TW456010B - Embedded thermal conductors for semiconductor chips - Google Patents

Embedded thermal conductors for semiconductor chips Download PDF

Info

Publication number
TW456010B
TW456010B TW088100257A TW88100257A TW456010B TW 456010 B TW456010 B TW 456010B TW 088100257 A TW088100257 A TW 088100257A TW 88100257 A TW88100257 A TW 88100257A TW 456010 B TW456010 B TW 456010B
Authority
TW
Taiwan
Prior art keywords
thermal
semiconductor wafer
conductor
substrate
wafer structure
Prior art date
Application number
TW088100257A
Other languages
English (en)
Inventor
Rajiv Vasant Joshi
William Robert Reohr
Original Assignee
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibm filed Critical Ibm
Application granted granted Critical
Publication of TW456010B publication Critical patent/TW456010B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface

Description

:J D U i U 五、發明說明(I) 發明背景 1. 發明領域: 本發明係有關減少半導體中之熱能,尤係有關嵌入半導 體内以自其中除熱之熱導體。 2. 相關技術說明 · 現代的V L SI晶片需要冷卻’以便提南晶片電路及接缘的 可靠性·並提高晶片電路的切換效能,且控制晶片電路中 因熱而產生的雜訊=冷卻減少了金屬接線形成空洞或造成 接點斷路之可能性。冷卻也減少了雖著時間而變化的電晶 體載子移動率及臨界電壓之惡化程度,而上述各因素的惡 化將對電路的效能及作業有不利的影響。此外,在典型的 CMOS微處理器中,每降低攝氏10度的溫度時,將可使工作 頻率提升2 %。對於C Μ 0 S電晶體而言,高溫將產生大許多的 漏電流1這是由於因熱而產生的載子。每提高攝氏11度將 使此種有損效能的電流加倍,而且我們知道此種大的渴電 流將對動態及類比電路之機能運作有不利的影響。 當場效電晶體(Field Effect Transistor ;簡稱FET)的 通道長度減少時,漏電流將呈指數地增加。除非可利同冷 卻來樣低電路的工作溫度,否則漏電流將是電路雜訊的主 要來源。在取理想的狀況下’應將晶片冷卻到絕對零度。 在現實下,冷卻系統受限於經濟上及技術上的考量:現 有的冷卻系統在複雜度及成本上有極大的不同。個人電腦 使用小型風扇自電路板排出熱空氣,而高成本的大型電腦 則使用波導管〔ρ 1 u οι b i n g)將液態冷卻劑循環於每一晶片。
第6頁 ^ ^ β Ο 1 Ο 五、發明說明 〔2) 過去 已 is 高 了 工程 設計 的投 資 以便自連接到一電路扳或 導熱 棋 组 的 一 ?且晶 片排 出熱 声_ 0 可 將 冷 卻 擇性 地施 加到 一 電 路板内的個別晶片。一個 此類 例 子 係 述 於授 與W. L. Schm i dt等人的美國專利4, 9 3 5, 864 0 Sc hm i d t說明了 - -種利用, -熱電式急冷器優先冷卻 一電 路 板 上 的 個別 晶片 之裝 置 0 當積體電路的集積密度呈 指數 式 的 增 加 時, 一晶 片内 個 別 的高熱點(hot spot)將需 要利 用 —1 種 晶 片内 建裝 置來 散 逸 熱量。 從 現 灯 世 代 的南 速記 憶體 晶 片 的熱分佈圖,即可明瞭要 將散 执 f 置 整 合到 半導 體晶 片 内 的動機。請參閱圖I,一 S己憶 體 晶 片 (10)上 的斷 靣線 區 (1 2)近似於可能發生高熱點 的區 域 0 :^3 /12. 區對 應於 在執 行 記 憶體晶片功能時經常進行 切換 的 位 元 解 碼、 字組 解碼 及 讀出放大電路之實體位 置。 因 為 係 由 小型 的電 晶體 組 成 記憶單元,且並不頻繁地 使用 記 憶 30 早 元 ,所 以在 各記 憶 早 元象限(1 4 )中只產生小量 的熱 〇 當 電 路 有變 化時 ,即 會 發 生溫度差異,且此種變化 存在 於 自 記 憶 體到 微處 理器 的 每 一種V L S I晶片。 若 旦 能 以 更 大的 功率 密度 在 整 個晶片令更均勻地散逸熱 量 , 對 積 體 雪 路技 術將 是有 利 的 。在授與A. Η. 0 w e n s (後 文簡 稱0 w 0 η s ) 的美 國專 利5, 62 1, 616中,提供了一種熱散 術 ° D w en S說明了- -種高導熱度的熱傳遞路徑,此種 熱傳 遞 路 徑 經 由各 金屬 層及 通 孔 ϋ經由銲料顆拉(s ◦ 1 d e r bump )而i 半導體基底排熱 ° 熱被吸入晶片載體,此s亏可 經甴 對 流 而 將 熱排 到周 圍的 空 氣 中。Owens建議將若干金
4 5 6 0 1 0 五、發明說明(3) 屬塞喪入晶片基底中’以便收集各電晶體產生的煞,然後 經由業已存在於VLS I晶片的金屬接線而排熱。 現在有人將極大型積體電路(Very Large Scaie Integrated circuit ;簡稱VLSI)的尺寸縮小,以便提昇 效能,並因而增加工作頻率。由於這些裝置繼續不斷地切 換,而產生了熱。排熱變成提高這些裝置的效能之一大障 礙。因此,現在需要一種用於半導體的熱導體。該熱導體 的材料應提供高導熱度及低電導率。因此,最好是將鑽石 熱導體整合到一半導體晶片内,以便在整個該晶片内更均 勻地散熱,並將熱自該晶片的各高熱區導出,且將熱傳導 到該晶片的外部。 發明概述 一半導體晶片結構包含:一基底;嵌入該半導體晶片結 構内的至少一個熱導體,而該等熱導體提供了電氣絕緣; 以及在該結構内鄰近該等至少一個熱導體處形成的複數個 裝置,因而在作業中將該等裝置產生的熱傳遞到且經過該 等至少一個熱導體,,以便降低該等裝置之工作溫度。 在其他實施例中,可利用鑽石製造該等熱導體》可以一 氮化物層覆蓋該等熱導體,以避免氧化=亦可包含一背表 面及複數個熱"導體,其中該等複數個熱導體係經由該背表 面而橫向鼓入該基底,而增加流經的熱流=亦可鞋刻該背 表面,以便露出一較大面積的該等熱導體,而增加經過該 背表面的熱流。亦可包含沈積在該背表面上的一熱滑脂、 及一冷卻塔,其中該冷卻塔係鄰接該熱清腊,以便增加來
第8頁
五、瞀明贺^7- 目該基底之熱流。可將各接點連接到各金屬接線,其中該 等熱導體接觸該等接,,以便提供一條經過該等接點而進 入該等金屬接線之熱流路徑。可將具有高導熱度的一種金 屬用於該等接線及接點。此種金屬可包括銅或鋁。 在其他實施例中,係在橫向鄰近該等裝置處形成該等至 少一個熱導體。可在該基底上形成該等呈少一個熱導體。 可在,該基底上形成一氧化物層,其中穿過該氧化物層形成 若該開口’且可在該氧化物層中的該等開〇内形成每一熱 導體,因而每一熱導體係鄰近該等裝置,並與該基底接 觸。該等至少一個熱導體亦可接觸該等至少一個接點。 一矽覆蓋絕緣體式(Silic〇n-0n-Insula1;or ;簡稱 SOI) 半導體晶片結構包含:一基底;在該基底上形成的一氧化 物層;以及嵌入該S(H半導體晶片結構内的至少一個熱導 體。該熱導體提供了電氣絕緣。此外’亦包含在該結構内 鄰近該等至少一個熱導體處形成的複數個裝置,因而Λ作 業中將該等裝置產生的熱傳遞到且經過該等至少一個熱導 體,以便降低該等裝置之工作溫度。 在其他實施例中’可利吊鑽石製造該S0 I結構之該等至 少一個熱導體。可以一氬化物層覆蓋該等至少一個/熱 體,以避免氧化。該1半導體晶月結構又可包含若…干""^接 點,用以連接到各金屬接線’其中該等至少—個^熱"導體^接 觸該等接點,以便提供一條經過該等接點而進入^等=屬 接線之熱流路徑。該等金屬接線可包括一種具有高度 之金屬’例如銅或鋁。可在撗向鄰近該等裝置處=成^二
3 9頁 ^^^010 五、發明說明(5) 熱導體。 一種在一半導體晶 >;中形成内嵌式熱導體之方法包含下 列步騍:提供一基底,在該基底上形成有一氧化物層;蝕 刻若干進入該氧化物層之溝渠;沈積鑽石以填滿該等溝 渠,而形成若干與該基底接觸之熱導體;以及在鄰近該等 熱導體處形成若干裝置及若干接點,以便提供熱流路徑, 而降低該等裝置之工作溫度。 在其他方法中,沈積鑽石以填滿溝渠而形成熱導體之該 步驟又可包含下列步驟:在一高熱燈絲系統中混合甲烷氣 及氫氣,以便產生複晶鑽石。在鄰近熱導體導體處形成裝 置及接點以便提供熱流路徑之該步驟可包含下列步騍:在 該等熱導體上沈積一氮化物層,使鑽石不會氧化;以及在 該氮化物層中形成若干開口 ,以便將該等接點連接到該等 熱導體。亦可包含形成接線以連接到接點之步驟,使該等 接線提供一條來自該等熱導體之熱流路徑。 一種在一SOI半導體晶片中形成内嵌式熱導體之方法包 含下列步驟:提供一SOI基底,在該SOI基底上形成有一氧 化物層;蝕刻若干進入該氧化物層之溝渠;沈積鑽石以填 滿該等溝渠,而形成若干與該氧化物層接觸之煞導體;以 及在鄰近該等熱導體處形成若干裝置及若干接點,以便提 供熱流路徑,而降低該等裝置之工作溫度。 在其他方法中,沈積鑽石以填滿溝渠而形成熱導體之該 步驟又可包含下列步驟:在一高熱燈絲系統中混合曱烷氣 及氫氣,以便產生複晶鑽石。在鄰近熱導體導體處形成裝
第10頁
+ U U I \J 五、發明說明(6) 置及接點以便提烘熱流路徑之該步騍可包含下列步驟:在 該等熱導體上沈積一氮化物層,使鑽石不會氧化;以及在 該氮化物層中形成若干開口,以便將該等接點連接到該等 熱導體。亦可包含形成接線以連接到接點之步驟,使該等 接線提供一條來自該等熱導體之熱流路徑。 附圖簡述 下文中將參照一些圖示而詳細說明本發明,這些圖示 有: 圖1是一典型習用技術記憶體晶片之熱分佈圖,其中該 斷面線標示指示了高溫區; 圖2A-C是鑽石生長在不同放大率下之電子掃描式顯微鏡 (Scanning Electron Microscope ;簡稱3£^)影像; 圖3是一半導體晶片結構之橫斷面圖,其中係將若干鑽 石熱導體嵌入一晶片的背面中; 圖4是圖3所示一半導體晶片結構之橫斷靣圖,其中各鑽 石熱導體因蝕刻進晶片的背面而有更大的外露面積; 圖5是一個具有若干内嵌式熱導體的一半導體晶片結構 之橫斷面圖,其中係利用熱滑脂將該等熱導體固定到一冷 卻塔; 圖6是具有若干無侵入式内嵌熱導體的一半導體結構實 施例之橫斷面圖; 圖7是具有若干部分侵入式内嵌熱導體的另一半導體結 構實施例之橫斷靣圖;以及 圖8是具有若干與一氧化物層接獨的内喪熱導體的另一
第1L頁 五、發明說明(7) ----- 半導體結構實施例之横斷面圖。 較佳免施例之詳細 本發明提供了 一種整合式熱導體,鸬以散逸半導體裝置 中產生的熱。係在—矽基底上形成該熱導體,使自半導體 裝置排出的熱可傳遞到該基底,然後傳遮到半導體裝置的 外°卩。該熱導體自該裝置上的各高熱點導離熱量,以便增 強該裝置之效能。最好是使用具有高導熱度及低電導率之 熱導體’因為i|_些材料可對各半導體裝置提供電氣絕緣, 並同時減輕因電子活動性而產生的不利熱效應。 鑽石或類似鑽石的材質(例如類似鑽石的碳結晶)適於作 為VLSI晶片内的熱導體。於各製程步驟中’可將鑽石嵌入 晶片内,而形成導熱元件《鑽石具有高導熱度,為矽的14 倍以上(取決於鑽石晶體的品質),但為電氣絕緣體。鑽石 的黏著性也優於矽。這些材料特性顯然使鑽石成為導熱元 件的理想候選元件,因為鑽石不會破壞敏感的電氣環境,也 不會損及矽晶體。以化學汽相沈積(C h e m i c a 1 V a ρ ο Γ D e p o s i t ;簡稱C V D)製程製造的鑽石之特性如表1所示: 表1 技料 特性 鑽石 矽 二氧化矽 鹤 銅 導熱度 (W/cm-K) i8 至 20 1.4 0.014 1.7 4 介質常數 (CTE) 5.7 - 3.9 一 - 熱膨脹係數 (xlO-6c[fl/°C) 2.8 3.5 0. 55 4.5 14.2
五、發明說明(8) 由於複晶CVD鑽石優異的導熱、機械、及電氣特性,所 以目前已完成了對複晶C V D鑽石在各種基底上的生長情形 及特徵之研究。然而,使用鑌石時的一大障礙即是在有圖 案的矽基底上生長鑽石之困難度。下文中之揭示事項說明 了一種方法及裝置,用以將鑽石整合到VLSI電路製程技術 中1因而使周鑽石作為散熱座,以排出熱量。下文中之揭 示事項包含用來將一鑽石熱導體嵌入一半導體晶片内的一 些製程步驟。 可使用高熱壁燈絲化學汽相沈積(CVD)系統咪處理鑽 石,以便產生薄膜。可利用曱烷氣(CH4)及氫氣(H2)的混合 氣體來沈積鑽石薄膜。該混合氣體可包含大約1 0 - 3 0%容量 的甲烷氣及大約70-90 %容量的氫氣,但是亦可包含其他 的氣體。係以流量錶量測並控制氣流。係依據在不同的沈 積溫度、壓力、及曱烷氣與氫氣濃度的比率對鑽石生長的 結果,而研究製程效果。對於物理沈積(P h y s i c a 1 Deposition ;簡稱PD)而言,可使兩有圖案的石夕基底。可 在石夕基底的上方以活性離子银刻(R e a c t i v e 1 y I ο η E t c h i n g ;簡稱R I E ) 1到2微米的電漿強化式带酸四乙酯 (TEOS),而彤成有圖案的基底。利罔(經過預先處理及未 經預先處理的)有圊案之晶圓,並調整沈積時間,即可得 到所需的沈積厚度。可在攝氏6 0 0至1丨0 0度之間變化溫 度,而獲致這些結果。利用橫斷面電子掃描式顯微鏡 (S E Μ)技術量測生長的厚度,即可得知平均生長速率之特 性。以SEM分析法評估表靣形態及填充特性。可進行拉曼
第13頁 五、發明說明(9) 光譜分析(Raman spectral analysis),以驗證鑽石薄旗 的純度。 現在請參閱圖2A-C,圖中示出在不同放大率下的鑽石生 長之SEM影像。如這些SEM影像所示,鑽石的生長取決於石夕 基底的缺陷區。破或二氧化碎中的形態或沈;殿是造成缺陷 的原因之一,並形成沈積鑽石的良好核心位置。具有缺陷 的表面係作為核心位置,因而係相對於無缺陷的區域而進 行選擇性的沈積。此種薄膜填充開始於底部或溝渠的角 落,這是因為這些區域將以較低的自由形成能量而形成核 心。所能獲致的沈積速率係在每小時2 - 3微米之間。亦可 考慮進行較袂的生長速率=可在一通孔或溝渠的底部上形 成鑽石。此外,由於CVD製程,所以可在半導體裝置的侵 入區或凹割區中沈積鑽石。 形成或沈積複晶鑽石的步驟如下: (1)在一碎基底上生長一層諸如TE0S等的氧化物; (2 )在該氧化物中飪刻若干孔洞或溝渠(通孔密度最好 是在約3 0 - 4 0 % )=視半導體裝置的應用而定,該蝕刻亦可 進入發基底中;以及 (3)在該等孔洞或溝渠中沈積鑽石、類似鑽石的碳晶 體、或類同的材料。 在諸如3 0 - 4 0托的高壓下,在一高熱燈絲系統中結合曱 烷氣及氫氣的混合氣體,即可在該等孔洞或溝渠内沈積鑽 石。可以選擇性或整體覆蓋之方式沈積鑽石=可利用R I E 去除各區域中不需要的鑽石。可利用本發明在整片矽或矽
第14頁 CM ο 五'發明說明〔1〇) 覆蓋絕緣體(SO I)基底上產生一鑽石沈積。 請參閱圖3,圖中示出一嵌入式熱導體結構(1〇〇)實施 例。熱導體無構(1〇〇)在基底的背面(1〇4)中設有欲 入式鎮石散熱片(1 〇 2)。以化學方式蝕刻該晶片,或以機 械方式切割該晶片’即可在背面(丨0 4)上形成若干溝渠 (108) = 14些溝渠(108)最好是下方較窄而上方較寬,因而 可在不產生空洞的情形下填充該等溝渠(〗0 8)。係利用前 文所迅之製程’以鑽石填充各溝渠(1 08)。視應用而定’ 可自背面(104)去除鑽石,亦可將鑽石保留在背表面作為 在生,錯f散煞片(1〇2)之後,在基底的背面(丨〇4)上沈 積一個最好是氮化矽或其他抗氧化材料的掩蔽層,使爐氧 化不會與鑽石起反應,並以氣體形式的二氧化碳(c〇J帶 走碳。如圖4所示,在完成熱氧化之後,可利用1氧化奸 (K〇H)溶液來钱刻基底(106)的石夕,以便露出更多的鑽石表 面區=。可=用氧氧化鉀溶液實施之方式去除矽,然而’ 必須·^某些却分的鑽石散熱月(1 0 2 )仍然保持埋入矽中, 以便固定散熱片。 请參^圖可將嵌入式熱導體(1 0 2 )連接到一冷卻塔 (1 2 0 ) 彳用〜層薄的熱滑脂(1 2 4 )將一半導體晶片 (I 2 2 ) <接1冷部塔(丨2 〇 )。在冷卻塔(1 2 〇 )内的空間(丨2 7 ) 中循%的二二去除熱量。各鑽石散熱片(丨〇 2 )自基底(丨〇 6 ) 排熱。‘二,過層熱滑脂(丨2 4 )導熱,並將熱傳遞到冷卻塔 (1 2 0 )’亚在此處將熱散逸到空氣中。利用C4銲墊(1 2 6 )在
苐15貝 45 60 1 〇 五、發明說明(11) 電氣上將晶片(1 2 2 )連接到一多晶片模組(圖中未示出)。 整合式熱導體尤係適用於矽覆蓋絕緣體(SOI)技術。一 埋入層的二氧化矽是—熱絕緣體。因此,該埋入層捕捉主 動電晶體所產生的入,因而將局部的溫度升高到一所需水 準之外3當此種自行發熱的SOI裝置引起廣大的注意時, 仍然必須解決排熱的問題。 請參閱圖6,圖中示出一結構(200),其中係在鄰近一電 晶體(204)處整合有若干鑽石熱導體(202),以便自該處排 出過量的熱。雖然圖中示出電晶體(2 0 4 ),但是亦可考慮 使闬其他的半導體裝置,例如二極體、電容、電阻等。可 配合鑽石熱導體( 2 02 )使用金屬層( 20 6 ),以便經由各C4銲 墊(208)導出熱量,並將熱導入模組(圖中未示出)中。金 屬層(206)包含在電氣上連接電晶體(204)之接點及接線, 這些接點及接線可包含鎢及鎢合金。可製造金屬層,以包 含高電導率的金屬,例如銅及銅合金或鋁及鋁合金。這些 金屬又增加了自電晶體(2 0 4 )排出的熱流。 熱導體(2 02 )亦沿著主動裝置區而橫向導熱,益垂直導 入在一埋入氧化物層(BOX )( 2 1 2 )之下的一蟇底(2 1 0 ) ^可 以各向同性钱刻或各向異性鞋刻之方式,執行對B 〇 X層 (2 1 2 )的蝕刻。由於利同諸如活性離子蝕刻(R I E )進行各向 異性蝕刻,所以各熱導體(2 2 0 )(圖6 )並不侵入電晶體 (2 0 4 )之下的區域=請務必注意,係將鑽石直接沈積到基 底(2 1 0 )上。 請參閱圖7,圖中示出一結構(2 0 0 ’)的另一實施例。以
第丨6頁 五、發明説明(12) 諸如氫氟酸而各向同性飪刻ΒΟχ層(2 1 2 ),即可形成可在其 中沈積鑽石的一通道’因而取代了一,部分的BOX層(2 1 2), 益與基底(210)保持接簡^各熱導體(2〇2,)之侵入區 (2 2 6 )因而係位於電晶體(2 0 4 )之下,以便增加自該電晶體 誹出的熱。可以各向同性蝕刻製程使侵入區(2 2 6 )進入電 晶體之下的區域。如熟悉本門技術者所習知的,可利用 C V D製程來執行各向同性钱刻。 請參閱圖8 ’ 一結構(2〇〇,,)的另—實施例包含與Β〇χ層 (212)接觸的若干熱導體(2 0 2 ”)。在該實施例中,只經由 複合冷卻結構(2 1 4 )而傳遞熱能。 請參閱圖6-8,可利用一額外的掩蔽層步驟而在所選擇 的各區域中生長熱導體(2〇2)、(2〇2’ )、及(202”)。在 某些情形中,最好是以有差異之方式將熱導體(2 〇 2 )、 (202 )、及(202 ”)置於鄰近需要額外散熱座的各裝置。 例如,在—混合類比_數位晶片中’可能需要使數位電路 與類比電路隔離。在此種情形中:可只在鄰近各類比電晶 體處形成熱導體( 20 2 )、(2〇2,)、及(2 0 2 ”)。將自各電 晶體傳遞出類比電路所散發的熱。 、請再參閱圖6,結構(2 〇 0 )内的複合冷卻結構(2丨4 )使用 與各熱導體(2 0 2 )串聯的各現有金屬層(2〇6),將熱自結構 (2〇〇)—的主動裝置區傳遞到表面的C4銲塾(2〇8)。該結構亦 將熱译入基底(2 1 〇 ),熱將傳遞到結構(2 〇 〇 )的一背面 (2 1 6 )上之低溫區,或傳遞到硬—鑽石熱導體’然後經由 —複合冷卻結構(2 14)而傳遞出,可利用氬化物形成一層
第丨7頁 456〇1 Ο 五、發明說明(13) (220),使結構(200)的建構過程中各熱導體(202)中之鑽 石不會氧化。可利用—種諸如鎢或矽化鎢的金屬填充一區 域( 22 2 ),以便提高自各裝置排出的熱流。此外,可利闬 二氧化矽填充區域(2 2 2 )。 可將鑽石熱導韹(202)的生長製程併入一 SOI製程中= SOI結構( 20 0 )具有一埋入氧化物層(212),且係將氧植入 最好是以矽構成的基底(210)的深處之方式產生該埋入氧 化物層(212)。在大約攝氏800-1200度的溫度下退火,而 形成埋入氧化物層(2 1 2 )。形成一掩蔽層,並以活性離子 蝕刻製程在低至埋入氧化物層(2 1 2 )處將形成的各淺溝渠 中產生若干開口。以上述的製程在與基底(210)接觸的該 等淺溝渠中生長複晶鑽石。因此’係在與產生熱能的源極 (2 30)及汲極(23 2 )接近的凹下區中沈積鑽石D在鑽石的上 面沈積一掩蔽層(2 2 0 )(最好是氮化矽(S i3 N4)),然後沈積 氧化物或金屬沈積區(2 2 2 ),以便填滿淺溝渠。掩蔽層 (2 2 0 )覆蓋鑽石,使後續的熱氧化不會與鑽石起反應。後 後研磨整個確疊(氧化物/ II化物/鑽石)。為後,進彳于彳吏表 ®暴露於氧氣及後R I E製程’以便去除梦表面上的鑽石。 以一離子植入夕驟.調整臨界電壓。首先在薄閘極氧化物 (2 3 4 )中生农’熬後沈積多晶石夕(2 3 6 )>益利用裝置層级的 掩蔽層(圖中未示ά)蝕刻一閘極(238),而形成各裝置。 利闬具有適當能量的#雜劑(砷或堋)植入一源極(2 3 〇 )及 ;及極(232)。在大約攝氏600到900度的运度下驅動該挣雜 劑,而形成各接靣(2 4 0 )。然後使各接靣(2 4 〇 )及間極
第18頁 H〇^'〇1〇 五、發明說明(14) (2 3 8 )石夕化。一旦形成各裝置之後,即打閧該等裝置之各 接點(206)及區域接線(242),而進入一個在源極(2 30)及 '及極(232)的上衣面上沈積的一氧化物層(244)。如本門 技術中所習知的,最好是利兩諸如鈦/氮化鈦、鈦/鎢等耐 火填料(在諸如金屬鑲嵌器的雙金屬鑲嵌模式中)以鎢填充 接線( 24 2 )及接點〔 2 0 6 )。 仍然在區域接線(242)上表面上沈積一額外的氧化物層 (2 4 6 ),而氧化物層(2 4 6 )上設有若干線條及通孔,且在單 或雙金屬鑲嵌模式中以諸如鎢填充該等線條及通孔。然後 利罔RIE或化學機械式研磨,自氧化物層〔246)去掉過量的 鹤。可重複該製程,以便產生一個多層的結構。 如圖6所示,各接點(206)與各熱導體(20 2 )重疊。然後 以一擴散障璧(例如鈦/氮化鈦、钽、鈕化合物等)沈積諸 如铭或銘合金 '或者銅或銅合金等低電阻係數金屬,而形 成接線(2 4 8 )。然後研磨掉一些金屬,而產生線路及通 礼可重複該製私’以便產生一多層的結構各煞導體 (2 0 2)係作為可在極接近諸如電晶體等裝置處形成的散熱 沒。各接點(206)接觸諸主動裝置區,並重疊到各熱導體 ( 2 0 2 ) ’而提供一條經過各接點(2〇6)、區域接線(242 )、 及各接線( 2 4 8 )之導熱路徑。由於使用了高導熱度的金 屬’所以可提南排熱的效率。 在加上額外掩敝層步驟的情形下,我們可考慮在—半導 體裝置上的鄰近諸如電晶體或電阻等的所選擇裝置處形成 ‘寺懸。在此種方式下,係自所選擇的裝置排熱。我們又
第19頁 45e〇 ? ο 五、發明說明(15) 考慮到,可配合嵌入式熱導體(圖6 - 8 )使周最好是以鑽石 或類似材料製造的散熱片(圖3 ),以進一步散逸熱量。我 們又考慮到,可在並未設有BOX層的晶片的"整片式"矽或 矽基底中傍著各電晶體或其他裝置而形成根據本發明所述 的熱導體。根據本發明,我們也考慮到,可將使周類似鑽 石材質的熱導體設於在主動矽裝置區之上的介質區,這是 因為在後續的晶片製程中,這些材料具有較低的熱處理臨 界必要餘件。 前文已說明了闬於半導體晶片的嵌入式熱導體之一些較 佳實施例及方法(其目的係用於舉例,並非對本發明加以 限制),請注意,熟悉本門技術者在參閱前文的揭示事項 之後可作出各種修改及變化。因此,我們當了解,在最後 的申請專利範圍所概述的本發明範圍及精神内,仍可對所 揭示的本發明各特定實施例作出各種改變。至此已按照專 利法的特定要求而詳述了本發明,我們所要求的權項及希 望得到專利權保護的部分係述於最後的專利範圍。
第20頁

Claims (1)

  1. 45S〇1〇 六、申請專利範® 1. 一種半導體晶月結構,包含: 一基底 ; 嵌入該半導體晶片結構内的至少一個熱導體,該熱 導Μ提供了電氣絕緣,以及 在該結構内鄰近該等至少一個熱導體處形成的複數 個裝置,因而在作業中將該等裝置產生的熱傳遞至且經過 該等至少一個熱導體,以便降低該等裝置之工作溫度。 2. 如申請專利範圍第1項之半導體晶片结構•其中係 利用鑽石製造該等至少一個熱導體。 3. 如申請專利範圍第2項之半導體晶片結構,其中係 以一氮化物層覆蓋該等至少一個熱導體,以避免氧化。 4. 如申請專利範圍第1項之半導體晶片結構,其中該 基底又包含: 一背表面;以及 複數個熱導體,該等複數個熱導體係經由該背表靣 而橫向嵌入該基底,而增加流經的熱流。 5. 如申請專利範圍第4項之半導體晶片結構,其中係 鞋刻該背表面,以便露出一較大靣積的該等熱導U,而增 加經過該背表面的熱流。 6. 如申請專利範圍第4項之半導體晶片结構,又包 含: 一個沈積在該背表面上的一熱滑脂;以及 •-冷卻裝置,該冷卻裝置係鄰接該熱滑脂,以便增 加來自該基底之熱流。
    第21頁 ί 0 六、申請專利赶圍 Τ. 如申請專利範圍第1項之半導體晶片結構,又包 含: 連接到到各金屬接線之若干接點1其中該等至少一 個熱導體接觸一接點,以便提供一條經過該等接點而進入 該等金屬接線之熱流路徑。 8. 如申請專利範圍第7項之半導體晶月結構,其中該 等金屬接線包含一個具有高導熱度之金屬。 9. 如申請專利範圍第8項之半導體晶片結構,其中該 金層包含銅。 10. 如申請專利範圍第8項之半導體晶片結構,其中該 金屬包含鋁。 11. 如申請專利範圍第1項之半導體晶片結構,其中係 在橫向鄰近該等至少一個裝置處形成每一熱導體。 12. 如申請專利範圍第1項之半導體晶片結構,其中係 在該基底上形成該等至少一個熱導體。 13. 如申請專利範圍第1項之半導體晶片结構,又包 含: 在該基底上形成的一氧化物層,而穿過該氧化物層 带成有若干開口; 其中係在該氧化物層中的該等開口内形成每一熱導 體,使每一熱導體係鄰近該等複數個裝置中之至少一個裝 置,並與該該基底接觸。 14.如申請專利範圍第1 3項之半導體晶片結構,其中該
    第22頁 ο 六、申請專利範圍 等至少一個熱導體亦接觸至少一個接點。 15. 一種SOI半導體晶片結構,包含: 一基底 - 嵌入該SOI半導體晶片結構内的至少一個熱導體, 該等至少一個熱導體提供了電氣絕緣;以及 在該結構内鄰近該等至少一個熱導體處形成的複數 個裝置,其中至少一部分的該等至少一個熱導體係延伸到 該基底與該等裝置之間,因而在作業申將該等裝置產生的 熱傳遞到且經過該等至少一個熱導體,以便降低該等裝置 之工作溫度。 16. 如申請專利範圍第1 5項之SO I半導體晶片結構,其 中係利周鑽石製造該等至少一個熱導體。 17. 如申請專利範圍苐1 6項之半導體晶片結構,其中係 以一氮化物層覆蓋該等至少一個熱導體,以避免氧化。 18. 如申請專利範圍第1 5項之SO I半導體晶片結構,又 包含: 連接到到各金屬接線之若干接點,其中該等至少一 個熱導體接觸一接點,以便提供一條經過該等接點而進入 該等金屬接線之熱流路徑。 19. 如申請專利範圍第1 8項之SO I半導體晶片結構,其 中該等金屬接線包含一個具有高導熱度之金屬。 20. 如申請專利範圍第1 9項之SO ί半導體晶片結構,其 中該金屬包含銅= 21. 如申請專利範圍苐1 9項之SO I半導體晶片結構,其
    第23頁 0 β〇 1 Q 六、申請專利範圍 中該金屬包含鋁。 2 2.如申請專利範圍苐1 5項之SOI半導體晶片結構,其 中係在橫向鄰近該等至少一個裝置處形成該等至少一個熱 導體。 23. 如申請專利範圍第1 5項之SO I半導體晶片結構,其 中該基底又包含: 一背表面;以及 複數個熱導體,該等複數個熱導體係經由該背表面 而橫向丧入該基底,而增加流經的熱流。 24. 如申請專利範圍第23項之SO I半導體晶片結構,其 中係蝕刻該背表面,以便露出一較大面積的該等複數個熱 導體,而增加經過該背表面的熱流。 2 5 .如申請專利範圍第2 3項之SO I半導體晶片結構,又 包含: 一個沈積在該背表面上的一熱滑腊;以及 一冷卻裝置,該冷卻裝置係鄰接該熱滑脂,以便增 加來自該基底之熱流。 26. 一種在一半導體晶片中形成内嵌式熱導體之方法, 包含下列步驊: 提供一基底,在該基底上形成有一氧化物層; 银刻若干進入該氧化物層之溝渠; 沈積鑽石以填滿該等溝渠,而形成若干與該基底接 觸之熱導體;以及 在鄰近該等熱導體處形成若干裝置及若干接點,以
    第24頁 ^ ^°〇1 ο 六、 申請專利範圍 便 供 流 路 徑 5 而 降 低 該 等 晉 之 工 作 溫 度 0 27 • 如 中 請 專 利 ΑΛτ 靶 圍 苐 26 項 的 成 内 嵌 式 執 導 體 之方 , 法 j 其 中 沈 積 鑽 石 以 填 滿 溝 渠 而 形 成 孰 導 體 之 該 步 载又包 含 下 列 步 騍 ; 在 一 献 燈 絲 系 統 中 混 合 曱 烧 氣 及 氫 氣 J 以 便產生 複 a ea 鑽 石 0 28 如 中 請 專 利 耗 圍 第26 項 的 形 成 内 tk 式 鈦 ί Μ > 導 體 之方 法 > 其 中 在 鄰 近 f 1 « 1 導 體 導 體 處 形 成 裝 置 及 接 點 以 便 提供熱 流 路 徑 之 該 步 轉 又 包 含 下 列 步 驟 在 該 等 執 « t ' % 導 體 上 沈 積 一- 氮 化 物 層 ϊ 使 鑽 石 不 會氧 化 以 及 在 該 氮 化 物 層 中 形 成 若 干 開 σ 以 便 將 該 等 接點連 接 到 該 執 t »'N 導 體 0 29 如 中 專 利 範 圍 第26 項 的 形 成 内 喪 式 熟 導 體 之方 法 又 包 含 下 列 步 m 形 成 接 線 以 連 接 到 炷 點 使 該 等 接 線 仗 供 — 條來自 該 埶 /' *、 導 體 之 故 » 1» > 流 路 徑 0 30. —' 種 在 —- 導 體 a 33 片 中 形 咸 内 式 故 * » ' V 導 體 之 方法, 包 含 下 列 步 驟 2.^ 供 一 基 底 j 該 基 底 具 有 —- 背 面 部 分 J ik 刻 若 干 ' U- 入 該 背 靣 部 分 之 溝 渠 以 及 沈 積 鑽 石 以 填 該 望 溝 渠 而 形 成 若 干 與 該 基底接 觸 之 孰 ί 11、 導 體 ) 以 便 J.H 促 供 熱 '"U 路 徑 J 而 降 低 該 等 裝 置 之工作 溫 度 〇
    第25頁 45^〇l〇 六、申請專利範圍 31.如申請專利範圍第3 1項的形成内嵌式熱導體之方 法’其中沈積鑽石以填滿溝梁而形成熱導體之該岁·靜又包 含下列步驟: 银刻該背面部分,而露出一額外面積的該等熱導 體。
    第26頁
TW088100257A 1998-01-13 1999-01-08 Embedded thermal conductors for semiconductor chips TW456010B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/006,575 US5955781A (en) 1998-01-13 1998-01-13 Embedded thermal conductors for semiconductor chips

Publications (1)

Publication Number Publication Date
TW456010B true TW456010B (en) 2001-09-21

Family

ID=21721558

Family Applications (1)

Application Number Title Priority Date Filing Date
TW088100257A TW456010B (en) 1998-01-13 1999-01-08 Embedded thermal conductors for semiconductor chips

Country Status (3)

Country Link
US (2) US5955781A (zh)
JP (1) JP3396176B2 (zh)
TW (1) TW456010B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101071756B (zh) * 2006-03-23 2016-02-10 英特尔公司 形成金刚石微通道结构的方法和所得到的器件

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731007B1 (en) * 1997-08-29 2004-05-04 Hitachi, Ltd. Semiconductor integrated circuit device with vertically stacked conductor interconnections
US6133139A (en) * 1997-10-08 2000-10-17 International Business Machines Corporation Self-aligned composite insulator with sub-half-micron multilevel high density electrical interconnections and process thereof
US6331763B1 (en) * 1998-04-15 2001-12-18 Tyco Electronics Corporation Devices and methods for protection of rechargeable elements
JPH11307782A (ja) * 1998-04-24 1999-11-05 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
US6396147B1 (en) * 1998-05-16 2002-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with metal-oxide conductors
US6794752B2 (en) * 1998-06-05 2004-09-21 United Microelectronics Corp. Bonding pad structure
US6844600B2 (en) 1998-09-03 2005-01-18 Micron Technology, Inc. ESD/EOS protection structure for integrated circuit devices
US6965165B2 (en) * 1998-12-21 2005-11-15 Mou-Shiung Lin Top layers of metal for high performance IC's
DE19907168C1 (de) * 1999-02-19 2000-08-10 Micronas Intermetall Gmbh Schichtanordnung sowie Verfahren zu deren Herstellung
US6352923B1 (en) * 1999-03-01 2002-03-05 United Microelectronics Corp. Method of fabricating direct contact through hole type
US6246583B1 (en) * 1999-03-04 2001-06-12 International Business Machines Corporation Method and apparatus for removing heat from a semiconductor device
US6423995B1 (en) * 1999-07-26 2002-07-23 Stmicroelectronics, Inc. Scratch protection for direct contact sensors
US6573565B2 (en) * 1999-07-28 2003-06-03 International Business Machines Corporation Method and structure for providing improved thermal conduction for silicon semiconductor devices
US6396706B1 (en) * 1999-07-30 2002-05-28 Credence Systems Corporation Self-heating circuit board
US6090696A (en) * 1999-10-20 2000-07-18 Taiwan Semicondutor Manufacturing Company Method to improve the adhesion of a molding compound to a semiconductor chip comprised with copper damascene structures
US6432809B1 (en) * 2000-02-28 2002-08-13 International Business Machines Corporation Method for improved passive thermal flow in silicon on insulator devices
US6747307B1 (en) * 2000-04-04 2004-06-08 Koninklijke Philips Electronics N.V. Combined transistor-capacitor structure in deep sub-micron CMOS for power amplifiers
US6333557B1 (en) * 2000-09-12 2001-12-25 International Business Machines Corporation Semiconductor chip structures with embedded thermal conductors
GB2371922B (en) * 2000-09-21 2004-12-15 Cambridge Semiconductor Ltd Semiconductor device and method of forming a semiconductor device
US7474536B2 (en) * 2000-10-27 2009-01-06 Ridley Ray B Audio sound quality enhancement apparatus and method
US6765802B1 (en) 2000-10-27 2004-07-20 Ridley Engineering, Inc. Audio sound quality enhancement apparatus
US6588217B2 (en) * 2000-12-11 2003-07-08 International Business Machines Corporation Thermoelectric spot coolers for RF and microwave communication integrated circuits
US6667548B2 (en) * 2001-04-06 2003-12-23 Intel Corporation Diamond heat spreading and cooling technique for integrated circuits
US6525354B2 (en) * 2001-04-27 2003-02-25 Fujitsu Limited FET circuit block with reduced self-heating
US6674128B1 (en) 2001-04-27 2004-01-06 Advanced Micro Devices, Inc. Semiconductor-on-insulator device with thermoelectric cooler on surface
US6803314B2 (en) * 2001-04-30 2004-10-12 Chartered Semiconductor Manufacturing Ltd. Double-layered low dielectric constant dielectric dual damascene method
US6709882B2 (en) 2001-08-27 2004-03-23 Lightwave Microsystems Corporation Planar lightwave circuit active device metallization process
US6649937B2 (en) * 2002-03-26 2003-11-18 Intel Corporation Semiconductor device with components embedded in backside diamond layer
DE10218530B4 (de) * 2002-04-25 2005-02-24 Infineon Technologies Ag Integrierte Schaltung mit thermisch abgeschirmter elektrischer Widerstandsbahn
US6815696B2 (en) * 2002-05-29 2004-11-09 Ibis Technology Corporation Beam stop for use in an ion implantation system
US6638844B1 (en) 2002-07-29 2003-10-28 Chartered Semiconductor Manufacturing Ltd. Method of reducing substrate coupling/noise for radio frequency CMOS (RFCMOS) components in semiconductor technology by backside trench and fill
JP3779243B2 (ja) * 2002-07-31 2006-05-24 富士通株式会社 半導体装置及びその製造方法
US6710443B1 (en) * 2002-12-20 2004-03-23 Texas Instruments Incorporated Integrated circuit providing thermally conductive structures substantially horizontally coupled to one another within one or more heat dissipation layers to dissipate heat from a heat generating structure
US7031163B2 (en) * 2002-12-30 2006-04-18 Texas Instruments Incorporated Mechanical cooling fin for interconnects
US7656027B2 (en) 2003-01-24 2010-02-02 Nanoconduction, Inc. In-chip structures and methods for removing heat from integrated circuits
JP2004228485A (ja) * 2003-01-27 2004-08-12 Hitachi Ltd 半導体チップ積層パッケージ構造、及び、かかるパッケージ構造に好適な半導体装置
WO2005001930A1 (en) * 2003-06-27 2005-01-06 Koninklijke Philips Electronics N.V. Integrated circuit with an integrated heat sink
US7345364B2 (en) * 2004-02-04 2008-03-18 Agere Systems Inc. Structure and method for improved heat conduction for semiconductor devices
US20050184385A1 (en) * 2004-02-23 2005-08-25 Brennan John M. Semiconductor device with improved thermal characteristics
US7290598B2 (en) * 2004-02-26 2007-11-06 University Of Rochester Heat exchange device
US7112855B2 (en) * 2004-05-07 2006-09-26 Broadcom Corporation Low ohmic layout technique for MOS transistors
WO2005122285A2 (en) 2004-06-04 2005-12-22 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US7521292B2 (en) 2004-06-04 2009-04-21 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US7799699B2 (en) 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
US7125785B2 (en) * 2004-06-14 2006-10-24 International Business Machines Corporation Mixed orientation and mixed material semiconductor-on-insulator wafer
US7033927B2 (en) * 2004-06-22 2006-04-25 International Business Machines Corporation Apparatus and method for thermal isolation, circuit cooling and electromagnetic shielding of a wafer
US7259458B2 (en) * 2004-08-18 2007-08-21 Advanced Micro Devices, Inc. Integrated circuit with increased heat transfer
US7518192B2 (en) * 2004-11-10 2009-04-14 Taiwan Semiconductor Manufacturing Company, Ltd. Asymmetrical layout structure for ESD protection
US7310036B2 (en) * 2005-01-10 2007-12-18 International Business Machines Corporation Heat sink for integrated circuit devices
TW200631144A (en) * 2005-02-18 2006-09-01 Mitac Technology Corp Chip heat dissipation structure and manufacturing method thereof
US8664759B2 (en) * 2005-06-22 2014-03-04 Agere Systems Llc Integrated circuit with heat conducting structures for localized thermal control
US7633152B2 (en) * 2005-09-02 2009-12-15 Agere Systems Inc. Heat dissipation in integrated circuits
US7335575B2 (en) * 2006-02-03 2008-02-26 International Business Machines Corporation Semiconductor constructions and semiconductor device fabrication methods
US7646064B1 (en) * 2006-10-27 2010-01-12 National Semiconductor Corporation Semiconductor die with aluminum-spiked heat pipes
KR101519038B1 (ko) 2007-01-17 2015-05-11 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 프린팅­기반 어셈블리에 의해 제조되는 광학 시스템
EP1968109A3 (en) * 2007-03-08 2012-08-01 Nissan Motor Co., Ltd. Semiconductor device and method of manufacturing the same
US8058724B2 (en) * 2007-11-30 2011-11-15 Ati Technologies Ulc Holistic thermal management system for a semiconductor chip
US20090218682A1 (en) * 2008-03-03 2009-09-03 Nils Lundberg Semiconductor chip
CN102113089B (zh) 2008-03-05 2014-04-23 伊利诺伊大学评议会 可拉伸和可折叠的电子器件
US8470701B2 (en) * 2008-04-03 2013-06-25 Advanced Diamond Technologies, Inc. Printable, flexible and stretchable diamond for thermal management
US8022535B2 (en) * 2008-06-06 2011-09-20 Coolsilicon Llc Systems, devices, and methods for semiconductor device temperature management
JP2008283216A (ja) * 2008-07-28 2008-11-20 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
US8372726B2 (en) 2008-10-07 2013-02-12 Mc10, Inc. Methods and applications of non-planar imaging arrays
US9289132B2 (en) 2008-10-07 2016-03-22 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
US8053814B2 (en) 2009-04-08 2011-11-08 International Business Machines Corporation On-chip embedded thermal antenna for chip cooling
EP2430652B1 (en) 2009-05-12 2019-11-20 The Board of Trustees of the University of Illionis Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
US9466719B2 (en) 2009-07-15 2016-10-11 Qualcomm Incorporated Semiconductor-on-insulator with back side strain topology
US9496227B2 (en) 2009-07-15 2016-11-15 Qualcomm Incorporated Semiconductor-on-insulator with back side support layer
TWI515878B (zh) * 2009-07-15 2016-01-01 西拉娜半導體美國股份有限公司 絕緣體上半導體結構、自絕緣體上半導體主動元件之通道去除無用積聚多數型載子之方法、及製造積體電路之方法
US9390974B2 (en) 2012-12-21 2016-07-12 Qualcomm Incorporated Back-to-back stacked integrated circuit assembly and method of making
CN102484097B (zh) * 2009-07-15 2016-05-25 斯兰纳半导体美国股份有限公司 具有背侧支撑层的绝缘体上半导体
US8921168B2 (en) 2009-07-15 2014-12-30 Silanna Semiconductor U.S.A., Inc. Thin integrated circuit chip-on-board assembly and method of making
WO2011008893A1 (en) 2009-07-15 2011-01-20 Io Semiconductor Semiconductor-on-insulator with backside heat dissipation
US9723122B2 (en) 2009-10-01 2017-08-01 Mc10, Inc. Protective cases with integrated electronics
US10441185B2 (en) 2009-12-16 2019-10-15 The Board Of Trustees Of The University Of Illinois Flexible and stretchable electronic systems for epidermal electronics
US9936574B2 (en) 2009-12-16 2018-04-03 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics
JP6046491B2 (ja) 2009-12-16 2016-12-21 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ コンフォーマル電子機器を使用した生体内での電気生理学
CN102892356B (zh) 2010-03-17 2016-01-13 伊利诺伊大学评议会 基于生物可吸收基质的可植入生物医学装置
US9077588B2 (en) * 2010-07-31 2015-07-07 Arash Daghighi Double insulating silicon on diamond device
FR2966268B1 (fr) 2010-10-18 2013-08-16 St Microelectronics Rousset Procédé comprenant une détection d'une remise en boitier d'un circuit intégré après une mise en boitier initiale, et circuit intégré correspondant.
US8466054B2 (en) 2010-12-13 2013-06-18 Io Semiconductor, Inc. Thermal conduction paths for semiconductor structures
US8912574B2 (en) 2010-12-14 2014-12-16 International Business Machines Corporation Device isolation with improved thermal conductivity
US8470682B2 (en) 2010-12-14 2013-06-25 International Business Machines Corporation Methods and structures for increased thermal dissipation of thin film resistors
US9442285B2 (en) 2011-01-14 2016-09-13 The Board Of Trustees Of The University Of Illinois Optical component array having adjustable curvature
WO2012158709A1 (en) 2011-05-16 2012-11-22 The Board Of Trustees Of The University Of Illinois Thermally managed led arrays assembled by printing
KR102000302B1 (ko) 2011-05-27 2019-07-15 엠씨10, 인크 전자, 광학, 및/또는 기계 장치 및 시스템, 그리고 이를 제조하기 위한 방법
EP2713863B1 (en) 2011-06-03 2020-01-15 The Board of Trustees of the University of Illionis Conformable actively multiplexed high-density surface electrode array for brain interfacing
KR101979354B1 (ko) 2011-12-01 2019-08-29 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 프로그램 변형을 실행하도록 설계된 과도 장치
CN105283122B (zh) 2012-03-30 2020-02-18 伊利诺伊大学评议会 可共形于表面的可安装于附肢的电子器件
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
JP6311026B2 (ja) 2013-09-20 2018-04-11 ジーイー・インテリジェント・プラットフォームズ・インコーポレイテッド 可変熱伝導体
US9318371B2 (en) * 2014-02-25 2016-04-19 Taiwan Semiconductor Manufacturing Co., Ltd. Shallow trench isolation structure
US9515181B2 (en) 2014-08-06 2016-12-06 Qualcomm Incorporated Semiconductor device with self-aligned back side features
KR20180034342A (ko) 2015-06-01 2018-04-04 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 대안적인 자외선 감지방법
BR112017025609A2 (pt) 2015-06-01 2018-08-07 The Board Of Trustees Of The University Of Illinois sistemas eletrônicos miniaturizados com potência sem fio e capacidades de comunicação de campo próximo
WO2017052616A1 (en) * 2015-09-25 2017-03-30 Intel Corporation Isolation structures for an integrated circuit element and method of making same
US10925543B2 (en) 2015-11-11 2021-02-23 The Board Of Trustees Of The University Of Illinois Bioresorbable silicon electronics for transient implants
US9728483B2 (en) * 2015-12-09 2017-08-08 Honeywell Federal Manufacturing & Technologies, Llc Method of forming an integrated circuit with heat-mitigating diamond-filled channels
US11004680B2 (en) 2016-11-26 2021-05-11 Texas Instruments Incorporated Semiconductor device package thermal conduit
US10529641B2 (en) 2016-11-26 2020-01-07 Texas Instruments Incorporated Integrated circuit nanoparticle thermal routing structure over interconnect region
US11676880B2 (en) 2016-11-26 2023-06-13 Texas Instruments Incorporated High thermal conductivity vias by additive processing
US10861763B2 (en) 2016-11-26 2020-12-08 Texas Instruments Incorporated Thermal routing trench by additive processing
US10256188B2 (en) 2016-11-26 2019-04-09 Texas Instruments Incorporated Interconnect via with grown graphitic material
US10811334B2 (en) 2016-11-26 2020-10-20 Texas Instruments Incorporated Integrated circuit nanoparticle thermal routing structure in interconnect region
US10475725B2 (en) 2017-11-08 2019-11-12 Texas Instruments Incorporated Structure to enable higher current density in integrated circuit resistor
CN110943056B (zh) 2018-09-21 2021-11-23 联华电子股份有限公司 具有散热结构的高电阻晶片及其制作方法
CN112234037B (zh) * 2020-09-17 2022-11-04 中国电子科技集团公司第五十五研究所 一种嵌入式金刚石硅基微流体散热转接板及其制备方法
CN115799194B (zh) * 2023-02-03 2023-05-09 之江实验室 晶圆散热微流道、制备方法及三维集成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935864A (en) * 1989-06-20 1990-06-19 Digital Equipment Corporation Localized cooling apparatus for cooling integrated circuit devices
JP3047986B2 (ja) * 1990-07-25 2000-06-05 株式会社日立製作所 半導体装置
US5239746A (en) * 1991-06-07 1993-08-31 Norton Company Method of fabricating electronic circuits
US5313094A (en) * 1992-01-28 1994-05-17 International Business Machines Corportion Thermal dissipation of integrated circuits using diamond paths
EP0590804B1 (en) * 1992-09-03 1997-02-05 STMicroelectronics, Inc. Vertically isolated monolithic bipolar high-power transistor with top collector
US5272104A (en) * 1993-03-11 1993-12-21 Harris Corporation Bonded wafer process incorporating diamond insulator
US5391914A (en) * 1994-03-16 1995-02-21 The United States Of America As Represented By The Secretary Of The Navy Diamond multilayer multichip module substrate
MY112145A (en) * 1994-07-11 2001-04-30 Ibm Direct attachment of heat sink attached directly to flip chip using flexible epoxy
US5767578A (en) * 1994-10-12 1998-06-16 Siliconix Incorporated Surface mount and flip chip technology with diamond film passivation for total integated circuit isolation
US5621616A (en) * 1995-09-29 1997-04-15 Lsi Logic Corporation High density CMOS integrated circuit with heat transfer structure for improved cooling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101071756B (zh) * 2006-03-23 2016-02-10 英特尔公司 形成金刚石微通道结构的方法和所得到的器件

Also Published As

Publication number Publication date
US5955781A (en) 1999-09-21
US6100199A (en) 2000-08-08
JP3396176B2 (ja) 2003-04-14
JPH11289052A (ja) 1999-10-19

Similar Documents

Publication Publication Date Title
TW456010B (en) Embedded thermal conductors for semiconductor chips
US6800933B1 (en) Integrated circuit cooling device
JP3528665B2 (ja) 半導体装置の製造方法
US6559538B1 (en) Integrated circuit device having a built-in thermoelectric cooling mechanism
TW480567B (en) Thermal conductivity enhanced semiconductor structures and fabrication processes
US8129609B2 (en) Integrated thermoelectric cooling devices and methods for fabricating same
US6919231B1 (en) Methods of forming channels on an integrated circuit die and die cooling systems including such channels
US6190985B1 (en) Practical way to remove heat from SOI devices
KR950005452B1 (ko) 반도체장치 및 반도체패키지
TW200811997A (en) Dual wired integrated circuit chips
US20050145899A1 (en) Manufacturing method of semiconductor device
JP3905580B2 (ja) 冷却改善用の熱伝達構造を有する高密度cmos集積回路
TW200915485A (en) Method of depositing tungsten using plasma-treated tungsten nitride
EP0983612A1 (en) A thermal conducting trench in a semiconductor structure and method for forming the same
US11502050B2 (en) Redistribution layer metallic structure and method
TW419711B (en) Semiconductor device and its manufacture
CN109686706A (zh) 半导体结构
US10224242B1 (en) Low-resistivity metallic interconnect structures
TW201335166A (zh) 用於孔洞密封應用之經化學變化的碳矽烷
US20090199999A1 (en) Electric Component with Two-Phase Cooling Device and Method for Manufacturing
US7238591B1 (en) Heat removal in SOI devices using a buried oxide layer/conductive layer combination
JP2005033164A (ja) 半導体素子の銅配線形成方法
JP2003347488A (ja) 半導体装置およびその製造方法
US6432809B1 (en) Method for improved passive thermal flow in silicon on insulator devices
JP3488586B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees