TWI230204B - Method for selectively depositing nano carbon structure on silicon substrate - Google Patents

Method for selectively depositing nano carbon structure on silicon substrate Download PDF

Info

Publication number
TWI230204B
TWI230204B TW91134673A TW91134673A TWI230204B TW I230204 B TWI230204 B TW I230204B TW 91134673 A TW91134673 A TW 91134673A TW 91134673 A TW91134673 A TW 91134673A TW I230204 B TWI230204 B TW I230204B
Authority
TW
Taiwan
Prior art keywords
silicon substrate
vapor deposition
carbon
chemical vapor
selectively depositing
Prior art date
Application number
TW91134673A
Other languages
Chinese (zh)
Other versions
TW200408723A (en
Inventor
Jeng-Tsz Guo
Huei-Lin Jang
Jau-Shiun Lin
Jr-Ming Shiu
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW91134673A priority Critical patent/TWI230204B/en
Publication of TW200408723A publication Critical patent/TW200408723A/en
Application granted granted Critical
Publication of TWI230204B publication Critical patent/TWI230204B/en

Links

Abstract

A method for selectively depositing a nano carbon structure on a silicon substrate comprises sequentially: specifying a region on a silicon substrate for growing a nano carbon structure; growing a metallic silicide on the specified region; and using a chemical vapor deposition to grow a nano carbon structure on the surface of the metallic silicide. Since the metallic silicide region on the silicon substrate is the region used for growing a nano carbon structure, an objective of selectively depositing a nano carbon structure is achieved accordingly. Furthermore, the metallic silicide region is formed by a semiconductor process, a method according to the present invention has a high compatibility with the current semiconductor facilities.

Description

1230204 五、發明說明(1) 發明所屬之技術領域 本發明乃關於一種選擇性沉積碳奈米結構於矽晶基材· 之方法’可應用於半導體元件上作為接觸窗與金屬間的連 接線’或场無射顯不恭之電子發射源。 i前技術 自從飯島博士於1 9 9 1年發現碳奈米結構之後,在 這十年間奈米材料科技的研究與應用,和生物科技及光電 資訊科技三者已成為當今科學及工程界最為熱門之顯學。 而為碳奈米結構之碳奈米管(car*bon nanotube, CNT )/碳奈米纖維(carbon nanofiber, CNF),由於是由六 方碳原子點陣構成之特殊圓柱管結構,擁有獨特的物理與 化學性質,如: 1 ·百倍或甚至千倍的管長/直徑比。 2 ·視結構旋度及缺陷可具良導電性、半導體性及超導電 性。 3 ·良導熱性(類似鑽石)。 4 ·高楊氏係數:約1 terapascals (碳纖維的8倍、 鋼的5倍)。 常用於合成碳奈米結構的合成方法如:電弧放電法 (arch discharge method)、化學氣相沉積法 (chemical vapor deposition method )、雷射蒸發法 (laser ablation vaporization)等’其中,以使用化 學氣相沉積法最具優勢。由於可以直接沉積在基材上’並1230204 V. Description of the invention (1) Technical field to which the invention belongs The invention relates to a method for selectively depositing a carbon nanostructure on a silicon substrate · It can be applied to a semiconductor device as a connection line between a contact window and a metal Or there is no field of radioactive electron emission source. i-Previous Technology Since Dr. Iijima discovered the carbon nanostructure in 1991, in the past ten years, the research and application of nanomaterial technology, and biotechnology and optoelectronic information technology have become the most popular in the scientific and engineering circles today. Significance. The carbon nanofiber (car * bon nanotube, CNT) / carbon nanofiber (CNF), which has a carbon nanostructure, has a unique cylindrical tube structure composed of a hexagonal carbon atom lattice, which has unique physics. With chemical properties, such as: 1. Hundred or even thousand times the tube length / diameter ratio. 2 · Depending on the structure's rotation and defects, it can have good conductivity, semiconductivity, and superconductivity. 3 · Good thermal conductivity (similar to diamond). 4 · High Young's coefficient: about 1 terapascals (8 times of carbon fiber, 5 times of steel). Synthetic methods commonly used to synthesize carbon nanostructures such as: arc discharge method, chemical vapor deposition method, laser ablation vaporization, etc., among which chemical gas is used The facies deposition method has the most advantages. Since it can be deposited directly on the substrate ’

1230204 五、發明說明(2) 得到高純度的奈米管,因此極具商業應用之潛力。另外, 使用化學氣相沉積法的一項優勢是必須藉由外加觸媒,才 能成為碳奈米結構,亦即,觸媒決定碳奈米結構成長的地 方。 現有的選擇性沉積方法,如:分子篩法、選擇性的植 入晶種、或塗佈晶種與溶膠-凝膠(sol-gel )於基材上等 ,於製造流程與儀器設備上之考量,較無法與現有的半導 體技術相容。另,現有的技術在準備好已有的圖案之基材 上,必須再加一道製程,用於沉積觸媒薄膜。而觸媒薄膜 是否能夠有效的控制在要成長的地方並不容易,導致成長 碳奈米結構的選擇性不佳。 有鑑於此,本發明人遂竭其心智,憑其從事相關研究 多年經驗,終有本發明之產生。於是,本發明係提供一個 新的製程技術,可以容易且準確地選擇性沉積破奈米結構 於矽晶基材上。該製程方法在製作圖案時即可同時完成觸 媒薄膜沉積的製作,再利用化學氣相沉積法即可將碳奈米 結構成長在觸媒薄膜上,達到選擇性沉積碳奈米結構於矽 晶基材上之目的。另,本發明之方法與既有半導體製程技 術相容性極高,可以直接應用於現有的半導體製程中,無 須太多額外之儀器設備,因此利於半導體或相關業者之製 程規劃。 發明目的 由是,本發明之主要目的,即在於提供一種選擇性沉1230204 V. Description of the invention (2) High-purity nano tube is obtained, so it has great potential for commercial application. In addition, an advantage of using the chemical vapor deposition method is that a catalyst must be added to form a carbon nanostructure, that is, the catalyst determines where the carbon nanostructure grows. Existing selective deposition methods, such as: molecular sieve method, selective implantation of seed crystals, or coating of seed crystals and sol-gel on substrates, etc., are considered in manufacturing processes and instruments , Less compatible with existing semiconductor technology. In addition, in the existing technology, a process must be added to a substrate prepared with an existing pattern to deposit a catalyst film. Whether the catalyst film can be effectively controlled in the place where it is to grow is not easy, resulting in poor selectivity of the growth carbon nanostructure. In view of this, the present inventors have exhausted their minds and relying on their many years of experience in related research, the invention has finally come into being. Therefore, the present invention provides a new process technology, which can easily and accurately selectively deposit nanostructures on silicon substrates. This process method can simultaneously complete the production of catalyst thin film deposition during patterning, and then use chemical vapor deposition to grow the carbon nanostructure on the catalyst thin film, so as to selectively deposit the carbon nanostructure on the silicon crystal. Purpose on the substrate. In addition, the method of the present invention is highly compatible with the existing semiconductor process technology, and can be directly applied to the existing semiconductor process without the need for too many additional equipment, which is beneficial to the process planning of the semiconductor or related industry. Object of the invention Therefore, the main object of the present invention is to provide a selective sinker.

1230204 五、發明說明(3) 積碳奈米結構於矽晶基材的方法,藉由半導體製程在矽晶 基材上成長金屬石夕化物後,於金屬石夕化物表面再成長碳奈 米結構。 發明内容 為達到上述目的,本發明是這樣實現的:一種選擇性 沉積碳奈米結構於矽晶基材之方法,依序至少包含下列步 驟: (a )於碎晶基材上決定欲成長碳奈米結構的區域’措由1230204 V. Description of the invention (3) A method for depositing carbon nanostructures on silicon substrates. After the metallization is grown on the silicon substrates by a semiconductor process, carbon nanostructures are grown on the surface of the metallization. . SUMMARY OF THE INVENTION In order to achieve the above object, the present invention is achieved as follows: a method for selectively depositing a carbon nanostructure on a silicon crystal substrate, including at least the following steps in sequence: (a) determining the carbon to be grown on the broken crystal substrate Nano-structured area

(i )沉積一層二氧化矽於矽晶基材上,再 (i i )利用半導體製程技術將光罩圖案轉移至矽晶基 材上,而該光罩圖案定義欲成長碳奈米結構的 區域, (b )於欲成長碳奈米結構的區域生長金屬石夕化物,藉由 (iii)沉積金屬薄膜;再 (i v )使用快速升溫熱處理法生長金屬石夕化物,該金 屬矽化物之生長區域為金屬薄膜與矽晶基材之 接觸區域;與(i) depositing a layer of silicon dioxide on a silicon substrate, and (ii) using a semiconductor process technology to transfer the mask pattern onto the silicon substrate, and the mask pattern defines a region where a carbon nanostructure is to be grown, (b) growing a metal oxide compound in a region where a carbon nanostructure is to be grown, and (iii) depositing a metal thin film; and (iv) using a rapid temperature rise heat treatment method to grow the metal oxide compound. The growth region of the metal silicide is The contact area between the metal film and the silicon substrate; and

(v )使用化學蝕刻方法去除未生成金屬矽化物之金 屬薄膜; (c )於金屬石夕化物表面利用化學氣相沉積法成長碳奈米 結構。(v) using a chemical etching method to remove the metal thin film from which no metal silicide is formed; (c) growing a carbon nanostructure on the surface of the metal lithocide by chemical vapor deposition.

第8頁 1230204 五、發明說明(4) 實施方式 為使 貴審查委員進一步了解本發明之結構特徵及功 效,茲藉由下述具體之實施例,並配合所附之圖式,對本 發明做一詳細之說明,說明如后: 請參考第1圖所示,係為本發明方法之流程圖,可分 為·( a )於砍晶基材上決定欲成長碳奈米結構的區域1 0 ; ( b )於欲成長碳奈米結構的區域生長金屬矽化物2 0與(c )於金屬矽化物表面利用化學氣相沉積法成長碳 奈米結構3 0三個主要步驟。其中,於矽晶基材上決定欲 成長碳奈米結構的區域1 0乃是先沉積一層二氧化矽於矽 晶基材上1 0 1 ,可藉由熱氧化法或化學氣相沉積法達成 ,接著,利用半導體製程技術將光罩圖案轉移至矽晶基材 上1 0 2 ,包含:利用黃光微影,塗佈光阻於晶片上,經 微影、曝光、顯影、與去光阻製程將光罩圖案轉移到矽晶 基材上,而該光罩圖案即為欲成長碳奈米結構的區域,然 後再利用蝕刻,將沒有被保護的部份進行蝕刻,以完成轉 移光罩圖案到矽晶基材上之目的。 於欲成長碳奈米結構的區域生長金屬矽化物2 0則是 :先沉積金屬薄膜2 0 1於矽晶基材上,所使用的金屬可 為鐵(F e )、鈷(C 〇 )、鎳(N i )、鉬(Μ 〇 )、.鈦(T i ) 、鎢(W )或鉑(P t )之任一種金屬或其合金,而所沉積 之金屬薄膜厚度係為5埃〜1 2 0 0埃;再使用快速升溫熱處理 法生長金屬矽化物2 0 2 ,在此製程中,僅有金屬薄膜直Page 8 1230204 V. Description of the invention (4) Implementation mode In order to make your review members better understand the structural features and effects of the present invention, the following specific examples will be used in conjunction with the accompanying drawings to make the present invention Detailed description, description is as follows: Please refer to FIG. 1, which is a flowchart of the method of the present invention, which can be divided into (a) a region 10 on the crystal substrate to determine the carbon nanostructure to grow; (b) growing metal silicide 20 in the region where the carbon nanostructure is to be grown; and (c) three steps of growing carbon nanostructure 30 by chemical vapor deposition on the surface of the metal silicide. Among them, the area 10 on the silicon substrate that determines the carbon nanostructure to be grown is firstly deposited a layer of silicon dioxide on the silicon substrate 110, which can be achieved by thermal oxidation or chemical vapor deposition. Then, the semiconductor mask technology is used to transfer the photomask pattern to the silicon substrate 102, which includes: using yellow light lithography to coat the photoresist on the wafer, and then photolithography, exposure, development, and photoresist removal. The mask pattern is transferred to the silicon substrate, and the mask pattern is the area where the carbon nanostructure is to be grown. Then, the unprotected part is etched by etching to complete the transfer of the mask pattern to the silicon. Purpose on the crystal substrate. The growth of metal silicide 20 in the area where carbon nanostructures are to be grown is as follows: a metal thin film 210 is deposited on a silicon substrate, and the metal used may be iron (F e), cobalt (C 〇), Any metal or alloy of nickel (N i), molybdenum (Μ 〇), titanium (T i), tungsten (W), or platinum (P t), and the thickness of the deposited metal film is 5 angstroms to 1 2 0 0 angstroms; and then a rapid heating process is used to grow the metal silicide 2 0 2. In this process, only the metal thin film is straight.

1230204 五、發明說明(5) 接與矽晶接觸區域之金屬薄膜才會與矽反應形成金屬矽化 物;待金屬矽化物生成後,使用化學蝕刻方法去除未生成 金屬矽化物之金屬薄膜2 0 3 。 至現階段為止,藉由半導體製程已成功在矽晶基材上 生成由光罩圖案所轉移之金屬矽化物,該金屬矽化物圖案 即為碳奈米結構之成長區域,此乃因為碳奈米結構成長過 程中,係以金屬矽化物為觸媒。因此,當完成圖案晶片後 ,於金屬矽化物表面利用化學氣相沉積法將可以成長碳奈 米結構3 0 ,而化學氣相沉積法例如:微波電漿化學氣相 沉積法、電子迴旋共振化學氣相沉積法與熱化學氣相沉積 法。 請參考第2圖所示,係為本發明方法之實施例圖: (a )於矽晶基材上決定欲成長碳奈米結構的區域1 0 步驟1 0 1 :沉積一層二氧化矽B於矽晶基材A上; 步驟1 0 2 :利用半導體製程技術將光罩圖案C轉移 至矽晶基材A上,該光罩圖案C定義碳 奈米結構成長之區域; (b )於欲成長碳奈米結構的區域生長金屬矽化物2 0 步驟2 0 1 :沉積金屬薄膜D於矽晶基材A上; 步驟2 0 2 :使用快速升溫熱處理法生長金屬矽化 物E,其中,僅有金屬薄膜D直接與矽 晶基材A接觸區域之金屬薄膜才會與矽 反應形成金屬矽化物E,此外尚有未反 應之金屬薄膜D’覆蓋於金屬矽化物E上1230204 V. Description of the invention (5) Only the metal thin film in the area in contact with the silicon crystal will react with the silicon to form a metal silicide; after the metal silicide is formed, the metal thin film without the metal silicide is removed by chemical etching 2 0 3 . Until now, the metal silicide transferred by the mask pattern has been successfully generated on the silicon substrate through the semiconductor process. The metal silicide pattern is the growth area of the carbon nanostructure. This is because of the carbon nanometer. During the growth of the structure, metal silicide was used as the catalyst. Therefore, after the pattern wafer is completed, the carbon nanostructure 30 can be grown by chemical vapor deposition on the surface of the metal silicide, and chemical vapor deposition methods such as microwave plasma chemical vapor deposition and electron cyclotron resonance chemistry Vapor deposition and thermochemical vapor deposition. Please refer to FIG. 2, which is a diagram of an embodiment of the method of the present invention: (a) Determine the area of the carbon nanostructure to be grown on the silicon substrate 1 0 Step 1 0 1: Deposit a layer of silicon dioxide B on Silicon substrate A; Step 102: Use a semiconductor process technology to transfer the mask pattern C to the silicon substrate A. The mask pattern C defines the area where the carbon nanostructure grows; (b) where you want to grow Growth of metal silicide in carbon nanostructure region 20 Step 2 01: Deposit metal thin film D on silicon substrate A; Step 202: Use rapid temperature heat treatment to grow metal silicide E, of which only metal The metal film in the area where the film D directly contacts the silicon substrate A will react with the silicon to form a metal silicide E. In addition, an unreacted metal film D 'covers the metal silicide E.

1230204 五、發明說明(6) 方; 步驟2 0 3 :使用化學蝕刻方法去除未生成金屬矽 化物之金屬薄膜(D、D’),於是金屬‘ 石夕化物E裸露; (c )於金屬矽化物表面利用化學氣相沉積法將可以成長 碳奈米結構3 0 由於金屬矽化物E係為成長碳奈米結構F之觸媒,因 此僅有金屬矽化物E之區域才能成長碳奈米結構F ( 如碳奈米纖維、碳奈米管等)。 請參考第3圖所示,係為利用本發明成長之碳奈米管 G 在掃描式電子顯微鏡(Scanner Electron Microscopic, SEM)下之結果圖(沉積條件:CH4/H2 :10/100 seem/ seem ; pressure : 12〜16 Torr ; microwave power :800 watt ;time · 10 m i n ) o 由於本發明係利用金屬矽化物區域作為成長碳奈米結 構之範圍,可直接應用於半導體元件上,作為接觸窗與金 屬間的連接線(如第4圖所示);或是場發射顯示器電子 發射源(如第5圖所示)。 承前所述,本發明選擇性沉積碳奈米結構於矽晶基材 之方法係基於化學氣相沉積法成長碳奈米結構時,由於金 屬矽化物為觸媒物質,因此金屬矽化物之區域即為碳奈米 結構成長之區域,故達到選擇性沉積碳奈米結構之目的, 另且,本發明之製程與半導體製程相容性高,可以直接應 用於現有的半導體製程中,無須太多額外之儀器設備,堪1230204 V. Description of the invention (6) Fang; Step 203: Use chemical etching method to remove the metal thin film (D, D ') where no metal silicide is formed, so the metal' lithium E is exposed; (c) the metal silicide Carbon nanostructures can be grown by chemical vapor deposition on the surface of the material. 3 Because the metal silicide E is the catalyst for growing the carbon nanostructure F, only the area of the metal silicide E can grow the carbon nanostructure F. (Such as carbon nanofiber, carbon nano tube, etc.). Please refer to FIG. 3, which is a result chart of a carbon nanotube G grown using the present invention under a Scanner Electron Microscopic (SEM) (deposition conditions: CH4 / H2: 10/100 seem / seem ; pressure: 12 ~ 16 Torr; microwave power: 800 watt; time · 10 min) o Since the present invention uses a metal silicide region as a range of growing carbon nanostructures, it can be directly applied to a semiconductor element as a contact window and Connection lines between metals (as shown in Figure 4); or field emission display electron emission sources (as shown in Figure 5). According to the foregoing description, the method for selectively depositing carbon nanostructures on a silicon substrate according to the present invention is based on the chemical vapor deposition method for growing carbon nanostructures. Since metal silicide is a catalyst substance, the area of metal silicide is It is a region where the carbon nanostructure grows, so the purpose of selectively depositing the carbon nanostructure is achieved. In addition, the process of the present invention is highly compatible with the semiconductor process, and can be directly applied to the existing semiconductor process without much additional Equipment

1230204 五、發明說明(7) 稱具創作性與進步性,符合發明專利之法定要件,爰依法_ 提出發明專利申請。 雖本發明以一較佳實施例揭露如上,但並非用以限定· 本發明實施之範圍。任何熟習此項技藝者,在不脫離本發 明之精神和範圍内,當可作些許之更動與潤飾,即凡依本 發明所做的均等變化與修飾,應為本發明專利範圍所涵蓋 ,其界定應以申請專利範圍為準。1230204 V. Description of the invention (7) It claims to be creative and progressive, and meets the legal requirements for invention patents. Although the present invention is disclosed as above with a preferred embodiment, it is not intended to limit the scope of implementation of the present invention. Anyone skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. That is, all equal changes and modifications made in accordance with the present invention shall be covered by the scope of the patent of the present invention. The definition shall be based on the scope of patent application.

第12頁 1230204 圖式簡單說明 第1圖係為本發明方法之流程圖。 第2圖係為本發明方法之實施例圖。 第3圖係為利用本發明成長之碳奈米管在掃描式電子顯微· 鏡下之結果圖。 第4圖係為利用本發明成長之碳奈米管於半導體元件示意 圖。 第5圖係為利用本發明成長之碳奈米管於場發射顯示器電 子發射源示意圖。 明 說 單 簡 &υ 圖Page 12 1230204 Brief Description of Drawings Figure 1 is a flowchart of the method of the present invention. Figure 2 is a diagram of an embodiment of the method of the present invention. FIG. 3 is a scanning electron microscopy result of a carbon nanotube grown using the present invention. Fig. 4 is a schematic view of a carbon nanotube grown on a semiconductor element using the present invention. Fig. 5 is a schematic diagram of an electron emission source of a field emission display using a carbon nanotube grown in the present invention. Ming says Shan Jan & υ diagram

D 未 矽二光金 金碳 ο 於 ο >物構k , 之Λ3 士口基一 應 < 纟、晶幘 基化圖薄,矽米, α 反 砍沉 晶氧罩屬、屬奈 、 材矽案膜 膜 薄 屬 金 域 區 的 構 結上 米材 奈基 碳晶 長砍 成於 欲矽 定化 決氧 上二 材層 2 ο ο 2 r-H 00 ο ο ο 2 2 2D non-silicon two-light gold gold carbon ο ο > physical structure k, Λ3 Shikouji Ying & 纟, crystal fluorination base thin, silicon rice, α anti-sinking crystal oxygen mask, Nai, The material silicon film is a thin layer of gold. The structure of the nanometer carbon nanocrystalline carbon is cut into two layers of silicon and silicon oxide. 2 ο ο 2 rH 00 ο ο ο 2 2 2

物 化 金 上長 材生 基域 晶區 碎 的 至構 移結 轉米 案奈 圖碳 罩長 光成 將欲 •於 膜 薄 屬 金 之 物 化 矽 物屬 膜化金 薄矽成 屬屬生 金金未 積長除 沉生去Broken-to-structure transfer of the long-form raw material domain crystal region on the physical gold. The carbon cover is long and light. The material is thin. The material is silicon. The film is gold. The silicon is thin. It is gold. Excluding Shen Sheng without accumulation

第13頁Page 13

1230204 圖式簡單說明 3 0· · · •利用化學氣相沉積法成長碳奈米結構1230204 Schematic description of 3 0 · · · • Growth of carbon nanostructures by chemical vapor deposition

第14頁Page 14

Claims (1)

1230204 六、申請專利範圍 1 · 一種選擇性沉積碳奈米結構於石夕晶基材之方法,依序 至少包含下列步驟: (a )於碎晶基材上決定欲成長碳奈米結構的區域’ 藉由: (i )沉積一層二氧化矽於矽晶基材上,再 (i i )利用半導體製程技術將光罩圖案轉移至矽 晶基材上,而該光罩圖案定義欲成長碳奈 米結構的區域, (b )於欲成長碳奈米結構的區域生長金屬矽化物, 藉由:1230204 VI. Scope of patent application1. A method for selectively depositing carbon nanostructures on Shi Xijing substrate, including at least the following steps in sequence: (a) determining the area on the broken crystal substrate where carbon nanostructures are to be grown 'By: (i) depositing a layer of silicon dioxide on a silicon substrate, and (ii) using a semiconductor process technology to transfer the mask pattern onto the silicon substrate, and the mask pattern defines the carbon nanometer to be grown Area of the structure, (b) growing a metal silicide in the area where the carbon nanostructure is to be grown, by: (i i i )沉積金屬薄膜;再 (i v )使用快速升溫熱處理法生長金屬石夕化物, 該金屬矽化物之生長區域為金屬薄膜與矽 晶基材之接觸區域,與 (v )使用化學蝕刻方法去除未生成金屬矽化物 之金屬薄膜; (C )於金屬矽化物表面利用化學氣相沉積法成長碳 奈米結構。 2 ·如申請專利範圍第1項所述之選擇性沉積碳奈米結構 於矽晶基材之方法,其中,所沉積之金屬薄膜係為鐵 (Fe )、鈷(Co )、鎳(Ni )、鉬(Mo )、鈦(Ti ) 、嫣(W)或舶(Pt)之任一種金屬或其合金。 3 ·如申請專利範圍第1項所述之選擇性沉積碳奈米結構 於矽晶基材之方法,其中,所沉積之金屬薄膜厚度係(iii) depositing a metal thin film; and (iv) using rapid temperature rise heat treatment to grow metal lithotripsy, the growth area of the metal silicide is the contact area between the metal thin film and the silicon crystal substrate, and (v) is removed using a chemical etching method Metal thin film without metal silicide; (C) Growing carbon nanostructure on the surface of metal silicide by chemical vapor deposition. 2. The method for selectively depositing a carbon nanostructure on a silicon substrate as described in item 1 of the scope of the patent application, wherein the deposited metal film is iron (Fe), cobalt (Co), nickel (Ni) Any one of the metals, molybdenum (Mo), titanium (Ti), Yan (W) or Pt (Pt) or its alloy. 3. The method for selectively depositing a carbon nanostructure on a silicon substrate as described in item 1 of the scope of the patent application, wherein the thickness of the deposited metal film is 第15頁 1230204 六、申請專利範圍 為5埃〜1 2 0 0埃。 4 ·如申請專利範圍第1項所述之選擇性沉積碳奈米結構 於矽晶基材之方法,其中,化學氣相沉積法係為微波 電聚化學氣相沉積法。 5 ·如申請專利範圍第1項所述之選擇性沉積碳奈米結構 於矽晶基材之方法,其中,化學氣相沉積法係為電子 迴旋共振化學氣相沉積法。 6 ·如申請專利範圍第1項所述之選擇性沉積碳奈米結構 於矽晶基材之方法,其中,化學氣相沉積法係為熱化 學氣相沉積法。Page 15 1230204 VI. The scope of patent application is 5 Angstroms ~ 1 200 Angstroms. 4. The method for selectively depositing carbon nanostructures on a silicon substrate as described in item 1 of the scope of the patent application, wherein the chemical vapor deposition method is a microwave electropolymerization chemical vapor deposition method. 5. The method for selectively depositing carbon nanostructures on a silicon substrate as described in item 1 of the scope of the patent application, wherein the chemical vapor deposition method is an electron cyclotron resonance chemical vapor deposition method. 6. The method for selectively depositing a carbon nanostructure on a silicon substrate as described in item 1 of the scope of the patent application, wherein the chemical vapor deposition method is a thermochemical vapor deposition method. 第16頁Page 16
TW91134673A 2002-11-28 2002-11-28 Method for selectively depositing nano carbon structure on silicon substrate TWI230204B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91134673A TWI230204B (en) 2002-11-28 2002-11-28 Method for selectively depositing nano carbon structure on silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91134673A TWI230204B (en) 2002-11-28 2002-11-28 Method for selectively depositing nano carbon structure on silicon substrate

Publications (2)

Publication Number Publication Date
TW200408723A TW200408723A (en) 2004-06-01
TWI230204B true TWI230204B (en) 2005-04-01

Family

ID=36083900

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91134673A TWI230204B (en) 2002-11-28 2002-11-28 Method for selectively depositing nano carbon structure on silicon substrate

Country Status (1)

Country Link
TW (1) TWI230204B (en)

Also Published As

Publication number Publication date
TW200408723A (en) 2004-06-01

Similar Documents

Publication Publication Date Title
US6764874B1 (en) Method for chemical vapor deposition of single walled carbon nanotubes
JP3804594B2 (en) Catalyst supporting substrate, carbon nanotube growth method using the same, and transistor using carbon nanotubes
JP4658947B2 (en) Method for controlling the diameter of carbon nanotubes using chemical vapor deposition and method for manufacturing field effect transistors
US6689674B2 (en) Method for selective chemical vapor deposition of nanotubes
JP5574264B2 (en) Base material for producing aligned carbon nanotube aggregate and method for producing aligned carbon nanotube aggregate
JP3995698B2 (en) Method for forming catalyst layer for synthesis of carbon nanotube and method for producing carbon nanotube using the same
WO2005102923A1 (en) Method for producing carbon nanostructure
JP2004026532A (en) Method for forming carbon nanotube
JP2007161576A (en) Method for producing carbon nanotube array
US20040144970A1 (en) Nanowires
JP2007182375A (en) Method for manufacturing nitrogen-doped single-walled carbon nanotube
US20060067872A1 (en) Method of preparing catalyst base for manufacturing carbon nanotubes and method of manufacturing carbon nanotubes employing the same
JP5358045B2 (en) Method for producing carbon nanotube
JP4834957B2 (en) Catalyst structure and carbon nanotube production method using the same
JPWO2007116434A1 (en) Method for producing carbon nanotube
JP2007142197A (en) Functional element and method of manufacturing same
US20070071895A1 (en) Method for making carbon nanotube-based device
JP3913583B2 (en) Method for producing carbon nanotube
KR20070071177A (en) Method for manufacturing single-walled carbon nanotube on glass
JP2010077007A (en) Base material for forming carbon nanotube, carbon nanotube orientedly grown on the base material and their production method
JP2004182537A (en) Method of forming arranged structure of nanocarbon material
TWI230204B (en) Method for selectively depositing nano carbon structure on silicon substrate
KR101399347B1 (en) Process for preparing nano channel using carbon nano tube and nano structure using the same
US7718224B2 (en) Synthesis of single-walled carbon nanotubes
JP2005231952A (en) Synthesis of carbon nanotube by laser beam

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees