TWI382558B - Method of fabricating a solar cell - Google Patents

Method of fabricating a solar cell Download PDF

Info

Publication number
TWI382558B
TWI382558B TW098108077A TW98108077A TWI382558B TW I382558 B TWI382558 B TW I382558B TW 098108077 A TW098108077 A TW 098108077A TW 98108077 A TW98108077 A TW 98108077A TW I382558 B TWI382558 B TW I382558B
Authority
TW
Taiwan
Prior art keywords
oxide layer
layer
semiconductor wafer
wafer substrate
solar cell
Prior art date
Application number
TW098108077A
Other languages
Chinese (zh)
Other versions
TW201034225A (en
Inventor
Chinchiang Huang
Chengyeh Yu
Naitien Ou
Tienszu Chen
Original Assignee
Gintech Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gintech Energy Corp filed Critical Gintech Energy Corp
Priority to TW098108077A priority Critical patent/TWI382558B/en
Publication of TW201034225A publication Critical patent/TW201034225A/en
Application granted granted Critical
Publication of TWI382558B publication Critical patent/TWI382558B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

太陽能電池面板的製作方法Solar cell panel manufacturing method

本發明是有關於一種太陽能電池面板之製作方法,且特別是有關於一種太陽能電池面板之背面電極的製作方法。The present invention relates to a method of fabricating a solar cell panel, and more particularly to a method of fabricating a back electrode of a solar cell panel.

目前太陽能電池的製作通常於製作其背面電極時,可如美國專利第6982218號所示,其製程步驟為對一半導體晶圓之背面(即背光面)沈積一鈍化層(passivation layer),再形成一鋁金屬層於鈍化層上,最後利用雷射燒結技術之雷射光束對金屬層透過依據有預定圖形(如線條、線性或點狀圖形)的網格進行照射,使得金屬層受熱產生熔融現象,而通過鈍化層與晶圓產生共晶結構,以形成預期圖形的背面電極,也同時完成晶圓背面的鈍化處理(passivation),藉此降低背面複合載子的速率。At present, the fabrication of a solar cell is generally performed as shown in US Pat. No. 6,982,218, the process of which is to deposit a passivation layer on the back surface of a semiconductor wafer (ie, the backlight surface), and then form a passivation layer. An aluminum metal layer is on the passivation layer, and finally the laser beam of the laser sintering technique is used to irradiate the metal layer through a grid having a predetermined pattern (such as a line, a linear or a dot pattern), so that the metal layer is heated and melted. The eutectic structure is formed by the passivation layer and the wafer to form the back electrode of the desired pattern, and at the same time, the passivation of the back side of the wafer is completed, thereby reducing the rate of the backside composite carrier.

然而,取得雷射燒結配備及使用雷射燒結配備進行燒結工作的成本相當昂貴,加上使用雷射光束對金屬層進行雷射燒結工作時,亦有產生對晶圓造成破壞的風險。如此一來,若能提供另種技術方法,既可降低取得成本,又可維持使用雷射燒結技術原有的效果,便成為業界亟欲改良的課題。However, the cost of obtaining a laser sintering apparatus and using a laser sintering apparatus for sintering is quite expensive, and the use of a laser beam for laser sintering of a metal layer also has a risk of causing damage to the wafer. In this way, if a different technical method can be provided, the cost of acquisition can be reduced, and the original effect of using the laser sintering technology can be maintained, which has become an issue that the industry is eager to improve.

有鑑於此,本發明之一目的在提供一種太陽能電池面板的製作方法,藉以取代雷射燒結技術,可大幅降低製作成本,達成晶圓背面的鈍化處理,又可維持使用雷射燒結技術原有降低背面複合載子速率及增強長波段頻率響應的效果。In view of the above, an object of the present invention is to provide a method for fabricating a solar cell panel, which can replace the laser sintering technology, can greatly reduce the manufacturing cost, achieve the passivation treatment on the back side of the wafer, and maintain the original laser sintering technology. Reduce the back composite carrier rate and enhance the long-band frequency response.

本發明之另一目的在提供一種太陽能電池面板的製作方法,降低對晶圓造成破壞的風險。Another object of the present invention is to provide a method of fabricating a solar cell panel that reduces the risk of damage to the wafer.

根據本發明之上述目的,提出一種太陽能電池面板的製作方法,其中之步驟包括提供一半導體晶圓基板,半導體晶圓基板之一迎光面上依序具有一發射極層及一抗反射層,及一背光面上具有一氧化層,於是依據一預定圖形塗佈一蝕刻膠於該氧化層上,使得蝕刻膠於氧化層上產生一深至半導體晶圓基板之背光面之凹陷部,接著,形成一金屬層於氧化層上,尤其將金屬層填滿此凹陷部,再將此未完成之太陽能電池面板加熱至一第一溫度,使得此凹陷部中之金屬層與半導體晶圓基板產生共晶結構,而成為一背面電極。According to the above object of the present invention, a method for fabricating a solar cell panel is provided, wherein the step includes providing a semiconductor wafer substrate, and an emitter layer and an anti-reflection layer are sequentially disposed on a light-incident surface of the semiconductor wafer substrate. And an oxide layer on the backlight surface, and then coating an etchant on the oxide layer according to a predetermined pattern, so that the etchant on the oxide layer generates a recess deep into the backlight surface of the semiconductor wafer substrate, and then, Forming a metal layer on the oxide layer, in particular filling the recessed portion with the metal layer, and heating the unfinished solar cell panel to a first temperature, so that the metal layer in the recess portion is co-produced with the semiconductor wafer substrate The crystal structure becomes a back electrode.

本發明以下於此說明書中所敘述之一第一特徵的結構覆蓋或位於一第二特徵的上方,這可能包含了此第一和第二特徵為直接接觸的實施例,但可能也包含了此第一和第二特徵之間***額外特徵的實施例,即表示此第一和第二特徵並非直接接觸。The structure of one of the first features described herein below in the present specification covers or lies above a second feature, which may include embodiments in which the first and second features are in direct contact, but may also include An embodiment in which additional features are interposed between the first and second features means that the first and second features are not in direct contact.

本發明為一種太陽能電池面板的製作方法,以下為提供一實施例之製作步驟,以進一步闡明本案之技術特徵:The invention is a manufacturing method of a solar cell panel. The following is a manufacturing step of providing an embodiment to further clarify the technical features of the present invention:

步驟(201)提供一半導體晶圓基板11(即P-type層or N-type層),半導體晶圓基板11之兩對應面分別具有一用以面對外來光線之迎光面111,及一背對迎光面111之背光面112,其中半導體晶圓基板11可為一單晶矽晶圓(monocrystalline)或多晶矽晶圓(multicrystalline)。Step (201) provides a semiconductor wafer substrate 11 (ie, a P-type layer or an N-type layer), and two corresponding surfaces of the semiconductor wafer substrate 11 respectively have a light-incident surface 111 for facing external light, and a The semiconductor wafer substrate 11 can be a single crystal monocrystalline or multicrystalline wafer facing away from the backlight surface 112 of the mating surface 111.

步驟(202)將半導體晶圓基板11之迎光面111及背光面112上分別形成一第一氧化層121及一第二氧化層122,其中第二氧化層122的形成可視為一鈍化層,使得半導體晶圓基板11之背光面112具有達成鈍化處理(passivation)的效果。此些氧化層的形成可藉由濕式氧化(Wet Oxidation)、乾式氧化(Dryt Oxidation)及電漿輔助化學沉積(Plasma Enhanced Chemical Vapor Deposition,PECVD)等方式所製成。Step (202) forming a first oxide layer 121 and a second oxide layer 122 on the light-incident surface 111 and the backlight surface 112 of the semiconductor wafer substrate 11, wherein the formation of the second oxide layer 122 can be regarded as a passivation layer. The backlight surface 112 of the semiconductor wafer substrate 11 is made to have an effect of achieving passivation. The formation of such an oxide layer can be formed by wet oxidation (Wet Oxidation), dry oxidation (Dryt Oxidation), and plasma enhanced chemical vapor deposition (PECVD).

步驟(203)利用濕化學技術(Wet-Chemical)去除半導體晶圓基板11之迎光面111上之第一氧化層121。Step (203) removes the first oxide layer 121 on the light-incident surface 111 of the semiconductor wafer substrate 11 by wet chemical technique (Wet-Chemical).

步驟(204)對半導體晶圓基板11之迎光面111上進行擴散製程(diffusion),其中形成一發射極層13(emitter,即與半導體晶圓基板11相反的P-type層或N-type層),例如:氮化層(N+layer)於半導體晶圓基板11之迎光面111上,且再利用磷玻璃移除(Phospho-Silicate Glass etching,PGE)的技術去除發射極層13上之一層矽酸磷玻璃(Phospho-Silicate Glass,PSG)。Step (204) performs a diffusion process on the light-incident surface 111 of the semiconductor wafer substrate 11, wherein an emitter layer 13 (ie, a P-type layer or an N-type opposite to the semiconductor wafer substrate 11) is formed. a layer, for example, a nitride layer (N+layer) on the light-incident surface 111 of the semiconductor wafer substrate 11, and then removing the emitter layer 13 by a Phospho-Silicate Glass etching (PGE) technique. One layer of Phospho-Silicate Glass (PSG).

步驟(205)形成一抗反射層14於發射極層13上,其中抗反射層14,例如可以電漿輔助化學沉積(Plasma Enhanced Chemical Vapor Deposition,PECVD)形成於發射極層13上,且抗反射層14之材質可例如為氮化物(nitride)或氧化物(oxide)。Step (205) forming an anti-reflection layer 14 on the emitter layer 13, wherein the anti-reflection layer 14, for example, may be formed on the emitter layer 13 by Plasma Enhanced Chemical Vapor Deposition (PECVD), and anti-reflection The material of layer 14 can be, for example, a nitride or an oxide.

步驟(206)透過一具有預定圖形之網格,將一蝕刻膠15塗佈至第二氧化層122上,使得蝕刻膠15隨預定圖形的輪廓朝半導體晶圓基板11之迎光面111進行蝕刻,直到第二氧化層122上形成一/多個凹陷部(或破孔)151為止,此凹陷部151穿過第二氧化層122而顯露出半導體晶圓基板11之背光面112,其中,蝕刻膠15的成分為氟化氫銨(Ammonium hydrogen difluoride)以及蟻酸(Formic acid)等,蝕刻膠15係可以對應氧化層材質及厚度之時間範圍(例如20~60秒)進行蝕刻,且此網格為可抗侵蝕的材質。Step (206) applying an etchant 15 to the second oxide layer 122 through a grid having a predetermined pattern, so that the etchant 15 is etched toward the light-emitting surface 111 of the semiconductor wafer substrate 11 along the contour of the predetermined pattern. Until the one or more recesses (or holes) 151 are formed on the second oxide layer 122, the recesses 151 pass through the second oxide layer 122 to expose the backlight surface 112 of the semiconductor wafer substrate 11, wherein the etching The composition of the glue 15 is ammonium hydrogen fluoride (Ammonium hydrogen difluoride) and formic acid (Formic acid), and the etching paste 15 can be etched according to the time range of the oxide layer material and thickness (for example, 20 to 60 seconds), and the grid is Anti-erosion material.

當然凹陷部151形成後,可以清水(DI water)清洗未完成之太陽能電池面板10之凹陷部151及其鄰近位置上殘餘之膠料。Of course, after the recessed portion 151 is formed, the recessed portion 151 of the unfinished solar cell panel 10 and the remaining compound on the adjacent position can be cleaned by DI water.

步驟(207)利用網印方式,依據另一預定圖形印刷一銀膠至抗反射層14上,並將此未完成之太陽能電池面板10通過一快速燒結爐進行一溫度(約700度~900度)之燒結程序以接受之加熱,使得另一預定圖形之銀膠可穿透抗反射層14,並與半導體晶圓基板11之迎光面111產生共晶結構,形成矽化銀的合金161,而成為太陽能電池面板10之正面電極16。Step (207) prints a silver paste onto the anti-reflection layer 14 according to another predetermined pattern by using a screen printing method, and passes the unfinished solar cell panel 10 through a rapid sintering furnace for a temperature (about 700 to 900 degrees). The sintering process is heated by acceptance so that another predetermined pattern of silver paste can penetrate the anti-reflection layer 14 and form a eutectic structure with the light-facing surface 111 of the semiconductor wafer substrate 11 to form an alloy 161 of silver telluride. It becomes the front electrode 16 of the solar cell panel 10.

步驟(208)利用濺鍍(sputtering)、蒸鍍(Evaporation)或沈積(deposition)的方式,於第二氧化層122上形成一金屬層17且金屬層17係以大面積地布滿或全部地布滿於第二氧化層122上,尤其將金屬層17填滿此凹陷部151,且金屬層17可以例如為含有鋁、鈦或銅等的金屬。Step (208) forming a metal layer 17 on the second oxide layer 122 by sputtering, evaporation, or deposition, and the metal layer 17 is covered or entirely over a large area. The metal oxide layer 17 is filled with the recessed portion 151, and the metal layer 17 may be, for example, a metal containing aluminum, titanium or copper.

步驟(209)再將此未完成之太陽能電池面板10接受退火/回火(anneal)或高速加熱的處理(Rapid thermal processing,RTP),藉由另一溫度(約350~400度)之加熱,使得此凹陷部151中之金屬層17與半導體晶圓基板11產生共晶結構,形成矽化物金屬的合金171,而成為太陽能電池面板10之背面電極。Step (209), the unfinished solar cell panel 10 is subjected to annealing/tempering or rapid thermal processing (RTP), and heated by another temperature (about 350 to 400 degrees). The metal layer 17 in the depressed portion 151 is caused to have a eutectic structure with the semiconductor wafer substrate 11, and an alloy 171 of a germanide metal is formed to form a back surface electrode of the solar cell panel 10.

步驟(210)對發射極層13進行邊緣隔絕(edge isolation)處理,使發射極層13對外絕緣。Step (210) performs edge isolation processing on the emitter layer 13 to insulate the emitter layer 13 from the outside.

如此,太陽能電池面板10便可完成背面電極,而不需使用高成本的雷射燒結技術,仍可達成晶圓背面的鈍化處理(passivation),又可降低背面複合載子速率的效果及增強長波段頻率響應。In this way, the solar cell panel 10 can complete the back electrode without using high-cost laser sintering technology, and can still achieve passivation on the back side of the wafer, and can reduce the effect of the back composite carrier rate and enhance the length. Band frequency response.

在此值得一提的是,步驟(207)中對抗反射層14上之銀膠進行燒結之程序亦可先烘乾銀膠後,再與步驟(209)時之未完成之太陽能電池面板10共同進行加熱。It is worth mentioning that the process of sintering the silver paste on the anti-reflective layer 14 in step (207) may also be followed by drying the silver paste, and then co-operating with the unfinished solar panel 10 at step (209). Heat up.

雖然本發明已以一較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the scope of the present invention, and it is possible to make various changes without departing from the spirit and scope of the invention. The scope of protection of the present invention is therefore defined by the scope of the appended claims.

10...太陽能電池面板10. . . Solar panel

11...半導體晶圓基板11. . . Semiconductor wafer substrate

111...迎光面111. . . Bright side

112...背光面112. . . Back surface

121...第一氧化層121. . . First oxide layer

122...第二氧化層122. . . Second oxide layer

13...發射極層13. . . Emitter layer

14...抗反射層14. . . Antireflection layer

15...蝕刻膠15. . . Etching glue

151...凹陷部151. . . Depression

16...正面電極16. . . Front electrode

161、171...合金161, 171. . . alloy

17...金屬層17. . . Metal layer

步驟...201-210step. . . 201-210

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之詳細說明如下:The above and other objects, features, advantages and embodiments of the present invention will become more apparent and understood.

第1圖係繪示依照本發明較佳實施例所示之流程圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a flow chart showing a preferred embodiment of the present invention.

第2A-21圖係繪示第1圖所表示之流程之結構示意圖。2A-21 is a schematic structural view showing the flow shown in FIG. 1.

步驟...201-210step. . . 201-210

Claims (10)

一種太陽能電池面板的製作方法,包括:提供一半導體晶圓基板,其中該半導體晶圓基板上具有一迎光面及一背光面,該迎光面上依序具有一發射極層及一抗反射層,該背光面上具有一氧化層;塗佈一蝕刻膠於該氧化層上,該蝕刻膠以20~60秒的時間範圍進行蝕刻該氧化層,以於該氧化層上產生一凹陷部,其中該蝕刻膠包括氟化氫銨以及蟻酸;形成一金屬層於該氧化層上,且該金屬層填滿該凹陷部;以及加熱該太陽能電池面板,使該凹陷部中之該金屬層與該半導體晶圓基板產生共晶結構,該金屬層並形成一背面電極。 A method for fabricating a solar cell panel, comprising: providing a semiconductor wafer substrate, wherein the semiconductor wafer substrate has a light-incident surface and a backlight surface, the emitter surface sequentially having an emitter layer and an anti-reflection a layer having an oxide layer on the backlight surface; coating an etchant on the oxide layer, the etchant etching the oxide layer in a time range of 20 to 60 seconds to generate a depressed portion on the oxide layer Wherein the etching paste comprises ammonium hydrogen fluoride and formic acid; forming a metal layer on the oxide layer, and the metal layer fills the depressed portion; and heating the solar cell panel to make the metal layer and the semiconductor crystal in the depressed portion The circular substrate produces a eutectic structure that forms a back electrode. 如申請專利範圍第1項所述之製作方法,其中該氧化層為一鈍化層。 The manufacturing method of claim 1, wherein the oxide layer is a passivation layer. 如申請專利範圍第1項所述之製作方法,其中提供該半導體晶圓基板之步驟時,其詳細步驟為:分別形成一個氧化層於該半導體晶圓基板之該迎光面及該背光面上;利用一濕化學技術去除該半導體晶圓基板於該迎光面上的該氧化層;利用一擴散製程,形成該發射極層於該半導體晶圓基板之該迎光面上;以及利用一電漿輔助化學沉積方式,形成該抗反射層於 該發射極層上。 The manufacturing method of claim 1, wherein the step of providing the semiconductor wafer substrate comprises the steps of: forming an oxide layer on the light-emitting surface of the semiconductor wafer substrate and the backlight surface, respectively. Removing the oxide layer of the semiconductor wafer substrate on the light-facing surface by a wet chemical process; forming a surface of the emitter on the light-emitting surface of the semiconductor wafer substrate by using a diffusion process; and utilizing an electricity Slurry-assisted chemical deposition to form the anti-reflective layer On the emitter layer. 如申請專利範圍第3項所述之製作方法,其中該氧化層是藉由一濕式氧化、一乾式氧化或一電漿輔助化學沉積方式所製成。 The production method according to claim 3, wherein the oxide layer is formed by a wet oxidation, a dry oxidation or a plasma-assisted chemical deposition. 如申請專利範圍第1項所述之製作方法,其中塗佈該蝕刻膠於該氧化層上之步驟中,更包括搭配一具有預定圖形之網格,將該蝕刻膠塗佈至該氧化層上,其中該凹陷部深至該半導體晶圓基板之該背光面,並顯露出該半導體晶圓基板之該背光面。 The manufacturing method of claim 1, wherein the step of coating the etchant on the oxide layer further comprises applying a etchant to the oxide layer in combination with a grid having a predetermined pattern. The recess portion is deep to the backlight surface of the semiconductor wafer substrate, and the backlight surface of the semiconductor wafer substrate is exposed. 如申請專利範圍第1項所述之製作方法,其中該金屬層是以一濺鍍、一蒸鍍或一沈積的方式,形成於該氧化層上。 The manufacturing method of claim 1, wherein the metal layer is formed on the oxide layer by sputtering, evaporation or deposition. 如申請專利範圍第6項所述之製作方法,其中該金屬層是完全地布滿於該氧化層上。 The manufacturing method of claim 6, wherein the metal layer is completely covered on the oxide layer. 如申請專利範圍第7項所述之製作方法,其中該金屬層含有鋁、鈦或銅。 The production method of claim 7, wherein the metal layer contains aluminum, titanium or copper. 如申請專利範圍第1項所述之製作方法,其中加熱該太陽能電池面板之步驟中,更藉由一第一溫度範圍,對該太陽能電池面板進行退火處理。 The manufacturing method according to claim 1, wherein in the step of heating the solar cell panel, the solar cell panel is annealed by a first temperature range. 如申請專利範圍第9項所述之製作方法,其中該塗佈該蝕刻膠於該氧化層上之步驟與形成該金屬層於該氧化層上之步驟間,更包括:利用網印方式,印刷一銀膠至該抗反射層上;將該太陽能電池面板通過一快速燒結爐進行一第二溫度範圍之加熱,其中該第二溫度高於該第一溫度;以及該銀膠穿透該抗反射層,並與該半導體晶圓基板產生共晶結構,而形成該太陽能電池面板之一正面電極。The manufacturing method of claim 9, wherein the step of coating the etchant on the oxide layer and the step of forming the metal layer on the oxide layer further comprises: printing by screen printing a silver paste to the anti-reflective layer; the solar cell panel is heated by a rapid sintering furnace for a second temperature range, wherein the second temperature is higher than the first temperature; and the silver paste penetrates the anti-reflection And forming a eutectic structure with the semiconductor wafer substrate to form a front electrode of the solar cell panel.
TW098108077A 2009-03-12 2009-03-12 Method of fabricating a solar cell TWI382558B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098108077A TWI382558B (en) 2009-03-12 2009-03-12 Method of fabricating a solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098108077A TWI382558B (en) 2009-03-12 2009-03-12 Method of fabricating a solar cell

Publications (2)

Publication Number Publication Date
TW201034225A TW201034225A (en) 2010-09-16
TWI382558B true TWI382558B (en) 2013-01-11

Family

ID=44855433

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098108077A TWI382558B (en) 2009-03-12 2009-03-12 Method of fabricating a solar cell

Country Status (1)

Country Link
TW (1) TWI382558B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982218B2 (en) * 2000-09-19 2006-01-03 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method of producing a semiconductor-metal contact through a dielectric layer
TW200834945A (en) * 2006-12-13 2008-08-16 Lg Chemical Ltd Solar cell
TW200905900A (en) * 2007-05-07 2009-02-01 Georgia Tech Res Inst Formation of high quality back contact with screen-printed local back surface field

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982218B2 (en) * 2000-09-19 2006-01-03 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method of producing a semiconductor-metal contact through a dielectric layer
TW200834945A (en) * 2006-12-13 2008-08-16 Lg Chemical Ltd Solar cell
TW200905900A (en) * 2007-05-07 2009-02-01 Georgia Tech Res Inst Formation of high quality back contact with screen-printed local back surface field

Also Published As

Publication number Publication date
TW201034225A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
US8349637B2 (en) Method for the manufacture of a solar cell and the resulting solar cell
JP5277485B2 (en) Manufacturing method of solar cell
JP5174903B2 (en) Method for manufacturing solar battery cell
US7943417B2 (en) Method for metallization of photovoltaic cells with multiple annealing operations
JP2009533864A (en) Solar cell and method for manufacturing the same
WO2007060744A1 (en) Solar battery cell and method for manufacturing same
JP6280231B2 (en) Solar cell element
JP4974756B2 (en) Method for manufacturing solar cell element
JP5991945B2 (en) Solar cell and solar cell module
WO2016068237A1 (en) Solar cell module
JP2010520631A (en) Solar cell manufacturing method and solar cell obtained thereby
TWM517422U (en) Heterojunction solar cell with local passivation
JP2009290235A (en) Solar cell, and manufacturing method thereof
KR20100137271A (en) Method for making of back contact in solar cell
JP2008205398A (en) Photoelectric conversion device and its manufacturing method
JP2006344883A (en) Method of manufacturing solar cell
TWI382558B (en) Method of fabricating a solar cell
JP2006339499A (en) Method for manufacturing solar battery
TWM477673U (en) Solar cell with improved backside structure
TWI573286B (en) Method of manufacturing solar cell
JP4646584B2 (en) Manufacturing method of solar cell
JP2014086589A (en) Method for manufacturing solar cell and solar cell
JP5754411B2 (en) Manufacturing method of solar cell
KR20120129292A (en) Fabrication method of solar cell
WO2009150741A1 (en) Photovoltaic device manufacturing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees