TW384389B - Apparatus for measuring the angle of rotation for rotatable parts - Google Patents

Apparatus for measuring the angle of rotation for rotatable parts Download PDF

Info

Publication number
TW384389B
TW384389B TW088109405A TW88109405A TW384389B TW 384389 B TW384389 B TW 384389B TW 088109405 A TW088109405 A TW 088109405A TW 88109405 A TW88109405 A TW 88109405A TW 384389 B TW384389 B TW 384389B
Authority
TW
Taiwan
Prior art keywords
angle
rotation angle
patent application
bridge
signal
Prior art date
Application number
TW088109405A
Other languages
English (en)
Inventor
Klaus Marx
Hartmut Kittel
Franz Jost
Original Assignee
Bosch Gmbh Robert
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7879188&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW384389(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bosch Gmbh Robert filed Critical Bosch Gmbh Robert
Application granted granted Critical
Publication of TW384389B publication Critical patent/TW384389B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/18Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying effective impedance of discharge tubes or semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0017Means for compensating offset magnetic fields or the magnetic flux to be measured; Means for generating calibration magnetic fields

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

A7 ____ϋ___ 丨. 五、發明説明(丨) 本發明關於申請專利範圍第1項引文的一種用於將可 轉元件的旋轉角度檢出的裝置以及申請專利範圍第9項引 文的一種相關的方法。 此類可作無接觸式的旋轉角度檢出的裝置’舉例而言 ,見於德專利公開案DE-OS 195 43 562,在這種裝置’有 一磁鐵與該可轉動的軸(其角度位置要求出)連接。磁場 (它隨-的旋轉角度改變)利用二個感測器元件測量。這 些感測器元件爲二個霍爾感測器元件(它們互相偏轉了 90 。的角度)或二個磁阻式感測器元件(它們互相偏轉了 45° )。感測器元件利用交流電壓信號(它們互相呈適當方式的 相位移動)供電。感測器元件之輸出信號重疊造成一種信 號走勢,這種走勢可表示角度位置。在此文獻中提到無接 觸式旋轉角度檢出裝置各有二個同類的感測器元件。這點 會導致一些缺點,因爲舉例而言,霍爾感測器受溫度影響 很大,且受應力(Stress)影響很大。反之’磁阻性感測器 元件在溫度及應力的影響方面具有較有利的性質’它們受 溫度及應力的影響比霍爾感測器少,但其缺點爲:由於這 種物理效應,只能明確地檢出180。的角度範圍。舉例而 言,這種角度範圍在檢出內燃機凸輪軸的位置時或在方向 盤角度測量方法中顯得太小。 在專利DE-P 197 22016發表了一種可轉元件的無接觸 式旋轉角度檢出裝置,其中,將具有至少二個感測器元件 的感測器裝置之可受磁性影響的性質分析’在一分析電路 中將由可轉元件產生的磁場強度或受其影響的磁場強度檢 (請先聞讀背面之注f項再 ^丨 订本頁 訂· 9 經濟部智慧財產局員工消费合作社印製 本纸張尺度逍用中國因家標準(€呢)八4規格(210父2和公釐) A7 B7
出,並取出以求出旋轉位置,其中一個感測器元件利用磁 阻效應工作,另一感測器元件利用霍爾效應工作,而將由 一感測器兀件產生的信號互相組合。在實用上,這種磁阻 感測器及霍爾感測器的組合顯得十分繁複昂貴。 本發明的目的在提供一種檢出旋轉角度的裝置或方法 ,藉之可用低成本明確地檢出儘可能大的角度範圍(特別 是 0〇 〜360〇 )。 這種目係利用具有申請專利範圍第1項的特點裝置及 具有申請專利範圍第9項特點的方法達成。 如今’依本發首度可以使用磁阻感測器裝置明確地檢 出0°〜360°之間的角度。在此’不同於背景技術的感測 器裝置,並不需附加之霍爾感測器。如此,準備—種旋轉 角度檢出裝置的成本就減少了。有利的用途舉例而w,係 用在檢出內燃機凸輪軸的位置。此外,本發明可有利地用 於方向盤角度測量方法,因爲比起傳統方法, 圍增大到360° ,使整個系統的容許誤差限度提高. 本發明之有利進一步特點見申請專利範圍副g。 依一種較佳設計,該感測器裝有多數磁阻元彳牛, 至少接成二個橋式電路(特別是惠斯頓電橋),其中之— 產生一個信號,此信號係所要檢出的第〜磁場相對於 一參考面的夾角的餘弦(cosine)値有關,而另—橋接電路 產生的信號則與此角度的正弦(sine)値有關。根據這種 線性獨立的信號,可簡單地作信號分析。 這種磁阻元件設計成AMR測量條帶形式。道種測量 本紙張又度適用中國國家揉率(CNS ) A4規格(210X29、公釐) I-ΟΙ. 1Τ 經濟部智慧財產局貝工消费合作社印製 A7 B7 經濟部智慧財產局員工消费合作社印製 五、發明説明(今) 條帶可以用較簡單及廉價的方式以適當方位設到一基質上 〇 最好在二個與橋式電路的一橋分枝相關的磁阻元件中 .的電流方向互相成垂直。 該橋式電路宜設成相偏轉一角度(特別是45° )利用 這種設置,正弦及餘弦信號都能用簡單方式抽離。 在橋式電路中的磁性輔助場Bh宜具不同方向,其中, 這些方向宜夾成45°角。 這些磁阻元件宜設成蜿蜒排列。利用這些措施可達成 較高之感測器信號,它們可以較簡單地分析。 該磁性輔助場Bh宜利用平面線圈產生,該線圈利用一 不導電的中間層和磁阻元件絕緣。利用這種線圈,配線成 本較低,且輔助場BH的童及方向可用想要的方式調整。 依本發月方法一較佳實施例關聯(Korrelierung)係利用一 個以下形式的區域函數實施: F = [ ( 0° S 3 AMR180 ‘ f ( Λ 1,α 2 ) ] AND { { ( <5 Ucos > S )OR ( ( 5Usin<-S) AND ( I (5Uc〇s | <S) ) } } OR { { f(CZl,a2) AMR180 } AND < { δ Ucos〉S } 0R[ ( (5 Ucos > S) AND ( I (5Uc〇s I <S]}} 其中 CC AMR180 爲一種不施輔助場Bh用180°明確範圍檢 出的旋轉角度,S爲一可調整的有效臨限,占或(511心 爲此感測器裝置之與角度有關的變化信號,而爲 在各橋式電路地點的橋式電路或輔.助場相對於—參考方向 的角度對準的一個加法或減法函數。如此可得到一種測定 (請先《讀背面之注$項再本頁)
C 本紙張尺度適用中國國家樑準(CNS ) A4規格(210X2^7公釐) A7 B7 五、發明説明(今) 方法利用電腦以獨立方式在360°的角度範中作明確的旋 轉角度測定。區域函數的形狀依各橋式電路中的磁性輔助 場Bh的方向而定。在輔助場Bh的任意方向時,藉著使用 磁性場Bh可以區別角度範圍Ο$α$180°與角度範圍180 ° $α$360° ,其中要注意,在橋式電路(1)的地點的Bh的 方向與橋式電路(11)地點的Bh的方向不同。如果該二Bh方 向差了 45° ,則特別有利。 依本發明方法之一特佳實施例,函數係爲i +心形式的函數。當輔助場BR在橋式電路(1)的地點沿方 向α =90° ,而在橋式電路(11)的地點沿方向α =45°作用 時,舉例而言,就造成以下之區域函數 F = { { 〇。^ ΑΜΙΠ80 $135° }及{〔 51U>S〕或〔 ((5Usin<-S)及(I (5Uc〇s | <S)〕} } 或 { { 135。< a AMR180 $180。}及{〔 6DS〕或〔( dUsin>S) R ( I (5Ucos I <S) 3 } } 依本發明方法之一特佳實施例’函數f( α,,a 2)爲I α! - α 形 式的函數,且在橋接電路(11)時,方向α = 135° ,舉例而 言,就造成以下之逦域函數 F= { { 〇〇 ^ AMR180 $45° }及{〔 5U^>S〕或〔( | (5Uc〇s | <S)及(^UwC-S)〕} }或 { {45〇〈 CK AMR180 $180° }及{〔 51U>S〕或〔( | 5Uc〇s | <S)及(5Usin>S)〕} } 茲配合附圖利一較佳實施例詳細說明本發明’圖式中 本紙張尺度適用中國國家揉準(CNS > A4规格(210X29?公釐) (請先閲讀背面之注f項再1^本頁)
訂'
C 經濟部智慧財產局貝工消费合作社印製 五、發明説明(γ) A7 B7 經濟部智慧財產局員工消费合作社印製 第一圖係一種將可轉元件的旋轉角度檢出的裝置的一 較佳實施例的示意圖, 第二圖係本發明之旋轉角度檢出裝置所發生的餘弦與 正弦橋接信號電壓在施加磁性輔助場時的改變與所要檢出 的外磁場的關係, 第三圖係本發明之旋轉角度檢出裝置一較佳實施例的 可能構造的上視圖。 第一圖中所示本發明旋轉角度檢出裝置的感測器裝置 有二個惠斯頓電橋(1)(11),各惠斯頓電橋(1)(11)具有各向 異性(anisotrop)的磁阻薄膜感測器或AMR測量條帶(1/1) 〜(1/4)或(11/1)〜(11/4),當作磁阻元件。 AMR材料〔例如透磁鋼(permau〇y)的電阻依一角度 而定,此角度係在磁化方向或所施磁場B«t方向與一電流 (I)(它流經此AMR材料)的方向間的夾角。在AMR測量 條帶內的電流方向在第一圖中係利用與各AMR測量條帶相 關的線組作示意表示(此處可看出,惠斯頓電橋的電橋各 分枝有二個AMR測量條帶,它們具有互相垂直的電流方向 。)當電流受到AMR測量條帶的幾何形狀固定時,磁化方 向就循著所要檢出之外磁場之方向。在第一圖中,外磁場 B«t之與旋轉角度相關的方向係利用一長箭頭表示。AMR 測量條帶之電阻和角度的關係圖有180。的週期,其中, 當磁化方向平行於或反向平行於電.流方向時,阻力最大, 而當磁化方向垂直於電流方向時,阻力最小。接到一惠斯 (請先閱讀背面之注$項再
QiJI
C 訂 本紙張尺度適用中國鬮家標準(CNS > A4規格(210X2釣公釐) Α7 Β7 五、發明説明(b) 頓電橋(1)(11)的AMR測量條帶(1/1)〜(1/4)及(11/1〜11/4)用 於將與角度有關的應用信號抽出。由惠斯頓電橋(1)得到的 信號Uw具有180°週期,且顯示一種餘弦形走勢 Ucos ^ cos(2a)。如上述,角度α顯示出所要測之外磁場的方向。 第二惠斯頓電橋(11)相對於第一惠斯頓電橋(1)轉了 45°。 AMR測量條係對應地設置,因此惠斯頓電橋(11)產生正弦 形輸出信號U&〜sin(2c〇。在一電子分析電路(圖中未示 )中形成tan'1,可得到所要測的角度α。由於電橋電壓與 2α的關係,故有180°的週期,因此角度之絕對値只能在 0° SaS180°的範圍中。 爲了區分二種角度範圍0° $α$180°以及180° 經濟部智慧財產局貝工消費合作社印製 360° ,故短時地施一輔助磁場Βη,如第一圖中的白箭頭所 示。在AMR測量條帶(1/1)〜(1/4)或(11/1)〜(11/4)中的磁化 方向稍微受此磁場Bh改變,因此,從惠斯頓電橋(1)(11)導 出的信號1)。。5或Usi»也受到對應的改變。這種相對於無施加 輔助場Bh時的測量的信號或電壓的改變(5U。。:及6Usu以一 種邏輯關聯(所謂的區域函數)作分析。此區域函數(它 在下文中將詳述)可爲邏輯値“0”或“Γ,如此可決定 ,是否所測的角度α在0°〜180°範圍或在180°〜360° 範圍。如此,利用一 AMR角度感測裝置可在整個角度範圍0 °〜360°作絕對角度測量。 在惠斯頓電橋(11)上的磁性輔助場的方向(角度α2) 相對於在惠斯頓電橋(1)上的輔助場Bh (角度呈一種差 了 45°的方向。舉例而言,這點可見於第一圖,其中,惠 本紙張尺度適用中國國家樑準(CNS ) A4规格(210Χ2ί7公釐) 經濟部智慧財產局貝工消费合作社印製 A7 ___B7 _ 五、發明説明(q ) 斯頓電橋(11)上的輔助場Bh朝向(22 = 45°方向’而在惠斯 頓電橋(1)上的輔助場朝向〜=90°方向,對於這種輔助場 Bh的對準,在第二圖中顯示相關的信號變化<511咖及51^ 。如果此時A AMR180 表示無輔助場時測量的角度’且由於 180°的週期性而侷限於明確範圍0°〜180° ,此邏輯區域 函數F爲: .F= { {0。SaAMR$135。}及{〔 ^UC<5S>S〕或〔(5 Usin<-S) R ( I 5Uc〇s I <s) ] } } 或{ { 135。< 〇!amr180° }及{〔 <5Uc〇s>S〕或〔(占 Usin>S)及(I 5Uc〇s I <s)〕} } 其中F=僞或“0”則表示:外磁場所要檢出的場 方向的角度α在0°〜180°範圍中,亦即:α = αΑΜ_ ’ ,且 F=真或“Γ則表示:外磁場Be之所要檢出的場方 向的角度α在180。〜360°範圍中,亦即·· a = aAMim〇+180 〇 在以下表1中顯示區域函數的邏輯關聯的細節。要知 道’只有當信號變化(5Uw的値在有效臨限値S以下時,才 將信號改變5Usin取出以作區域的決定。這種情形,依第二 圖特別是發生在角度範圍α=0° 、90° 、180。、270°與 360°或者對 CL AMR180 = 0〇 、 90〇 與 180。。 (請先閱讀背面之注f項再 Γό—. -fr^F^本頁 訂
-Π-· C 本紙張AAit用《ΡΗ目家轉(CNS ) A4^ ( 21GX2?7公釐) 經濟部智慧財產局員工消費合作社印製
A7 ___B7_ 五、發明説明(名) δ Uc〇s δ Usin a amr 180 — + ; ? ; — u ; ο + + ; ? ; — u ; ο ? + u ? - u ? - 0 ? + 〇 此處邏輯區域函數F具以下之値: 對於 0° S α $180。 爲 〇, 對於 180° S α $360° 爲 1, 對於 (X AMR180 * . 以下邏輯狀態 u 表7^0。SaAMRi8〇S135〇 , 0表示135 ° < 0! AMR180 $180。, 函數511。。5及5Usin的邏輯狀態如下定義 對於5U>+S + 對於I <5U丨< + S ? 對於(5UC-S — 第三圖顯示一本發明之36(T AMR角度感測器的較佳 構造,它可利用薄膜技術製造。個別的AMR測量條帶或電 阻在此處也用(1/1)〜(1/4) (cos電橋)及(11/1〜11/4) (sin 電橋)表示。此電阻層的厚度典型値在20nm〜50nm範圍 。條帶寬度舉例而言爲l〇//m。要把AMR電阻(1/1)〜(1/4) 及(11/1)〜(11/4)配線或鍍金屬成爲二個惠斯頓電橋的方法 ,舉例而言,係用鋁或銅條帶(10)以薄膜技術造成。 本紙張逍用中國國家梯準(CNS > Α· ( 210X2讲公釐) '~ (請先閱讀背面之注f項再_ JOI 订本頁 .9 經濟部智慧財產局員工消费合作社印製 A7 _B7_ , 五、發明説明(1 ) 輔助場Bh係利用一薄膜平面線圈(2)產生。該平面線 圈(2)利用一不導電之中間層(典型厚度200nm〜500nm) 呈電絕緣方式位在AMR電阻(1/1)〜(1/4)及(11/1)〜(11M)或 .其鍍金屬層上。平面線圈(2)的形狀設定成使輔助場Bh依第 一圖在惠斯頓電橋(1) (cos電橋)的範圍中朝向α =90°之 方向,而在惠斯頓電橋(11) (sin電橋)的範圍中朝向α = 450。的方向,而在AMR測量條帶的範圍中則平行於層的 平面延伸。平面線圈(2)的線圈線組特別平行或垂直於AMR 電阻的條帶方向或蜿蜒方向延伸。平面線圈(2)的線圈繞組 的寬度方向在典型的例子係和AMR電阻寬度方向相同。在 圖示之例子,該寬度爲12//m。平面線圈(12)的線圈繞組的 典型層厚度在500nm〜lOOOnm範圍之間。在圖示之例子中 ,該二惠斯頓電橋(1)(11)係並聯。整個感測器元件連同該 二個線圈端子共有八個端子墊(Pad),即:U«s_ '仏:、 IW、IW、V«、Vs_、Vs+及接地GND。它們可用簡單方式 包裝在一適合殻體,物別是一個SOIC8殼體中。 利用平面線圈(2)產生磁性副場(Bh)的方式並不限於第 三圖的設置及AMR電阻的蜿蜒形狀。AMR電阻的製造或 設置只需確保惠斯頓電橋(1)(11)的電阻中的電流方向沿第 一圖所示方向跑。因此即使在AMR電阻之變更設置方式( 例如EP 0 671 065A2中所述之星形嵌合電路)也可利用一 平面線圈(2)產生輔助場。同樣地’舉例而言,如不採用蜿 蜒的AMR電阻或電阻條帶,也可以採用任何長方形、方形 、圓形或橢圓形的AMR薄膜構造的串聯電路,例如在WO 本紙張尺度逋用中國國家標準(CNS ) A4規格(210X助公釐) A7 ___B7_ 五、發明説明() ' 。要求出未施輔助場Bh時的角度 OL AMRI80 (亦即在平面線圈 (2)無電流時),舉例而言,係用一微處理電路依習知方法 依公式asO.Stan1 (USin/U«s)計算tan·1値,或用其他適 合的計算方法。利用其他的數位回路將信號電壓、U,u 及角度aAMR18。儲存。然後施加輔助場Bh〔亦即將平面線圈 (2)通電〕重新測量。用另外的邏輯電路實施上述的區域函 數F,參考有效臨限將電壓變化5仏。8與5Usin的正號或負 號分析出來,並決定是否求出的測量角度等於aAMRI8()+180° 〇 〔圖號說明〕 ⑴(11) 惠斯頓電橋 (1 /1)〜(1 /4),(11 /1)〜(11 /4) 磁阻薄膜感測器或AMP測量條帶 ⑵ 平面線圈 經濟部智慧財產局貝工消費合作社印製 |紙 本 逍 Μ I嗖一祕 !9 12

Claims (1)

  1. ___§_.__ 六、申請專利範固 1·—種用於將可轉元件的旋轉角度檢出的裝置’其 中可將一感測器裝置之可受磁性影響的性質分析而將受— 可轉元件產生或影響的第一磁場Bm在一分析電路中檢出 以及應用以求出旋轉角度,其中該感測器元件利用在一第 一角度範圍(特別是180°的角度範圍)的磁阻效應而產 生一個與磁場B„,方向明確地相關的信號’其特徵在:具 有施加手段(2)以選擇性地把一磁性輔助場Β»施到該感器裝 置,藉之可使該可與一磁場B«t方向相關的信號改變’以 與一第二角度範圍(特別是360° )的一個角度明確地相 關聯。 2. 如申請專利範圍第1項之用於將可轉元件的旋轉 角度檢出的裝置,其中: 該感測器裝置有多數磁阻元件(1/1)〜(1/4) ’(n/1)〜 (11/4),它們至少接成二個橋式電路’特別是惠斯頓電橋 (1)(11),其中一電橋產生一個對一參考方式的第一磁場 的角度的餘弦値相關的信號,而另一霄辦產生一個與此角 度的正弦値相關的信號。 3. 如申請專利範圍第2項之用於將可轉元件的旋轉 角度檢出的裝置,其中: 該磁阻元件爲AMR測量條帶(1/1)〜(1/4) ’(11/1)〜 (11/4)。 4. 如申請專利範圍第1或第2項之用於將可轉元件 的旋轉角度檢出的裝置,其中: 該在二個與構式電路(1)(11) 一橋分枝相關聯的磁阻元 ___—I-—- 良乐尺度埴用中两圃家裸準(CNS M4规格(210X297公釐) (請先聞讀背面之注f項再填寫本頁) -订- -Γ 經濟部智慧財產局負工消費合作社印t S84389 B8 C8 , D8 六、申請專利範園 件的電流方向互相垂直。 5·如申請專利範圍第1或第2項之用於將可轉元件 的旋轉角度檢出的裝置,其中: 該二橋式電路(1)(11)設成互相轉一角度,特別是45。。 6♦如申請專利範圍第1或第2項之用於將可轉元件 的旋轉角度檢出的裝置,其中: <該橋式電路(1)(11)中的磁性輔助場Bh有不同的方向, 這'二個方向夾成一角度,特別是45°。 7·如申請專利範圍第1或第2項之用於將可轉元件 的旋轉角度檢出的裝置,其中: 該磁阻元件(1/1)〜(1/4),(11/1卜(11/4)設計成蜿蜒狀 〇 8·如申請專利範圍第1或第2項之用於將可轉元件 的旋轉角度檢出的裝置,其中: 該磁性輔助場Bh可利用一平面線圈(2)產生,該平面 線圈利用一不導電的中間層相對於磁阻元件(1/1)〜(1M), (11/1)〜(11/4)及其鍍金屬層設成電絕緣。 9·一種用於將可轉元件的旋轉角度檢出的方法’其 中把一感測器裝置的磁性之性質分析’把一個受該元件產 生或影響的第一磁場B«t在一分析電路中檢出’並應用以 求出旋轉角度,其特徵在以下步驟: a) 在施第一磁場Βπ時測定由該感測器裝置檢出的信號 b) 將一附加磁性輔助場Bh間歇地施加到感測器裝置’ 2___ 本紙張尺度逋用中國鬮家榡準(CNS > A4规格(210X297公釐) (請先聞讀背面之注意事項再填窝本頁) 訂 4, 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 38438^ 六、申請專利範園 (請先閱讀背面之注$項再填寫本資) C)測定由感測器裝置檢出之信號相對於未施加輔助場 Bh時所檢出之信號的變化,以得到與旋轉角度有關的變化 信號, ‘ d)將此變化信號與未施輔助場(Bh)時檢出的信號相關聯 ,以明確地測定達360°角度範圍的旋轉角度。 1〇·如申請專利範圍第9項之用於將可轉元件的旋 轉角度檢出的方法,其中該感測器裝置有二個橋式電路’ 特別是惠斯頓電橋,二者互相轉一角度,特別是45°。 1 1 ·如申請專利範圍第1 〇項之用於將可||元件的 旋轉角度檢出的方法,其中: 該關聯作業係利用以下形式的區域函數F實施: F= { {0° ^ CL AMR180 ^f(ai,a2) }S{[ (5Uc〇s<-S 〕或〔(5Usu<-S)及(I 5Uc〇s<S)〕} }或 { {f(ai,0:2) <a AMR180 $180° }及{〔 5Usin>S〕 及(I <5 Uc〇s I < S) } } } 其中 OL AMR180 爲末施輔助場Bh時檢出的旋轉角度, S爲可調整的有效臨限値, 51]«^或5Usin爲感測器裝置之與角度有關的變化信號 經濟部智慧財產局員工消費合作社印製 f ( ascu)爲橋式電路之角度對準或橋式電路輔助場相 對於一參考方向的加法或減法函數。 1 2 ·如申請專利範圍第1 1項之方法,其中: f(ai,o:2)爲αι+αζ形式的函數。 1 3 ·如申請專利範圍第1 1項之方法,其中: 3 本紙張尺度適用中固國家揉準(CNS ) A4规格(210X297公釐) S84389 ?g D8 六、申請專利範園 f(ai,a2)爲| αι_α2|形式的函數。 (請先閱讀背面之注^'項再填寫本I') b 裝- 訂 經濟部智慧財產局員工消費合作社印製 4 本紙張尺度逍用中國國家揉準(CNS ) A4規格(210X297公釐)
TW088109405A 1998-08-29 1999-06-07 Apparatus for measuring the angle of rotation for rotatable parts TW384389B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19839446A DE19839446A1 (de) 1998-08-29 1998-08-29 Anordnung zur Drehwinkelerfassung eines drehbaren Elements

Publications (1)

Publication Number Publication Date
TW384389B true TW384389B (en) 2000-03-11

Family

ID=7879188

Family Applications (1)

Application Number Title Priority Date Filing Date
TW088109405A TW384389B (en) 1998-08-29 1999-06-07 Apparatus for measuring the angle of rotation for rotatable parts

Country Status (7)

Country Link
US (1) US6433535B1 (zh)
EP (1) EP1049908B1 (zh)
JP (1) JP4406509B2 (zh)
AU (1) AU754291B2 (zh)
DE (2) DE19839446A1 (zh)
TW (1) TW384389B (zh)
WO (1) WO2000012957A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565958B (zh) * 2015-05-08 2017-01-11 愛盛科技股份有限公司 磁場感測裝置及磁場感測模組

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19947761A1 (de) 1999-10-02 2001-04-12 Bosch Gmbh Robert Verfahren und Schaltungsanordnung zur Feststellung einer Richtung eines äußeren magnetischen Feldes
US6633462B2 (en) * 2000-07-13 2003-10-14 Koninklijke Philips Electronics N.V. Magnetoresistive angle sensor having several sensing elements
DE10041089A1 (de) * 2000-08-22 2002-03-07 Bosch Gmbh Robert Verfahren zur Korrektur einer Winkelmessung
DE10042006A1 (de) * 2000-08-26 2002-03-07 Bosch Gmbh Robert Vorrichtung und Verfahren zur Winkelmessung
DE10104116A1 (de) * 2001-01-31 2002-08-01 Philips Corp Intellectual Pty Anordnung zum Erfassen des Drehwinkels eines drehbaren Elements
DE10104453A1 (de) 2001-02-01 2002-08-08 Philips Corp Intellectual Pty Anordnung zum Messen der magnetischen Feldstärke
DE10118650A1 (de) * 2001-04-14 2002-10-17 Philips Corp Intellectual Pty Winkelsensor sowie Verfahren zum Erhöhen der Anisotropiefeldstärke einer Sensoreinheit eines Winkelsensors
DE10130988A1 (de) * 2001-06-27 2003-01-16 Philips Corp Intellectual Pty Justierung eines magnetoresistiven Winkelsensors
JP4695325B2 (ja) * 2001-09-17 2011-06-08 キヤノン電子株式会社 磁気検出素子とその製造方法及び該素子を用いた携帯機器
US20040017187A1 (en) * 2002-07-24 2004-01-29 Van Ostrand Kent E. Magnetoresistive linear position sensor
DE10240239A1 (de) 2002-08-31 2004-03-11 Robert Bosch Gmbh Hochgenauer Hall-Sensor mit mehreren Kontaktpaaren
DE10250319A1 (de) * 2002-10-29 2003-10-30 Bosch Gmbh Robert Einrichtung zur Erfassung der Rotation einer Welle und GMR-Schichtsystem
DE10306127B4 (de) * 2003-02-14 2007-02-15 Robert Bosch Gmbh Verfahren und Schaltungsanordnung zur Festellung der Richtung eines Magnetfeldes
US20060198172A1 (en) * 2003-10-01 2006-09-07 International Rectifier Corporation Bridgeless boost converter with PFC circuit
US20050140363A1 (en) * 2003-12-29 2005-06-30 International Business Machines Corporation Sensor for detection of the orientation of a magnetic field
DE102004019238B3 (de) * 2004-04-16 2005-08-18 Hl-Planar Technik Gmbh Anordnung und Verfahren zur Bestimmung der Richtung magnetischer Felder sowie Verwendung der Anordnung und des Verfahrens
JP2006047228A (ja) * 2004-08-06 2006-02-16 Tokai Rika Co Ltd 回転角度検出装置
US7990978B1 (en) 2004-12-17 2011-08-02 Verizon Services Corp. Dynamic bandwidth queue allocation
US7492554B2 (en) 2005-01-21 2009-02-17 International Business Machines Corporation Magnetic sensor with tilted magnetoresistive structures
DE102005031806A1 (de) * 2005-07-07 2007-01-11 Zf Lenksysteme Gmbh Drehwinkelsensor
US7339370B2 (en) * 2005-12-09 2008-03-04 Bourns, Inc. Position and torque sensor
DE102008001247A1 (de) 2008-04-18 2009-10-22 Zf Lenksysteme Gmbh Überlagerungslenkung
JP2010038765A (ja) * 2008-08-06 2010-02-18 Tokai Rika Co Ltd 回転検出装置
US8390283B2 (en) 2009-09-25 2013-03-05 Everspin Technologies, Inc. Three axis magnetic field sensor
WO2011072849A1 (de) * 2009-12-18 2011-06-23 Hirschmann Automotive Gmbh Verfahren zur berührungslosen strommessung mit angepasster auflösung
US8518734B2 (en) 2010-03-31 2013-08-27 Everspin Technologies, Inc. Process integration of a single chip three axis magnetic field sensor
US8448528B2 (en) 2010-09-27 2013-05-28 Bourns Incorporated Three-piece torque sensor assembly
US8390276B2 (en) 2010-09-27 2013-03-05 Bourns Incorporated Target magnet assembly for a sensor used with a steering gear
US8884616B2 (en) 2011-06-22 2014-11-11 Infineon Technologies Ag XMR angle sensors
US8947082B2 (en) * 2011-10-21 2015-02-03 University College Cork, National University Of Ireland Dual-axis anisotropic magnetoresistive sensors
CN105209860B (zh) * 2013-05-22 2017-08-25 斯凯孚公司 传感器轴承中所用的传感器组件
US9377327B2 (en) 2013-06-28 2016-06-28 Analog Devices Global Magnetic field direction sensor
ITUB20152562A1 (it) 2015-07-28 2017-01-28 St Microelectronics Srl Procedimento di funzionamento di sensori di hall e dispositivo corrispondente
US10114085B2 (en) 2016-03-04 2018-10-30 Allegro Microsystems, Llc Magnetic field sensor with improved response immunity
IT201800007246A1 (it) 2018-07-17 2020-01-17 Sensore di hall, dispositivi e procedimento corrispondenti
US10605874B2 (en) 2018-08-06 2020-03-31 Allegro Microsystems, Llc Magnetic field sensor with magnetoresistance elements having varying sensitivity

