reaction chamber 130 of the processing apparatus 100, and the polymerizable monomer and the modified carbon nanotubes are placed in a suitable reaction tank for mixing. Further, a polymer melt of a carbon nanotube can be obtained by subjecting a polymerizable monomer to polymerization reaction depending on the kind of the polymerizable monomer.

應注意,在此步驟中,可於聚合反應開始前或聚合反應進行中,將上述經改質之奈米碳管加入可聚合單體中。此外,在一可任選的實施例中,在聚合反應過程中可利用習知的手段和/或裝置以促使經改質之奈米碳管均勻地分散於可聚合單體和/或聚合物中。It should be noted that in this step, the above modified carbon nanotubes may be added to the polymerizable monomer before the start of the polymerization or during the progress of the polymerization. Further, in an optional embodiment, conventional means and/or means may be utilized during the polymerization to promote uniform dispersion of the modified carbon nanotubes to the polymerizable monomer and/or polymer. in.

根據一任選的具體實施例,若此一經改質之奈米碳管在改質反應步驟204中,並未如上文所述地直接形成奈米碳管的分散液,則可先將經改質之奈米碳管加入至一溶劑中,以形成一分散液(或懸浮液),而後再將此一奈米碳管的分散液加入上述可聚合單體溶液中。According to an optional embodiment, if the modified carbon nanotubes are not directly formed into a dispersion of carbon nanotubes as described above in the upgrading reaction step 204, the modified carbon nanotubes may be modified first. The carbon nanotubes are added to a solvent to form a dispersion (or suspension), and then a carbon nanotube dispersion is added to the above polymerizable monomer solution.

此處所述的溶劑可以是任何能夠和可聚合單體均勻混合的溶劑,包括但不限於:乙二醇、1,3丙二醇、1,4丁二醇、乙醇、苯、甲苯以及水。The solvent described herein may be any solvent capable of being uniformly mixed with the polymerizable monomer, including but not limited to ethylene glycol, 1,3 propylene glycol, 1,4 butanediol, ethanol, benzene, toluene, and water.

如上所述,此處所採用的奈米碳管在經過改質後,能夠均勻地分散於溶劑中,並形成穩定的分散液。如此一來,當將此種經改質的奈米碳管與可聚合單體混合時,經改質的奈米碳管不易發生團聚現象,且可均勻地分散於可聚合單體和/或聚合物中。As described above, the carbon nanotubes used herein can be uniformly dispersed in a solvent after reforming, and a stable dispersion is formed. In this way, when the modified carbon nanotube is mixed with the polymerizable monomer, the modified carbon nanotube is less prone to agglomeration and can be uniformly dispersed in the polymerizable monomer and/or In the polymer.

根據本發明一具體實施例,要形成奈米碳管與聚酯類高分子的複合材料時,可用的可聚合單體包括但不限於:乙二酸、丙二酸、丁二酸、戊二酸、己二酸、對苯二甲酸、間苯二甲酸、鄰苯二甲酸、乙二醇、1,3-丙二醇或1,4-丁二醇、苯二甲酸雙羥丙酯、苯二甲酸雙羥乙酯、對苯二甲酸二甲酯或上述可聚合單體的混合物。According to an embodiment of the present invention, when a composite material of a carbon nanotube and a polyester polymer is to be formed, useful polymerizable monomers include, but are not limited to, oxalic acid, malonic acid, succinic acid, and glutaric acid. Acid, adipic acid, terephthalic acid, isophthalic acid, phthalic acid, ethylene glycol, 1,3-propanediol or 1,4-butanediol, bishydroxypropyl phthalate, phthalic acid Dihydroxyethyl ester, dimethyl terephthalate or a mixture of the above polymerizable monomers.

在任選的較佳具體實施例中,當使用可形成聚酯類高分子的單體時,可使用乙二醇、1,3丙二醇或1,4丁二醇等溶劑以形成奈米碳管分散液。在聚合反應過程中,該等溶劑可和可聚合單體反應而生成聚酯類高分子。In an optional preferred embodiment, when a monomer capable of forming a polyester-based polymer is used, a solvent such as ethylene glycol, 1,3 propanediol or 1,4 butanediol may be used to form a carbon nanotube. Dispersions. These solvents may react with the polymerizable monomer to form a polyester-based polymer during the polymerization reaction.

一般而言,聚酯類高分子在聚合反應的過程中,需使用催化劑,以利聚合反應的進行。上述催化劑的實施例包括但不限於:醋酸銻、三氧化二銻與四基化鈦。In general, a polyester-based polymer requires a catalyst during the polymerization to facilitate the polymerization. Examples of the above catalysts include, but are not limited to, cerium acetate, antimony trioxide, and tetrabasic titanium.

聚酯類高分子的聚合反應包括酯化反應與縮聚反應兩個階段。根據本發明一實施例,上述酯化反應階段的反應條件包括:反應壓力約2-4大氣壓、反應溫度約240-300°C以及反應時間約90-150分鐘;此外,縮聚反應階段的反應條件包括:反應壓力約1-10-3 torr、反應溫度約240-300℃以及反應時間約60-120分鐘小時。The polymerization of the polyester polymer includes two stages of an esterification reaction and a polycondensation reaction. According to an embodiment of the present invention, the reaction conditions of the esterification reaction stage include: a reaction pressure of about 2-4 atm, a reaction temperature of about 240-300 ° C, and a reaction time of about 90-150 minutes; further, a reaction condition of the polycondensation reaction stage The reaction pressure is about 1-10 -3 torr, the reaction temperature is about 240-300 ° C, and the reaction time is about 60-120 minutes.

更具體來說,酯化反應階段的反應壓力可以是約2、2.5、3、3.5或4大氣壓力;其反應溫度可為約240、245、250、255、260、265、270、275、280、285、290、295或300℃,且反應時間可為約90、95、100、105、110、115、120、125、130、135、140、145或150分鐘。此外,縮聚反應階段的反應壓力可以是約1、10-1 、10-2 或10-3 torr;其反應溫度可為約240、245、250、255、260、265、270、275、280、285、290、295或300℃,且反應時間可為約60、65、70、75、80、85、90、95、100、105、110、115或120分鐘。More specifically, the reaction pressure in the esterification reaction stage may be about 2, 2.5, 3, 3.5 or 4 atmospheres; the reaction temperature may be about 240, 245, 250, 255, 260, 265, 270, 275, 280 285, 290, 295 or 300 ° C, and the reaction time can be about 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145 or 150 minutes. In addition, the reaction pressure of the polycondensation reaction stage may be about 1 , 10 -1 , 10 -2 or 10 -3 torr; the reaction temperature may be about 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295 or 300 ° C, and the reaction time can be about 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115 or 120 minutes.

根據本發明另一具體實施例,要形成奈米碳管與聚醯胺類高分子的複合材料時,可用的可聚合單體包括但不限於:己內醯胺、己二胺、2-甲基戊二胺、2-甲基己二胺、3-甲基己二胺、2,5-二甲基己二胺、2,2-二甲基戊二胺、5-甲基壬二胺、十二烷二胺、2,2,4-三甲基己二胺、2,4,4-三甲基己二胺、2,2,7,7-四甲基辛二胺、間-二甲苯二胺、對-二甲苯二胺或二胺基二環己基甲烷、乙二酸、丙二酸、丁二酸、戊二酸、己二酸、對苯二甲酸、間苯二甲酸、鄰苯二甲酸、乙二醇、1,3-丙二醇或1,4-丁二醇或上述可聚合單體的混合物。According to another embodiment of the present invention, when a composite material of a carbon nanotube and a polyamide polymer is formed, useful polymerizable monomers include, but are not limited to, caprolactam, hexamethylenediamine, and 2-methyl. Pentyldiamine, 2-methylhexamethylenediamine, 3-methylhexamethylenediamine, 2,5-dimethylhexamethylenediamine, 2,2-dimethylpentanediamine, 5-methylnonanediamine , dodecanediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexanediamine, 2,2,7,7-tetramethyloctanediamine, m- Xylene diamine, p-xylene diamine or diaminodicyclohexylmethane, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, terephthalic acid, isophthalic acid, Phthalic acid, ethylene glycol, 1,3-propanediol or 1,4-butanediol or a mixture of the above polymerizable monomers.

在任選的較佳具體實施例中,當使用可形成聚醯胺類高分子的單體時,可使用溶劑(如,水)以形成奈米碳管分散液。在聚合反應過程中,可輕易地移除該等溶劑。In an optional preferred embodiment, when a monomer capable of forming a polyamine-based polymer is used, a solvent (e.g., water) may be used to form a carbon nanotube dispersion. These solvents can be easily removed during the polymerization.

聚醯胺類高分子的聚合反應包括一反應階段及一聚合階段,反應階段的反應條件包括:反應壓力約2.0-4.0大氣壓、反應溫度約240-300℃以及反應時間約90-180分鐘;而聚合階段的反應條件包括:反應溫度約240-300℃以及反應時間約120-300分鐘。The polymerization reaction of the polyamine polymer includes a reaction stage and a polymerization stage, and the reaction conditions of the reaction stage include: a reaction pressure of about 2.0 to 4.0 atm, a reaction temperature of about 240 to 300 ° C, and a reaction time of about 90 to 180 minutes; The reaction conditions in the polymerization stage include a reaction temperature of about 240 to 300 ° C and a reaction time of about 120 to 300 minutes.

更具體來說,反應階段的反應壓力可以是約2、2.5、3、3.5或4大氣壓力;其反應溫度可為約240、245、250、255、260、265、270、275、280、285、290、295或300℃,且反應時間可為約90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175或180分鐘。此外,聚合階段的反應溫度可為約240、245、250、255、260、265、270、275、280、285、290、295或300℃,且反應時間可為約120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、195、200、205、210、215、220、225、230、235、240、245、250、255、260、265、270、275、280、285、290、295或300分鐘。More specifically, the reaction pressure in the reaction stage may be about 2, 2.5, 3, 3.5 or 4 atmospheres; the reaction temperature may be about 240, 245, 250, 255, 260, 265, 270, 275, 280, 285. 290, 295 or 300 ° C, and the reaction time may be about 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175 or 180 minutes. Further, the reaction temperature in the polymerization stage may be about 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295 or 300 ° C, and the reaction time may be about 120, 125, 130, 135. , 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260 , 265, 270, 275, 280, 285, 290, 295 or 300 minutes.

根據本發明具體實施例,在進行聚合反應步驟206時,所用的經改質之奈米碳管在所得之奈米碳管複合材料中的含量為約0.01-5wt%;較佳為約0.05-3wt%;更加為約0.1-1.5wt%。舉例來說,上述經改質之奈米碳管的含量可為約0.01、0.05、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9或5wt%。According to a particular embodiment of the invention, the modified carbon nanotubes used in the polymerization step 206 are present in the resulting carbon nanotube composite in an amount of from about 0.01% to about 5% by weight; preferably from about 0.05%. 3 wt%; more preferably from about 0.1 to 1.5 wt%. For example, the modified carbon nanotubes may have a content of about 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 or 5 wt%.

當步驟206所述的聚合反應進行完畢之後,即可得到一奈米碳管的高分子熔體,此一高分子熔體是一種奈米碳管複合材料,其包括了約95-99.99wt%的熱塑性高分子基質;以及約0.01-5wt%的經改質之奈米碳管分散於該熱塑性高分子基質中。After the polymerization described in step 206 is completed, a polymer melt of a carbon nanotube is obtained, and the polymer melt is a carbon nanotube composite material comprising about 95-99.99 wt%. The thermoplastic polymer matrix; and about 0.01-5 wt% of the modified carbon nanotubes are dispersed in the thermoplastic polymer matrix.

在一任選的具體實施例中,方法200更包含一額外的固化與顆粒化步驟,以將上述奈米碳管的高分子熔體製成顆粒狀的材料。In an optional embodiment, the method 200 further includes an additional step of curing and granulating to form the polymeric melt of the carbon nanotubes described above into a particulate material.

更詳細地說,可先將上述奈米碳管的高分子熔體冷卻固化以得到一固態材料;而後再利用適當的設備(如,切粒機)將上述固態材料顆粒化。In more detail, the polymer melt of the above carbon nanotubes may be first cooled and solidified to obtain a solid material; and then the solid material is pelletized by a suitable apparatus (e.g., a pelletizer).

此處所得之顆粒化奈米碳管複合材料,可作為紡織加工用的母粒以製得含奈米碳管之纖維,詳見後述。The granulated carbon nanotube composite material obtained here can be used as a masterbatch for textile processing to obtain a fiber containing a carbon nanotube tube, which will be described later.

本發明之另一態樣也是有關於一種奈米碳管複合材料的製備方法。此方法所提出的改質步驟與上述方法200所述者相似,因此可避免破壞奈米碳管本身的結構,且可提升改質的均勻性。如此一來,當利用此經改質的奈米碳管與來製備奈米碳管複合材料時,可提升奈米碳管於高分子基質中的分散性,避免團聚現象發生。Another aspect of the invention is also directed to a method of making a carbon nanotube composite. The upgrading step proposed by this method is similar to that described in the above method 200, so that the structure of the carbon nanotube itself can be avoided, and the uniformity of the reform can be improved. In this way, when the modified carbon nanotube composite material is used to prepare the carbon nanotube composite material, the dispersibility of the carbon nanotube in the polymer matrix can be improved, and the agglomeration phenomenon can be avoided.

下文將參照第3圖所示的流程圖,來描述根據本發明一具體實施例之奈米碳管複合材料的製備方法300。A method 300 of preparing a carbon nanotube composite material in accordance with an embodiment of the present invention will now be described with reference to the flow chart shown in FIG.

請參見第3圖,根據本發明的原理與精神,方法300係在一電漿處理設備中處理(步驟302)並改質(步驟304)奈米碳管,之後將經改質之奈米碳管與熱塑性高分子混合,並進行混練(步驟306),以製得奈米碳管的高分子熔體。由於方法300中所採用的步驟302、304分別與上文參照第2圖所述之步驟202、204相似,此處為求簡潔而不再贅述,下文僅就步驟306詳加說明。Referring to Figure 3, in accordance with the principles and spirit of the present invention, method 300 is processed (step 302) in a plasma processing apparatus and modified (step 304) carbon nanotubes, followed by modified nanocarbon The tube is mixed with a thermoplastic polymer and kneaded (step 306) to obtain a polymer melt of a carbon nanotube. Since the steps 302 and 304 used in the method 300 are similar to the steps 202 and 204 described above with reference to FIG. 2, the details are not described herein for brevity, and only the step 306 will be described in detail below.

步驟306為混練加工步驟。根據本發明具體實施例,在根據步驟302、304製得經改質之奈米碳管之後,可將經改質之奈米碳管與一熱塑性高分子混合,並進行混練,以製得奈米碳管的高分子熔體。Step 306 is a kneading processing step. According to a specific embodiment of the present invention, after the modified carbon nanotubes are prepared according to steps 302 and 304, the modified carbon nanotubes may be mixed with a thermoplastic polymer and kneaded to obtain a naphthalene. A polymer melt of a carbon nanotube.

根據本發明具體實施例,上述熱塑性高分子可以是聚酯類高分子或聚醯胺類高分子。舉例來說,聚酯類高分子的實施例包括但不限於:聚對苯二甲酸乙二酯、聚對苯二甲酸丙二酯以及聚對苯二甲酸丁二酯。作為例示而非限制,聚醯胺類高分子可以是耐隆6、耐隆12、耐隆6.6或耐隆6.12。According to a specific embodiment of the present invention, the thermoplastic polymer may be a polyester polymer or a polyamide polymer. For example, examples of polyester polymers include, but are not limited to, polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate. By way of illustration and not limitation, the polyamine polymer may be Nylon 6, Nylon 12, Nylon 6.6 or Nylon 6.12.

可利用任何適當或習知的技術與設備來進行上述實施例中所述的混練步驟,常用的混練設備包括但不限於塑譜儀(barbender)、萬馬力機(mixer)、捏合機(kneader)、單螺桿押出機(single screw extruder)、雙螺桿押出機(twin screw rod extruder)或多螺桿押出機(Multi screw extruder)。在操作混練設備時,可視實際情形調整各項製程參數。The kneading steps described in the above embodiments may be performed using any suitable or conventional techniques and equipment, including but not limited to barbenders, mixers, kneaders. , single screw extruder, twin screw rod extruder or multi screw extruder. When operating the kneading equipment, adjust the various process parameters according to the actual situation.

此外,將該奈米碳管分散液與高分子以一般習知攪拌設備進行物理混合,並移除溶劑後進行乾燥程序(乾燥溫度約60-130℃)以製得奈米碳管高分子混合物,並經混練程序後製得奈米碳管複合材料。In addition, the carbon nanotube dispersion liquid and the polymer are physically mixed by a conventional stirring device, and the solvent is removed, followed by a drying process (drying temperature of about 60-130 ° C) to obtain a carbon nanotube polymer mixture. And after the mixing process, the carbon nanotube composite material is obtained.

根據本發明具體實施例,在進行混練加工步驟306時,所用的經改質之奈米碳管在所得之奈米碳管複合材料中的含量為約0.01-5wt%;較佳為約0.05-3wt%;更加為約0.1-1.5wt%。舉例來說,上述經改質之奈米碳管的含量可為約0.01、0.05、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9或5wt%。According to a particular embodiment of the invention, the modified carbon nanotubes used in the kneading process step 306 are present in the resulting carbon nanotube composite in an amount of from about 0.01% to about 5% by weight; preferably from about 0.05%. 3 wt%; more preferably from about 0.1 to 1.5 wt%. For example, the modified carbon nanotubes may have a content of about 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 or 5 wt%.

步驟306所得之奈米碳管的高分子熔體是一種奈米碳管複合材料,其包括了約95-99.99wt%的熱塑性高分子基質;以及約0.01-5wt%的經改質之奈米碳管分散於該熱塑性高分子基質中。The polymer melt of the carbon nanotube obtained in step 306 is a carbon nanotube composite material comprising about 95-99.99% by weight of a thermoplastic polymer matrix; and about 0.01-5 wt% of the modified nanometer. The carbon tube is dispersed in the thermoplastic polymer matrix.

在一任選的具體實施例中,方法300更包含一額外的固化與顆粒化步驟,以將上述奈米碳管的高分子熔體製成顆粒狀的材料。此一固化與顆粒化步驟與上文參照方法200所述者相似,故此處不再贅述。且同樣地,此處所得之顆粒化奈米碳管複合材料,可作為紡織加工用的母粒以製得含奈米碳管之纖維。In an optional embodiment, the method 300 further includes an additional step of curing and granulating to form the polymeric melt of the carbon nanotubes described above into a particulate material. This curing and granulating step is similar to that described above with reference to method 200 and will not be described again herein. Similarly, the granulated carbon nanotube composite obtained here can be used as a masterbatch for textile processing to produce a carbon nanotube-containing fiber.

本發明的另一態樣係有關於一種奈米碳管複合材料。在此一奈米碳管複合材料中,奈米碳管的分散性較佳、不易發生團聚現象;因此,此一奈米碳管複合材料適用於熔融紡絲製程。Another aspect of the invention relates to a carbon nanotube composite. In this nano carbon nanotube composite material, the carbon nanotubes have better dispersibility and are less prone to agglomeration; therefore, the carbon nanotube composite material is suitable for the melt spinning process.

根據本發明一具體實施例,上述奈米碳管複合材料包含:約95-99.99wt%的高分子基質;以及約0.01-5wt%的經改質之奈米碳管分散於該高分子基質中。According to an embodiment of the present invention, the carbon nanotube composite material comprises: about 95-99.99 wt% of a polymer matrix; and about 0.01-5 wt% of the modified carbon nanotubes are dispersed in the polymer matrix. .

更具體來說,在此奈米碳管複合材料中上述高分子基質的重量百分比可為約95、95.1、95.2、95.3、95.4、95.5、95.6、95.7、95.8、95.9、96、96.1、96.2、96.3、96.4、96.5、96.6、96.7、96.8、96.9、97、97.1、97.2、97.3、97.4、97.5、97.6、97.7、97.8、97.9、98、98.1、98.2、98.3、98.4、98.5、98.6、98.7、98.8、98.9、99、99.05、99.1、99.15、99.2、99.25、99.3、99.35、99.4、99.45、99.5、99.55、99.6、99.65、99.7、99.75、99.8、99.85、99.9、99.95或99.99%。More specifically, the weight percentage of the above polymer matrix in the carbon nanotube composite may be about 95, 95.11, 95.2, 95.3, 95.4, 95.5, 95.6, 95.7, 95.8, 95.9, 96, 96.1, 96.2, 96.3. , 96.4, 96.5, 96.6, 96.7, 96.8, 96.9, 97, 97.1, 97.2, 97.3, 97.4, 97.5, 97.6, 97.7, 97.8, 97.9, 98, 98.1, 98.2, 98.3, 98.4, 98.5, 98.6, 98.7, 98.8 , 98.9, 99, 99.05, 99.1, 99.15, 99.2, 99.25, 99.3, 99.35, 99.4, 99.45, 99.5, 99.55, 99.6, 99.65, 99.7, 99.75, 99.8, 99.85, 99.9, 99.95 or 99.99%.

此外,在此奈米碳管複合材料中上述經改質之奈米碳管的重量百分比可為約0.01、0.05、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9或5%。In addition, the weight percentage of the above modified carbon nanotubes in the carbon nanotube composite may be about 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6. , 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 or 5%.

根據本發明的原理與精神,此一奈米碳管複合材料中的奈米碳管分散性較佳且不易團聚,因而適用於熔融紡絲製程。為了進一步確認此處欲請求保護之奈米碳管的可熔紡特性,在約290℃、轉速約150rpm且濾網孔徑約40μm的條件下對此奈米碳管複合材料進行壓升測試,所測得的壓升小於10bar。由此可知,此奈米碳管複合材料確實適用於熔融紡絲製程。According to the principle and spirit of the present invention, the carbon nanotubes in the carbon nanotube composite material have better dispersibility and are not easily agglomerated, and thus are suitable for the melt spinning process. In order to further confirm the melt-spinning characteristics of the carbon nanotubes to be protected herein, the carbon nanotube composite is subjected to a pressure rise test at a temperature of about 290 ° C, a rotation speed of about 150 rpm, and a sieve pore size of about 40 μm. The resulting pressure rise is less than 10 bar. It can be seen that this carbon nanotube composite is indeed suitable for the melt spinning process.

根據本發明具體實施例,上述高分子基質可以是聚酯類高分子或聚醯胺類高分子。舉例來說,聚酯類高分子的實施例包括但不限於:聚對苯二甲酸乙二酯、聚對苯二甲酸丙二酯以及聚對苯二甲酸丁二酯。作為例示而非限制,聚醯胺類高分子可以是耐隆6、耐隆12、耐隆6.6或耐隆6.12。According to a specific embodiment of the present invention, the polymer matrix may be a polyester polymer or a polyamine polymer. For example, examples of polyester polymers include, but are not limited to, polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate. By way of illustration and not limitation, the polyamine polymer may be Nylon 6, Nylon 12, Nylon 6.6 or Nylon 6.12.

下文將提出本發明部分實驗例,以進一步說明此處提出之奈米碳管複合材料的性質。在以下實驗例中,調整了經改質奈米碳管於奈米碳管複合材料中的含量(請見下表1),並將奈米碳管複合材料製成母粒,而後進行壓升測試,以進一步探討其可熔紡特性。Some experimental examples of the present invention will be presented below to further illustrate the properties of the carbon nanotube composites proposed herein. In the following experimental examples, the content of the modified carbon nanotubes in the carbon nanotube composite (see Table 1 below) was adjusted, and the carbon nanotube composite was made into a masterbatch, followed by pressure rise. Test to further explore its melt-spinning properties.

在本系列實驗中,根據上述方法200來進行奈米碳管的電漿處理與改質,並製備一奈米碳管複合材料。In this series of experiments, the plasma treatment and modification of the carbon nanotubes were carried out according to the above method 200, and a carbon nanotube composite material was prepared.

首先,對多壁奈米碳管(multi-wall carbon nanotube,MWCNT)進行電漿處理。First, a multi-wall carbon nanotube (MWCNT) was plasma treated.

其後,利用順丁烯二酐(maleic anhydride,MA)來進行多壁奈米碳管的改質,以得到經順丁烯二酐改質的奈米碳管(MWCNT-MA)。Thereafter, the modification of the multi-walled carbon nanotubes was carried out by using maleic anhydride (MA) to obtain a carbon nanotube (MWCNT-MA) modified with maleic anhydride.

接著,將經改質的奈米碳管分散於乙二醇中,形成1wt%的經改質奈米碳管的乙二醇分散液。將此分散液與不同比例的對苯二甲酸混合,並在醋酸銻的催化下進行聚合反應,以形成奈米碳管與聚對苯二甲酸二乙酯(polyethylene terephthalate,PET)的複合材料。更詳細地說,在聚合反應中,酯化反應的反應壓力約為2.7大氣壓力,反應溫度約270℃且反應時間約2小時;且縮聚反應係於真空下進行,其反應溫度約280℃、反應時間約1小時。Next, the modified carbon nanotubes were dispersed in ethylene glycol to form a 1 wt% ethylene glycol dispersion of the modified carbon nanotubes. The dispersion is mixed with terephthalic acid in different proportions and polymerized under the catalysis of barium acetate to form a composite material of a carbon nanotube and polyethylene terephthalate (PET). More specifically, in the polymerization reaction, the reaction pressure of the esterification reaction is about 2.7 atm, the reaction temperature is about 270 ° C and the reaction time is about 2 hours; and the polycondensation reaction is carried out under vacuum at a reaction temperature of about 280 ° C, The reaction time is about 1 hour.

最後,將聚合反應所得之奈米碳管的高分子熔體經冷卻固化與顆粒化,以得到顆粒狀的奈米碳管的高分子母粒。Finally, the polymer melt of the carbon nanotube obtained by the polymerization reaction is cooled and solidified and pelletized to obtain a polymer mother particle of a granular carbon nanotube.

除了實驗例1、2之外,此處另採用未經電漿處理與改質的多壁奈米碳管,並利用相同的聚合方法將其製備成的複合材料,以作為對照例。In addition to Experimental Examples 1, 2, a multi-walled carbon nanotube which was not subjected to plasma treatment and modification was used here, and a composite material prepared by the same polymerization method was used as a comparative example.

在約290℃、轉速約150rpm且濾網孔徑約40μm的條件下對所得到之奈米碳管複合材料進行壓升測試,結果摘要整理於下表1。The obtained carbon nanotube composite material was subjected to a pressure rise test at a temperature of about 290 ° C, a rotation speed of about 150 rpm, and a sieve pore size of about 40 μm. The results are summarized in Table 1 below.

在熔融紡絲過程中,熔體必須先通過濾網而後到達噴嘴。假若熔體無法順利通過濾網,熔體就會聚積在濾網上方而造成壓升的現象,當壓升過高時,會造成無法紡絲,嚴重時甚至可能損毀機台。以對照例為例,由於奈米碳管在高分子材料中無法均勻分散並發生團聚,使得對照組的熔體無法順利通過濾網,而產生了高達35bar的壓升。During melt spinning, the melt must first pass through the screen and then reach the nozzle. If the melt cannot pass through the filter screen smoothly, the melt will accumulate on the filter screen and cause a pressure rise. When the pressure rises too high, it will cause the yarn to be unable to be spun, and in severe cases, the machine may be damaged. Taking the comparative example as an example, since the carbon nanotubes are not uniformly dispersed and agglomerated in the polymer material, the melt of the control group cannot pass through the sieve smoothly, and a pressure rise of up to 35 bar is generated.

相較之下,根據本發明實施例1、2及3所得之奈米碳管複合材料在壓升測試中皆可順利通過濾網,而僅產生微小的壓升;因此,本發明所提出的奈米碳管複合材料適合用於熔融紡絲。In contrast, the carbon nanotube composite materials obtained according to the embodiments 1, 2 and 3 of the present invention can smoothly pass through the sieve in the pressure test, and only generate a slight pressure rise; therefore, the present invention proposes The carbon nanotube composite is suitable for melt spinning.

雖然上文實施方式中揭露了本發明的具體實施例,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不悖離本發明之原理與精神的情形下,當可對其進行各種更動與修飾,因此本發明之保護範圍當以附隨申請專利範圍所界定者為準。Although the embodiments of the present invention are disclosed in the above embodiments, the present invention is not intended to limit the invention, and the present invention may be practiced without departing from the spirit and scope of the invention. Various changes and modifications may be made thereto, and the scope of the invention is defined by the scope of the appended claims.

100...電漿處理設備100. . . Plasma processing equipment

105...承載台105. . . Carrying platform

110...奈米碳管110. . . Carbon nanotube

120...抽真空設備120. . . Vacuuming equipment

130...反應室130. . . Reaction chamber

140...氣體源140. . . Gas source

142...處理氣體142. . . Process gas

150...電漿產生器150. . . Plasma generator

152...上電極152. . . Upper electrode

154...下電極154. . . Lower electrode

156、158...外部電源156, 158. . . External power supply

160...攪拌件160. . . Stirring piece

170...進料設備170. . . Feeding equipment

172...改質單體172. . . Modified monomer

200、300...方法200, 300. . . method

202、204、206、302、304、306...步驟202, 204, 206, 302, 304, 306. . . step

為讓本發明的上述與其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:The above and other objects, features, advantages and embodiments of the present invention will become more apparent and understood.

第1圖示出了用以進行本發明所述方法之一例示性電漿處理設備的概要圖式;1 is a schematic view showing an exemplary plasma processing apparatus for carrying out the method of the present invention;

第2圖為流程圖,其中繪示了根據本發明一具體實施例的一種奈米碳管複合材料的製備方法;以及2 is a flow chart showing a method of preparing a carbon nanotube composite material according to an embodiment of the present invention;

第3圖為流程圖,其中繪示了根據本發明另一具體實施例的一種奈米碳管複合材料的製備方法。3 is a flow chart showing a method of preparing a carbon nanotube composite according to another embodiment of the present invention.

200...方法200. . . method

202、204、206...步驟202, 204, 206. . . step

Claims (18)

一種奈米碳管複合材料的製備方法,包含下列步驟:在一電漿處理設備中以一電漿來處理一奈米碳管,該處理用電漿之氣體為氬氣、氮氣或上述二者之混合氣體;在該電漿處理設備中引入一改質單體,使其與該經電漿處理後之奈米碳管經攪拌及反應而得到一經改質之奈米碳管,其中該改質單體為:順丁烯二酐、苯乙烯、甲基丙烯酸甲酯、甲基丙烯酸丁酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯醯胺、乙酸乙烯酯、丙烯酸乙烯酯、丙烯酸、甲基丙烯酸、丙烯磺酸鈉、甲基丙烯磺酸鈉或甲基丙烯酸縮水甘油酯;以及將該經改質之奈米碳管與一可聚合單體混合,並使該可聚合單體進行聚合反應,以製得一奈米碳管的高分子熔體。 A method for preparing a carbon nanotube composite material, comprising the steps of: treating a carbon nanotube with a plasma in a plasma processing apparatus, wherein the plasma gas for the treatment is argon, nitrogen or both a mixed gas; introducing a modified monomer into the plasma processing apparatus to be stirred and reacted with the plasma-treated carbon nanotube to obtain a modified carbon nanotube, wherein the modified carbon nanotube The monomers are: maleic anhydride, styrene, methyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, acrylamide, vinyl acetate, vinyl acrylate, Acrylic acid, methacrylic acid, sodium propylene sulfonate, sodium methacrylate sulfonate or glycidyl methacrylate; and mixing the modified carbon nanotube with a polymerizable monomer, and polymerizing the polymerizable monomer The polymerization is carried out to obtain a polymer melt of a carbon nanotube. 一種奈米碳管複合材料的製備方法,包含下列步驟:在一電漿處理設備中以一電漿來處理一奈米碳管,該處理用電漿之氣體為氬氣、氮氣或上述二者之混合氣體;在該電漿處理設備中引入一改質單體,使其與該經電漿處理後之奈米碳管經攪拌及反應而得到一經改質之奈米碳管,其中該改質單體為:順丁烯二酐、苯乙烯、甲基丙烯酸甲酯、甲基丙烯酸丁酯、丙烯酸甲酯、丙烯酸乙酯、 丙烯酸丁酯、丙烯醯胺、乙酸乙烯酯、丙烯酸乙烯酯、丙烯酸、甲基丙烯酸、丙烯磺酸鈉、甲基丙烯磺酸鈉或甲基丙烯酸縮水甘油酯;以及將該經改質之奈米碳管與一熱塑性高分子混合,並進行混練,以製得一奈米碳管的高分子熔體。 A method for preparing a carbon nanotube composite material, comprising the steps of: treating a carbon nanotube with a plasma in a plasma processing apparatus, wherein the plasma gas for the treatment is argon, nitrogen or both a mixed gas; introducing a modified monomer into the plasma processing apparatus to be stirred and reacted with the plasma-treated carbon nanotube to obtain a modified carbon nanotube, wherein the modified carbon nanotube The monomers are: maleic anhydride, styrene, methyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, Butyl acrylate, acrylamide, vinyl acetate, vinyl acrylate, acrylic acid, methacrylic acid, sodium propylene sulfonate, sodium methacrylate or glycidyl methacrylate; and the modified nano The carbon tube is mixed with a thermoplastic polymer and kneaded to obtain a polymer melt of a carbon nanotube. 如申請專利範圍第1或2項所述之方法,更包含:冷卻固化該奈米碳管的高分子熔體以得到一固態材料;以及顆粒化該固態材料。 The method of claim 1 or 2, further comprising: cooling and solidifying the polymer melt of the carbon nanotube to obtain a solid material; and pelletizing the solid material. 如申請專利範圍第1或2項所述之方法,其中該電漿處理步驟包含以下處理條件:一處理溫度約15-40℃;一處理壓力約1-10-3 torr;以及一處理時間約1-30分鐘。The method of claim 1 or 2, wherein the plasma treatment step comprises the following treatment conditions: a treatment temperature of about 15-40 ° C; a treatment pressure of about 1-10 -3 torr; and a treatment time of about 1-30 minutes. 如申請專利範圍第1或2項所述之方法,其中於該改質單體係溶於一溶劑中。 The method of claim 1 or 2, wherein the modified single system is dissolved in a solvent. 如申請專利範圍第5項所述之方法,其中該溶劑為:乙二醇、1,3丙二醇、1,4丁二醇、乙醇、苯、甲苯或水。 The method of claim 5, wherein the solvent is: ethylene glycol, 1,3 propylene glycol, 1,4 butanediol, ethanol, benzene, toluene or water. 如申請專利範圍第1或2項所述之方法,其中該改質步驟包含以下條件:一改質反應溫度約15-40℃;以及一改質時間約30-150分鐘。 The method of claim 1 or 2, wherein the upgrading step comprises the following conditions: a modification reaction temperature of about 15-40 ° C; and a modification time of about 30-150 minutes. 如申請專利範圍第1項所述之方法,其中該可聚合單體係選自:己內醯胺、己二胺、2-甲基戊二胺、2-甲基己二胺、3-甲基己二胺、2,5-二甲基己二胺、2,2-二甲基戊二胺、5-甲基壬二胺、十二烷二胺、2,2,4-三甲基己二胺、2,4,4-三甲基己二胺、2,2,7,7-四甲基辛二胺、間-二甲苯二胺、對-二甲苯二胺、二胺基二環己基甲烷、乙二酸、丙二酸、丁二酸、戊二酸、己二酸、對苯二甲酸、間苯二甲酸、鄰苯二甲酸、乙二醇、苯二甲酸雙羥丙酯、苯二甲酸雙羥乙酯、對苯二甲酸二甲酯、1,3-丙二醇以及1,4-丁二醇所組成之一群組。 The method of claim 1, wherein the polymerizable single system is selected from the group consisting of: caprolactam, hexamethylenediamine, 2-methylpentanediamine, 2-methylhexanediamine, 3-methyl Hexamethylenediamine, 2,5-dimethylhexamethylenediamine, 2,2-dimethylpentanediamine, 5-methylnonanediamine, dodecanediamine, 2,2,4-trimethyl Hexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 2,2,7,7-tetramethyloctanediamine, m-xylylenediamine, p-xylenediamine, diamine Cyclohexylmethane, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, terephthalic acid, isophthalic acid, phthalic acid, ethylene glycol, bishydroxypropyl phthalate A group consisting of bishydroxyethyl phthalate, dimethyl terephthalate, 1,3-propanediol, and 1,4-butanediol. 如申請專利範圍第1或2項所述之方法,其中該經改質之奈米碳管於該奈米碳管複合材料中之含量為約0.01-5 wt%。 The method of claim 1 or 2, wherein the modified carbon nanotubes are present in the carbon nanotube composite in an amount of from about 0.01% to about 5% by weight. 如申請專利範圍第2項所述之方法,其中該熱塑性高分子為一聚酯類高分子或一聚醯胺類高分子。 The method of claim 2, wherein the thermoplastic polymer is a polyester polymer or a polyamine polymer. 如申請專利範圍第10項所述之方法,其中該聚酯 類高分子為:聚對苯二甲酸乙二酯、聚對苯二甲酸丙二酯或聚對苯二甲酸丁二酯。 The method of claim 10, wherein the polyester The polymer is: polyethylene terephthalate, polytrimethylene terephthalate or polybutylene terephthalate. 如申請專利範圍第10項所述之方法,其中該聚醯胺類高分子為:耐隆6、耐隆12、耐隆6.6或耐隆6.12。 The method of claim 10, wherein the polyamine polymer is: Nylon 6, Nylon 12, Nylon 6.6 or Nylon 6.12. 一種奈米碳管複合材料,包含:約95-99.99 wt%的一高分子基質;以及約0.01-5 wt%的經改質之奈米碳管分散於該高分子基質中,其中該該改質單體為:順丁烯二酐、苯乙烯、甲基丙烯酸、甲基丙烯酸甲酯、甲基丙烯酸丁酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯醯胺、乙酸乙烯酯、丙烯酸乙烯酯、丙烯酸、丙烯磺酸鈉、甲基丙烯磺酸鈉或甲基丙烯酸縮水甘油酯,該奈米碳管複合材料在一壓升測試中的壓升小於10 bar,該壓升測試的條件包含一溫度約290°C、一轉速約150 rpm以及一濾網孔徑約40 μm。 A carbon nanotube composite comprising: a polymer matrix of about 95-99.99 wt%; and about 0.01-5 wt% of a modified carbon nanotube dispersed in the polymer matrix, wherein the modification The monomers are: maleic anhydride, styrene, methacrylic acid, methyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, acrylamide, vinyl acetate, Vinyl acrylate, acrylic acid, sodium propylene sulfonate, sodium methacrylate sulfonate or glycidyl methacrylate, the carbon nanotube composite material has a pressure rise of less than 10 bar in a pressure rise test, the pressure rise test Conditions include a temperature of about 290 ° C, a speed of about 150 rpm, and a screen aperture of about 40 μm. 如申請專利範圍第13項所述的奈米碳管複合材料,其中該高分子基質為一聚酯類高分子或一聚醯胺類高分子。 The carbon nanotube composite material according to claim 13, wherein the polymer matrix is a polyester polymer or a polyamine polymer. 如申請專利範圍第14項所述的奈米碳管複合材料,其中該聚酯類高分子為:聚對苯二甲酸乙二酯、聚對苯二甲酸丙二酯或聚對苯二甲酸丁二酯。 The carbon nanotube composite material according to claim 14, wherein the polyester polymer is: polyethylene terephthalate, polytrimethylene terephthalate or polybutylene terephthalate. Diester. 如申請專利範圍第14項所述的奈米碳管複合材料,其中該聚醯胺類高分子為:耐隆6、耐隆12、耐隆6.6或耐隆6.12。 The carbon nanotube composite material according to claim 14, wherein the polyamine polymer is: Nylon 6, Nylon 12, Nylon 6.6 or Nylon 6.12. 如申請專利範圍第13項所述的奈米碳管複合材料,其中該奈米碳管複合材料係利用申請專利範圍第1項所述的方法所製成。 The carbon nanotube composite material according to claim 13, wherein the carbon nanotube composite material is produced by the method described in claim 1 of the patent application. 如申請專利範圍第13項所述的奈米碳管複合材料,其中該奈米碳管複合材料係利用申請專利範圍第2項所述的方法所製成。 The carbon nanotube composite material according to claim 13, wherein the carbon nanotube composite material is produced by the method described in claim 2 of the patent application.
TW99115521A 2010-05-14 2010-05-14 Carbon nanotube composite and method for preparing the same TWI413613B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99115521A TWI413613B (en) 2010-05-14 2010-05-14 Carbon nanotube composite and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99115521A TWI413613B (en) 2010-05-14 2010-05-14 Carbon nanotube composite and method for preparing the same

Publications (2)

Publication Number Publication Date
TW201139264A TW201139264A (en) 2011-11-16
TWI413613B true TWI413613B (en) 2013-11-01

Family

ID=46760068

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99115521A TWI413613B (en) 2010-05-14 2010-05-14 Carbon nanotube composite and method for preparing the same

Country Status (1)

Country Link
TW (1) TWI413613B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103708415A (en) * 2014-01-09 2014-04-09 中国计量学院 Method for mechanical rotation and directional distribution of carbon nano tubes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040136894A1 (en) * 2003-01-15 2004-07-15 Fuji Xerox Co., Ltd. Carbon nanotube dispersion liquid and method for producing the same and polymer composite and method for producing the same
CN1667040A (en) * 2005-02-22 2005-09-14 大庆石油管理局 Method for surface modification of carbon nanotube and its dispersion method in epoxy resin
US20060058443A1 (en) * 2004-03-24 2006-03-16 Honda Motor Co., Ltd. Process for producing carbon nanotube reinforced composite material
TW200740898A (en) * 2006-02-22 2007-11-01 Entegris Inc Nanotube polymer composite compositions and methods of making
US20090178559A1 (en) * 2002-12-12 2009-07-16 Sony Deutschland Gmbh Soluble carbon nanotubes
TW201011964A (en) * 2008-09-08 2010-03-16 Nat Univ Tsing Hua Fabrication of carbon nanotubes reinforced polymer composite bipolar plates for fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090178559A1 (en) * 2002-12-12 2009-07-16 Sony Deutschland Gmbh Soluble carbon nanotubes
US20040136894A1 (en) * 2003-01-15 2004-07-15 Fuji Xerox Co., Ltd. Carbon nanotube dispersion liquid and method for producing the same and polymer composite and method for producing the same
US20060058443A1 (en) * 2004-03-24 2006-03-16 Honda Motor Co., Ltd. Process for producing carbon nanotube reinforced composite material
CN1667040A (en) * 2005-02-22 2005-09-14 大庆石油管理局 Method for surface modification of carbon nanotube and its dispersion method in epoxy resin
TW200740898A (en) * 2006-02-22 2007-11-01 Entegris Inc Nanotube polymer composite compositions and methods of making
TW201011964A (en) * 2008-09-08 2010-03-16 Nat Univ Tsing Hua Fabrication of carbon nanotubes reinforced polymer composite bipolar plates for fuel cell

Also Published As

Publication number Publication date
TW201139264A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
Atif et al. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers
US10926326B2 (en) 3D printers and feedstocks for 3D printers
KR101135672B1 (en) Conductive thermosets by extrusion
JP5173418B2 (en) Polymer / carbon nanotube interpenetrating network structure and manufacturing process thereof
Xie et al. Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites
Shao et al. The cutting of multi-walled carbon nanotubes and their strong interfacial interaction with polyamide 6 in the solid state
CN106192048B (en) Preparation method of graphene oxide modified polypropylene fiber
WO2019128484A1 (en) Carbon nanotube modified tpu material for 3d printing and preparation method therefor
JP5384405B2 (en) Method for producing thermosetting composite material with high nanotube content
Khan et al. Synthesizing polystyrene/carbon nanotube composites by emulsion polymerization with non-covalent and covalent functionalization
JP2009508999A (en) Conductive silicone and method for producing the same
Oh et al. Multiwalled carbon nanotubes and nanofibers grafted with polyetherketones in mild and viscous polymeric acid
EP2062931A1 (en) Carbon Nanotube Reinforced Polymer
Wang et al. Functionalized carbon nanotube/polyacrylonitrile composite nanofibers: fabrication and properties
KR101406597B1 (en) Method for Preparing Graphene-Polymer Composite Powder and Fiber
Chen et al. Preparation, properties and application of polyamide/carbon nanotube nanocomposites
JP2011519986A (en) Reactive resins based on unsaturated polyesters, radical curable vinyl compounds and carbon nanotubes
JP6076484B2 (en) Thermoplastic polymer bonded with carbon nanomaterial and method for producing the same
Fu et al. Composite fibers from poly (vinyl alcohol) and poly (vinyl alcohol)‐functionalized multiwalled carbon nanotubes
CN104593901B (en) A kind of preparation method of polyamide grafts carbon nano tube composite fibre
TWI413613B (en) Carbon nanotube composite and method for preparing the same
Othman et al. Carbon nanotube hybrids and their polymer nanocomposites
JP5304538B2 (en) Polymer composition comprising bilayer CNT having an average outer diameter of 4 nm or less and production method
Cruz-Delgado et al. Nanocomposites based on plasma-polymerized carbon nanotubes and Nylon-6
KR101637632B1 (en) nylon composite And Method of nylon composite