JP2004182537A - Method of forming arranged structure of nanocarbon material - Google Patents

Method of forming arranged structure of nanocarbon material Download PDF

Info

Publication number
JP2004182537A
JP2004182537A JP2002352039A JP2002352039A JP2004182537A JP 2004182537 A JP2004182537 A JP 2004182537A JP 2002352039 A JP2002352039 A JP 2002352039A JP 2002352039 A JP2002352039 A JP 2002352039A JP 2004182537 A JP2004182537 A JP 2004182537A
Authority
JP
Japan
Prior art keywords
nanocarbon
substrate
catalyst
nanocarbon material
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002352039A
Other languages
Japanese (ja)
Inventor
Hideki Sato
英樹 佐藤
Yahachi Saito
弥八 齋藤
Kazumasa Hiramatsu
和政 平松
Hideto Miyake
秀人 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie TLO Co Ltd
Original Assignee
Mie TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie TLO Co Ltd filed Critical Mie TLO Co Ltd
Priority to JP2002352039A priority Critical patent/JP2004182537A/en
Publication of JP2004182537A publication Critical patent/JP2004182537A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide techniques to easily and fast grow an arranged pattern of a nanocarbon material such as carbon nanotubes on a substrate with good controllability. <P>SOLUTION: The purpose is realized by approximately combine a conventional semiconductor device process and a nanocarbon growing process. That is, a nanocarbon material is selectively grown only in a limited part to form the arranged structure of nanocarbon from a micron scale to a nanometer scale by forming fine projections on the surface of a solid such as Si and glass, exposing only a necessary part such as the tops of the projections while covering the rest with a resist film, and applying a catalyst necessary for the formation of the nanocarbon material only on the exposed part. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、カーボンナノチューブ、カーボンナノホーン、フラーレン又はそれらの複合体などのナノカーボン材料の配列パターンを基板表面上に容易に、制御性良く且つ高速に成長させることを可能にする技術に属し、電界電子放出源、電池材料、触媒、センサーおよびナノマシン等に好適に利用される。
【0002】
【従来の技術】
シリコン等の基板上にナノカーボンを成長させる技術は、電子デバイスへの応用を主体に開発が進んでいる。その代表的な用途例としてカーボンナノチューブ・フィールドエミッタがあり、以下の作成法が紹介されている(独立行政法人 産業技術総合研究所、プレスリリース、 2002.4.4および 工業技術院 電子技術総合研究所 ETL NEWS vol.603)。▲1▼シリコン基板にエッチングにより円錐状のシリコンチップを作成する。▲2▼この基板全面に金属触媒を堆積させる。▲3▼該基板を熱化学気相成長炉に入れてカーボンナノチューブを成長させる。▲4▼単層カーボンナノチューブが触媒を核にして錐体の中腹より成長を開始し、シリコンチップに沿って成長し錐体先端より上に成長する。
【0003】
【非特許文献1】
松本、「超低電圧動作カーボンナノチューブ・フィールドエミッタの開発に成功」、ETL NEWS(工業技術院 電子技術総合研究所)、日本、2000年、603巻、P8−11
【非特許文献2】
松本、「超低消費電力“カーボンナノチューブ・フィールドエミッタ”の開発に成功」、独立行政法人 産業技術総合研究所; プレスリリース、日本、2002年4月4日
【0004】
【発明が解決しようとする課題】
ところで、ナノカーボンを電子デバイス又は触媒等へ応用する場合、大面積に短時間で所定の配列パターンで成長させる必要がある。しかしながら上述した既存の技術は、基板上の錐体状突起の中腹よりカーボンナノチューブを成長させるため、複数の錐体に対し錐体の頂上に向かって一様に同一方向に確実にカーボンナノチューブが成長するとは限らない。従って工業的規模での生産歩留まりに問題があった。
【0005】
【課題を解決するための手段】
上述した課題を解決するために、本発明者らは汎用の半導体デバイスプロセスとナノカーボン成長プロセスを適切に組み合わせることにより、新規なナノカーボン配列構造の形成方法を発明するに至った。
【0006】
すなわち本発明は、基板の表面が半導体または非金属無機材料で構成される基板表面にナノカーボンを形成する方法において、所定の配列構造となるようエッチングまたはビーム加工により該基板表面に選択的に錐状体または帯状体突起を形成する工程であって、該突起の高さが10nm乃至100μで且つ該突起の上端の巾が500nm以下の微細突起を形成する工程と、該突起の先端部のみを露出させて残部を感光剤で覆った表面に鉄、コバルト、ニッケルまたはそれらの合金のいずれかを触媒用金属膜として蒸着した後、感光剤を除去する工程と、該触媒用金属膜の上にナノカーボン材料を成長させる工程とからなることを特徴とするナノカーボン材料配列構造の形成方法に関する。
【0007】
さらに本発明は、該触媒層を蒸着する前工程として、Ti、V,Cr,Mn,Zr、Nb,MoまたはTaのいずれかの薄膜を中間薄膜として蒸着することを特徴とするナノカーボン材料配列構造の形成方法である。
【0008】
さらに本発明は、ナノカーボン材料がカーボンナノチューブ又はカーボンナノホーンであることを特徴とし、さらには基板表面が半導体材料であり、且つ中間薄膜がTiであることを特徴とするナノカーボン材料配列構造の形成方法である。
【0009】
【発明の実施の形態】
以下に本発明の好適な一実施の形態を詳細に説明するが、本発明の技術的範囲は下記の実施形態によって限定されるものでなく、その要旨を変更することなく様々に改変して実施することができる。
【0010】
以下に本発明について詳細に説明する。本発明の産業上の利用分野として、電界放出型ディスプレイに代表される電界放出型電子源、ナノチューブトランジスタ、燃料電池、Li2次電池または太陽電池などの電池材料、触媒、センサー、走査型トンネル顕微鏡および原子間力顕微鏡用探針およびX線源用陰極が考えられる。そして基板全体または基板表面部は用途に応じてSi、Ge,GaAs、InPなどの半導体材料、またはアルミナ、ジルコニア、窒化珪素、炭化珪素、ゼオライト、酸化錫、石英ガラス、ホウケイ酸ガラスなどの非金属無機材料が選択される。そしてこれらの材料は、用途および後工程との関連で単結晶、多結晶または非晶質のいずれか好適な結晶系が選択されるが一般的には単結晶が使用される。ここで基板全体が上記材料で構成される場合と積層材の場合があるが、積層材の例としては底部が金属で表面部が上記材料で構成される組合せ等がある。
【0011】
次に上述の基板表面を使用して既存のリソグラフィー又はエッチングプロセスにより、基板表面上に所定の配列構造となるよう選択的に突起を形成する。より詳細には、図1に示すように、基板上にSiOやSiN等のマスク材によるマスキングを行い、非マスク部を化学エッチング又は反応性イオンエッチング等のエッチング法またはビーム加工法により除去し、図2に示すような凹凸のパターンを形成する。ここで突起部の高さは10nm乃至100μであるが、一般的には0.1μ乃至5μである。その後、表面のマスク材を除去後、KOHやNaOH等による化学エッチングにより、錐状体または帯状体突起を形成する。その一例を図3に示すが、必ずしもこれに限定されるものではなく、例えば帯状体の場合、直線状に限定されず蛇行やジグザグ状も含まれる。図3において、3aは角錐状突起を、3bは円錐状突起を、3cは角柱帯状突起を、また3dは半円柱帯状突起を示す概略図である。ここで突起上端部の巾は500nm以下であるが、一般的には100nm以下である。
【0012】
次に図5に示すように、前記の錐状体突起または帯状体突起を有する基板表面に、該突起の先端部のみを露出させて残部を感光剤で被覆する。ここで感光剤の塗布は一般的にスピンコーティング法が使用され、また感光剤としてはリフトオフ用レジストが使用されるが、これに限定されるものではない。ここで露出される先端部の高さは、一般的に先端部頂上より1nm以上かつ500nm以下であるが必ずしもこれに限定されるものではない。前記のように処理された基板に、図6に示すように該基板表面全体にナノカーボンを成長させるための触媒となる鉄、コバルト、ニッケルまたはそれらの合金のいずれかを蒸着した後、アセトン等の溶剤により感光剤を除去し、図7に示すように突起の先端部のみに該触媒層を残存させる。ここで鉄、コバルト、ニッケルまたはそれらの合金のいずれかを触媒とする理由は、ナノカーボンの成長時に垂直配向性の良いものが得られるためであり、特に純鉄またはその合金が望ましい。また該触媒層の厚みは一般的には1nm乃至200nmであるが、必ずしもこれに限定されるものではない。
【0013】
ところで前記の触媒の基板への密着性を改善するために、状況に応じて図4に示すようにTi、V,Cr,Mn,Zr、Nb,MoまたはTaのいずれかの金属を蒸着等により基板表面へ蒸着する前工程を付加する。すなわち、該前工程は、鉄、コバルト、ニッケルまたはそれらの合金のいずれかを蒸着する前に実施されるが、好ましくは感光剤を塗布する直前に実施される。そしてその蒸着厚さは一般的に1nm乃至10nmであり、またTiが一般的に使用されるが、必ずしもこれに限定されるものではない。
【0014】
次に、前記した突起先端部の触媒層上に、CVD法(化学気相堆積法)、アーク放電法またはレーザー法のいずれかの方法によりナノカーボンを成長させる。ここでナノカーボンがカーボンナノチューブまたはカーボンナノホーンの場合、プラズマCVD法が望ましく、また原料として炭化水素系ガスが使用される。ここでカーボンナノチューブ等のナノカーボンは、触媒層の表面積を制御することにより、表面積に応じて単数または複数個成長させ得る(図8)。すなわち本発明によって、ナノカーボンを所定の配列構造で且つ必要量を容易に形成することができる。
【0015】
【実施例1】
実施例1は、本発明に係わるナノカーボン材料配列構造の形成方法に関し、その有用性を検証する検証実験について記す。
検証実験は、基板として一辺の長さが10mmの正方形で厚さが0.3mmのSi単結晶ウエハを用い、基板表面の結晶面を(100)となるよう用意した。次に該基板表面に、スパッタリング法により、碁盤目状に100個の正方形(辺長が5μで辺間の距離が5μ)を、SiOによって遮蔽(マスク)した。この時のSiOの厚みは約300nmであった。
次に該基板をリアクティブイオンエッチング(RIE)法で塩素ガスを用いて食刻し、高さ約3μの四角柱の突起を形成した(図9)。その後フッ化水素によりSiOマスクを除去した後、10%苛性ソーダ水にて、60℃で100秒間の条件で選択エッチングを行い、角錐状の突起を形成した。
次に前記角錐状突起を有する基板に、真空度1x10−5Torrで10分間、Tiの蒸着を行い厚さ約5nmのTi薄膜を付着した。その後、リフトオフ用レジスト(東京応化製、OFPR−800)にて、4000rpmで30秒のスピンコーティングを2回行い、突起先端部のみを露出させ、残部をレジスト膜にて被覆した。
次に該基板に、1x10−5Torrで10分間の条件で純鉄を蒸着し、厚さ約60nmの金属薄膜を付着した後、アセトンによりレジスト膜を除去し突起先端部のみに触媒となる金属薄膜を残した。
次に該基板をプラズマCVD装置(ULVAC製UPC−1000S)に入れ、真空度10−3に排気した後、水素ガスにて表面洗浄を行った。その後、H−CHガス(ガス体積比80/20)を導入して、プラズマによる気相分解反応を行い、突起先端の触媒上に、カーボンナノチューブを成長させた(図10)。
以上の検証実験により、所定の配列構造で効率的に且つ確実にナノカーボンを形成でき、本発明の有効性が検証された。
【0016】
【発明の効果】
以上説明したように、本発明により、従来の半導体デバイスプロセスとナノカーボン成長プロセスとを適切に組合わせることにより、面積の大きい平面基板上に直径数nm乃至数十nmのナノカーボンを、極めて微小な領域に限定して効率的に且つ確実に成長することを可能にした。これにより、ナノカーボンアレーを、大面積に高速で成長させる効果がある。
【図面の簡単な説明】
【図1】基板表面上にマスクの形成を示す概略断面図である。
【図2】エッチング法またはビーム加工法により基板表面に凹凸の形成を示す概略断面図である。
【図3】錐体状突起および帯状体突起を示す概略断面図である。
【図4】Ti等により中間薄膜の蒸着を示す概略断面図である。
【図5】感光剤の塗布を示す概略断面図である。
【図6】触媒用金属膜の蒸着を示す概略断面図である。
【図7】感光剤除去後の状態を示す概略断面図である。
【図8】触媒用金属膜上にナノカーボンの成長を示す概略断面図である。
【図9】エッチング法によりSi表面上に角柱状突起を形成したことを示す図である。
【図10】Si基板表面上に形成された角錐状突起の上端にカーボンナノチューブを成長させたことを示す図である。
【符号の説明】
1 マスク材
2 中間金属薄膜
3 感光剤
4 触媒用金属膜
5 ナノカーボン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention belongs to a technology that enables an array pattern of a nanocarbon material such as a carbon nanotube, a carbon nanohorn, a fullerene or a composite thereof to be easily grown on a substrate surface with good controllability and high speed. It is suitably used for electron emission sources, battery materials, catalysts, sensors, nanomachines, and the like.
[0002]
[Prior art]
The technology for growing nanocarbon on a substrate such as silicon has been developed mainly for application to electronic devices. A typical example is a carbon nanotube field emitter, and the following preparation method is introduced (Institute of Advanced Industrial Science and Technology, Press Release, 2002.4.4 and Research Institute of Electronics Technology, National Institute of Advanced Industrial Science and Technology) Place ETL NEWS vol.603). (1) A conical silicon chip is formed on a silicon substrate by etching. (2) A metal catalyst is deposited on the entire surface of the substrate. {Circle around (3)} The substrate is placed in a thermal chemical vapor deposition furnace to grow carbon nanotubes. {Circle around (4)} Single-walled carbon nanotubes start growing from the middle of the cone with the catalyst at the core, grow along the silicon chip, and grow above the tip of the cone.
[0003]
[Non-patent document 1]
Matsumoto, "Successful development of ultra-low voltage operation carbon nanotube field emitter", ETL NEWS (Electronic Technology Research Laboratory), Japan, 2000, 603, P8-11
[Non-patent document 2]
Matsumoto, "Successful Development of Ultra-Low Power Consumption" Carbon Nanotube Field Emitter ", National Institute of Advanced Industrial Science and Technology; Press Release, Japan, April 4, 2002 [0004]
[Problems to be solved by the invention]
By the way, when nanocarbon is applied to an electronic device or a catalyst, it is necessary to grow a large area in a short time in a predetermined arrangement pattern. However, the existing technology described above grows carbon nanotubes from the middle of the cone-shaped protrusions on the substrate, so that the carbon nanotubes grow reliably in the same direction toward the top of the cones for a plurality of cones. Not necessarily. Therefore, there was a problem in the production yield on an industrial scale.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have invented a novel method for forming a nanocarbon array structure by appropriately combining a general-purpose semiconductor device process and a nanocarbon growth process.
[0006]
That is, the present invention provides a method of forming nanocarbon on a substrate surface in which the surface of the substrate is composed of a semiconductor or a non-metallic inorganic material. Forming a micro-projection in which the height of the projection is 10 nm to 100 μ and the width of the upper end of the projection is 500 nm or less; and forming only a tip end of the projection. After depositing any of iron, cobalt, nickel or their alloys as a metal film for the catalyst on the surface exposed and the remainder covered with the photosensitizer, a step of removing the photosensitizer, and on the metal film for the catalyst, And a step of growing a nanocarbon material.
[0007]
Further, the present invention provides a nanocarbon material arrangement characterized in that a thin film of any one of Ti, V, Cr, Mn, Zr, Nb, Mo or Ta is deposited as an intermediate thin film as a pre-process for depositing the catalyst layer. It is a method of forming a structure.
[0008]
Further, the present invention is characterized in that the nanocarbon material is a carbon nanotube or a carbon nanohorn, and furthermore, a nanocarbon material array structure characterized in that the substrate surface is a semiconductor material and the intermediate thin film is Ti. Is the way.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail.However, the technical scope of the present invention is not limited by the following embodiment, and various modifications can be made without changing the gist of the present invention. can do.
[0010]
Hereinafter, the present invention will be described in detail. As an industrial application field of the present invention, field emission electron sources represented by field emission displays, nanotube transistors, fuel cells, battery materials such as Li secondary batteries or solar cells, catalysts, sensors, scanning tunneling microscopes and the like. A probe for an atomic force microscope and a cathode for an X-ray source are conceivable. The entire substrate or the substrate surface may be made of a semiconductor material such as Si, Ge, GaAs, or InP, or a non-metal such as alumina, zirconia, silicon nitride, silicon carbide, zeolite, tin oxide, quartz glass, borosilicate glass, or the like, depending on the application. An inorganic material is selected. For these materials, a single crystal, a polycrystal, or an amorphous crystal, whichever is appropriate, is selected depending on the application and the subsequent steps, but a single crystal is generally used. Here, there are a case where the entire substrate is made of the above material and a case of a laminated material, and examples of the laminated material include a combination in which the bottom portion is made of metal and the surface portion is made of the above material.
[0011]
Next, protrusions are selectively formed on the substrate surface by the existing lithography or etching process using the above-described substrate surface so as to have a predetermined arrangement structure. More specifically, as shown in FIG. 1, the substrate is masked with a mask material such as SiO 2 or SiN, and the non-mask portion is removed by an etching method such as chemical etching or reactive ion etching or a beam processing method. Then, an uneven pattern as shown in FIG. 2 is formed. Here, the height of the protrusion is 10 nm to 100 μm, but is generally 0.1 μm to 5 μm. Thereafter, after removing the mask material on the surface, a conical or band-shaped projection is formed by chemical etching using KOH, NaOH or the like. An example is shown in FIG. 3, but the present invention is not necessarily limited to this. For example, in the case of a band, the shape is not limited to a straight line but includes a meandering or zigzag shape. In FIG. 3, 3a is a schematic view showing a pyramidal projection, 3b is a conical projection, 3c is a prismatic strip-shaped projection, and 3d is a schematic view showing a semi-cylindrical strip-shaped projection. Here, the width of the upper end of the protrusion is 500 nm or less, but is generally 100 nm or less.
[0012]
Next, as shown in FIG. 5, only the tips of the projections are exposed on the surface of the substrate having the conical projections or the strip projections, and the remaining portions are covered with a photosensitive agent. Here, a spin-coating method is generally used for applying the photosensitive agent, and a lift-off resist is used as the photosensitive agent, but the present invention is not limited thereto. The height of the tip exposed here is generally 1 nm or more and 500 nm or less from the top of the tip, but is not necessarily limited to this. After depositing any of iron, cobalt, nickel or an alloy thereof serving as a catalyst for growing nanocarbon on the entire surface of the substrate as shown in FIG. The solvent is removed with the solvent described above to leave the catalyst layer only at the tip of the projection as shown in FIG. Here, the reason why any one of iron, cobalt, nickel or an alloy thereof is used as a catalyst is that a nanocarbon having a good vertical orientation can be obtained during the growth thereof, and pure iron or an alloy thereof is particularly preferable. The thickness of the catalyst layer is generally 1 nm to 200 nm, but is not necessarily limited to this.
[0013]
Incidentally, in order to improve the adhesion of the catalyst to the substrate, as shown in FIG. 4, depending on the situation, a metal of any of Ti, V, Cr, Mn, Zr, Nb, Mo or Ta is deposited by vapor deposition or the like. A pre-process for vapor deposition on the substrate surface is added. That is, the pre-process is performed before depositing any of iron, cobalt, nickel or an alloy thereof, but is preferably performed immediately before applying a photosensitive agent. The deposition thickness is generally 1 nm to 10 nm, and Ti is generally used, but is not necessarily limited to this.
[0014]
Next, on the catalyst layer at the tip of the protrusion, nanocarbon is grown by any one of a CVD method (chemical vapor deposition method), an arc discharge method, and a laser method. Here, when the nanocarbon is a carbon nanotube or a carbon nanohorn, a plasma CVD method is desirable, and a hydrocarbon-based gas is used as a raw material. Here, one or more nanocarbons such as carbon nanotubes can be grown according to the surface area by controlling the surface area of the catalyst layer (FIG. 8). That is, according to the present invention, the required amount of nanocarbon can be easily formed in a predetermined arrangement structure.
[0015]
Embodiment 1
Example 1 Example 1 relates to a method for forming a nanocarbon material array structure according to the present invention, and describes a verification experiment for verifying its usefulness.
In the verification experiment, a square single-sided wafer having a side length of 10 mm and a thickness of 0.3 mm was used as a substrate, and the crystal plane of the substrate surface was prepared to be (100). Next, 100 squares (side length 5 μ and distance between sides 5 μ) were shielded (masked) with SiO 2 on the surface of the substrate by sputtering. At this time, the thickness of SiO 2 was about 300 nm.
Next, the substrate was etched by chlorine ion gas by reactive ion etching (RIE) to form a square pillar projection having a height of about 3 μm (FIG. 9). Then, after removing the SiO 2 mask with hydrogen fluoride, selective etching was performed with 10% sodium hydroxide solution at 60 ° C. for 100 seconds to form pyramidal projections.
Next, on the substrate having the pyramidal projections, Ti was deposited at a degree of vacuum of 1 × 10 −5 Torr for 10 minutes to attach a Ti thin film having a thickness of about 5 nm. Thereafter, spin coating was performed twice at 4000 rpm for 30 seconds with a lift-off resist (OFPR-800, manufactured by Tokyo Ohka) to expose only the tips of the protrusions and coat the rest with a resist film.
Next, pure iron is vapor-deposited on the substrate at 1 × 10 −5 Torr for 10 minutes, a metal thin film having a thickness of about 60 nm is adhered, the resist film is removed with acetone, and a metal serving as a catalyst is formed only at the tip of the protrusion. The thin film was left.
Next, the substrate was placed in a plasma CVD apparatus (UPC-1000S manufactured by ULVAC), evacuated to a degree of vacuum of 10 -3 , and then subjected to surface cleaning with hydrogen gas. Then, by introducing H 2 -CH 4 gas (gas volume ratio 80/20), subjected to gas-phase decomposition reaction by plasma, on the catalyst of the projecting tip, it was grown carbon nanotubes (Figure 10).
Through the above verification experiments, nanocarbons could be formed efficiently and reliably with a predetermined arrangement structure, and the effectiveness of the present invention was verified.
[0016]
【The invention's effect】
As described above, according to the present invention, by appropriately combining a conventional semiconductor device process and a nanocarbon growth process, nanocarbon having a diameter of several nm to several tens nm can be formed on a flat substrate having a large area. This allows efficient and reliable growth limited to a limited area. This has the effect of growing the nanocarbon array over a large area at high speed.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing the formation of a mask on a substrate surface.
FIG. 2 is a schematic cross-sectional view showing formation of irregularities on a substrate surface by an etching method or a beam processing method.
FIG. 3 is a schematic sectional view showing a cone-shaped projection and a band-shaped projection.
FIG. 4 is a schematic cross-sectional view showing deposition of an intermediate thin film using Ti or the like.
FIG. 5 is a schematic sectional view showing application of a photosensitive agent.
FIG. 6 is a schematic cross-sectional view showing deposition of a metal film for a catalyst.
FIG. 7 is a schematic cross-sectional view showing a state after removal of a photosensitive agent.
FIG. 8 is a schematic cross-sectional view showing growth of nanocarbon on a metal film for a catalyst.
FIG. 9 is a view showing that prismatic protrusions are formed on a Si surface by an etching method.
FIG. 10 is a diagram showing that carbon nanotubes were grown on the upper ends of pyramidal projections formed on the surface of a Si substrate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Mask material 2 Intermediate metal thin film 3 Photosensitizer 4 Metal film for catalyst 5 Nanocarbon

Claims (4)

基板の表面が半導体、または非金属無機材料で構成される基板表面にナノカーボンを形成する方法において、所定の配列構造となるようエッチングまたはビーム加工により該基板表面に選択的に錘状体または帯状体突起を形成する工程であって、該突起の高さが10nm乃至100μで且つ該突起の上端の巾が500nm以下の微細突起を形成する工程と、該突起の先端部のみを露出させて残部を感光剤で覆った表面に鉄、コバルト、ニッケルまたはそれらの合金のいずれかを触媒用金属膜として蒸着した後、感光剤を除去する工程と、該触媒用金属膜の上にナノカーボン材料を成長させる工程とからなることを特徴とするナノカーボン材料配列構造の形成方法。In a method of forming nanocarbon on a substrate surface in which the surface of the substrate is composed of a semiconductor or a nonmetallic inorganic material, a cone or band is selectively formed on the substrate surface by etching or beam processing so as to have a predetermined arrangement structure. Forming a microprojection having a height of 10 nm to 100 μ and a width of 500 nm or less at the upper end of the projection, and exposing only the tip of the projection to leave the remaining portion. After depositing any of iron, cobalt, nickel or their alloys as a metal film for the catalyst on the surface covered with the photosensitizer, removing the photosensitizer, and nano carbon material on the metal film for the catalyst Forming a nanocarbon material array structure. 前記において、鉄、コバルト、ニッケルまたはそれらの合金のいずれかを触媒用金属膜として蒸着する前工程として、Ti、V,Cr,Mn,Zr、Nb,MoまたはTaのいずれかを中間金属薄膜として蒸着することを特徴とする請求項1に記載のナノカーボン材料配列構造の形成方法。In the above, any of Ti, V, Cr, Mn, Zr, Nb, Mo or Ta is used as an intermediate metal thin film as a pre-process for depositing any of iron, cobalt, nickel or an alloy thereof as a metal film for a catalyst. The method for forming a nanocarbon material array structure according to claim 1, wherein the deposition is performed. 前記において、ナノカーボン材料がカーボンナノチューブまたはカーボンナノホーンであることを特徴とする請求項1または請求項2に記載のナノカーボン材料配列構造の形成方法。3. The method according to claim 1, wherein the nanocarbon material is a carbon nanotube or a carbon nanohorn. 4. 前記において、基板表面が半導体材料であり、且つ中間薄膜がTiである請求項1ないし請求項3のいずれかに記載のナノカーボン材料配列構造の形成方法。4. The method according to claim 1, wherein the substrate surface is made of a semiconductor material, and the intermediate thin film is made of Ti.
JP2002352039A 2002-12-04 2002-12-04 Method of forming arranged structure of nanocarbon material Pending JP2004182537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352039A JP2004182537A (en) 2002-12-04 2002-12-04 Method of forming arranged structure of nanocarbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352039A JP2004182537A (en) 2002-12-04 2002-12-04 Method of forming arranged structure of nanocarbon material

Publications (1)

Publication Number Publication Date
JP2004182537A true JP2004182537A (en) 2004-07-02

Family

ID=32753767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352039A Pending JP2004182537A (en) 2002-12-04 2002-12-04 Method of forming arranged structure of nanocarbon material

Country Status (1)

Country Link
JP (1) JP2004182537A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160592A (en) * 2004-12-10 2006-06-22 Kansai Electric Power Co Inc:The Method of manufacturing carbon nanotube, carbon nanotube manufactured by the method and carbon nanotube manufacturing catalyst
JP2006213551A (en) * 2005-02-02 2006-08-17 Mie Univ Method of growing carbon nanotube
JP2006524625A (en) * 2003-04-17 2006-11-02 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Carbon nanotube growth method
KR100664562B1 (en) 2005-02-17 2007-01-03 김성훈 Method for selective growth of carbon nanofilaments using heat-resistant metal catalysts
WO2007108132A1 (en) * 2006-03-23 2007-09-27 Fujitsu Limited Process for producing carbon nanotube
FR2912426A1 (en) * 2007-02-09 2008-08-15 Centre Nat Rech Scient Catalytic growth of carbon nanotubes, e.g. for production of probes for atomic force microscopy, involves chemical vapor phase deposition on silicon points coated with double nano-layers of titanium and of cobalt
FR2925039A1 (en) * 2007-12-14 2009-06-19 Commissariat Energie Atomique METHOD FOR THE COLLECTIVE MANUFACTURE OF CARBON NANOFIBERS ON THE SURFACE OF MICROMOTIVE SURFACE MOUNTED ON THE SURFACE OF A SUBSTRATE AND STRUCTURE COMPRISING NANOFIBRES ON THE SURFACE OF MICROMOTIVES
JP2010047461A (en) * 2008-08-21 2010-03-04 Seoul National Univ Industry Foundation Aligned nanostructure on tip
US8029760B2 (en) 2006-03-30 2011-10-04 Fujitsu Limited Method of manufacturing carbon nanotube
JP2013505848A (en) * 2009-09-29 2013-02-21 シーメンス アクチエンゲゼルシヤフト Three-dimensional microstructure, assembly comprising at least two three-dimensional microstructures, method for making a microstructure and use of the microstructure

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4673838B2 (en) * 2003-04-17 2011-04-20 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Carbon nanotube manufacturing method and substrate supporting carbon nanotube
JP2006524625A (en) * 2003-04-17 2006-11-02 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Carbon nanotube growth method
JP2006160592A (en) * 2004-12-10 2006-06-22 Kansai Electric Power Co Inc:The Method of manufacturing carbon nanotube, carbon nanotube manufactured by the method and carbon nanotube manufacturing catalyst
JP2006213551A (en) * 2005-02-02 2006-08-17 Mie Univ Method of growing carbon nanotube
KR100664562B1 (en) 2005-02-17 2007-01-03 김성훈 Method for selective growth of carbon nanofilaments using heat-resistant metal catalysts
JP4850900B2 (en) * 2006-03-23 2012-01-11 富士通株式会社 Method for producing carbon nanotubes
WO2007108132A1 (en) * 2006-03-23 2007-09-27 Fujitsu Limited Process for producing carbon nanotube
US8029760B2 (en) 2006-03-30 2011-10-04 Fujitsu Limited Method of manufacturing carbon nanotube
WO2008104672A3 (en) * 2007-02-09 2008-11-13 Centre Nat Rech Scient Method for growing a carbon nanotube on a nanometric tip
FR2912426A1 (en) * 2007-02-09 2008-08-15 Centre Nat Rech Scient Catalytic growth of carbon nanotubes, e.g. for production of probes for atomic force microscopy, involves chemical vapor phase deposition on silicon points coated with double nano-layers of titanium and of cobalt
FR2925039A1 (en) * 2007-12-14 2009-06-19 Commissariat Energie Atomique METHOD FOR THE COLLECTIVE MANUFACTURE OF CARBON NANOFIBERS ON THE SURFACE OF MICROMOTIVE SURFACE MOUNTED ON THE SURFACE OF A SUBSTRATE AND STRUCTURE COMPRISING NANOFIBRES ON THE SURFACE OF MICROMOTIVES
WO2009077388A1 (en) * 2007-12-14 2009-06-25 Commissariat A L'energie Atomique Method for collective production of carbon nanofibres at the surface of micro-patterns formed on a substrate surface and structure including nanofibres on the micro-pattern surface
US9222959B2 (en) 2007-12-14 2015-12-29 Commissariat A L'engergie Atomique Method for the collective fabrication of carbon nanofibers on the surface of micropatterns constructed on the surface of a substrate
JP2010047461A (en) * 2008-08-21 2010-03-04 Seoul National Univ Industry Foundation Aligned nanostructure on tip
JP2013505848A (en) * 2009-09-29 2013-02-21 シーメンス アクチエンゲゼルシヤフト Three-dimensional microstructure, assembly comprising at least two three-dimensional microstructures, method for making a microstructure and use of the microstructure
US9884759B2 (en) 2009-09-29 2018-02-06 Siemens Aktiengesellschaft Thermoelement including a three-dimensional microstructure, and method for producing a thermoelement

Similar Documents

Publication Publication Date Title
JP3442039B2 (en) Fabrication method of patterned carbon nanotube thin film
CN103359720B (en) Preparation method of narrow graphene nanoribbons
US8921824B2 (en) 3-dimensional graphene structure and process for preparing and transferring the same
US9023221B2 (en) Method of forming multi-layer graphene
Meyyappan et al. Carbon nanotube growth by PECVD: a review
US7879398B2 (en) Carbon-nano tube structure, method of manufacturing the same, and field emitter and display device each adopting the same
JP4648807B2 (en) Carbon nanotube emitter, method of manufacturing the same, field emission device using the same, and method of manufacturing the same
US9222959B2 (en) Method for the collective fabrication of carbon nanofibers on the surface of micropatterns constructed on the surface of a substrate
Chattopadhyay et al. Nanotips: growth, model, and applications
JP3853333B2 (en) Method for manufacturing field emission array comprising nanostructures
JP5329800B2 (en) Control and selective formation of catalytic nanoparticles
JPH11194134A (en) Carbon nano tube device, its manufacture and elecfron emission element
CN103359718B (en) Preparation method of narrow graphene nanoribbons
WO2014025615A1 (en) Methods for graphene fabrication on patterned catalytic metal
KR20110136340A (en) Method of forming graphene pattern utilizing imprint
JP5574257B2 (en) Reusable substrate for producing carbon nanotubes, substrate for producing carbon nanotubes and method for producing the same
JP2004182537A (en) Method of forming arranged structure of nanocarbon material
US20030059968A1 (en) Method of producing field emission display
JP4231228B2 (en) Micromachine
JP2005350281A (en) Method for producing carbon nano-structure
JP5154801B2 (en) Method for producing a material layer on a support
JP2005231952A (en) Synthesis of carbon nanotube by laser beam
Sato et al. Fabrication of carbon nanotube array and its field emission property
Ho et al. Photolithographic fabrication of gated self-aligned parallel electron beam emitters with a single-stranded carbon nanotube
US20100297435A1 (en) Nanotubes and related manufacturing processes