TWI362675B - Field emission electron source and method for making the same - Google Patents

Field emission electron source and method for making the same Download PDF

Info

Publication number
TWI362675B
TWI362675B TW96142407A TW96142407A TWI362675B TW I362675 B TWI362675 B TW I362675B TW 96142407 A TW96142407 A TW 96142407A TW 96142407 A TW96142407 A TW 96142407A TW I362675 B TWI362675 B TW I362675B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
field emission
electron source
emission electron
long
Prior art date
Application number
TW96142407A
Other languages
Chinese (zh)
Other versions
TW200921738A (en
Inventor
Yang Wei
Zhuo Chen
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96142407A priority Critical patent/TWI362675B/en
Publication of TW200921738A publication Critical patent/TW200921738A/en
Application granted granted Critical
Publication of TWI362675B publication Critical patent/TWI362675B/en

Links

Description

1100年.10月 27B 1362675 .. 六、發明說明: 【發明所屬之技術領域】 [〇〇〇1]本發明涉及一種場發射電子源及其製備方法,尤其涉及 一種基於奈米碳管的場發射電子源及其製備方法。 【先前技術】 [0002] 場發射電子源在低溫或者室溫下工作,與電真空器件中 的熱發射電子源相比具有能耗低、響應速度快及低放電 等優點,因此用場發射電子源替代電真空器件中的熱發 射電子源成為了人們研究的一個熱點。1100. October 27B 1362675 .. 6. Description of the invention: [Technical field to which the invention pertains] [〇〇〇1] The present invention relates to a field emission electron source and a preparation method thereof, and more particularly to a field based on a carbon nanotube Emission electron source and preparation method thereof. [Prior Art] [0002] A field emission electron source operates at a low temperature or a room temperature, and has the advantages of low power consumption, fast response, and low discharge compared with a heat-emitting electron source in an electric vacuum device, so field emission electrons are used. The source of thermal emission electrons in the replacement of electric vacuum devices has become a hot spot of research.

_3]奈米碳管(Carbon Nanotube,CNT)係一種新型碳材料 ’由日本研究人員Iijima在1991年發現,請參見"jje卜 ical Microtubules of Graphitic Carbon", S_3] Carbon Nanotube (CNT) is a new type of carbon material 'discovered by Japanese researcher Iijima in 1991, see "jje ical Microtubules of Graphitic Carbon", S

Iijima’ Nature, vol.354,p56 (1991 )。奈米碳管 具有極優異的導電性能、良好的化學穩定性和大的長徑 比,且其具有幾乎接近理論極限的尖端表面積(尖端表面 積愈小’其局部電場愈集中)’因而奈米碳管在場發射真 空電子源領域具有潛在的應用前景。目前的研究表明, 奈米碳管係已知的最好的場發射材料之一,它的央端尺 寸只有幾奈米至幾十奈米,具有低的開啟電壓,可傳輪 極大的電流密度,並且電流穩定,使用壽命長,因而非 常適合作為一種極佳的點電子源,應用在掃描電子顯微 鏡(Scanning Electron Microscope)、透射電子顯微 鏡(Transmission Electron Microscope)等設備的 電子發射部件中。 [0004] 先前的奈米碳管場發射電子源一般至少包括一導電基體 096142407 表單編號A0101 第3頁/共27頁 1003398726-0 1362675 [0005] [0006] 096142407 100年 10月 AUU-f J.u^ C/ l 寺作為發射端的奈米碳管,該奈w管形成於該導電基 體目别,奈米碳管形成於導電基體上的方法主要包 括機械方法和原位生長法。其巾,機械方法係通過原子 =顯微鏡或者電子賴鏡操縱單根奈米碳管將該奈米 碳&組裝導電基體上,此種方法程式簡單,但由於 早根奈米碳管尺寸太小,導轉作不容易且效率低。另 通過b方法得到的奈求碳管場發射電子源的場發射 電流小。 為克服上述機械法組裝的奈求碳管場發射電子源的場發 射電流小及操作複雜的缺點。先前技術提供了一種採用 原位生長的方法,該方法係先在導電基體上錄上金屬催 化劑’ _通過化學IU目沈積、靠放電或錯射蒸發法 等方法在導電基體上直接生長出奈米碳管陣列作為場發 射電子源,此種方法操作簡單,奈米碳管與導電基體的 電接觸良好。然,奈米碳管與導電基體的結合力較弱, 在使用時奈米碳管易脫落或被電場力拔出,從而導致場 發射電子源損壞。另外,這種場發射電子源結構中奈米 碳管陣列的奈米碳管之間存在電場遮罩效應,工作時往 往只有極少部分奈米碳管發射電子,亦無法有效提高場 發射電子源的電流密度。 有鑒於此’提供一種具有較大的場發射電流的場發射電 子源及其製備方法實為必要。 【發明内容】 一種場發射電子源’其包括一導電基體和一奈米碳管長 線。該奈米破管長線具有一第一端及與第一瑞相對的第 表單编號Α0101 第4頁/共27頁 1003398726-0Iijima’ Nature, vol. 354, p56 (1991). The carbon nanotubes have excellent electrical conductivity, good chemical stability and large aspect ratio, and they have a tip surface area close to the theoretical limit (the smaller the tip surface area is, the more concentrated the local electric field is). The field of field emission vacuum electron source has potential application prospects. The current research shows that the carbon nanotube system is one of the best field emission materials known. Its central end is only a few nanometers to several tens of nanometers. It has a low turn-on voltage and can transmit a very large current density. The current is stable and the service life is long, so it is very suitable as an excellent point electron source for use in electron-emitting components of equipment such as Scanning Electron Microscope and Transmission Electron Microscope. [0004] The prior carbon nanotube field emission electron source generally includes at least one conductive substrate 096142407 Form No. A0101 Page 3 / Total 27 Page 1003398726-0 1362675 [0005] [0006] 096142407 October 100 AUU-f Ju^ The C/l temple is used as a carbon nanotube at the emitting end, and the nematic w tube is formed on the conductive substrate. The method for forming the carbon nanotube on the conductive substrate mainly includes a mechanical method and an in situ growth method. The towel, the mechanical method is to assemble the nano carbon & by a single atomic carbon nanotube through an atom=microscope or an electronic microscope to assemble the conductive substrate. This method is simple, but the size of the early root carbon nanotube is too small. It is not easy and inefficient to transfer. In addition, the field emission current of the carbon source field emission electron source obtained by the b method is small. In order to overcome the shortcomings of the above-mentioned mechanical method assembly, the carbon field emission electron source has a small field emission current and complicated operation. The prior art provides a method of in-situ growth by first recording a metal catalyst on a conductive substrate. _ Direct growth of nano-particles on a conductive substrate by chemical IU-deposition, discharge or mis-evaporation. The carbon tube array is used as a field emission electron source. The method is simple in operation, and the electrical contact between the carbon nanotube and the conductive substrate is good. However, the binding force of the carbon nanotubes to the conductive substrate is weak, and the carbon nanotubes are easily detached or pulled out by the electric field force during use, thereby causing damage to the field emission electron source. In addition, there is an electric field mask effect between the carbon nanotubes of the carbon nanotube array in the field emission electron source structure, and only a small part of the carbon nanotubes emit electrons during operation, and the field emission electron source cannot be effectively improved. Current density. In view of this, it is necessary to provide a field emission electron source having a large field emission current and a preparation method thereof. SUMMARY OF THE INVENTION A field emission electron source 'includes a conductive substrate and a carbon nanotube long line. The long tube of the nano tube has a first end and a first form opposite to the first sputum Α0101, page 4 / total 27 pages 1003398726-0

[0007] 1362675 100年.10月2>日修正替换頁 二端,該奈米碳管長線的第一端與該導電基體電連接, 該奈米碳管長線的第二端從導電基體向外延伸。 [0008] —種場發射電子源的製備方法,包括以下步驟:提供一 奈米碳管長線;熔斷該奈米碳管長線;將熔斷後的奈米 碳管長線設置於導電基體上即得到場發射電子源。 [0009] 與先前技術相比較,該場發射電子源及其製備方法具有 以下優點:其一,採用了奈米碳管長線作為場發射電子 源,該奈米碳管長線包括多個突出的場發射尖端,所製 備的場發射電子源具有較大的場發射電流;其二,該奈 米碳管長線中包括多個場發射尖端,可以有效降低該場 發射電子源的電場遮罩效應;其三,該場發射電子源的 製備方法簡單,可以提高該場發射電子源的製備效率。 【實施方式】 [0010] 以下將結合附圖詳細說明本技術方案場發射電子源及其 製備方法。 [0011] 請參閱圖1,本技術方案實施例提供一種場發射電子源10 ,其包括一導電基體14和一奈米碳管長線12。該奈米碳 管長線12具有一第一端122及與第一端122相對的第二端 124,該奈米碳管長線12的第一端122與該導電基體14電 連接,該奈米碳管長線12的第二端124從導電基體14向外 延伸作為電子發射端。 [0012] 進一步地,所述的奈米碳管長線12係由多個平行的首尾 相連的奈米碳管束組成的束狀結構或由多個首尾相連的 奈米碳管束組成的絞線結構,該相鄰的奈米碳管束之間 096142407 表單編號A0101 第5頁/共27頁 1003398726-0 1362675 100年10月27日按正替换頁 通過凡德瓦爾力緊密結合.該奈米碳管束中包括多個首 尾相連且定向排列的奈米碳管。該奈米碳管長線12的直 徑為1微米〜100微米。所述的奈米碳管長線12的第二端 124為類圓錐形,且其直徑沿遠離導電基體14的方向逐漸 減小。請參閱圖2,該奈米碳管長線12的第二端124包括 多個突出的場發射尖端16。所述的場發射尖端16包括多 個基本平行的奈米碳管,該多個奈来碳管之間通過凡德 瓦爾力緊密結合。所述的場發射尖端16為類圓錐形。該 科射尖端16的頂端突出有一根奈米碳管162。該奈米碳 管長線12中的奈米碳管為單壁、雙壁或多壁奈米碳管。 _ 該奈米碳管的直徑小於5奈米,長度範圍為1〇微米〜1〇〇微 米。 [0013] 請參閲圖3及圖4,我們可以看出奈米碳管長線中的場發 射尖端的頂端突出有-根奈米碳管。該奈米碳管長線在. 錯射的輔助作用下定點的瞬間碳炫化產生的 毛細力將這些奈米碳管„⑽在n該奈米碳管 長線具有很好的機械性能和電性能,可以有效提高該奈 鲁 米碳管長線的場發射電子的能力。該奈求碳管長線中奈 米碳s具有更少的壁數和更細的直徑,其壁數少於5層一 般為2層或者3層,其直徑通常小於5奈米。而直接生長的 超順排奈米碳管陣列的奈米碳管的層數多於5層,直徑4 15奈米左右。奈来碳管壁數減少的原因係由於在錯射的 ,助作用下,不斷升高的溫度使—些富含缺陷的石墨層 崩潰,破元素蒸發。而直㈣減少係被加熱至高溫的奈 米碳%Ί定的拉力作用發生塑性形變,變長變細。該 096142407 表單编號Α0101 第6頁/共27頁 1003398726-0 1362675 100年.10月27日按正替換頁 奈米碳管長線中的場發射尖端頂端的奈米碳管與其他遠 離該場發射尖端頂端的奈米碳管緊密結合,使得該場發 射尖端頂端的奈米碳管在場發射過程中產生的熱量可以 有效地被傳導出去,並且可以承受較強的電場力。 [0014] 該導電基體14由導電材料製成,如銅、鶴、金、19、銘 等。該導電基體14可依實際需要設計成其他形狀,如錐 形、細小的柱形或者圓臺形。該導電基體14也可為形成 在一絕緣基底上的導電薄膜。 [0015] 可以理解,該奈米碳管長線12的第一端122可以通過一導 電膠與該導電基體14電連接。該電連接的方式也可以通 過分子間力或者其他方式實現。該奈米碳管長線12與導 電基體14之間的位置關係不限,只需確保該奈米碳管長 線12的第一端122與該導電基體14電連接即可。如奈米碳 管長線12與導電基體14的軸向的夾角為銳角,奈米碳管 長線12與導電基體14的軸向的夾角為直角或者奈米碳管 長線12與導電基體14的軸向相互平行。 [0016] 請參閱圖5,本技術方案實施例提供一種製備上述場發射 電子源10的方法,具體包括以下步驟: [0017] 步驟一:提供一奈米碳管陣列形成於一基底,優選地, 該陣列為超順排奈米碳管陣列。[0007] 1362675 100. October 2, the second end of the modified replacement page, the first end of the long line of the carbon nanotube is electrically connected to the conductive substrate, and the second end of the long line of the carbon nanotube is outward from the conductive substrate extend. [0008] - a method for preparing a field emission electron source, comprising the steps of: providing a long carbon nanotube line; blowing the long carbon nanotube line; and placing the long carbon nanotube tube after melting on the conductive substrate to obtain a field Launch an electron source. Compared with the prior art, the field emission electron source and the preparation method thereof have the following advantages: First, a carbon nanotube long line is used as a field emission electron source, and the nano carbon tube long line includes a plurality of protruding fields. The emitter tip has a large field emission current, and the second carbon nanotube long line includes a plurality of field emission tips, which can effectively reduce the electric field mask effect of the field emission electron source; Third, the preparation method of the field emission electron source is simple, and the preparation efficiency of the field emission electron source can be improved. [Embodiment] [0010] A field emission electron source of the present technical solution and a method of fabricating the same will be described in detail below with reference to the accompanying drawings. Referring to FIG. 1 , an embodiment of the present technical solution provides a field emission electron source 10 including a conductive substrate 14 and a carbon nanotube long line 12 . The carbon nanotube long wire 12 has a first end 122 and a second end 124 opposite to the first end 122. The first end 122 of the carbon nanotube long wire 12 is electrically connected to the conductive substrate 14, the nanocarbon The second end 124 of the tube length 12 extends outwardly from the conductive substrate 14 as an electron-emitting end. [0012] Further, the carbon nanotube long line 12 is a bundle structure composed of a plurality of parallel end-to-end connected carbon nanotube bundles or a strand structure composed of a plurality of end-to-end connected carbon nanotube bundles. The adjacent carbon nanotube bundle between 096142407 Form No. A0101 Page 5 / Total 27 Page 1003398726-0 1362675 October 27, 2001 Press the positive replacement page through the close combination of Van der Waals force. The carbon nanotube bundle is included A plurality of carbon nanotubes connected end to end and oriented. The carbon nanotube long wire 12 has a diameter of from 1 μm to 100 μm. The second end 124 of the carbon nanotube long wire 12 is conical like a shape, and its diameter gradually decreases in a direction away from the conductive substrate 14. Referring to Figure 2, the second end 124 of the carbon nanotube long wire 12 includes a plurality of protruding field emission tips 16. The field emission tip 16 includes a plurality of substantially parallel carbon nanotubes that are tightly coupled by van der Waals forces. The field emission tip 16 is conical like a cone. A carbon nanotube 162 protrudes from the top end of the ejection tip 16. The carbon nanotubes in the long carbon nanotube 12 are single-walled, double-walled or multi-walled carbon nanotubes. _ The diameter of the carbon nanotubes is less than 5 nm and the length ranges from 1 μm to 1 μm. [0013] Referring to FIG. 3 and FIG. 4, we can see that the tip of the field emission tip in the long line of the carbon nanotube protrudes from the root-nanocarbon tube. The carbon nanotubes generated by the long-term carbon nanotubes under the auxiliary action of the misalignment of the carbon nanotubes have the fine mechanical properties and electrical properties of the carbon nanotubes in the long-term carbon nanotubes. It can effectively improve the field emission electrons of the long line of the Nalumina carbon tube. The nano carbon s in the long line of the carbon tube has fewer walls and a finer diameter, and the number of walls is less than 5 layers, generally 2 Layer or 3 layers, the diameter of which is usually less than 5 nm. The directly grown super-sequential carbon nanotube array has more than 5 layers of carbon nanotubes and a diameter of about 4 15 nm. The reason for the decrease is due to the fact that, under the effect of mis-firement, the increasing temperature causes the graphite layer rich in defects to collapse and breaks the elemental evaporation, while the straight (four) decreases the carbon carbon which is heated to a high temperature. The determined tensile force is plastically deformed and becomes longer and thinner. The 096142407 Form No. 1010101 Page 6 of 27 1003398726-0 1362675 100 years. October 27th is the field emission in the long line of the negative carbon nanotubes Tip tip of the carbon nanotubes and other nanometers away from the tip of the field emission tip The carbon tubes are tightly coupled, so that the heat generated by the carbon nanotubes at the tip end of the field emission tip can be effectively conducted during the field emission and can withstand a strong electric field force. [0014] The conductive substrate 14 is made of a conductive material. It can be made, such as copper, crane, gold, 19, Ming, etc. The conductive substrate 14 can be designed into other shapes according to actual needs, such as a cone shape, a small column shape or a truncated cone shape. The conductive substrate 14 can also be formed in A conductive film on an insulating substrate. [0015] It can be understood that the first end 122 of the long carbon nanotube long wire 12 can be electrically connected to the conductive substrate 14 through a conductive paste. The electrical connection can also be through intermolecular force. Alternatively, the positional relationship between the long carbon wire 12 of the carbon nanotube and the conductive substrate 14 is not limited, and it is only necessary to ensure that the first end 122 of the long carbon nanotube long wire 12 is electrically connected to the conductive substrate 14. The angle between the long carbon wire 12 of the carbon nanotube and the axial direction of the conductive substrate 14 is an acute angle, and the angle between the long carbon wire 12 of the carbon nanotube and the axial direction of the conductive substrate 14 is a right angle or the axial direction of the long carbon wire 12 of the carbon nanotube and the conductive substrate 14 Parallel. [00 16] The embodiment of the present invention provides a method for preparing the field emission electron source 10, and specifically includes the following steps: [0017] Step 1: providing a carbon nanotube array formed on a substrate, preferably, The array is a super-sequential carbon nanotube array.

[0018] 本技術方案實施例提供的奈米碳管陣列為單壁奈米碳管 陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中的一種 。該奈米碳管陣列的製備方法採用化學氣相沈積法,其 具體步驟包括:(a)提供一平整基底,該基底可選用P 096142407 表單编號A0101 第7頁/共27頁 1003398726-0 1362675 _:__ 100年10月27日核正锌換頁 型或N型矽基底,或選用形成有氧化層的矽基底,本實施 例優選為採用4英寸的矽基底;(b)在基底表面均勻形 成一催化劑層,該催化劑層材料可選用鐵(Fe)、鈷([0018] The carbon nanotube array provided by the embodiments of the present technical solution is one of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. The carbon nanotube array is prepared by chemical vapor deposition, and the specific steps thereof include: (a) providing a flat substrate, the substrate can be selected by P 096142407, form number A0101, page 7 / total 27 pages, 1003398726-0 1362675 _:__ October 27th, 100th, the zinc-changed or N-type ruthenium substrate, or the ruthenium substrate formed with an oxide layer, this embodiment preferably uses a 4-inch ruthenium substrate; (b) uniformly forms on the surface of the substrate a catalyst layer, the catalyst layer material may be selected from iron (Fe), cobalt (

Co)、鎳(Ni)或其任意組合的合金之一;(c)將上述 形成有催化劑層的基底在700°C~900°C的空氣中退火約 30分鐘~90分鐘;(d)將處理過的基底置於反應爐中, 在保護氣體環境下加熱到500°C〜740°C,然後通入碳源氣 體反應約5分鐘〜30分鐘,生長得到奈米碳管陣列,其高 度為100微米左右。該奈米碳管陣列為多個彼此平行且垂 直於基底生長的奈米碳管形成的純奈米碳管陣列。該奈 米碳管陣列與上述基底面積基本相同。通過上述控制生 長條件,該超順排奈米碳管陣列中基本不含有雜質,如 無定型碳或殘留的催化劑金屬顆粒等。 [0019] 本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性質 較活潑的碳氫化合物,本實施例優選的碳源氣為乙炔; 保護氣體為氮氣或惰性氣體,本實施例優選的保護氣體 為氬氣。. ^ [0020] 可以理解,本技術方案實施例提供的奈米碳管陣列不限 於上述製備方法,也可為石墨電極恒流電弧放電沈積法 、鐳射蒸發沈積法等等。 [0021] 步驟二:採用一拉伸工具從奈米碳管陣列中拉取奈米碳 管獲得一奈米碳管薄膜或者一奈米碳管絲。 [0022] 該奈米碳管薄膜或者奈米碳管絲的製備具體包括以下步 驟:(a)從上述奈米碳管陣列中選定一定寬度的多個奈 096142407 表單编號A0101 第8頁/共27頁 1003398726-0 1362675 . 100年.10月27日按正替換頁 米碳管片斷,本實施例優選為採用具有一定寬度的膠帶 接觸奈米碳管陣列以選定一定寬度的多個奈米碳管束; (b )以一定速度沿基本垂直于奈米碳管陣列生長方向拉 伸多個該奈米碳管束,以形成一連續的奈米碳管薄膜或 者奈米碳管絲》 [0023] 在上述拉伸過程中,該多個奈米碳管束在拉力作用下沿 拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作用, 該選定的多個奈米碳管束分別與其他奈米碳管束首尾相 連地連續地被拉出,從而形成一奈米碳管薄膜或者一奈 米碳管絲"該奈米碳管薄膜或者奈米碳管絲包括多個首 尾相連且定向排列的奈米碳管束β該奈米碳管薄膜或者 奈米碳管絲中奈米碳管的排列方向基本平行於該奈米碳 管薄膜或者奈米碳管絲的拉伸方向。 [0024] 步驟三,通過使用有機溶劑或者施加機械外力處理該奈 米碳管薄膜或者奈米碳管絲得到一奈米碳管長線12。 [0025] 所述步驟二中製備的奈米碳管薄膜或者奈米碳管絲可使 t 用有機溶劑處理得到一奈米碳管長線12。其具體處理過 程包括:通過試管將有機溶劑滴落在奈米碳管薄膜或者 奈米碳管絲表面浸潤整個奈米碳管薄膜或者奈米碳管絲 。該有機溶劑為揮發性有機溶劑,如乙醇、曱醇、丙酮 、二氯乙烷或氣仿,本實施例中優選採用乙醇。該奈米 碳管薄膜或者奈米碳管絲經有機溶劑浸潤處理後,在揮 發性有機溶劑的表面張力的作用下,該奈米碳管薄膜或 者奈米碳管絲中的平行的奈米碳管片斷會部分聚集成奈 米碳管束,因此,該奈米碳管薄膜收縮成絲。該奈米碳 096142407 表單編號 Α0101 第 9 頁/共 27 頁 1003398726-0 1362675 100年10月27日梭正替换頁 管絲表面體積比小,無粘性,且具有良好的機械強度及 韌性,應用有機溶劑處理後的奈米碳管薄膜或者奈米碳 管絲能方便地應用於宏觀領域。 [0026] 所述步驟二中製備的奈米碳管薄膜或者奈米碳管絲也可 通過施加機械外力處理得到一奈米碳管長線12。提供一 個尾部可以粘住奈米碳管陣列的紡紗軸。將該紡紗軸的 尾部與奈米碳管陣列結合後,奈米碳管開始纏繞在軸的 周圍。將該紡紗軸以旋轉的方式旋出並向遠離奈米碳管 陣列的方向運動。這時奈米碳管陣列相對於該紡紗軸移 動時,纖維開始紡成,其他的奈米碳管可以纏繞在纖維 的周圍,增加纖維的長度。可以理解,上述紡紗軸的旋 轉方式不限,可以正轉,也可以反轉,或者正轉和反轉 相結合。 [0027] 可以理解,也可以採用一拉伸工具從步驟一的奈米碳管 陣列中直接拉取奈米碳管獲得一奈米碳管長線12。 [0028] 步驟四:以一定功率和掃描速度的鐳射照射該奈米碳管 長線12。 [0029] 將上述的奈米碳管長線12放置於空氣或者含有氧化性氣 體的氣氛中。以一定功率和掃描速度的鐳射照射該奈米 碳管長線12。當該奈米碳管長線12的某一位置被鐳射照 射溫度升高後,空氣中的氧氣會氧化該位置處的奈米碳 管,產生缺陷,從而使該位置處的電阻變大。 [0030] 可以理解,鐳射照射該奈米碳管長線12的時間和該鐳射 的功率成反比。即鐳射功率較大時,鐳射照射該奈米碳 096142407 表單编號A0101 第10頁/共27頁 1003398726-0 1362675 100年10月27日慘正替换頁 管長線12的時間較短;鐳射功率較小時,鐳射照射該奈 米碳管長線12的時間較長。 [0031] 本技術方案中,鐳射的功率為1瓦〜60瓦,掃描速度為 1 00-2000毫米/秒。本技術方案實施例優選的鐳射的功 率為12瓦,掃描速度為1 000毫米/秒。本技術方案實施例 中的鐳射可以係二氧化碳鐳射、半導體鐳射、紫外鐳射 等任何形式的鐳射,只要能產生加熱的效果即可。 [0032] 步驟五:在該奈米碳管長線12通入電流,該奈米碳管長 線在被鐳射照射處熔斷,形成多個場發射尖端。 [0033] 將經過鐳射照射後的奈米碳管長線12放置於一真空系統 中通入電流。該奈米碳管長線12中被鐳射照射的部位係 溫度最高的部位,最後該奈米碳管長線12會在該處熔斷 ,形成多個場發射尖端。 [0034] 可以理解,還可以將該奈米碳管長線12設置在一真空或 者充滿惰性氣體的氣氛中。該奈米碳管長線12在被電流 加熱的同時,以一定功率和掃描速度的鐳射照射該奈米 碳管長線12。由於係真空或者惰性氣體的氣氛,故該奈 米碳管長線1 2可以被穩定地加熱。當該奈米碳管長線12 的某一位置被鐳射照射溫度升高後,該位置係溫度最高 的部位,最後該奈米碳管長線1 2會在該處燒斷。 [0035] 步驟六:將被鐳射照射熔斷後的奈米碳管長線12設置於 導電基體14上即得到場發射電子源10。 [0036] 將燒斷後的奈米碳管長線12通過導電膠粘附於該導電基 體14之上,即可得到該場發射電子源10。 096142407 表單編號A0101 第11頁/共27頁 1003398726-0 1362675 |~1〇〇年10月日核正替換頁j [0037] 可以理解’也可預先將該奈米碳管長線12設置在兩個導 電基體14之間,再熔斷該奈米碳管長線12製備該場發射 電子源10。同時’也可將多個具有電子發射端的奈米碳 管長線12設置於一導電基體14之上,得到具有多個電子 發射端的場發射電子源1〇。 [0038] 請參閱圖6 ’為奈米碳管長線12的場發射尖端16的拉曼光 譜圖。用拉曼光譜分析表明經過熱處理的奈米碳管長線 12的場發射尖端16的缺陷峰有明顯的降低,而尖端的缺 陷峰更低。也就說’奈米碳管長線12的場發射尖端的 奈米碳管在熔斷的過程中品質得到了極大的提高。這一 方面係由於奈米碳管經過熱處理後缺陷減少,另一方面 係因為昌含缺陷的石墨層容易在商溫下崩潰,剩下一些 品質較高的石墨層。 [0039] 請參閱圖7,為本技術方案實施例的場發射電子源1〇的製 備裝置示意圖*該裝置20具有一視窗202,一進氣口204 ,一出氣口 206,一電源208和一支撐裝置210。氧化性 氣體通過該進氣口 204進入到該裝置20内《該出氣口 206 可以接真空泵,使該裝置20内保持一定的真空度,也可 以不接真空录,維持該裝置2〇内的壓強為常壓。所述支 撐裝置210與所述電源208相連,用以支撐奈米碳管長線 50。一鐳射30通過一透鏡40會聚,聚焦後的鐳射3〇通過 視窗202沿該奈米碳管長線5〇的垂直方向掃描。該窗口 202的材料為該鐳射3〇所能透射的材料。該鐳射3〇的功率 為12瓦,掃描速度為1〇〇〇毫米/秒。在奈米碳管長線 的兩端加上0. 1伏的直流電壓監測其電流。當該鐳射30每 096142407 表單编號A0101 1003398726-0 1362675 100年.10月27日接正替換頁 照射一次该奈米奴管長線50時,通過該奈求碳管長線5〇 的電流就會迅速降低,也就係說奈米碳管長線5〇被鐳射 30照射的部位電阻係升高的。 [0040] 請參閱圖8,為上述場發射電子源的場發射性能測試結果 圖。該奈米碳管長線12經過定點熔斷處理後形成兩個電 子發射端。該場發射電子源的場發射性能測試係用一個 鎢針尖作為陽極進行測量的,其中該鎢針尖分別與該兩 個電子發射端相對》該鎢針尖與該電子發射端之間的距 離為100微米。错射熔斷形成的兩個電子發射端均可以在 較低的工作電壓下提供150微安以上的場發射電流β由於 該奈米碳官長線12的直徑大約為5微米,因此該場發射電 流的密度大於700安/平方釐米。 [0041] 綜上所述,本發明破已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋·於以下申請專利範圍内。 【圖式簡單說明】 [0042] 圖1係本技術方案實施例的場發射電子源的結構示意圖。 [0043] 圖2係圖1中奈米碳管長線的電子發射端的放大示意圖。 [0044] 圖3為本技術方案實施例獲得的奈米碳管長線的電子發射 端的掃描電鏡照片。 [0045] 圖4係本技術方案實施例獲得的奈米碳管長線的場發射尖 端的透射電鏡照片。 7 表單编號Α0101 第13買/共27頁 1003398726-0 1362675 100年10月27日梭正替换頁 [0046] 圖5係本技術方案實施例獲得的奈米碳管長線的場發射尖 端的拉曼光譜圖。 [0047] 圖6係本技術方案實施例的場發射電子源的製備方法的流 程示意圖。 [0048] 圖7係本技術方案實施例的場發射電子源的製備裝置示意 圖。 [0049] 圖8係本技術方案實施例的場發射電子源的電流-電壓曲 線示意圖。 【主要元件符號說明】 [0050] 場發射電子源:10 [0051] 奈米碳管長線:12 [0052] 導電基體:14 [0053] 場發射電子源製備裝 [0054] 鐳射:30 [0055] 透鏡:40 [0056] 奈米碳管長線:50 [0057] 奈求碳管長線第一端 [0058] 奈米碳管長線第二端 [0059] 視窗:202 [0060] 進氣口 : 204 [0061] 出氣口 : 206 表單编號A0101 096142407 第14頁/共27頁 1003398726-0 1362675 , 100年10月27日慘正替换頁 [0062] 電源:208 [0063] 支撐裝置:210 • • 096142407 表單編號A0101 第15頁/共27頁 1003398726-0(C) annealing the substrate on which the catalyst layer is formed in air at 700 ° C to 900 ° C for about 30 minutes to 90 minutes; (d) The treated substrate is placed in a reaction furnace, heated to 500 ° C to 740 ° C in a protective gas atmosphere, and then reacted with a carbon source gas for about 5 minutes to 30 minutes to grow to obtain a carbon nanotube array having a height of About 100 microns. The carbon nanotube array is a plurality of pure carbon nanotube arrays formed of carbon nanotubes that are parallel to each other and are grown perpendicular to the substrate. The carbon nanotube array is substantially the same area as the above substrate. The super-sequential carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles, etc., by controlling the growth conditions described above. [0019] In this embodiment, the carbon source gas may be selected from acetylene, ethylene, methane and other chemically active hydrocarbons. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, which is preferred in this embodiment. The shielding gas is argon. [0020] It can be understood that the carbon nanotube array provided by the embodiments of the present technical solution is not limited to the above preparation method, and may also be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method or the like. [0021] Step 2: using a stretching tool to pull a carbon nanotube from the carbon nanotube array to obtain a carbon nanotube film or a nano carbon tube wire. [0022] The preparation of the carbon nanotube film or the carbon nanotube wire specifically comprises the following steps: (a) selecting a plurality of nai 096142407 of a certain width from the array of carbon nanotubes described above. Form No. A0101 Page 8 / Total Page 27, 1003398726-0 1362675. 100 years. October 27th, according to the replacement of the carbon nanotube segments, this embodiment preferably uses a tape having a certain width to contact the carbon nanotube array to select a plurality of nanocarbons of a certain width. Tube bundle; (b) stretching a plurality of the carbon nanotube bundles at a constant speed in a direction substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous carbon nanotube film or a carbon nanotube filament [0023] In the above stretching process, the plurality of carbon nanotube bundles are gradually separated from the substrate in the stretching direction under the tensile force, and the selected plurality of carbon nanotube bundles and the other carbon nanotube bundles are respectively respectively due to the van der Waals force. Continuously pulled out end to end to form a carbon nanotube film or a nano carbon tube wire. The carbon nanotube film or nano carbon tube wire comprises a plurality of end-to-end aligned carbon nanotubes. Tube bundle β the carbon nanotube Carbon nanotube film or nanotubes yarn arrangement direction substantially parallel to the carbon nano tube or a film stretching direction nanotube filaments. [0024] Step three, obtaining a nano carbon tube long line 12 by treating the carbon nanotube film or the carbon nanotube wire with an organic solvent or applying a mechanical external force. [0025] The carbon nanotube film or the carbon nanotube wire prepared in the second step can be treated with an organic solvent to obtain a long carbon nanotube 12 of a carbon nanotube. The specific treatment process includes: dropping an organic solvent on a surface of a carbon nanotube film or a surface of a carbon nanotube by infiltrating the entire carbon nanotube film or a carbon nanotube wire through a test tube. The organic solvent is a volatile organic solvent such as ethanol, decyl alcohol, acetone, dichloroethane or gas, and ethanol is preferably used in this embodiment. The carbon nanotube film or the carbon nanotube wire is infiltrated with an organic solvent, and the parallel nanocarbon in the carbon nanotube film or the carbon nanotube wire is under the surface tension of the volatile organic solvent. The tube segments are partially aggregated into a bundle of carbon nanotubes, so that the carbon nanotube film shrinks into filaments. The nano carbon 096142407 Form No. 1010101 Page 9 of 27 1003398726-0 1362675 On October 27, 100, the shuttle is replacing the surface of the tube. The surface volume ratio is small, non-sticky, and has good mechanical strength and toughness. The solvent-treated carbon nanotube film or nano carbon tube wire can be conveniently applied to the macroscopic field. The carbon nanotube film or the carbon nanotube wire prepared in the second step can also be treated by applying a mechanical external force to obtain a long carbon nanotube 12 of a carbon nanotube. A spinning shaft is provided that can be attached to the array of carbon nanotubes. After the tail of the spinning shaft is combined with the carbon nanotube array, the carbon nanotubes begin to wrap around the shaft. The spinning shaft is spun out in a rotating manner and moved in a direction away from the array of carbon nanotubes. At this time, when the carbon nanotube array is moved relative to the spinning axis, the fibers are spun, and other carbon nanotubes can be wound around the fibers to increase the length of the fibers. It can be understood that the spinning mode of the above spinning shaft is not limited, and it can be rotated forward or reversed, or combined with forward rotation and reverse rotation. [0027] It can be understood that a nanometer carbon tube long line 12 can also be obtained by directly pulling a carbon nanotube from the carbon nanotube array of step one using a stretching tool. [0028] Step 4: irradiating the carbon nanotube long line 12 with laser light of a certain power and scanning speed. [0029] The above-mentioned nano carbon tube long line 12 is placed in an atmosphere of air or an oxidizing gas. The carbon nanotube long line 12 is irradiated with laser light of a certain power and scanning speed. When a position of the long carbon wire 12 of the carbon nanotube is raised by the laser irradiation temperature, oxygen in the air oxidizes the carbon nanotube at the position to cause a defect, thereby increasing the electric resistance at the position. [0030] It will be appreciated that the time at which the laser illuminates the long carbon nanotube 12 is inversely proportional to the power of the laser. That is, when the laser power is large, the laser irradiates the nano carbon 096142407 Form No. A0101 Page 10 / Total 27 pages 1003398726-0 1362675 On October 27, 100, the time to replace the long line 12 is shorter; the laser power is shorter. In hours, the laser illuminates the long line of carbon nanotubes for a longer period of time. [0031] In the technical solution, the laser power is 1 watt to 60 watts, and the scanning speed is 1 00-2000 mm/second. The preferred embodiment of the present embodiment has a laser power of 12 watts and a scanning speed of 1 000 mm/sec. The laser in the embodiment of the present technical solution may be any type of laser such as carbon dioxide laser, semiconductor laser, or ultraviolet laser, as long as the heating effect can be produced. [0032] Step 5: A current is applied to the long carbon nanotube 12 of the carbon nanotube, and the long carbon nanotube is melted by the laser irradiation to form a plurality of field emission tips. [0033] The long carbon 12 of the carbon nanotubes after laser irradiation is placed in a vacuum system to pass an electric current. The portion of the long carbon nanotube 12 that is irradiated with laser light is the portion with the highest temperature, and finally the long carbon nanotube 12 of the carbon nanotube is melted there to form a plurality of field emission tips. It will be appreciated that the carbon nanotube long wire 12 can also be placed in a vacuum or an atmosphere filled with an inert gas. The carbon nanotube long wire 12 is irradiated with a laser of a certain power and scanning speed while being heated by the current, and the long carbon wire 12 of the carbon nanotube is irradiated. The carbon nanotube long line 12 can be stably heated due to the atmosphere of vacuum or inert gas. When a certain position of the long carbon wire 12 of the carbon nanotube is raised by the laser irradiation temperature, the position is the highest temperature portion, and finally the long carbon nanotube 12 will be blown there. [0035] Step 6: The field emission electron source 10 is obtained by disposing the long carbon nanotube 12 12 which is blown by the laser irradiation on the conductive substrate 14. [0036] The field emission electron source 10 is obtained by adhering the burned carbon nanotube long line 12 to the conductive substrate 14 through a conductive paste. 096142407 Form No. A0101 Page 11 of 27 1003398726-0 1362675 |~1 October October Nuclear Replacement Page j [0037] It can be understood that 'the carbon nanotube long line 12 can also be set in advance in two The field emission electron source 10 is prepared between the conductive substrates 14 and then fused to the carbon nanotube long line 12. At the same time, a plurality of carbon nanotube long wires 12 having electron-emitting ends may be disposed on a conductive substrate 14, to obtain a field emission electron source having a plurality of electron-emitting terminals. [0038] Please refer to FIG. 6' for a Raman spectrogram of the field emission tip 16 of the carbon nanotube long line 12. Raman spectroscopy analysis showed that the defect peak of the field emission tip 16 of the heat treated carbon nanotube long line 12 was significantly reduced, while the defect peak of the tip was lower. That is to say, the nano-tube of the field emission tip of the nano tube long line 12 has been greatly improved in quality during the fusing process. This is due to the reduced defects of the carbon nanotubes after heat treatment, and the fact that the graphite layer with defects is easily collapsed at the commercial temperature, leaving some higher quality graphite layers. [0039] Please refer to FIG. 7, which is a schematic diagram of a device for preparing a field emission electron source 1A according to an embodiment of the present technology. The device 20 has a window 202, an air inlet 204, an air outlet 206, a power source 208, and a Support device 210. The oxidizing gas enters the device 20 through the air inlet 204. The gas outlet 206 can be connected to the vacuum pump to maintain a certain degree of vacuum in the device 20, or the vacuum can be recorded without maintaining the pressure in the device 2 It is atmospheric pressure. The support device 210 is coupled to the power source 208 for supporting the carbon nanotube long line 50. A laser 30 is concentrated by a lens 40, and the focused laser beam 3 is scanned through the window 202 in the vertical direction of the long carbon wire 5 turns of the carbon nanotube. The material of the window 202 is the material that the laser can transmit. The laser has a power of 12 watts and a scanning speed of 1 mm/sec. A current of 0.1 volt DC was applied across the long line of the carbon nanotubes to monitor its current. When the laser 30 is 096142407, the form number A0101 1003398726-0 1362675 100 years. October 27th, the replacement page is irradiated once the nanometer long line 50, the current through the carbon tube long line 5 就会 will be rapid The decrease is also caused by the increase in the resistance of the portion of the long carbon nanotubes that are irradiated by the laser 30. [0040] Please refer to FIG. 8 , which is a graph of field emission performance test results of the above field emission electron source. The carbon nanotube long wire 12 is subjected to a spot-fitting treatment to form two electron-emitting ends. The field emission performance test of the field emission electron source is measured by using a tungsten tip as an anode, wherein the tungsten tip is respectively opposite to the two electron emitting ends, and the distance between the tungsten tip and the electron emitting end is 100 micrometers. . The two electron emitters formed by the misfire fuse can provide a field emission current of 150 microamperes or more at a lower operating voltage. Since the diameter of the nanometer carbon long line 12 is about 5 micrometers, the field emission current is The density is greater than 700 A/cm 2 . [0041] In summary, the invention has met the requirements of the invention patent and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0042] FIG. 1 is a schematic structural view of a field emission electron source according to an embodiment of the present technical solution. 2 is an enlarged schematic view showing an electron-emitting end of a long line of a carbon nanotube in FIG. 1. 3 is a scanning electron micrograph of an electron-emitting end of a long carbon nanotube line obtained in an embodiment of the present technology. 4 is a transmission electron micrograph of a field emission tip of a long carbon nanotube tube obtained by an embodiment of the present technical solution. 7 Form No. 1010101 13th Buy/Total 27 Pages 1003398726-0 1362675 October 27th, 100th Shuttle Replacement Page [0046] FIG. 5 is a drawing of the field emission tip of the long carbon nanotube obtained by the embodiment of the present technical solution. Mann spectrum. 6 is a schematic flow chart of a method for preparing a field emission electron source according to an embodiment of the present technical solution. 7 is a schematic diagram of a device for preparing a field emission electron source according to an embodiment of the present technical solution. 8 is a schematic diagram of current-voltage curves of a field emission electron source according to an embodiment of the present technical solution. [Main component symbol description] [0050] Field emission electron source: 10 [0051] Nano carbon tube long line: 12 [0052] Conductive substrate: 14 [0053] Field emission electron source preparation device [0054] Laser: 30 [0055] Lens: 40 [0056] Nano carbon tube long line: 50 [0057] Nai carbon tube long line first end [0058] Nano carbon tube long line second end [0059] Window: 202 [0060] Air inlet: 204 [ 0061] Air outlet: 206 Form No. A0101 096142407 Page 14 of 27 1003398726-0 1362675, October 27, 100 Misplaced replacement page [0062] Power: 208 [0063] Support: 210 • • 096142407 Form No. A0101 Page 15 of 27 1003398726-0

Claims (1)

1362675 10◦年10月27日梭正替換頁 七、申請專利範圍: 1 . 一種場發射電子源,包括一導電基體,其改良在於,該場 發射電子源進一步包括一奈米碳管長線,該奈米碳管長線 具有一第一端及與第一端相對的第二端,該奈米碳管長線 的第一端與該導電基體電連接,該奈米碳管長線的第二端 從導電基體向外延伸,其中,所述的奈米碳管長線的第二 端包括多個突出的場發射尖端。 2.如申請專利範圍第1項所述的場發射電子源,其中,所述 的奈米碳管長線的第二端為類圓錐形,其直徑小於該奈米 4 碳管長線的直徑。 3如申請專利範圍第1項所述的場發射電子源,其中,所 述的奈米碳管長線係由多個平行的首尾相連的奈米碳管束 組成的束狀結構。 4. 如申請專利範圍第1項所述的場發射電子源,其中, 所述的奈米碳管長線係由多個首尾相連的奈米碳管束組成 的絞線結構。 5. 如申請專利範圍第2或3項所述的場發射電子源,其中 _ ,所述的奈米碳管束之間通過凡德瓦爾力緊密結合,該奈 米碳管束中包括多個首尾相連且定向排列的奈米碳管。 6. 如申請專利範圍第1項所述的場發射電子源,其中, 所述的場發射尖端包括多個基本平行的奈米碳管,該多個 奈米碳管之間通過凡德瓦爾力緊密結合。 7. 如申請專利範圍第1項所述的場發射電子源,其中, 所述的場發射尖端的頂端突出有一根奈米碳管。 8. 如申請專利範圍第1項所述的場發射電子源,其中,所 096142407 表單编號A0101 第16頁/共27頁 1003398726-0 1362675 100年10月27日修正替換頁 述的奈米碳管長線的直徑為1微米至100微米。 9. 如申請專利範圍第3或4項所述的場發射電子源,其中 ,所述的奈米碳管直徑小於5奈米,長度為10微米至100 微米。 10. 如申請專利範圍第3或4項所述的場發射電子源,其中 ,所述的奈米碳管係單壁奈米碳管、雙壁奈米碳管或者多 壁奈米碳管。 11. 一種場發射電子源的製備方法,包括以下步驟: 提供一奈米碳管長線;1362675 October 27th, 2010, the shuttle is replacing page 7. Patent application scope: 1. A field emission electron source, comprising a conductive substrate, wherein the field emission electron source further comprises a carbon nanotube long line, The carbon nanotube long wire has a first end and a second end opposite to the first end, the first end of the long line of the carbon nanotube is electrically connected to the conductive substrate, and the second end of the long line of the carbon nanotube is electrically conductive The substrate extends outwardly, wherein the second end of the long line of carbon nanotubes comprises a plurality of protruding field emission tips. 2. The field emission electron source of claim 1, wherein the second end of the long carbon nanotube has a conical shape and a diameter smaller than a diameter of the long carbon nanotube. 3. The field emission electron source of claim 1, wherein the long carbon nanotube line is a bundle structure consisting of a plurality of parallel end-to-end carbon nanotube bundles. 4. The field emission electron source according to claim 1, wherein the carbon nanotube long line is a stranded structure composed of a plurality of end-to-end connected carbon nanotube bundles. 5. The field emission electron source according to claim 2, wherein the carbon nanotube bundle is closely coupled by van der Waals force, and the carbon nanotube bundle comprises a plurality of end-to-end connections. And aligned carbon nanotubes. 6. The field emission electron source of claim 1, wherein the field emission tip comprises a plurality of substantially parallel carbon nanotubes, and the plurality of carbon nanotubes pass Van der Waals force Closely integrated. 7. The field emission electron source of claim 1, wherein the top of the field emission tip protrudes from a carbon nanotube. 8. The field emission electron source as described in claim 1 of the patent scope, wherein 096142407 Form No. A0101 Page 16 of 27 Page 1003398726-0 1362675 October 27, 100 Revision of the replacement page of the nanocarbon The length of the tube length is from 1 micron to 100 microns. 9. The field emission electron source of claim 3, wherein the carbon nanotubes are less than 5 nanometers in diameter and 10 micrometers to 100 micrometers in length. 10. The field emission electron source of claim 3, wherein the carbon nanotube is a single-walled carbon nanotube, a double-walled carbon nanotube or a multi-walled carbon nanotube. 11. A method of preparing a field emission electron source, comprising the steps of: providing a long carbon nanotube line; 熔斷該奈米碳管長線;及 將熔斷後的奈米碳管長線設置於導電基體上即得到場發射 電子源。 12. 如申請專利範圍第11項所述的場發射電子源的製備方 法,其中,所述奈米碳管長線的製備方法包括以下步驟: 提供一超順排奈米碳管陣列形成於一基底; 採用一拉伸工具從該奈米碳管陣列中拉取奈米碳管獲得一 奈米碳管薄膜或者奈米碳管絲;及The long line of the carbon nanotube is melted; and the long-line carbon nanotube after the fuse is placed on the conductive substrate to obtain a field emission electron source. 12. The method for preparing a field emission electron source according to claim 11, wherein the method for preparing the nano carbon tube long line comprises the steps of: providing a super-aligned carbon nanotube array formed on a substrate Using a stretching tool to pull a carbon nanotube from the carbon nanotube array to obtain a carbon nanotube film or a carbon nanotube wire; 採用有機溶劑或者施加機械外力處理該奈米碳管薄膜或者 奈米碳管絲得到一奈米碳管長線。 13. 如申請專利範圍第12項所述的場發射電子源的製備方 法,其中,所述從奈米碳管陣列拉取奈米碳管獲得該奈米 碳管薄膜或者奈米碳管絲的方法包括以下步驟: 從上述奈米碳管陣列中選定一定寬度的多個奈米碳管片斷 ;及 以一定速度沿基本垂直於奈米碳管陣列生長方向拉伸該多 個奈米碳管片斷,以形成一連續的該奈米碳管薄膜或者該 096142407 表單编號A0101 第17頁/共27頁 1003398726-0 1362675 ___ 100年10月27日按正替換頁 奈米碳管絲。 14. 如申請專利範圍第12項所述的場發射電子源的製備方 法,其中,所述的有機溶劑為乙醇、甲醇、丙酮、二氯乙 坑或氣仿。 15. 如申請專利範圍第12項所述的場發射電子源的製備方 法,其中,所述的機械外力處理該奈米破管薄膜或者奈米 碳管絲的方法包括以下步驟: 提供一紡紗軸,採用該紡紗軸旋轉並拉伸該奈米碳管薄膜 或者奈米碳管絲得到一該奈米碳管長線。 16. 如申請專利範圍第11項所述的場發射電子源的製備方 < 法,其中,所述的奈米碳管長線的製備方法包括以下步驟 提供一超順排奈米碳管陣列形成於一基底; 採用一拉伸工具從該奈米碳管陣列中拉取奈米碳管獲得 一奈米碳管長線。 1 7.如申請專利範圍第11項所述的場發射電子源的製備方 法,其中,所述的場發射電子源的製備方法中將該奈米碳 | 管長線放置於空氣或者含有氧化性氣體的氣氛中,以一定 功率和掃描速度的鐳射照射該奈米碳管長線後,在該奈米 碳管長線中通入電流。 18. 如申請專利範圍第11項所述的場發射電子源的製備方 法,其中,所述的場發射電子源的製備方法中將該奈米碳 管長線放置於真空或者充滿惰性氣體的氣氛中,在該奈米 碳管長線中通入電流後,以一定功率和掃描速度的鐳射照 射該奈米碳管長線。 19. 如申請專利範圍第11項所述的場發射電子源的製備方 096142407 表單编號A0101 第18頁/共27頁 1003398726-0 1362675 100年10月27日梭正替換頁 法,其中,所述的鐳射係二氧化碳鐳射、半導體鐳射或者 紫外鐳射。 20. 如申請專利範圍第11項所述的場發射電子源的製備方 法,其中,所述鐳射的功率為1瓦至60瓦。 21. 如申請專利範圍第11項所述的場發射電子源的製備方 法,其中,所述鐳射的掃描速度為1〇〇毫米/秒至2000毫 米/秒》 22. 如申請專利範圍第11項所述的場發射電子源的製備方 法,其中,進一步包括通過一導電膠將該奈米碳管長線粘 附於該導電基體之上。The carbon nanotube film or the carbon nanotube wire is treated with an organic solvent or a mechanical external force to obtain a long carbon nanotube tube. 13. The method of preparing a field emission electron source according to claim 12, wherein the drawing of the carbon nanotube film from the carbon nanotube array to obtain the carbon nanotube film or the carbon nanotube wire The method comprises the steps of: selecting a plurality of carbon nanotube segments of a certain width from the array of carbon nanotubes; and stretching the plurality of carbon nanotube segments at a constant speed along a growth direction substantially perpendicular to the growth of the carbon nanotube array To form a continuous film of the carbon nanotube or the 096142407 Form No. A0101 Page 17 / Total 27 Pages 1003398726-0 1362675 ___ October 27, 2007 Press the positive replacement page of the carbon nanotube wire. 14. The method of preparing a field emission electron source according to claim 12, wherein the organic solvent is ethanol, methanol, acetone, dichloroethylene pit or gas imitation. 15. The method of preparing a field emission electron source according to claim 12, wherein the method of mechanically treating the nanotube film or the carbon nanotube wire comprises the following steps: providing a spinning The shaft is rotated by the spinning shaft and stretched by the carbon nanotube film or the carbon nanotube wire to obtain a long line of the carbon nanotube. 16. The method of preparing a field emission electron source according to claim 11, wherein the method for preparing a long carbon nanotube line comprises the steps of providing a super-aligned carbon nanotube array. On a substrate; a carbon nanotube is drawn from the array of carbon nanotubes using a stretching tool to obtain a long carbon nanotube line. The method for preparing a field emission electron source according to claim 11, wherein the nanowire|tube length line is placed in air or contains an oxidizing gas in the method for preparing the field emission electron source. In the atmosphere, after the long line of the carbon nanotube is irradiated with a laser of a certain power and scanning speed, a current is supplied to the long line of the carbon nanotube. 18. The method of preparing a field emission electron source according to claim 11, wherein the method for preparing the field emission electron source places the long carbon nanotube line in a vacuum or an atmosphere filled with an inert gas. After the current is passed through the long carbon nanotube line, the long carbon nanotube line is irradiated with laser light of a certain power and scanning speed. 19. Preparation of the field emission electron source as described in claim 11 of the patent scope 096142407 Form No. A0101 Page 18 of 27 Page 1003398726-0 1362675 October 27, 100, the shuttle is replacing the page method, where The laser system is a carbon dioxide laser, a semiconductor laser or an ultraviolet laser. 20. The method of preparing a field emission electron source according to claim 11, wherein the laser power is from 1 watt to 60 watts. 21. The method of preparing a field emission electron source according to claim 11, wherein the scanning speed of the laser is from 1 mm/sec to 2000 mm/sec. 22. If the patent application is in the eleventh item The method for preparing a field emission electron source, further comprising adhering the nano carbon tube long line to the conductive substrate through a conductive paste. 1003398726-0 096142407 表單編號A0101 第19頁/共27頁1003398726-0 096142407 Form No. A0101 Page 19 of 27
TW96142407A 2007-11-09 2007-11-09 Field emission electron source and method for making the same TWI362675B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96142407A TWI362675B (en) 2007-11-09 2007-11-09 Field emission electron source and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96142407A TWI362675B (en) 2007-11-09 2007-11-09 Field emission electron source and method for making the same

Publications (2)

Publication Number Publication Date
TW200921738A TW200921738A (en) 2009-05-16
TWI362675B true TWI362675B (en) 2012-04-21

Family

ID=44727978

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96142407A TWI362675B (en) 2007-11-09 2007-11-09 Field emission electron source and method for making the same

Country Status (1)

Country Link
TW (1) TWI362675B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI476145B (en) * 2009-06-02 2015-03-11 Hon Hai Prec Ind Co Ltd Ozone generator

Also Published As

Publication number Publication date
TW200921738A (en) 2009-05-16

Similar Documents

Publication Publication Date Title
CN101425435B (en) Field emission type electron source and its manufacturing method
JP4933576B2 (en) Manufacturing method of field emission electron source
JP4960397B2 (en) Carbon nanotube needle and manufacturing method thereof
CN101425438B (en) Producing method for field emission type electron source
CN101425439B (en) Producing method for field emission type electron source
JP4960398B2 (en) Field emission electron source
JP4913791B2 (en) Field emission electron source and manufacturing method thereof
CN101442848B (en) Method for locally heating object
TW201400404A (en) Method for making carbon nanotube field emitter
TWI362675B (en) Field emission electron source and method for making the same
TWI362684B (en) Method of making field emission electron source
CN102082051B (en) Production method of carbon nanotube line tip and production method of field emission structure
TWI362677B (en) Method for making field emission electron source
TWI447772B (en) Carbon nanotube field emitter
TWI386971B (en) Field emitter and method for making the same
CN102394204B (en) Field electron emission source
TWI386965B (en) Field emission electron source
TWI425553B (en) Method for making carbon nantoube wire tip and method for making field emission structure
TWI309055B (en) Method for making emission source having carbon nanotube
TWI309428B (en) Emission source having carbon nanotube
TWI386972B (en) Method for making field emission electron source
TWI383425B (en) Hot emission electron source and method of making the same
TWI494266B (en) Carbon nanotube needle and the method for making the same
TWI427673B (en) A method fro making a electron emitter
TWI427659B (en) Electron emitter and electron emitting element