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435070A (en) * 1993-07-26 1995-07-25 Honeywell Inc. Simplified compass with multiple segment display capability
US5570016A (en) * 1994-06-01 1996-10-29 General Motors Corporation Method and apparatus for detecting crankshaft angular position
EP0740776B1 (de) * 1994-11-22 2002-06-12 Robert Bosch Gmbh Anordnung zur berührungslosen drehwinkelerfassung eines drehbaren elements
DE19510579C2 (de) * 1995-03-23 1997-08-21 Inst Physikalische Hochtech Ev Drehwinkel- oder Drehzahlgeber
JPH09318387A (ja) 1996-05-30 1997-12-12 Mitsubishi Electric Corp 検出装置
DE19640695A1 (de) * 1996-10-02 1998-04-09 Bosch Gmbh Robert Magnetoresistiver Sensor mit temperaturstabilem Nullpunkt
DE19722016A1 (de) 1997-05-27 1998-12-03 Bosch Gmbh Robert Anordnung zur berührungslosen Drehwinkelerfassung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565958B (zh) * 2015-05-08 2017-01-11 愛盛科技股份有限公司 磁場感測裝置及磁場感測模組

Also Published As

Publication number Publication date
US6433535B1 (en) 2002-08-13
EP1049908B1 (de) 2003-08-27
JP2002525588A (ja) 2002-08-13
DE59906764D1 (de) 2003-10-02
WO2000012957A1 (de) 2000-03-09
EP1049908A1 (de) 2000-11-08
DE19839446A1 (de) 2000-03-02
AU754291B2 (en) 2002-11-14
JP4406509B2 (ja) 2010-01-27
AU5151799A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
TW384389B (en) Apparatus for measuring the angle of rotation for rotatable parts
JPS6349724Y2 (zh)
JP5654455B2 (ja) 歯車の回転速度検出方法および歯車の回転速度検出装置
JP3848670B1 (ja) 回転角度検出装置
US7208940B2 (en) 360-Degree magnetoresistive rotary position sensor
JP4234004B2 (ja) 対象物の角位置を測定するための装置
US20090115405A1 (en) Magnetic field angular sensor with a full angle detection
US20070080683A1 (en) Magnetoresistive sensor for determining an angle or a position
JP2010066262A (ja) 磁界の空間成分を測定する磁界センサ装置
TW440704B (en) Magnetoresistive sensor element and process for determining a direction of a magnetic field
WO2010014877A2 (en) Nanowire magnetic compass and position sensor
US6522132B1 (en) Linear angular sensor with magnetoresistors
CN114838655B (zh) 一种多周期双极型电磁感应式角度传感器
KR102677085B1 (ko) 인코더
JP2004518110A (ja) 角度測定のための装置及び方法
US7602176B2 (en) AMR sensor element for angle measurement
JP4121747B2 (ja) 回転可能な部材の回転角度を検出するための装置
TW406187B (en) Detector for determining an angle variation
JP6799450B2 (ja) 磁気センサ
JP5170614B2 (ja) 磁気センサ及び回転角度検出装置
JP5333957B2 (ja) 磁気センサ及び回転角度検出装置
CN112394304A (zh) 确定杂散磁场强度的组件和方法
TW201229525A (en) Electric power measuring apparatus and method
CN112051523B (zh) 磁场感测装置
JP2002525609A (ja) 磁気抵抗効果型センサ素子、例えば、角度センサ素子

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees