TWI364055B - Field emission light source - Google Patents

Field emission light source Download PDF

Info

Publication number
TWI364055B
TWI364055B TW96138148A TW96138148A TWI364055B TW I364055 B TWI364055 B TW I364055B TW 96138148 A TW96138148 A TW 96138148A TW 96138148 A TW96138148 A TW 96138148A TW I364055 B TWI364055 B TW I364055B
Authority
TW
Taiwan
Prior art keywords
field emission
light source
emission light
base
anode
Prior art date
Application number
TW96138148A
Other languages
Chinese (zh)
Other versions
TW200917319A (en
Inventor
Wei-Qi Fu
Yang Wei
Peng Liu
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96138148A priority Critical patent/TWI364055B/en
Publication of TW200917319A publication Critical patent/TW200917319A/en
Application granted granted Critical
Publication of TWI364055B publication Critical patent/TWI364055B/en

Links

Description

1364055 101年.02月07日按正替換頁 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種光源,尤其涉及一種場發射光源。 【先前技術】.1364055 101. 02. 07. The replacement page is as follows. 6. Description of the Invention: [Technical Field] [0001] The present invention relates to a light source, and more particularly to a field emission light source. [Prior technology].

[0002] 場發射光源係一種新興光源,其發光原理係於電場作用 下,低電勢處之金屬尖端、奈米碳管等電子發射體發射 出電子,轟擊高電勢處之螢光體而發出可見光,請參閱 "A Fully Sealed Luminescent Tube Based on Carbon Nanotube Field Emission", Mirko Croci, et a 1, Microelectronics Journal, vol.35, p329〜336 (2004)。 [0003] 先前關於採用奈米碳管作為場發射光源之研究主要集中 於平面光源領域,平面光源主要應用於各種背光模組中 。於平面光源中,由於屏蔽效應,能有效發射電子之奈 米碳管較少,因此此種設計之場發射光源發光效率並不 局。 [0004] 有鑒於此,提供一種具有更高發光效率之場發射光源實 為必要。 【發明内容】 [0005] 以下將以實施例說明一種具有更高發光效率之場發射光 源。 [0006] —種場發射光源,包括基座、支撐體、殼體、陰極及陽 極,該殼體安裝於該基座上從而與該基座定義出一收容 空間,該支撐體包括第一端與第二端,該支撐體之第一 09613814#單編號 A〇101 第3頁/共13頁 1013043576-0 1364055 101年.02月07日梭正替換頁 端與該基座相連’該第二端自該第一端向該收容空間内 延伸,該陰極連接於該第二端上,該陽極設置於該殼體 内壁上,該陽極上設置有螢光粉,其中,該陰極包括基 體,該基體表面設置奈米碳管,該基體呈多面體狀、球 狀或橢球狀,所述支撐體由高導電率的金屬或合金形成 ,該支撐體用於支撐所述陰極並與外界電源電連接。 [0007] 與先辑技術相較’所述的場發射光源中,採用球形之陰 極作為發射源’得到了發射效率高、發射穩定之球面光 源。 【實施方式】 [0008] 參閱圖1 ’本技術方案第一實施例之場發射光源1〇〇包括 基座10、殼體11、陽極12、支撐體13、陰極14。 [0009] 基座1〇由絕緣材料製成,如玻璃、陶瓷等。殼體11 一端 具有開口 110,殼體丨丨具有開口 110之一端安裝於基座10 上從而使设體11與基座1 0共同定義出—個密閉之收容空 間。殼體11可由透明之絕緣材料製成,例如玻璃或透明 陶瓷。殼體11可為球狀、橢球狀或梨狀,本實施例當中 殼體11呈梨狀。 [0010] ϋτ極12為-層透明導電薄膜例如氡化麵錫薄膜或者銘膜 。本實施例當中陽極丨2為透明之氧化銦錫薄膜。陽極12 形成於殼體11内壁上。導線122穿過基座1〇並與陽極12 電連接,導線122用於將陽極12電連接到電源上。於陽極 12靠近陰極14之-側上設置有鸯光_。螢光⑽可為 白色螢光粉,也可為彩色榮光粉。當陽極12採用減時 押·,螢光粉15應設置於陽極12與殼體u之間,陰極14發射 09613814^單编號A0101 第4頁/共13頁 1013043576-0 [0011]1364055 1101 年.02月 0·7 日] 出之電子可穿過銘膜到達螢光粉15。 支標體13包括第一端132與第二端134。第一端132突出 ^座’從而可用於與外界電源電連接,第二端134位於 1中〜。支撐體13由鬲導電率金屬或合金例如銅或 鋁形成。陰極14包括基體142與形成於基體142表面之陰 極發射體144。基體142連接於支撐體13之第二端134上 〇 [0012] 基體142可為多面體狀、球狀或橢球狀,本實施例中,基 體142為球狀。球狀基體142使陰極14於各個方向上發光 均勻,而多面體狀之基體142則可使陰極14於不同方向上 具有不同之發光特性。基體142可由金屬、合金、或非金 屬材料,只須其能耐受500度之溫度不熔化即可。例如不 錄鋼、鐵、鈷、鎳、銅、鋁等。本實施例中,基體142為 不錄鋼小球。基體142之大小比殼體11内之空間小即可。 優選地’基體142可與殼體11同心設置‘,如此設計可使基 體142表面上各點到殼體11之間之距離相等,從而使得電 子之發射更加均勻。 [0013] 陰極發射體144包括大量奈米碳管’奈米碳管可直接熔接 於基體142上’也可通過導電之黏結層黏結於基體142上 ,例如可使用銀膠將奈米碳管黏結於基體142上。奈米碳 管可為單壁奈米碳管或多壁奈米碳管。長度可為10微米 到10毫米。 [0014] 由於殼體11内需要保持一定之真空度,因此,優選地’ 可於殼體11内壁上設置吸氣劑(圖未示),如蒸散型吸氣 0961381#單編號删1 第5頁/共13頁 1013043576-0 1364055 101 年.02月 劑金屬膜。吸氣劑可採用蒸鍍之方式於殼體11密封前形 成於殼體11之内壁上,例如,設置於殼體11靠近開口 11〇 之一端之内壁上’或者形成於支撐體丨3之表面。 [0015] 本實施例之場發射光源100中,採用球形之陰極14作為發 射源’使得陰極表面奈米碳管場發射之屏蔽效應降低, 能有效發射電子之奈米碳管數量上升,從而得到了發射 效率高、發射穩定之球面光源。參閱圖2,其為本實施例 之場發射光源100之場發射電流-電壓曲線及富勒-諾得漢 (Fowler-Nordheim,F-N)擬合曲線。可看出於施加 之電壓增大到8000伏(V)左右時,發射電流明顯增大。 因此,本實施例之場發射光源100理想工作電壓為8000V 左右》參閱圖3,其為本實施例之場發射光源100穩定性 測量示意圖,工作電壓為8021伏(V),可看出,本實施 例之場發射光源100於此電壓下長時間工作時具有很高之 穩定性。於此工作條件下,場發射光源100之發光效率為 26. 4流明每瓦(lra/W)。理認工作壽命為9000小時。 [0016] 本實施例中之陰極14可由以下方法製備: 1013043576-0 [ΟΟΠ] 首先,於基體142表面預先塗敷一層銀漿料’再於銀漿料 上塗佈奈米碳管漿料並去除奈米碳管漿料中之有機载體 。該奈米碳管漿料包括奈米碳管、導電金屬微粒、低熔 點玻璃及有機載體。其中各成份之配製濃度比例分別為 :5~15%之奈米碳管、10〜20%之導電金屬微粒、5%之低 熔點玻璃及60〜80%之有機載體。導電金屬微粒之材料選 自氧化銦錫或銀,該有機載體係作為主要溶劑之松油醇 、作為増塑劑之少量鄰位苯二甲酸二丁酯及作為穩定劑 09613814#早编號A0101 第6頁/共13頁 1364055 [0018] [0019] [0020] [0021] [0022] 09613814^單編號 A_1 1013043576-0 101年.02月07日梭正替換頁 之少量乙基纖維素之混合載體。將各成份按比例混合後 ,可通過超聲震盪之方法使各成份於漿料中均勻分散而 得到均勻穩定之漿料。去除有機載體之方式可以採用烘 乾、自然晾乾或熱風吹乾等方法。 最後將基體142放於馬弗爐中燒結,燒結溫度425度,燒 結可於氮氣之保護氛圍中進行。燒結之目的係使低炫點 玻璃熔融,可將奈米碳管黏結於基體142上,燒結完成之 後即形成陰極發射體144。導電金屬微粒可保證奈米碳管 和基體142之間之電性連接。低炫點玻璃之溶點於 400~500 C之範圍内。為進一步地增強陰極丨4之場發射 特性,於經過烘乾和燒結之後,對陰極發射體144之表面 進行摩擦可使奈米碳管露頭並取向一致,從而達到增強 場發射陰極之場發射特性之目的。或者採用膠帶於陰極 發射體144表面進行黏貼使奈米碳管露頭。 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本技術方案提供之場發射光源結構示意圖。 圖2係本技術方案提供之場發射光源場發射電流-電壓曲 線。 圖3係本技術方案提供之場發射光源場發射穩定性測試曲 第7頁/共a頁 1364055 _. 101年02月07日按正替換頁 線。 【主要元件符號說明】 [0023] 基座:10 [0024] 殼體:11 [0025] 陽極:12 [0026] 支撐體:13 [0027] 陰極:14 [0028] 螢光粉:15 [0029] 場發射光源: 100 [0030] 開口 : 110 [0031] 導線:122 [0032] 第一端:132 [0033] 第二端:134 [0034] 基體:142 [0035] 陰極發射體: 144 09613814#單编號删1 第8頁/共13頁 1013043576-0[0002] The field emission light source is an emerging light source whose light-emitting principle is under the action of an electric field. The electron emitters such as metal tips and carbon nanotubes at low potential emit electrons, bombard the phosphor at high potential and emit visible light. See, "A Fully Sealed Luminescent Tube Based on Carbon Nanotube Field Emission", Mirko Croci, et a 1, Microelectronics Journal, vol. 35, p329~336 (2004). [0003] Previous studies on the use of carbon nanotubes as field emission sources have focused on the field of planar light sources, which are mainly used in various backlight modules. In the planar light source, due to the shielding effect, there are fewer carbon nanotubes that can effectively emit electrons, so the luminous efficiency of the field emission source of this design is not uniform. In view of the above, it is necessary to provide a field emission light source having higher luminous efficiency. SUMMARY OF THE INVENTION [0005] A field emission light source having higher luminous efficiency will be described below by way of example. [0006] a field emission light source, comprising a base, a support body, a housing, a cathode and an anode, the housing being mounted on the base to define a receiving space with the base, the support body comprising a first end With the second end, the first support of the support body 09613814# single number A 〇 101 page 3 / 13 pages 1013043576-0 1364055 101. February 07 shuttle is replacing the page end connected to the base 'the second The cathode extends from the first end to the receiving space, the cathode is connected to the second end, the anode is disposed on the inner wall of the housing, the anode is provided with phosphor powder, wherein the cathode comprises a base body, The surface of the substrate is provided with a carbon nanotube, which is in the form of a polyhedron, a sphere or an ellipsoid. The support is formed of a high conductivity metal or alloy for supporting the cathode and electrically connecting with an external power source. . [0007] In the field emission light source described in the prior art, a spherical source is used as the emission source, and a spherical light source having high emission efficiency and stable emission is obtained. [Embodiment] [0008] Referring to Fig. 1 'The field emission light source 1 of the first embodiment of the present invention includes a susceptor 10, a casing 11, an anode 12, a support 13, and a cathode 14. [0009] The susceptor 1 is made of an insulating material such as glass, ceramics or the like. The housing 11 has an opening 110 at one end thereof, and the housing has one end of the opening 110 mounted on the base 10 so that the housing 11 and the base 10 together define a sealed receiving space. The housing 11 can be made of a transparent insulating material such as glass or transparent ceramic. The casing 11 may be in the form of a sphere, an ellipsoid or a pear. In the present embodiment, the casing 11 has a pear shape. [0010] The 极τ pole 12 is a-layer transparent conductive film such as a bismuth tin-coated film or a film. In the present embodiment, the anode crucible 2 is a transparent indium tin oxide film. The anode 12 is formed on the inner wall of the casing 11. Wire 122 passes through base 1 and is electrically coupled to anode 12, which is used to electrically connect anode 12 to a power source. A calendering _ is provided on the side of the anode 12 close to the cathode 14. Fluorescent (10) can be white fluorescent powder or colored glory powder. When the anode 12 is deactivated, the phosphor 15 should be disposed between the anode 12 and the casing u, and the cathode 14 is emitted 09813814^single number A0101 page 4/total 13 pages 1013043576-0 [0011] 1364055 1101 .02月月0·7] The electrons can pass through the film to reach the phosphor powder 15. The support body 13 includes a first end 132 and a second end 134. The first end 132 protrudes from the socket so that it can be used for electrical connection with an external power source, and the second end 134 is located at 1. The support 13 is formed of a tantalum conductivity metal or alloy such as copper or aluminum. The cathode 14 includes a base 142 and a cathode emitter 144 formed on the surface of the base 142. The base 142 is connected to the second end 134 of the support body. [0012] The base 142 may be polyhedral, spherical or ellipsoidal. In this embodiment, the base 142 is spherical. The spherical substrate 142 allows the cathode 14 to emit light uniformly in all directions, while the polyhedral substrate 142 allows the cathode 14 to have different luminescent properties in different directions. The base 142 may be made of a metal, an alloy, or a non-metal material, and it is only required to withstand a temperature of 500 degrees without melting. For example, steel, iron, cobalt, nickel, copper, aluminum, etc. are not recorded. In this embodiment, the base 142 is a non-recorded steel ball. The size of the base 142 may be smaller than the space inside the casing 11. Preferably, the base 142 can be disposed concentrically with the housing 11 such that the distance between the points on the surface of the base 142 to the housing 11 is equal, thereby making the emission of electrons more uniform. [0013] The cathode emitter 144 includes a plurality of carbon nanotubes, wherein the carbon nanotubes can be directly welded to the substrate 142, and can also be bonded to the substrate 142 through a conductive adhesive layer. For example, the carbon nanotubes can be used to bond the carbon nanotubes. On the substrate 142. The carbon nanotubes can be single-walled carbon nanotubes or multi-walled carbon nanotubes. The length can range from 10 microns to 10 mm. [0014] Since it is necessary to maintain a certain degree of vacuum in the casing 11, it is preferable to provide a getter (not shown) on the inner wall of the casing 11, such as an evapotranspiration type 0961381# single number deletion 1 Page / Total 13 pages 1013043576-0 1364055 101 year .02 month metal film. The getter may be formed on the inner wall of the casing 11 by vapor deposition before the casing 11 is sealed, for example, on the inner wall of the casing 11 near one end of the opening 11 or formed on the surface of the support body 3. . [0015] In the field emission light source 100 of the embodiment, the spherical cathode 14 is used as the emission source, so that the shielding effect of the carbon nanotube field emission on the cathode surface is reduced, and the number of carbon nanotubes capable of effectively emitting electrons is increased, thereby obtaining A spherical light source with high emission efficiency and stable emission. Referring to Fig. 2, it is the field emission current-voltage curve of the field emission source 100 of the present embodiment and the Fowler-Nordheim (F-N) fitting curve. It can be seen that when the applied voltage is increased to about 8000 volts (V), the emission current is significantly increased. Therefore, the ideal operating voltage of the field emission light source 100 of the present embodiment is about 8000V. Referring to FIG. 3, it is a schematic diagram of the stability measurement of the field emission light source 100 of the present embodiment. The working voltage is 8021 volts (V). The field emission source 100 of the embodiment has high stability when operated for a long time at this voltage. Under this operating condition, the field emission source 100 has a luminous efficiency of 26.4 lumens per watt (lra/W). The working life is 9000 hours. [0016] The cathode 14 in this embodiment can be prepared by the following method: 1013043576-0 [ΟΟΠ] First, a layer of silver paste is pre-coated on the surface of the substrate 142, and then the carbon nanotube slurry is coated on the silver paste and The organic vehicle in the carbon nanotube slurry is removed. The carbon nanotube slurry includes a carbon nanotube, a conductive metal particle, a low melting point glass, and an organic vehicle. The ratio of the components to be prepared is: 5 to 15% of carbon nanotubes, 10 to 20% of conductive metal particles, 5% of low-melting glass, and 60 to 80% of organic carriers. The material of the conductive metal particles is selected from indium tin oxide or silver, the organic carrier is terpineol as a main solvent, a small amount of dibutyl orthophthalate as a plasticizer, and as a stabilizer 09813814# early number A0101 6 pages/total 13 pages 1364055 [0018] [0020] [0022] 09613814^Single number A_1 1013043576-0 101. February 07, the shuttle is replacing the small amount of ethyl cellulose mixed carrier . After the components are mixed in proportion, the components can be uniformly dispersed in the slurry by ultrasonic vibration to obtain a uniform and stable slurry. The method of removing the organic vehicle can be carried out by drying, natural drying or hot air drying. Finally, the substrate 142 is sintered in a muffle furnace at a sintering temperature of 425 degrees, and the sintering can be carried out in a nitrogen atmosphere. The purpose of sintering is to melt the low-spot glass, and the carbon nanotubes can be bonded to the substrate 142, and the cathode emitter 144 is formed after the sintering is completed. The conductive metal particles ensure electrical connection between the carbon nanotubes and the substrate 142. The melting point of the low-spot glass is in the range of 400~500 C. In order to further enhance the field emission characteristics of the cathode crucible 4, after drying and sintering, the surface of the cathode emitter 144 is rubbed to make the carbon nanotubes outcrop and uniformly aligned, thereby enhancing the field emission characteristics of the field emission cathode. The purpose. Alternatively, the tape may be adhered to the surface of the cathode emitter 144 to make the carbon nanotubes outcrop. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing the structure of a field emission light source provided by the present technical solution. Fig. 2 is a field emission current-voltage curve of a field emission source provided by the technical solution. Fig. 3 is a field emission stability test field of the field emission source provided by the technical solution. Page 7/total a page 1364055 _. On February 7, 101, the page is replaced by the positive line. [Main component symbol description] [0023] Base: 10 [0024] Housing: 11 [0025] Anode: 12 [0026] Support: 13 [0027] Cathode: 14 [0028] Fluorescent powder: 15 [0029] Field emission source: 100 [0030] Opening: 110 [0031] Conductor: 122 [0032] First end: 132 [0033] Second end: 134 [0034] Substrate: 142 [0035] Cathode emitter: 144 09613814#单No. Delete 1 Page 8 / Total 13 Page 1013043576-0

Claims (1)

101年02月07日修正替換頁 1364055 七、申請專利範圍: 1 . 一種場發射光源,包括基座、支撐體、殼體、陰極及陽極 ,該殼體安裝於該基座上從而與該基座定義出一收容空間 ,該支撐體包括第一端與第二端,該支撐體之第一端與該 基座相連,該第二端自該第一端向該收容空間内延伸,該 陰極連接於該第二端上,該陽極設置於該殼體内壁上,該 陽極上設置有螢光粉,其改進在於,該陰極包括基體,該 基體表面設置有奈米碳管,該基體呈多面體狀、球狀或橢 球狀,所述支撐體由高導電率的金屬或合金形成,該支撐 體用於支撐所述陰極並與外界電源電連接。 2 .如申請專利範圍第1項所述之場發射光源,其中,該殼體 為球狀、橢球狀或梨狀。 3.如申請專利範圍第2項所述之場發射光源,其中,該基體 與該殼體同心設置。 4 .如申請專利範圍第1項所述之場發射光源,其中,該基體 表面設置有一層導電黏結層,該奈米碳管黏結於該導電黏 結層上。 5 .如申請專利範圍第4項所述之場發射光源,其中,該導電 黏結層為銀膠。 6.如申請專利範圍第1項所述之場發射光源,其中,該陽極 為透明導電膜。 7 .如申請專利範圍第6項所述之場發射光源,其中,該透明 導電膜為氧化銦錫薄膜。 8 .如申請專利範圍第1項所述之場發射光源,其中,該陽極 為鋁膜。 09613814#單編號 A〇101 第9頁/共13頁 1013043576-0 1364055 101年02月07日修正替換頁 9.如申請專利範圍第1項所述之場發射光源,其中,該殼體 内設置有吸氣劑。 10 .如申請專利範圍第1項所述之場發射光源,其中,該奈米 碳管為單壁奈米碳管或多壁奈米碳管。 09613814# 單織删1 第10頁/共13頁 1013043576-0Modified on February 7, 101, pp. 1364055 VII. Patent Application Range: 1. A field emission light source comprising a base, a support body, a casing, a cathode and an anode, the casing being mounted on the base and the base The support defines a receiving space, the support body includes a first end and a second end, the first end of the support body is connected to the base, and the second end extends from the first end into the receiving space, the cathode Connected to the second end, the anode is disposed on the inner wall of the casing, and the anode is provided with phosphor powder. The improvement is that the cathode comprises a base body, and the surface of the base body is provided with a carbon nanotube, and the base body is a polyhedron In the shape of a sphere, a sphere or an ellipsoid, the support is formed of a highly conductive metal or alloy for supporting the cathode and electrically connected to an external power source. 2. The field emission light source of claim 1, wherein the housing is spherical, ellipsoidal or pear-shaped. 3. The field emission source of claim 2, wherein the substrate is concentric with the housing. 4. The field emission light source of claim 1, wherein the surface of the substrate is provided with a conductive bonding layer, and the carbon nanotube is bonded to the conductive bonding layer. 5. The field emission light source of claim 4, wherein the conductive bonding layer is silver paste. 6. The field emission light source of claim 1, wherein the anode is a transparent conductive film. 7. The field emission light source of claim 6, wherein the transparent conductive film is an indium tin oxide film. 8. The field emission light source of claim 1, wherein the anode is an aluminum film. 09613814#单单A〇101 Page 9/13 pages 1013043576-0 1364055 101. The correction of the replacement of the field of the field of claim 1. The field emission source according to claim 1, wherein the housing is provided There is a getter. 10. The field emission source of claim 1, wherein the carbon nanotube is a single-walled carbon nanotube or a multi-walled carbon nanotube. 09613814# Single weave 1 Page 10 of 13 1013043576-0
TW96138148A 2007-10-12 2007-10-12 Field emission light source TWI364055B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96138148A TWI364055B (en) 2007-10-12 2007-10-12 Field emission light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96138148A TWI364055B (en) 2007-10-12 2007-10-12 Field emission light source

Publications (2)

Publication Number Publication Date
TW200917319A TW200917319A (en) 2009-04-16
TWI364055B true TWI364055B (en) 2012-05-11

Family

ID=44726367

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96138148A TWI364055B (en) 2007-10-12 2007-10-12 Field emission light source

Country Status (1)

Country Link
TW (1) TWI364055B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784800B1 (en) * 2013-03-25 2018-12-05 LightLab Sweden AB Shaped cathode for a field emission arrangement

Also Published As

Publication number Publication date
TW200917319A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
US20090066216A1 (en) Field emission light source
JP4481948B2 (en) Field emitter cathode, method of manufacturing the same, and planar light source
KR100479014B1 (en) Display device and method of manufacturing the same
US20050212394A1 (en) Carbon nanotube substrate structure
US7985114B2 (en) Method for making field emission lamp
JP5021450B2 (en) Field emission lamp and manufacturing method thereof
TW201241861A (en) Double-sided light emitting field emission device and manufacturing method thereof
JP4903664B2 (en) Method for manufacturing electron-emitting device
US7915799B2 (en) Field emission lamp having carbon nanotubes
CN100573809C (en) Field emission displaying light source and manufacture method thereof
TWI364055B (en) Field emission light source
CN101335175B (en) Field emission pixel tube
TWI297169B (en) Field emission illumination light source and method for making the same
US8786171B2 (en) Field emission light source device and manufacturing method thereof
US7800293B2 (en) Field emission lamp and method for making the same
TWI636479B (en) Shaped cathode for a field emission arrangement and method for selecting the shape thereof
JP5625113B2 (en) Field emission surface light source and manufacturing method thereof
JP2000311590A5 (en)
TWI303075B (en) Field emission double planes light source and method for making the same
JP5648127B2 (en) Field emission anode plate, field emission light source and manufacturing method thereof
JP2003346707A (en) Fluorescent lamp
TWI276135B (en) Field emission lamp and method for making the same
TWI394195B (en) Field emission pixel tube
TWI309059B (en) Field emission plane light source and method for making the same
CN1707739A (en) Image display device