TWI307907B - Field emission electron source and method for making the same - Google Patents

Field emission electron source and method for making the same Download PDF

Info

Publication number
TWI307907B
TWI307907B TW95112494A TW95112494A TWI307907B TW I307907 B TWI307907 B TW I307907B TW 95112494 A TW95112494 A TW 95112494A TW 95112494 A TW95112494 A TW 95112494A TW I307907 B TWI307907 B TW I307907B
Authority
TW
Taiwan
Prior art keywords
field emission
electron source
particles
emission electron
conductive substrate
Prior art date
Application number
TW95112494A
Other languages
Chinese (zh)
Other versions
TW200739641A (en
Inventor
Li Qian
Liang Liu
Peng Liu
Jie Tang
Yang Wei
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW95112494A priority Critical patent/TWI307907B/en
Publication of TW200739641A publication Critical patent/TW200739641A/en
Application granted granted Critical
Publication of TWI307907B publication Critical patent/TWI307907B/en

Links

Description

1307907 九、發明說明: 【發明所屬之技術領域】 本發明係涉及一種場發射電子源及其製造方法。 【先前技術】 按,由奈米材料作爲發射端之場發射電子源因其 具有可傳輸較大電流密度、電流較穩定、使用壽命較 長等特性,而被廣泛應用於顯微鏡、X射線管、微波 管、CRT電子槍、太陽能轉化裝置、平板印刷裝置、 平面顯示裝置等設備之電子發射部件中。 習知由奈米材料爲作發射端之場發射電子源通 常至少包括一導電基體以及作爲發射端形成於導電 基體頂部上之一維奈米材料。該奈米材料形成於導電 基體上之方法大體上包括機械方法及原位生長法。其 中,機械方法係藉由原子力顯微鏡操縱合成奈米材 料,將奈米材料用導電膠固定於導電基體上,該方法 雖程式簡單,然操作不容易且效率低。另,藉由該方 法得到之場發射電子源之奈米材料係措由導電膠钻 覆於導電基體上,使用時,奈米材料與導電基體之電 接觸狀態較差,不易充分發揮奈米材料之場發射性 能。 原位生長法係先於導電基體上鍍金屬催化劑,後 藉由化學氣相沈積、電弧放電或鐳射蒸發法等方法於 導電基體上直接生長出一維奈米材料,該方法雖操作 簡單,奈米材料與導電基體的電接觸良好,惟,藉由 該方法得到之場發射電子源之奈米材料與導電基體 之結合能力較弱,於使用時奈米材料易於脫落,從而 導致場發射電子源損壞。另,藉由原位生長法製造場 7 1307907 發射電子源之生産成本較高。 另,場發射電子源應用於電子設備之電子發射部 件中時,通常需要電子發射部件密封之内部具有較高 - 之真空度。習知技術中,係通過於電子發射部件之端 . 部增設非蒸散式吸氣劑裝置以確保其内部之真空 度,惟該吸氣劑裝置會使電子設備之結構複雜進而增 加其製造成本。 有鑒於此,確有必要提供一種其上之奈米材料與 導電基體結合緊密且電性連接良好、亦可確保所應用 之電子設備之電子發射部件内部具有較高真空度之 場發射電子源以及一種低成本、高效率且易於操作之 場發射電子源之製造方法。 【發明内容】 以下將藉由實施例說明一種場發射電子源及其 製造方法,該場發射電子源可確保所應用之電子設備 之電子發射部件内部具有較高真空度、且該場發射電 子源之奈米材料與導電基體結合較緊密、具有較好之 電性連接,該場發射電子源之製造方法成本較低、易 於操作且具有較高之效率。 一種場發射電子源,包括至少一電子發射體,該 電子發射體包括導電基底以及形成於導電基底之電 子發射層,該電子發射層至少覆蓋於導電基底之頂 部,其包含吸氣劑微粒、金屬導電微粒、奈米材料及 玻璃。 一種場發射電子源之製造方法,該方法係包括以 下步驟: 步驟(一),提供吸氣劑微粒、導電金屬微粒、 玻璃微粒及奈米材料以及至少一導電基底; I3Q7907 步驟(二),將吸氣劑微粒、導電金屬微粒、玻 璃微粒及奈米材料於有機載體中進行充分混合形成 漿料; 步驟(三),將上述漿料塗敷於導電基底頂部表 面; 步驟(四),將塗敷有漿料之導電基底於 300〜600°C下進行烘乾與焙燒從而於導電基底頂部之 表面形成電子發射層以得到電子發射體進而形成場 發射電子源。 上述場發射電子源中奈米材料係藉由玻璃被固 定於導電基底上,其與導電基底間結合緊密,導電金 屬微粒可確保納料材料與導電基底間具有較好之導 電連接,另,當該場發射電子源應用於電子設備之電 子發射部件中時,其電子發射層包含之吸氣劑微粒可 確保電子發射部件密封之内部具有較高之真空度。 另,上述場發射電子源之製造方法係藉由玻璃熔融後 固定奈米材料於導電基底上,其相較於藉由機械方法 或原位生長法固定奈米材料與導電基底來說較易於 操作且成本較低。 【實施方式】 以下將結合附圖詳細說明本實施例場發射電子 源10之結構及其製造方法。 請參閱圖1及圖2,本實施例場發射電子源10包 括至少一電子發射體20。當電子發射體20爲複數時, 可將該等電子發射體20按一定方式排列從而形成電 子發射體陣列。圖1中所示之場發射電子源10包括 複數電子發射體20,該等電子發射體20形成陣列。 發射體20包括導電基底30及形成於導電基底30 9 1307907 表面之電子發射層40。該導電基底30係由導電金屬 材料或者半導體材料製成。導電金屬材料可選用銀、 銅、鎳、金或其任意組合之合金材料,半導體材料可 選用矽或二氧化矽。該導電基底30爲柱狀結構或錐 狀結構,其橫截面形狀可根據實際需要製成圓形、三 角形、方形、矩形或者其他形狀。該導電基底30具 有一頂部310,該頂部310形狀可根據實際需要製成 弧形、錐形、平面形或者其他形狀,其截面尺寸爲 10〜1000微米。圖2中所示之導電基底30之橫截面爲 圓形,其頂部310爲半球形。 電子發射層40可形成於導電基底30頂部310之 外表面亦可包覆於導電基底30之整個表面,圖1中 所示之電子發射層40僅覆蓋於頂部310之外表面。 請參閱圖3,該電子發射層40含有至少一奈米材料 410、玻璃420、導電金屬微粒430及吸氣劑微粒440。 其中,該吸氣劑微粒440係為非蒸散型吸氣劑材料, 直徑爲1〜10微米。非蒸散型吸氣劑係靠表面吸氣或 體擴散吸氣,以鈦、錯、铪、钍、稀土金屬或者其合 金等成分爲主,如電子漿料級鈦粉、鍅鋁合金、锆釩 鐵。導電金屬微粒430選用銀或氧化銦錫,其可確保 奈米材料410及導電基底30電性連接,優選地,導 電金屬微粒430由銀製成。奈米材料410可包括能夠 用於場發射之碳奈米管或其他材料之奈米管、奈米 線、奈米棒或奈米級微粒,其長度爲5~15微米,直 徑爲1〜100奈米。 本實施例場發射電子源10可應用於顯微鏡、X射 線管、微波管、CRT電子槍、太陽能轉化裝置、平板 印刷裝置、平面顯示裝置等設備之電子發射部件中。 1307907 使用時,電子發射層40於電場作用下發射電子。 請參閱圖4,本發明實施例製造上述場發射電子 源10之方法係包括以下步驟: 步驟(一),提供吸氣劑微粒440、導電金屬微 粒430、玻璃微粒及奈米材料410以及至少一導電基 底30 ; 該吸氣劑微粒440與導電金屬微粒430可預先採 用球磨機分別球磨,使吸氣劑微粒440直徑爲1〜10 微米,導電金屬微粒430直徑爲0.1〜10微米。優選地, 選用激活溫度為300〜500°C之吸氣劑,如锆鋁合金吸 氣劑。玻璃微粒選用低熔點玻璃,其主要材料爲四氧 化矽(Si04),直徑爲10〜100奈米,熔點爲350〜600°C。 奈米材料410可預先藉由化學氣相沈積法、電弧放電 法或鐳射蒸發法等習知技術製備,其長度爲5〜15微 米,過短會減弱奈米材料之場發射特性,過長容易使 奈米材料相互纏繞結團。 導電基底30之數量可根據實際需要來確定,當 需要複數導電基底30時5該等導電基底30可'體成 型設置亦可分別設置。其中,圖1及圖2中所示之複 數導電基底30爲一體成型設置。 步驟(二),將吸氣劑微粒440、導電金屬微粒 430、玻璃微粒及奈米材料410於有機載體中進行充 分混合形成漿料; 有機載體係由作爲溶劑之松油醇、作爲增塑劑之 少量鄰位苯二甲二丁酯以及作爲穩定劑之少量乙基 纖維素形成之混合劑。漿料中吸氣劑微粒之質量百分 比濃度為40〜80%,混合過程優選爲於60~80°C下混 合3〜5小時。爲更好分散奈米材料410並得到奈米材 11 1307907 料410直徑均勻之漿料,可進—步 波對含有奈米材料410之有機溶劑進行超聲波震Ϊ聲 然後再對其進行離心處理。 、不久辰啊’ 步驟(三),將上述漿料塗敷於導電基底 部表面; J貝 七鹿過程係於潔ΐ環境内進行,優選地,環境内 灰塵度應小於l〇〇〇/m3。 ^ ^ 步驟(四)’將塗敷有聚料之導電基底30於 300〜6,下進行烘乾與料從而於導絲錢頂部 表面亡形成電子發射層4〇以得到電子發射體2〇進而 形成場發射電子源1 〇。 供乾與培燒係於真空環境下進行或者於洪乾與 焙燒過程中通入惰性氣體加以保護防止烘乾盥拎^ 時發生氧化反應亦防止吸氣劑飽和。烘乾之目的 使有機載體從導電基底30上揮發亦激活電子發射層 40表面之吸氣劑微粒440。焙燒之目的在於使玻璃ς 粒熔融從而將吸氣劑微粒440、導電金屬微粒43〇及 奈米材料410㈣於導電基底3()上形成電子發射層 40。另’溶2破璃42〇可調節整體之熱膨服係數^ 止所形成之電子發射層40産生裂紋或發生斷裂。 ,爲進電子發射層之場發射特m 經過烘乾與培燒後,可對電子發射層4〇之表面進行 摩擦’部分奈米材科41G末端經摩擦後露出電子發射 層40之表面。當電子發射層4〇被摩擦後,應當將場 發射電子源加熟至400〜500T以激活經摩擦後露 出電子發射層40表面之吸氣劑微粒44〇。加熱過程係 於真空環境下進行或者於加熱過程中通入惰性氣體 加以保護。 12 1307907 綜上所述,本發明確已符合發明專利要件,爰依 法提出專利申請。惟,以上所述者僅為本發明之較佳 實施例,舉凡熟悉本案技藝之人士,於援依本案發明 精神所作之等效修飾或變化,皆應包含於以下之申請 專利範圍之内。 【圖式簡單說明】 圖1係本發明實施例場發射電子源之俯視示意 圖。 圖2係圖1場發射電子源沿II-II方向之剖視示意 圖。 圖3係圖2中III部分之放大圖。 圖4係本發明實施例場發射電子源製造方法之步 驟示意圖。 【主要元件符號說明】 場發射電子源 10 電子發射體 20 導電基底 30 頂部 310 電子發射層 40 奈米材料 410 玻璃 420 導電金屬微粒 430 吸氣劑微粒 440 131307907 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a field emission electron source and a method of fabricating the same. [Prior Art] According to the nano-material as the field emission electron source of the transmitting end, it is widely used in microscopes, X-ray tubes and microwaves because of its characteristics of large current density, stable current and long service life. In the electron-emitting parts of equipment such as tubes, CRT electron guns, solar energy conversion devices, lithographic printing devices, and flat display devices. It is known that a field emission electron source from a nanomaterial as a emitting end generally includes at least a conductive substrate and a Venn material formed on the top of the conductive substrate as an emitting end. The method of forming the nanomaterial on a conductive substrate generally comprises mechanical methods and in situ growth methods. Among them, the mechanical method is to synthesize a nano material by an atomic force microscope, and the nano material is fixed on the conductive substrate with a conductive adhesive. This method is simple in operation, and the operation is not easy and the efficiency is low. In addition, the nanometer material of the field emission electron source obtained by the method is coated on the conductive substrate by a conductive rubber drill. When used, the electrical contact state between the nano material and the conductive substrate is poor, and it is difficult to fully exert the nano material. Field emission performance. The in-situ growth method precedes the metallization catalyst on the conductive substrate, and then directly grows the one-dimensional nano-material on the conductive substrate by chemical vapor deposition, arc discharge or laser evaporation, and the method is simple, and the method is simple. The electrical contact between the rice material and the conductive substrate is good. However, the nano-material of the field-emitting electron source obtained by the method has a weak binding ability to the conductive substrate, and the nano-material is easily detached during use, thereby causing a field emission electron source. damage. In addition, the production cost of the electron source by the in-situ growth method 7 1307907 is relatively high. In addition, when the field emission electron source is applied to an electron-emitting part of an electronic device, it is usually required that the inside of the electron-emitting part seal has a high vacuum. In the prior art, a non-evaporable getter device is added to the end of the electron-emitting component to ensure the vacuum inside, but the getter device complicates the structure of the electronic device and increases its manufacturing cost. In view of the above, it is indeed necessary to provide a field emission electron source in which the nano material is closely combined with the conductive substrate and electrically connected, and also ensures a high degree of vacuum inside the electron-emitting component of the electronic device to be applied. A method of manufacturing a low-cost, high-efficiency, and easy-to-operate field emission electron source. SUMMARY OF THE INVENTION Hereinafter, a field emission electron source capable of ensuring a high degree of vacuum inside an electron emission part of an applied electronic device and a field emission electron source will be described by way of an embodiment. The nano material is tightly combined with the conductive substrate and has a good electrical connection. The field emission electron source manufacturing method is low in cost, easy to operate, and has high efficiency. A field emission electron source comprising at least one electron emitter, the electron emitter comprising a conductive substrate and an electron emission layer formed on the conductive substrate, the electron emission layer covering at least a top of the conductive substrate, comprising getter particles, metal Conductive particles, nano materials and glass. A method for manufacturing a field emission electron source, the method comprising the steps of: (a) providing getter particles, conductive metal particles, glass particles and nano materials and at least one conductive substrate; I3Q7907 step (2), The getter particles, the conductive metal particles, the glass particles and the nano material are thoroughly mixed in an organic carrier to form a slurry; in step (3), the slurry is applied to the top surface of the conductive substrate; and step (4), the coating is applied The conductive substrate coated with the slurry is dried and fired at 300 to 600 ° C to form an electron emission layer on the surface of the top of the conductive substrate to obtain an electron emitter to form a field emission electron source. The nano-material in the field emission electron source is fixed on the conductive substrate by the glass, and the semiconductor substrate is tightly coupled with the conductive substrate, and the conductive metal particles ensure a good electrical connection between the nano-material and the conductive substrate. When the field emission electron source is applied to an electron-emitting component of an electronic device, the getter particles contained in the electron-emitting layer ensure a high degree of vacuum inside the sealed portion of the electron-emitting portion. In addition, the above-mentioned field emission electron source manufacturing method is to fix the nano material on the conductive substrate by melting the glass, which is easier to operate than fixing the nano material and the conductive substrate by mechanical method or in situ growth method. And the cost is lower. [Embodiment] Hereinafter, a structure of a field emission electron source 10 of the present embodiment and a method of manufacturing the same will be described in detail with reference to the accompanying drawings. Referring to Figures 1 and 2, the field emission electron source 10 of the present embodiment includes at least one electron emitter 20. When the electron emitters 20 are plural, the electron emitters 20 may be arranged in a manner to form an electron emitter array. The field emission electron source 10 shown in Figure 1 includes a plurality of electron emitters 20 that form an array. The emitter 20 includes a conductive substrate 30 and an electron emission layer 40 formed on the surface of the conductive substrate 30 9 1307907. The conductive substrate 30 is made of a conductive metal material or a semiconductor material. The conductive metal material may be selected from an alloy material of silver, copper, nickel, gold or any combination thereof, and the semiconductor material may be tantalum or ruthenium dioxide. The conductive substrate 30 is a columnar structure or a tapered structure, and its cross-sectional shape can be made into a circular shape, a triangular shape, a square shape, a rectangular shape or the like according to actual needs. The conductive substrate 30 has a top portion 310 which can be formed into a curved shape, a tapered shape, a flat shape or the like according to actual needs, and has a cross-sectional dimension of 10 to 1000 μm. The conductive substrate 30 shown in Fig. 2 has a circular cross section and a top portion 310 which is hemispherical. The electron emission layer 40 may be formed on the outer surface of the top portion 310 of the conductive substrate 30 or may be coated on the entire surface of the conductive substrate 30. The electron emission layer 40 shown in Fig. 1 covers only the outer surface of the top portion 310. Referring to FIG. 3, the electron emission layer 40 contains at least one nano material 410, glass 420, conductive metal particles 430, and getter particles 440. The getter particles 440 are non-evaporable getter materials having a diameter of 1 to 10 μm. The non-evaporable getter is based on surface gettering or bulk diffusion, and is mainly composed of titanium, erbium, niobium, tantalum, rare earth metals or alloys thereof, such as electronic slurry grade titanium powder, niobium aluminum alloy, zirconium vanadium. iron. The conductive metal particles 430 are made of silver or indium tin oxide, which ensures that the nano material 410 and the conductive substrate 30 are electrically connected. Preferably, the conductive metal particles 430 are made of silver. The nanomaterial 410 may include a carbon nanotube or other material capable of being used for field emission, a nanotube, a nanowire, a nanorod or a nanoparticle, and has a length of 5 to 15 micrometers and a diameter of 1 to 100. Nano. The field emission electron source 10 of the present embodiment can be applied to an electron-emitting component of a microscope, an X-ray tube, a microwave tube, a CRT electron gun, a solar energy conversion device, a flat plate printing device, a flat display device, and the like. 1307907 In use, the electron-emitting layer 40 emits electrons under the action of an electric field. Referring to FIG. 4, the method for manufacturing the field emission electron source 10 of the embodiment of the present invention includes the following steps: Step (1), providing getter particles 440, conductive metal particles 430, glass particles and nano material 410, and at least one The conductive particles 30 and the conductive metal particles 430 may be ball-milled in advance by a ball mill, such that the getter particles 440 have a diameter of 1 to 10 μm, and the conductive metal particles 430 have a diameter of 0.1 to 10 μm. Preferably, a getter having an activation temperature of 300 to 500 ° C, such as a zirconium aluminum alloy getter, is selected. The glass particles are selected from low-melting glass, and the main material thereof is ruthenium tetroxide (Si04) having a diameter of 10 to 100 nm and a melting point of 350 to 600 °C. The nano-material 410 can be prepared in advance by a conventional technique such as chemical vapor deposition, arc discharge or laser evaporation, and has a length of 5 to 15 μm. Too short will weaken the field emission characteristics of the nano material, and it is easy to be too long. The nanomaterials are entangled with each other. The number of the conductive substrates 30 can be determined according to actual needs. When a plurality of conductive substrates 30 are required, the conductive substrates 30 can be disposed separately or separately. Here, the plurality of conductive substrates 30 shown in Figs. 1 and 2 are integrally formed. In the step (2), the getter particles 440, the conductive metal particles 430, the glass particles and the nano-material 410 are thoroughly mixed in an organic carrier to form a slurry; the organic carrier is a terpineol as a solvent, and is used as a plasticizer. A small amount of ortho-dibutylene dicarboxylate and a mixture of a small amount of ethyl cellulose as a stabilizer. The mass percentage of the getter particles in the slurry is 40 to 80%, and the mixing process is preferably carried out at 60 to 80 ° C for 3 to 5 hours. In order to better disperse the nano-material 410 and obtain a slurry having a uniform diameter of the nano-material 11 1307907, the organic solvent containing the nano-material 410 can be ultrasonically shaken and then centrifuged. In the near future, step (3), the slurry is applied to the surface of the conductive base; the J-Seven deer process is carried out in a clean environment. Preferably, the dust in the environment should be less than l〇〇〇/m3. . ^ ^ Step (4) 'The conductive substrate 30 coated with the polymer is dried at 300~6, and the electron emitting layer 4 亡 is formed on the top surface of the guide wire to obtain an electron emitter 2 Forming a field emission electron source 1 〇. The dry and the fired are carried out in a vacuum environment or an inert gas is introduced during the flooding and roasting to protect against drying and to prevent the getter from saturating. The purpose of drying is to volatilize the organic carrier from the conductive substrate 30 and also activate the getter particles 440 on the surface of the electron-emitting layer 40. The purpose of the calcination is to melt the glass crucible to form the electron-emitting layer 40 on the conductive substrate 3() by the getter particles 440, the conductive metal particles 43 and the nano-material 410 (4). In addition, the molten metal 42 can adjust the overall thermal expansion coefficient to form a crack or breakage of the electron-emitting layer 40 formed. For the field emission of the electron-emitting layer, after drying and culturing, the surface of the electron-emitting layer 4〇 can be rubbed. The portion of the 41G end of the nano-material is rubbed to expose the surface of the electron-emitting layer 40. After the electron-emitting layer 4 is rubbed, the field emission electron source should be cooked to 400 to 500 T to activate the getter particles 44 露 which are exposed to the surface of the electron-emitting layer 40 after rubbing. The heating process is carried out under vacuum or by applying an inert gas during the heating process. 12 1307907 In summary, the present invention has indeed met the requirements of the invention patent and has filed a patent application in accordance with the law. However, the above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by the inventors of the present invention should be included in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a top plan view of a field emission electron source in accordance with an embodiment of the present invention. Figure 2 is a cross-sectional view of the field emission electron source of Figure 1 taken along the line II-II. Figure 3 is an enlarged view of a portion III of Figure 2. Fig. 4 is a schematic view showing the steps of a method of manufacturing a field emission electron source according to an embodiment of the present invention. [Main component symbol description] Field emission electron source 10 Electron emitter 20 Conductive substrate 30 Top 310 Electron emission layer 40 Nano material 410 Glass 420 Conductive metal particles 430 Getter particles 440 13

Claims (1)

1307907 十、申請專利範圍 1. 一種場發射電子源,包括至少一電子發射體,該電 子發射體包括具有頂部之導電基底以及形成於導電 基底之電子發射層,該電子發射層至少覆蓋於導電基 底之頂部,其中,該電子發射層包含吸氣劑微粒、金 屬導電微粒、奈米材料及玻璃。 2. 如申請專利範圍第1項所述之場發射電子源,其 中,該吸氣劑微粒係非蒸散型吸氣劑。 3. 如申請專利範圍第2項所述之場發射電子源,其 中,該吸氣劑微粒直徑爲1〜10微米。 4. 如申請專利範圍第3項所述之場發射電子源,其 中,該奈米材料之長度爲5〜15微米,直徑爲1〜100 奈米。 5. 如申請專利範圍第3項所述之場發射電子源,其 中,該導電基底係由銀、銅、鎳、金或其任意組合的 合金材料製成。 6. 如申請專利範圍第3項所述之場發射電子源,其 中,該導電基底係由半導體矽或二氧化矽材料製成。 7. 如申請專利範圍第3項所述之場發射電子源,其 中,該導電金屬微粒選用銀或氧化銦錫,其直徑爲 0.1-10 微米。 8. —種場發射電子源之製造方法,係包括以下步驟: 步驟(一),提供吸氣劑微粒、導電金屬微粒、 玻璃微粒及奈米材料以及至少一導電基底,該導電基 底具有一頂部; 步驟(二),將吸氣劑微粒、導電金屬微粒、玻 璃微粒及奈米材料於有機載體中進行充分混合形成 漿料; 14 1307907 步驟(三),將上述漿料至少塗敷於導電基底頂 部之表面; 步驟(四),將塗敷有漿料之導電基底於 300〜600°C下進行烘乾與焙燒從而於導電基底頂部之 表面上形成電子發射層以得到電子發射體進而形成 場發射電子源。 9. 如申請專利範圍第8項所述場發射電子源之製造 方法,其中,於步驟(一)中,該吸氣劑微粒爲非蒸 散型吸氣劑,其激活溫度爲300〜500°C。 10. 如申請專利範圍第9項所述場發射電子源之製造 方法,其中,於步驟(一)中,該玻璃微粒爲低熔點 玻璃微粒,其熔點在350〜600°C之間,微粒直徑爲 10〜100奈米。 11. 如申請專利範圍第10項所述場發射電子源之製造 方法,其中,於步驟(二)中,該有機載體係松油醇、 鄰位苯二甲二丁酯及乙基纖維素之混合劑。 12. 如申請專利範圍第11項所述場發射電子源之製造 方法,其中,於步驟(二)中,該漿料中吸氣劑微粒 之質量百分比濃度比例為40〜80%。 13. 如申請專利範圍第12項所述場發射電子源之製造 方法,其中,於步驟(二)中,該混合過程係於60〜80°C 下進行3〜5小時。 14. 如申請專利範圍第13項所述場發射電子源之製造 方法,其中,於步驟(三)中,該塗敷過程係於灰塵 度小於1000/m3之環境中進行。 15. 如申請專利範圍第14項所述場發射電子源之製造 方法,其中,於步驟(四)中,該烘乾與焙燒過程係 於真空或惰性氣體保護下進行。 15 1307907 16. 如申請專利範圍第15項所述場發射電子源之製造 方法,其中,步驟(四)進一步包括對所形成之電子 發射層表面進行摩擦,部分奈米材料末端經摩擦後露 出電子發射層表面,後將場發射電子源加熱,加熱溫 度爲400〜500°C。 17. 如申請專利範圍第16項所述場發射電子源之製造 方法,其中,該加熱過程係於真空或惰性氣體保護下 進行。 16 1307907 ' 七、指定代表圖: (一) 本案指定代表圖為:圖3。 (二) 本代表圖之元件符號簡單說明: 頂部 310 奈米材料 410 玻璃 420 導電金屬微粒 430 吸氣劑微粒 440 八、本案若有化學式時,請揭示最能顯示發明特徵的化學 式: 61307907 X. Patent Application Area 1. A field emission electron source comprising at least one electron emitter, the electron emitter comprising a conductive substrate having a top portion and an electron emission layer formed on the conductive substrate, the electron emission layer covering at least the conductive substrate The top portion, wherein the electron emission layer comprises getter particles, metal conductive particles, nano materials, and glass. 2. The field emission electron source of claim 1, wherein the getter particles are non-evaporable getters. 3. The field emission electron source of claim 2, wherein the getter particles have a diameter of 1 to 10 microns. 4. The field emission electron source of claim 3, wherein the nanomaterial has a length of 5 to 15 microns and a diameter of 1 to 100 nanometers. 5. The field emission electron source of claim 3, wherein the conductive substrate is made of an alloy material of silver, copper, nickel, gold or any combination thereof. 6. The field emission electron source of claim 3, wherein the conductive substrate is made of a semiconductor germanium or a germanium dioxide material. 7. The field emission electron source according to claim 3, wherein the conductive metal particles are made of silver or indium tin oxide and have a diameter of 0.1 to 10 μm. 8. The method for manufacturing a field emission electron source, comprising the steps of: (a) providing getter particles, conductive metal particles, glass particles and a nano material, and at least one conductive substrate, the conductive substrate having a top Step (2), the getter particles, the conductive metal particles, the glass particles and the nano material are thoroughly mixed in an organic carrier to form a slurry; 14 1307907 Step (3), applying the slurry to at least the conductive substrate The surface of the top portion; in step (4), the conductive substrate coated with the slurry is dried and fired at 300 to 600 ° C to form an electron emission layer on the surface of the top of the conductive substrate to obtain an electron emitter to form a field. Launch an electron source. 9. The method of manufacturing a field emission electron source according to claim 8, wherein in the step (1), the getter particles are non-evaporable getters, and the activation temperature is 300 to 500 ° C. . 10. The method of manufacturing a field emission electron source according to claim 9, wherein in the step (1), the glass particles are low-melting glass particles having a melting point of 350 to 600 ° C and a particle diameter. For 10~100 nm. 11. The method of producing a field emission electron source according to claim 10, wherein in the step (2), the organic carrier is terpineol, ortho-dibutyl butylate and ethyl cellulose. Mixture. 12. The method of manufacturing a field emission electron source according to claim 11, wherein in the step (2), the mass percentage of the getter particles in the slurry is 40 to 80%. 13. The method of manufacturing a field emission electron source according to claim 12, wherein in the step (2), the mixing process is carried out at 60 to 80 ° C for 3 to 5 hours. 14. The method of manufacturing a field emission electron source according to claim 13, wherein in the step (3), the coating process is performed in an environment having a dustiness of less than 1000/m3. 15. The method of fabricating a field emission electron source according to claim 14, wherein in the step (4), the drying and baking process is performed under vacuum or inert gas protection. The method for manufacturing a field emission electron source according to claim 15, wherein the step (4) further comprises rubbing the surface of the formed electron emission layer, and the end of the portion of the nano material is rubbed to expose the electron The surface of the emissive layer is heated by a field emission electron source at a heating temperature of 400 to 500 °C. 17. The method of fabricating a field emission electron source according to claim 16, wherein the heating process is performed under vacuum or inert gas protection. 16 1307907 ' VII. Designated representative map: (1) The representative representative of the case is as shown in Figure 3. (2) The symbol of the symbol of this representative figure is simple: Top 310 Nano material 410 Glass 420 Conductive metal particles 430 Getter particles 440 8. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: 6
TW95112494A 2006-04-07 2006-04-07 Field emission electron source and method for making the same TWI307907B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95112494A TWI307907B (en) 2006-04-07 2006-04-07 Field emission electron source and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95112494A TWI307907B (en) 2006-04-07 2006-04-07 Field emission electron source and method for making the same

Publications (2)

Publication Number Publication Date
TW200739641A TW200739641A (en) 2007-10-16
TWI307907B true TWI307907B (en) 2009-03-21

Family

ID=45071702

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95112494A TWI307907B (en) 2006-04-07 2006-04-07 Field emission electron source and method for making the same

Country Status (1)

Country Link
TW (1) TWI307907B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI386972B (en) * 2008-04-03 2013-02-21 Hon Hai Prec Ind Co Ltd Method for making field emission electron source

Also Published As

Publication number Publication date
TW200739641A (en) 2007-10-16

Similar Documents

Publication Publication Date Title
JP5199052B2 (en) Method for manufacturing thermionic emission device
CN102064063B (en) Field-emission cathode device and preparation method thereof
KR20030059291A (en) Pattern forming method for carbon nanotube, and field emission cold cathode and method of manufacturing the cold cathode
AU6447399A (en) Article comprising enhanced nanotube emitter structure and process for fabricating article
AU1251500A (en) Article comprising aligned, Truncated carbon Nanotubes and processes for fabricating article
JP4903664B2 (en) Method for manufacturing electron-emitting device
CN100573777C (en) Field emitting electronic source and manufacture method thereof
US20070247071A1 (en) Field emission lamp and method for making the same
KR101939831B1 (en) Method of manufacturing field emitter electrode
TWI307907B (en) Field emission electron source and method for making the same
JP4327747B2 (en) Electronic device having non-evaporable getter and method for manufacturing the electronic device
US20070222364A1 (en) Field emission plane light source and method for making the same
TWI297169B (en) Field emission illumination light source and method for making the same
TWI309059B (en) Field emission plane light source and method for making the same
JP5069486B2 (en) Thin film type electron emission material, method for manufacturing the same, field emission type device, and field emission type display
TWI276135B (en) Field emission lamp and method for making the same
TWI352369B (en) Thermionic emission device and method for making t
TWI401209B (en) Field emission componet and method for making same
JP2012129182A (en) Field emission device
TWI364055B (en) Field emission light source
TW200935485A (en) Thermionic emission device
KR20120058136A (en) Metal-carbon nanotube composite powder, metal-carbon nanotube composite paste, and field emission device using the same
US20060012281A1 (en) Carbon nanotube field emitter and method for producing same
TWI321802B (en) Method of making field emission electron source
KR101151353B1 (en) Fabrication method of needle-shape field emission-type electron emitter and field emission-type electron emitter thereby