TW202302467A - Magnetic particle powder and magnetic particle dispersion - Google Patents

Magnetic particle powder and magnetic particle dispersion Download PDF

Info

Publication number
TW202302467A
TW202302467A TW111117446A TW111117446A TW202302467A TW 202302467 A TW202302467 A TW 202302467A TW 111117446 A TW111117446 A TW 111117446A TW 111117446 A TW111117446 A TW 111117446A TW 202302467 A TW202302467 A TW 202302467A
Authority
TW
Taiwan
Prior art keywords
magnetic
magnetic particle
magnetic particles
particles
particle powder
Prior art date
Application number
TW111117446A
Other languages
Chinese (zh)
Inventor
石橋信一
井上馨亮
熊谷丈範
Original Assignee
日商Jx金屬股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Jx金屬股份有限公司 filed Critical 日商Jx金屬股份有限公司
Publication of TW202302467A publication Critical patent/TW202302467A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties

Abstract

Provided is a magnetic particle powder containing a plurality of fine magnetic particles that can exhibit high magnetic force. This magnetic particle powder has a BET specific surface area of 10 m2/g to 50 m2/g, a median diameter (D50) of 0.5 [mu]m to 10 [mu]m, and saturation magnetization (Ms) of 50 emu/g or greater.

Description

磁性粒子粉末以及磁性粒子分散液Magnetic particle powder and magnetic particle dispersion

本發明涉及一種磁性粒子粉末。另外,本發明涉及一種磁性粒子分散液。The present invention relates to a magnetic particle powder. In addition, the present invention relates to a magnetic particle dispersion liquid.

磁性粒子,在外部磁場的操作下,能夠進行移動、發熱,或者改變周圍的磁場。爲了活用這些特徵,以往在實施DNA、RNA等核酸,抗體,病毒以及蛋白質等的生物體物質的檢測、分離、純化、濃縮等的方法中利用這些特徵。例如,在使得目標的生物體物質吸附於磁性粒子之後,通過施加磁場來回收磁性粒子,從而能夠檢測出生物體物質等。磁性粒子,也期待被應用於藥物輸送、溫熱療法、細胞操作、磁性檢測等,並且生物・醫療領域中的利用磁性粒子的技術開發正不斷進展。再者,磁性粒子,作爲磁性屏蔽材料以及電磁波吸收體的應用,也備受期待。Magnetic particles, under the operation of an external magnetic field, can move, generate heat, or change the surrounding magnetic field. In order to take advantage of these characteristics, these characteristics have been utilized in methods for detecting, separating, purifying, and concentrating biological substances such as nucleic acids such as DNA and RNA, antibodies, viruses, and proteins. For example, after a target biological substance is adsorbed to the magnetic particles, the magnetic particles are recovered by applying a magnetic field, thereby enabling the detection of biological substances and the like. Magnetic particles are also expected to be used in drug delivery, thermotherapy, cell manipulation, magnetic detection, etc., and the development of technologies using magnetic particles in the biological and medical fields is progressing. Furthermore, magnetic particles are expected to be used as magnetic shielding materials and electromagnetic wave absorbers.

作爲磁性粒子,以往已知核-殼類型的磁性粒子。As the magnetic particle, a core-shell type magnetic particle is conventionally known.

專利文獻1(日本特開2000-256388號公報)中,公開了一種核酸結合用磁性矽粒子,其是由多個磁疇構成的由金屬或金屬氧化物形成的多個芯微粒子,被由矽氧化物形成的覆膜或微粒子覆蓋而成的。Patent Document 1 (Japanese Unexamined Patent Application Publication No. 2000-256388) discloses a magnetic silicon particle for nucleic acid binding, which is composed of a plurality of core particles made of a metal or metal oxide composed of a plurality of magnetic domains, surrounded by silicon It is formed by a film formed by oxides or covered by fine particles.

專利文獻2(日本特開2016-105066號公報)中,公開了一種由核層(P)和殼層(Q)構成的作爲核-殼型狀的粒子的磁性矽粒子(C),其中,該核層(P)是平均粒子直徑爲1~15nm並且含有60~95重量%的超順磁性金屬氧化物粒子(A)的矽粒子,該殼層(Q)是在所述核層(P)的表面上形成的平均厚度爲3~3000nm的矽層。Patent Document 2 (Japanese Unexamined Patent Application Publication No. 2016-105066) discloses a magnetic silicon particle (C) as a core-shell particle composed of a core layer (P) and a shell layer (Q), wherein, The core layer (P) is silicon particles with an average particle diameter of 1-15 nm and contains 60-95% by weight of superparamagnetic metal oxide particles (A), and the shell layer (Q) is formed in the core layer (P ) A silicon layer with an average thickness of 3-3000nm formed on the surface.

專利文獻3(日本特開2018-104398號公報)中,公開了一種磁性粒子,是在包含由有機聚合物等非磁性體形成的核粒子和在該核粒子的表面設置的超順磁性微粒子的2次聚集體層(磁性體層)的母粒子的表面上,具有聚合物層。Patent Document 3 (Japanese Unexamined Patent Application Publication No. 2018-104398) discloses a magnetic particle comprising a core particle made of a non-magnetic material such as an organic polymer and superparamagnetic fine particles provided on the surface of the core particle. The surface of the mother particle of the secondary aggregate layer (magnetic layer) has a polymer layer.

現有技術文獻prior art literature

專利文獻patent documents

專利文獻1:日本特開2000-256388號公報Patent Document 1: Japanese Patent Laid-Open No. 2000-256388

專利文獻2:日本特開2016-105066號公報Patent Document 2: Japanese Patent Laid-Open No. 2016-105066

專利文獻3:日本特開2018-104398號公報Patent Document 3: Japanese Patent Laid-Open No. 2018-104398

發明要解决的技術問題The technical problem to be solved by the invention

然而,現有的核-殼型的磁性粒子,由於其結構以及磁性材料組成的原因,單位體積或者單位質量的磁力不夠。因此,例如,當在使用磁性粒子實施生物體物質的檢測、分離、純化、濃縮等的方法時,使生物體物質結合於磁性粒子之後將外部磁鐵接近試管以聚集反應生成物的所謂的聚磁步驟,無法迅速地進行。另外,在用於磁性屏蔽以及電波吸收體的情况下,爲了得到所需的特性必須要增大使用量或增大體積。However, the existing core-shell magnetic particles have insufficient magnetic force per unit volume or unit mass due to their structure and composition of magnetic materials. Therefore, for example, when a method of detecting, separating, purifying, and concentrating a biological substance is carried out using magnetic particles, so-called magnetic concentration in which an external magnet is brought close to a test tube after binding a biological substance to the magnetic particle to collect the reaction product steps cannot be carried out quickly. In addition, when used for magnetic shielding and radio wave absorbers, it is necessary to increase the usage amount or increase the volume in order to obtain desired characteristics.

另一方面,基於增大磁性粒子的表面積以提高與生物體物質結合時的反應速度的觀點,磁性粒子越微細越優選。在將磁性粒子用於磁性屏蔽材料以及電波吸收體的情况下,基於容易無間隙地覆蓋基體表面,並且以少量的磁性粒子就能得到優良的屏蔽特性的觀點,磁性粒子越微細越優選。此外,在覆蓋三維狀的基體表面的情况下,期望與板材、箔材相比較塗覆微細的粒子的加工時間更短以及更輕,基於該觀點磁性粒子也越微細越優選。On the other hand, from the viewpoint of increasing the surface area of the magnetic particles to increase the reaction rate when binding to biological substances, the finer the magnetic particles, the more preferable. When magnetic particles are used for a magnetic shielding material and a radio wave absorber, finer magnetic particles are preferable in terms of easily covering the substrate surface without gaps and obtaining excellent shielding properties with a small amount of magnetic particles. In addition, when covering the surface of a three-dimensional substrate, it is desired that the processing time for coating fine particles is shorter and lighter than sheet materials and foil materials. From this point of view, the finer the magnetic particles, the better.

本發明基於上述情况而提出,在一實施方式中,要解决的技術問題在於提供一種能夠發揮高的磁力的包含多個微細的磁性粒子的磁性粒子粉末。另外,本發明在另一實施方式中,要解决的技術問題在於,提供一種能夠發揮高的磁力的包含多個微細的磁性粒子的磁性粒子分散液。The present invention was made based on the above circumstances, and in one embodiment, the technical problem to be solved is to provide a magnetic particle powder containing a plurality of fine magnetic particles capable of exhibiting high magnetic force. In addition, in another embodiment of the present invention, a technical problem to be solved is to provide a magnetic particle dispersion liquid containing a plurality of fine magnetic particles capable of exhibiting high magnetic force.

解决技術問題的方法Solutions to technical problems

根據本發明的一方面,提供一種兼具如下所規定的BET比表面積、中值直徑(D50)以及飽和磁化(Ms)的磁性粒子粉末。另外,根據本發明的另一方面,提供一種兼具如下所規定的BET比表面積、中值直徑(D50)以及飽和磁化(Ms)的多個磁性粒子分散於其中的磁性粒子分散液。According to one aspect of the present invention, there is provided a magnetic particle powder having a BET specific surface area, a median diameter (D50), and a saturation magnetization (Ms) as defined below. In addition, according to another aspect of the present invention, there is provided a magnetic particle dispersion in which a plurality of magnetic particles having a BET specific surface area, a median diameter (D50), and a saturation magnetization (Ms) as defined below are dispersed.

[1][1]

一種磁性粒子粉末,其中,BET比表面積爲10 m 2/g~50 m 2/g,中值直徑(D50)爲0.5μm~10μm,飽和磁化(Ms)爲50emu/g以上。 A magnetic particle powder, wherein the BET specific surface area is 10 m 2 /g to 50 m 2 /g, the median diameter (D50) is 0.5 μm to 10 μm, and the saturation magnetization (Ms) is 50 emu/g or more.

[2][2]

如[1]所示的磁性粒子粉末,其中,該磁性粒子粉末包含:由含有從Fe、Ni以及Co中選擇的一種或兩種以上的金屬的合金製成的磁性粒子。The magnetic particle powder described in [1], wherein the magnetic particle powder includes magnetic particles made of an alloy containing one or two or more metals selected from Fe, Ni, and Co.

[3][3]

如[2]所示的磁性粒子粉末,其中,該磁性粒子粉末包含:由含有從Fe、Ni以及Co中選擇的一種或兩種以上的金屬並且還含有從Cr、Ti、Pt以及Pd中選擇的一種或兩種以上的金屬的合金製成的磁性粒子。The magnetic particle powder as shown in [2], wherein the magnetic particle powder contains: one or more metals selected from Fe, Ni and Co and also containing a metal selected from Cr, Ti, Pt and Pd Magnetic particles made of an alloy of one or more than two metals.

[4][4]

如[1]~[3]中任一項所示的磁性粒子粉末,其中,磁性粒子粉末含有:從Fe、Ni以及Co中選擇的一種或兩種以上的金屬的氮化物以及氧化物中的至少一種。The magnetic particle powder as shown in any one of [1] to [3], wherein the magnetic particle powder contains: among nitrides and oxides of one or more metals selected from Fe, Ni, and Co at least one.

[5][5]

如[1]~[4]中任一項所示的磁性粒子粉末,其中,飽和磁化(Ms)爲130emu/g以上。The magnetic particle powder described in any one of [1] to [4], wherein the saturation magnetization (Ms) is 130 emu/g or more.

[6][6]

如[1]~[5]中任一項所示的磁性粒子粉末,其中,累計90%直徑(D90)與中值直徑(D50)之差爲10μm以下。The magnetic particle powder according to any one of [1] to [5], wherein the difference between the cumulative 90% diameter (D90) and the median diameter (D50) is 10 μm or less.

[7][7]

如[1]~[6]中任一項所示的磁性粒子粉末,其中,累計10%直徑(D10)與中值直徑(D50)之差爲5μm以下。The magnetic particle powder according to any one of [1] to [6], wherein the difference between the cumulative 10% diameter (D10) and the median diameter (D50) is 5 μm or less.

[8][8]

一種磁性粒子分散液,其中,在分散介質中,分散有BET比表面積爲10 m 2/g~50 m 2/g、中值直徑(D50)爲0.5μm~10μm並且飽和磁化(Ms)爲50emu/g以上的多個磁性粒子。 A magnetic particle dispersion liquid, wherein, in a dispersion medium, BET having a specific surface area of 10 m 2 /g to 50 m 2 /g, a median diameter (D50) of 0.5 μm to 10 μm, and a saturation magnetization (Ms) of 50 emu are dispersed /g or more magnetic particles.

[9][9]

如[8]所述的磁性粒子分散液,其中,多個磁性粒子包含:由含有從Fe、Ni以及Co中選擇的一種或兩種以上的金屬的合金製成的磁性粒子。The magnetic particle dispersion liquid according to [8], wherein the plurality of magnetic particles include magnetic particles made of an alloy containing one or two or more metals selected from Fe, Ni, and Co.

[10][10]

如[9]所述的磁性粒子分散液,其中,多個磁性粒子包含:由含有從Fe、Ni以及Co中選擇的一種或兩種以上的金屬並且還含有從Cr、Ti、Pt以及Pd中選擇的一種或兩種以上的金屬的合金製成的磁性粒子。The magnetic particle dispersion liquid as described in [9], wherein the plurality of magnetic particles are composed of one or two or more metals selected from Fe, Ni, and Co and further containing Cr, Ti, Pt, and Pd. Magnetic particles made of an alloy of one or more than two selected metals.

[11][11]

如[8]~[10]中任一項所述的磁性粒子分散液,其中,多個磁性粒子,含有從Fe、Ni以及Co中選擇的一種或兩種以上的金屬的氮化物以及氧化物中的至少一種。The magnetic particle dispersion according to any one of [8] to [10], wherein the plurality of magnetic particles contain nitrides and oxides of one or two or more metals selected from Fe, Ni, and Co at least one of the

[12][12]

如[8]~[11]中任一項所述的磁性粒子分散液,其中,多個磁性粒子的飽和磁化(Ms)爲130emu/g以上。The magnetic particle dispersion according to any one of [8] to [11], wherein the saturation magnetization (Ms) of the plurality of magnetic particles is 130 emu/g or more.

[13][13]

如[8]~[12]中任一項所述的磁性粒子分散液,其中,以5mg/mL~100mg/mL的濃度含有多個磁性粒子。The magnetic particle dispersion according to any one of [8] to [12], which contains a plurality of magnetic particles at a concentration of 5 mg/mL to 100 mg/mL.

[14][14]

如[8]~[13]中任一項所述的磁性粒子分散液,其中,多個磁性粒子的累計90%直徑(D90)與中值直徑(D50)之差爲10μm以下。The magnetic particle dispersion according to any one of [8] to [13], wherein the difference between the cumulative 90% diameter (D90) and the median diameter (D50) of the plurality of magnetic particles is 10 μm or less.

[15][15]

如[8]~[14]中任一項所述的磁性粒子分散液,其中,多個磁性粒子的累計10%直徑(D10)與中值直徑(D50)之差爲5μm以下。The magnetic particle dispersion according to any one of [8] to [14], wherein the difference between the cumulative 10% diameter (D10) and the median diameter (D50) of the plurality of magnetic particles is 5 μm or less.

發明的效果The effect of the invention

根據本發明的一實施方式,能夠提供一種能夠發揮高的磁力的含有多個微細的磁性粒子的磁性粒子粉末。另外,根據本發明的另一實施方式,能夠提供一種能夠發揮高的磁力並且其中分散有多個微細的磁性粒子的磁性粒子分散液。According to one embodiment of the present invention, it is possible to provide a magnetic particle powder containing a plurality of fine magnetic particles capable of exhibiting high magnetic force. In addition, according to another embodiment of the present invention, it is possible to provide a magnetic particle dispersion liquid in which a large number of fine magnetic particles are dispersed, which can exhibit high magnetic force.

<1.磁性粒子粉末><1. Magnetic particle powder>

(BET比表面積)(BET specific surface area)

本發明的磁性粒子粉末在一實施方式中,BET比表面積爲10 m 2/g~50 m 2/g。磁性粒子粉末的BET比表面積爲10 m 2/g以上,意味著構成磁性粒子粉末的磁性粒子的表面積整體上較大。因此,例如,能夠提高使磁性粒子與生物體物質結合時的反應速度。另外,在將磁性粒子用於磁性屏蔽材料以及電波吸收體的情况下,容易無間隙地對基體表面進行覆蓋,使用少量的磁性粒子就能夠展現優良的屏蔽特性。磁性粒子粉末的BET比表面積優選爲12 m 2/g以上,更優選爲15 m 2/g以上,還更優選爲20 m 2/g以上。磁性粒子粉末的BET比表面積,其上限沒有特別設定,基於操作的容易性的觀點,通常爲50 m 2/g以下,典型地爲40 m 2/g以下,更典型地爲35 m 2/g以下。 In one embodiment, the magnetic particle powder of the present invention has a BET specific surface area of 10 m 2 /g to 50 m 2 /g. The BET specific surface area of the magnetic particle powder is 10 m 2 /g or more, which means that the surface area of the magnetic particles constituting the magnetic particle powder is relatively large as a whole. Therefore, for example, it is possible to increase the reaction rate when the magnetic particle is bound to a biological substance. In addition, when magnetic particles are used for a magnetic shielding material and a radio wave absorber, it is easy to cover the substrate surface without gaps, and excellent shielding properties can be exhibited using a small amount of magnetic particles. The BET specific surface area of the magnetic particle powder is preferably 12 m 2 /g or more, more preferably 15 m 2 /g or more, still more preferably 20 m 2 /g or more. The upper limit of the BET specific surface area of the magnetic particle powder is not particularly set, but from the viewpoint of ease of handling, it is usually 50 m 2 /g or less, typically 40 m 2 /g or less, more typically 35 m 2 /g the following.

在本說明書中,磁性粒子粉末的BET比表面積,按照JIS Z8830:2013求出。In this specification, the BET specific surface area of the magnetic particle powder is determined in accordance with JIS Z8830:2013.

本發明的磁性粒子粉末,典型地,處於奈米等級的超微細的一次粒子適度地聚集形成二次粒子(凝聚的)的形態,故而BET比表面積在評價一次粒子的大小方面很有用。當假設構成粉末的各粒子爲球形時,能夠基於下式根據BET比表面積求出一次粒子的平均直徑。In the magnetic particle powder of the present invention, typically, ultrafine primary particles at the nanometer level are moderately aggregated to form secondary particles (agglomerated), so the BET specific surface area is useful for evaluating the size of primary particles. Assuming that each particle constituting the powder is spherical, the average diameter of the primary particles can be obtained from the BET specific surface area based on the following formula.

d=6/(ρS)・・・(1)d=6/(ρS)・・・(1)

式(1)中,d是平均直徑,ρ是密度,S是BET比表面積In formula (1), d is the average diameter, ρ is the density, and S is the BET specific surface area

根據式(1),BET比表面積爲10 m 2/g~5 m 2/g意味著,一次粒子直徑在數nm~數十nm的範圍內。需要說明的是,這不是指本發明中必須所有的一次粒子聚集形成二次粒子。 From the formula (1), the BET specific surface area being 10 m 2 /g to 5 m 2 /g means that the primary particle diameter is in the range of several nm to tens of nm. It should be noted that this does not mean that all primary particles must be aggregated to form secondary particles in the present invention.

(粒度分布)(Particle size distribution)

但是,即便一次粒子微細但當聚集的程度增大時二次粒子也會粗大化,上述反應速度會降低,屏蔽特性也可能降低。因此,在評價磁性粒子的特性時,除了一次粒子之外也應當考慮二次粒子的大小。在這一點上,根據本發明的一實施方式,能夠有利地使得磁性粒子粉末的中值直徑(D50)爲10μm以下,優選能夠設爲6μm以下,更優選能夠設爲5μm以下,還更優選能夠設爲3μm以下,進一步優選能夠設爲2μm以下。磁性粒子粉末的中值直徑(D50)的下限沒有特別設定,基於製造容易性的觀點,通常爲0.5μm以上,典型地爲0.7μm以上,更典型地爲0.9μm以上。However, even if the primary particles are fine, the secondary particles become coarse when the degree of aggregation increases, the above-mentioned reaction speed decreases, and the shielding properties may also decrease. Therefore, when evaluating the properties of magnetic particles, the size of the secondary particles should also be considered in addition to the primary particles. In this regard, according to an embodiment of the present invention, the median diameter (D50) of the magnetic particle powder can be advantageously set to be 10 μm or less, preferably 6 μm or less, more preferably 5 μm or less, still more preferably 5 μm or less. It can be set to 3 μm or less, and more preferably can be set to 2 μm or less. The lower limit of the median diameter (D50) of the magnetic particle powder is not particularly set, but it is usually 0.5 μm or more, typically 0.7 μm or more, more typically 0.9 μm or more from the viewpoint of ease of manufacture.

作爲與中值直徑(D50)類似的參數,存在平均粒徑。二次粒子的大小也能夠利用平均粒徑進行評價。在這一點上,根據本發明的一實施方式,能夠將磁性粒子粉末的平均粒徑設爲10μm以下,優選能夠設爲7μm以下,更優選能夠設爲5μm以下,還更優選能夠設爲4μm以下,進一步優選能夠設爲2μm以下。磁性粒子粉末的平均粒徑的下限沒有特別設定,基於製造容易性的觀點,通常爲0.8μm以上,典型地爲1.0μm以上,更典型地爲1.2μm以上。As a parameter similar to the median diameter (D50), there is an average particle diameter. The size of the secondary particles can also be evaluated by the average particle diameter. In this regard, according to one embodiment of the present invention, the average particle diameter of the magnetic particle powder can be set to be 10 μm or less, preferably 7 μm or less, more preferably 5 μm or less, still more preferably 4 μm or less , and more preferably can be set to 2 μm or less. The lower limit of the average particle diameter of the magnetic particle powder is not particularly set, but it is usually 0.8 μm or more, typically 1.0 μm or more, and more typically 1.2 μm or more from the viewpoint of ease of manufacture.

在優選的實施方式中,本發明的磁性粒子粉末能夠具有較窄的粒度分布。粒度分布較窄,換言之,意味著粒度的均勻性較高。In a preferred embodiment, the magnetic particle powder of the present invention can have a narrow particle size distribution. A narrower particle size distribution, in other words, means a higher uniformity of particle size.

具體地,本發明的磁性粒子粉末在一實施方式中,累計90%直徑(D90)與中值直徑(D50)之差能夠設爲10μm以下,優選能夠設爲6μm以下,更優選能夠設爲4μm以下。由於累計90%直徑(D90)與中值直徑(D50)之差越小粒度的均勻性越高,因此沒有特別設定下限,但是基於製造容易性的觀點,累計90%直徑(D90)與中值直徑(D50)之差通常爲0.5μm以上,典型地爲1μm以上。Specifically, in one embodiment of the magnetic particle powder of the present invention, the difference between the cumulative 90% diameter (D90) and the median diameter (D50) can be set to 10 μm or less, preferably 6 μm or less, more preferably 4 μm the following. The smaller the difference between the cumulative 90% diameter (D90) and the median diameter (D50), the higher the uniformity of the particle size, so there is no specific lower limit, but from the viewpoint of ease of manufacture, the cumulative 90% diameter (D90) and the median diameter The difference in diameter (D50) is usually 0.5 μm or more, typically 1 μm or more.

另外,本發明的磁性粒子粉末在一實施方式中,累計10%直徑(D10)與中值直徑(D50)之差能夠設爲5μm以下,優選能夠設爲3μm以下,更優選能夠設爲2μm以下,進一步優選能夠設爲1μm以下。由於累計10%直徑(D10)與中值直徑(D50)之差越小粒度的均勻性越高,因此沒有特別設定下限,但是基於製造容易性的觀點,累計10%直徑(D10)與中值直徑(D50)之差通常爲0.1μm以上,典型地爲0.4μm以上。In addition, in one embodiment of the magnetic particle powder of the present invention, the difference between the cumulative 10% diameter (D10) and the median diameter (D50) can be 5 μm or less, preferably 3 μm or less, more preferably 2 μm or less , and more preferably can be set to 1 μm or less. The smaller the difference between the cumulative 10% diameter (D10) and the median diameter (D50), the higher the uniformity of the particle size, so there is no specific lower limit, but from the viewpoint of ease of manufacture, the cumulative 10% diameter (D10) and the median diameter The difference in diameter (D50) is usually 0.1 μm or more, typically 0.4 μm or more.

在本說明書中,磁性粒子粉末的中值直徑(D50)、累計90%直徑(D90)、累計10%直徑(D10)以及平均粒徑,是指通過激光衍射/散射法測定的體積基準的值。使用該方法測定的粒度分布,是反應出二次粒子的大小的值。In this specification, the median diameter (D50), cumulative 90% diameter (D90), cumulative 10% diameter (D10), and average particle diameter of magnetic particle powder refer to volume-based values measured by laser diffraction/scattering method . The particle size distribution measured by this method is a value reflecting the size of secondary particles.

(飽和磁化)(saturation magnetization)

另外,本發明的磁性粒子粉末在一實施方式中,飽和磁化(Ms)爲50emu/g以上。飽和磁化(Ms)越大,聚磁性越好。由此,例如,在使用磁性粒子實施生物體物質的檢測・分離・純化・濃縮等方法時,在使生物體物質與磁性粒子結合之後,將外部磁鐵接近試管以使反應生成物進行聚集的所謂的聚磁步驟能夠迅速地進行。磁性粒子粉末的飽和磁化(Ms),優選爲100emu/g以上,更優選爲130emu/g以上,進一步優選爲150emu/g以上。Moreover, in one Embodiment, the magnetic particle powder of this invention has a saturation magnetization (Ms) of 50 emu/g or more. The larger the saturation magnetization (Ms), the better the polymagnetism. Thus, for example, when using magnetic particles to detect, separate, purify, and concentrate biological substances, after combining biological substances with magnetic particles, an external magnet is brought close to the test tube to aggregate the reaction products. The magnetization step can be carried out rapidly. The saturation magnetization (Ms) of the magnetic particle powder is preferably 100 emu/g or more, more preferably 130 emu/g or more, and still more preferably 150 emu/g or more.

在本說明書中,飽和磁化是指,使用振動樣品式磁力計(VSM),在大氣中、在20℃下並且最大施加磁場=+/-25kOe的條件下得到M(emu/g)-H(Oe)曲線,並由此測定的值。In this specification, saturation magnetization means M (emu/g)-H( Oe) curve, and the values determined therefrom.

飽和磁化,是由構成磁性粒子粉末的粒子的組成確定的固有值,優選選擇具有能夠得到上述的飽和磁化的合適的組成的磁性粒子。在現有的那樣的使用樹脂和二氧化矽等非磁性材料的核-殼結構的磁性粒子中,由於在各粒子整體中磁性材料所占的體積比率較小,因此單位體積或單位質量的飽和磁化較小。與之相反,根據本發明的磁性粒子粉末的一實施方式,通過提高在粒子整體中磁性材料所占的體積比率,能夠增大單位體積或單位質量的飽和磁化。具體地,在各粒子整體中磁性材料所占的體積比率,能夠設爲90體積%以上,還能夠設爲95體積%以上,進一步能夠設爲99體積%以上。因此,與核-殼結構的磁性粒子相比,例如,優點是用於得到相同的磁性屏蔽效果的屏蔽厚度變薄。The saturation magnetization is an inherent value determined by the composition of the particles constituting the magnetic particle powder, and it is preferable to select magnetic particles having an appropriate composition capable of obtaining the above-mentioned saturation magnetization. In conventional magnetic particles with a core-shell structure using non-magnetic materials such as resin and silicon dioxide, since the volume ratio of the magnetic material in the entire particle is small, the saturation magnetization per unit volume or unit mass smaller. On the contrary, according to one embodiment of the magnetic particle powder of the present invention, the saturation magnetization per unit volume or unit mass can be increased by increasing the volume ratio of the magnetic material in the entire particle. Specifically, the volume ratio of the magnetic material in the entire particles can be 90% by volume or more, can be 95% by volume or more, and can be further 99% by volume or more. Therefore, compared with magnetic particles of a core-shell structure, for example, there is an advantage in that the shielding thickness for obtaining the same magnetic shielding effect becomes thinner.

(磁性粒子粉末的組成)(Composition of Magnetic Particle Powder)

在一實施方式中,磁性粒子粉末包含:由含有從Fe、Ni以及Co中選擇的一種或兩種以上的金屬的合金製成的磁性粒子。在這種情况下,磁性粒子粉末,例如,合計能夠含有80at.%以上的由含有從Fe、Ni以及Co中選擇的一種或兩種以上的金屬的合金製成的磁性粒子,還能夠含有90at.%以上,進一步能夠含有95at.%以上,還能夠是除了不可避免的雜質以外由上述合金構成。In one embodiment, the magnetic particle powder includes magnetic particles made of an alloy containing one or two or more metals selected from Fe, Ni, and Co. In this case, the magnetic particle powder, for example, can contain more than 80 at. % of magnetic particles made of an alloy containing one or more metals selected from Fe, Ni and Co, and can also contain 90 at. .% or more, and can further contain 95 at.% or more, and can also be composed of the above-mentioned alloys except for unavoidable impurities.

在另一實施方式中,磁性粒子粉末包含:由含有從Fe、Ni以及Co中選擇的一種或兩種以上的金屬並且還含有從Cr、Ti、Pt以及Pd中選擇的一種或兩種以上的金屬的合金製成的磁性粒子。在這種情况下,磁性粒子粉末,例如,由含有從Fe、Ni以及Co中選擇的一種或兩種以上的金屬並且還含有從Cr、Ti、Pt以及Pd中選擇的一種或兩種以上的金屬的合金製成的磁性粒子,合計能夠含有80at.%以上,還能夠含有90at.%以上,進一步能夠含有95at.%以上,還能夠是除了不可避免的雜質以外由上述合金構成。In another embodiment, the magnetic particle powder includes: a metal containing one or more metals selected from Fe, Ni, and Co and also containing one or more metals selected from Cr, Ti, Pt, and Pd. Magnetic particles made of metal alloys. In this case, the magnetic particle powder is, for example, made of metals containing one or two or more metals selected from Fe, Ni, and Co and also containing one or two or more metals selected from Cr, Ti, Pt, and Pd. Magnetic particles made of metal alloys may contain a total of 80 at.% or more, may contain 90 at.% or more, and may further contain 95 at.% or more, and may be composed of the above alloys except for unavoidable impurities.

又在另一實施方式中,磁性粒子粉末包含:從Fe、Ni以及Co中選擇的一種或兩種以上的金屬的氮化物以及氧化物中的至少一種。在這種情况下,磁性粒子粉末,例如,合計能夠含有80at.%以上的從Fe、Ni以及Co中選擇的一種或兩種以上的金屬的氮化物以及氧化物中的至少一種,還能夠含有90at.%以上,進一步能夠含有95at.%以上,還能夠是除了不可避免的雜質以外由上述氮化物以及氧化物中的至少一種構成。In yet another embodiment, the magnetic particle powder includes at least one of nitrides and oxides of one or more metals selected from Fe, Ni, and Co. In this case, the magnetic particle powder, for example, can contain a total of 80 at.% or more of at least one of nitrides and oxides of one or more metals selected from Fe, Ni, and Co, and can also contain 90 at.% or more, and can further contain 95 at.% or more, and can also be composed of at least one of the above-mentioned nitrides and oxides in addition to unavoidable impurities.

作爲含有從Fe、Ni以及Co中選擇的一種或兩種以上的金屬的合金,可以列舉Fe-Co合金、Fe-Ni合金、Co-Ni合金。基於可得到高飽和磁化的理由,如果是Fe-Co合金,那麽Fe以及Co的原子比,優選爲0.8≤Fe/Co≤1.2,更優選爲0.9≤Fe/Co≤1.1。如果是Fe-Ni合金,那麽Fe以及Ni的原子比,優選爲0.85≤Fe/Ni≤1.25,更優選爲0.95≤Fe/Ni≤1.15。如果是Co-Ni合金,那麽Co以及Ni的原子比,優選爲1.8≤Co/Ni≤2.9,更優選爲2.1≤Co/Ni≤2.5。Examples of alloys containing one or two or more metals selected from Fe, Ni, and Co include Fe—Co alloys, Fe—Ni alloys, and Co—Ni alloys. For the reason that high saturation magnetization can be obtained, if it is an Fe-Co alloy, the atomic ratio of Fe and Co is preferably 0.8≤Fe/Co≤1.2, more preferably 0.9≤Fe/Co≤1.1. In the case of an Fe—Ni alloy, the atomic ratio of Fe and Ni is preferably 0.85≦Fe/Ni≦1.25, more preferably 0.95≦Fe/Ni≦1.15. In the case of a Co—Ni alloy, the atomic ratio of Co and Ni is preferably 1.8≦Co/Ni≦2.9, more preferably 2.1≦Co/Ni≦2.5.

作爲含有從Fe、Ni以及Co中選擇的一種或兩種以上的金屬並且還含有從Cr、Ti、Pt以及Pd中選擇的一種或兩種以上的金屬的合金,可列舉Co-Ni-Cr合金、Fe-Pt合金,Co-Pt合金、Co-Pd合金。Cr、Ti、Pt以及Pd,具有提高耐腐蝕性的效果,因此能夠獲得抑制飽和磁化隨時間而降低的效果。Pt還可得到提高飽和磁化的效果。另一方面,當Cr、Ti以及Pd的含有量過多時飽和磁化容易降低。因此,合金中的Fe、Ni、Co以及Cr的原子比,優選爲0.001≤Cr/(Fe+Ni+Co+Cr)≤0.05,更優選爲0.01≤Cr/(Fe+Ni+Co+Cr)≤0.03。合金中的Fe、Ni、Co以及Ti的原子比,優選爲0.001≤Ti/(Fe+Ni+Co+Ti)≤0.05,更優選爲0.01≤Ti/(Fe+Ni+Co+Ti)≤0.03。合金中的Fe、Ni、Co以及Pd的原子比,優選爲0.001≤Pd/(Fe+Ni+Co+Pd)≤0.1,更優選爲0.01≤Pd/(Fe+Ni+Co+Pd)≤0.05。合金中的Fe以及Pt的原子比,優選爲0.8≤Fe/Pt≤1.2,更優選爲0.9≤Fe/Pt≤1.1。Co以及Pt的原子比,優選爲0.24≤Co/Pt≤0.36,更優選爲0.27≤Co/Pt≤0.33。Examples of alloys containing one or more metals selected from Fe, Ni, and Co and also containing one or more metals selected from Cr, Ti, Pt, and Pd include Co-Ni-Cr alloys. , Fe-Pt alloy, Co-Pt alloy, Co-Pd alloy. Cr, Ti, Pt, and Pd have the effect of improving corrosion resistance, and therefore can obtain the effect of suppressing the decrease in saturation magnetization over time. Pt also has an effect of increasing saturation magnetization. On the other hand, when the content of Cr, Ti, and Pd is too large, the saturation magnetization tends to decrease. Therefore, the atomic ratio of Fe, Ni, Co, and Cr in the alloy is preferably 0.001≤Cr/(Fe+Ni+Co+Cr)≤0.05, more preferably 0.01≤Cr/(Fe+Ni+Co+Cr)≤0.03. The atomic ratio of Fe, Ni, Co, and Ti in the alloy is preferably 0.001≤Ti/(Fe+Ni+Co+Ti)≤0.05, more preferably 0.01≤Ti/(Fe+Ni+Co+Ti)≤0.03. The atomic ratio of Fe, Ni, Co, and Pd in the alloy is preferably 0.001≦Pd/(Fe+Ni+Co+Pd)≦0.1, more preferably 0.01≦Pd/(Fe+Ni+Co+Pd)≦0.05. The atomic ratio of Fe and Pt in the alloy is preferably 0.8≤Fe/Pt≤1.2, more preferably 0.9≤Fe/Pt≤1.1. The atomic ratio of Co and Pt is preferably 0.24≤Co/Pt≤0.36, more preferably 0.27≤Co/Pt≤0.33.

作爲從Fe、Ni以及Co中選擇的一種或兩種以上的金屬的氮化物,可列舉:氮化鐵(Fe 16N 2,Fe 4N,Fe 3-2N),氮化鎳(NiN 2),氮化鈷(CoN,CoN 2)。作爲從Fe、Ni以及Co中選擇的一種或兩種以上的金屬的氧化物,可列舉氧化鐵(Fe 2O 3,Fe 3O 4)。 Nitrides of one or more metals selected from Fe, Ni, and Co include iron nitride (Fe 16 N 2 , Fe 4 N, Fe 3-2 N), nickel nitride (NiN 2 ), cobalt nitride (CoN, CoN 2 ). Iron oxides (Fe 2 O 3 , Fe 3 O 4 ) are exemplified as oxides of one or more metals selected from Fe, Ni, and Co.

<2.磁性粒子分散液><2. Magnetic Particle Dispersion>

根據本發明的一實施方式,通過將上述的磁性粒子粉末分散在分散介質中,可提供多個磁性粒子分散於其中的磁性粒子分散液。作爲分散介質,只要是能夠分散磁性粒子的分散介質即可,沒有特別限制,可以是水系介質以及非水系介質中的任一種,也可以是水系介質和非水系介質的混合介質。分散介質,可以單獨使用一種,也可以組合兩種以上使用。水系介質是指水,作爲非水系介質,可列舉:醇類(甲醇,乙醇,丙醇等),乙二醇醚類(乙二醇烷基醚類,二乙二醇烷基醚類等)和油性有機溶劑(芳香族系溶劑,環烴系溶劑,烴系溶劑,酯系溶劑,酮系溶劑等)。也能夠合適地使用在噴墨以及噴塗中慣常使用的分散介質。According to one embodiment of the present invention, by dispersing the magnetic particle powder described above in a dispersion medium, a magnetic particle dispersion liquid in which a plurality of magnetic particles are dispersed can be provided. The dispersion medium is not particularly limited as long as it can disperse magnetic particles, and may be either an aqueous medium or a nonaqueous medium, or a mixed medium of the aqueous medium and the nonaqueous medium. As the dispersion medium, one type may be used alone, or two or more types may be used in combination. The aqueous medium refers to water, and the non-aqueous medium includes alcohols (methanol, ethanol, propanol, etc.), glycol ethers (ethylene glycol alkyl ethers, diethylene glycol alkyl ethers, etc.) And oily organic solvents (aromatic solvents, cyclic hydrocarbon solvents, hydrocarbon solvents, ester solvents, ketone solvents, etc.). Dispersion media commonly used in inkjet and spray coating can also be suitably used.

在一實施方式中,磁性粒子分散液,以5mg/mL~100mg/mL的濃度含有多個磁性粒子。磁性粒子分散液中含有的多個磁性粒子的下限濃度沒有特別設定,示例性地能夠爲6mg/mL以上,也能夠爲7mg/mL以上。磁性粒子分散液中含有的多個磁性粒子的上限濃度沒有特別設定,示例性地能夠含有75mg/mL以下,也能夠含有50mg/mL以下。In one embodiment, the magnetic particle dispersion contains a plurality of magnetic particles at a concentration of 5 mg/mL to 100 mg/mL. The lower limit concentration of the plurality of magnetic particles contained in the magnetic particle dispersion is not particularly set, but can be, for example, 6 mg/mL or more, and can also be 7 mg/mL or more. The upper limit concentration of the plurality of magnetic particles contained in the magnetic particle dispersion liquid is not particularly set, but it can be contained, for example, 75 mg/mL or less, or 50 mg/mL or less.

<3.製造方法><3. Manufacturing method>

上述的磁性粒子粉末,例如,能夠實施利用高頻率熱等離子體法得到磁性奈米粒子的粉末的步驟、和利用超聲波對該粉末進行分散處理的步驟,由此進行製造。The above-mentioned magnetic particle powder can be produced, for example, by performing a step of obtaining a powder of magnetic nanoparticles by a high-frequency thermal plasma method, and a step of dispersing the powder by ultrasonic waves.

(高頻率熱等離子體法)(High frequency thermal plasma method)

高頻率熱等離子體法,是將原材料導入高頻率熱等離子體中並進行蒸發之後,使其急冷凝縮從而得到微粒子的方法,在磁性奈米粒子的製造上也是有用的。圖1中,示出了用於實施高頻率熱等離子體法的奈米粒子製造裝置10的概略圖。奈米粒子製造裝置10,具備:高頻率電源16,等離子體噴槍14,水冷室15,以及回收過濾器18。等離子體噴槍14,具備:探頭12,水冷結構的石英管19,以及有高頻率電流流動的線圈13。當高頻率電流在線圈13中流動時,在電磁感應的作用下內部的等離子體氣體(典型地爲Ar)進行放電・加熱而産生熱等離子體。作爲載體氣體,例如能夠使用Ar。通過除了Ar之外還添加氧作爲等離子體氣體,能夠製造氧化物的奈米粒子。通過除了Ar之外還添加氮作爲等離子體氣體,能夠製造氮化物的奈米粒子。熱等離子體的溫度達到10,000℃以上。作爲高頻率熱等離子體法的優點,可列舉不會混入雜質。The high-frequency thermal plasma method is a method in which a raw material is introduced into a high-frequency thermal plasma, evaporated, and then rapidly condensed to obtain fine particles, and is also useful in the production of magnetic nanoparticles. In FIG. 1 , a schematic diagram of a nanoparticle production apparatus 10 for implementing a high-frequency thermal plasma method is shown. The nanoparticle manufacturing apparatus 10 includes a high-frequency power supply 16 , a plasma torch 14 , a water cooling chamber 15 , and a recovery filter 18 . The plasma torch 14 includes a probe 12, a water-cooled quartz tube 19, and a coil 13 through which high-frequency current flows. When a high-frequency current flows through the coil 13, the internal plasma gas (typically Ar) is discharged and heated by electromagnetic induction to generate thermal plasma. As the carrier gas, for example, Ar can be used. By adding oxygen as a plasma gas in addition to Ar, oxide nanoparticles can be produced. Nitride nanoparticles can be produced by adding nitrogen as a plasma gas in addition to Ar. The temperature of the thermal plasma reaches above 10,000°C. As an advantage of the high-frequency thermal plasma method, there is no contamination of impurities.

自原料供應機11供應的原料,與載體氣體一起通過探頭12被供應到熱等離子體內。在原料完全地蒸發之後,在水冷室15的低溫區域對蒸氣進行急冷・凝縮,則可得到奈米粒子17。急冷速度能夠設爲10 5~10 7K/s。原料,例如能夠選用粉末的形態,也能夠選用溶液、漿料的形態。在製造由合金製成的磁性奈米粒子的情况下,作爲原料,能夠使用純度較高的構成合金的各種金屬的粉末。在製造金屬氧化物以及金屬氮化物的磁性奈米粒子的情况下,作爲原料,能夠使用純度較高的構成金屬氧化物以及金屬氮化物的金屬的粉末。能夠通過改變自原料供應機11供應原料的速度,來調節磁性奈米粒子的大小。生成的奈米粒子17,通過來自真空泵(未圖示)的吸引力進行運輸,並在回收過濾器18中以粉末狀被回收。另外,所回收的奈米粒子17的粉末也可以進行分級以得到所需要的粒度分布。 The raw material supplied from the raw material supplier 11 is supplied into the thermal plasma through the probe 12 together with the carrier gas. After the raw material is completely evaporated, the vapor is rapidly cooled and condensed in the low-temperature area of the water cooling chamber 15 to obtain nanoparticles 17 . The rapid cooling rate can be set at 10 5 to 10 7 K/s. The raw material may be in the form of powder, for example, or may be in the form of solution or slurry. When producing magnetic nanoparticles made of an alloy, powders of various metals constituting the alloy can be used as raw materials with high purity. When producing magnetic nanoparticles of metal oxides and metal nitrides, powders of metals constituting metal oxides and metal nitrides with high purity can be used as raw materials. The size of the magnetic nanoparticles can be adjusted by changing the speed at which the raw material is supplied from the raw material supply machine 11 . Generated nanoparticles 17 are transported by suction from a vacuum pump (not shown), and recovered in a powder form by a recovery filter 18 . In addition, the recovered powder of nanoparticles 17 can also be classified to obtain a desired particle size distribution.

在回收的奈米粒子是由合金製成的情况下,如果是奈米粒子的表面被氧化或氮化的結構,那麽該部分的比電阻較高,與所謂的鐵氧體同樣地具有優良的吸收高頻率的特性。並且內部的沒有被氧化或氮化的金屬部分,能夠優良地吸收低頻率,因此能夠對較寬範圍的頻率實現屏蔽效果。因此,在將由合金製成的奈米粒子用於屏蔽材料的情况下,優選在僅僅奈米粒子的表面被氧化或氮化的程度下,在空氣中、氧氣中或氮氣中進行保存。When the recovered nanoparticles are made of an alloy, if the surface of the nanoparticles is oxidized or nitrided, the specific resistance of this part is high, and it has excellent properties similar to so-called ferrite. High frequency absorption properties. And the inner metal part that has not been oxidized or nitrided can absorb low frequencies well, so it can achieve a shielding effect on a wide range of frequencies. Therefore, in the case of using nanoparticles made of an alloy as a shielding material, it is preferable to store them in air, oxygen, or nitrogen to such an extent that only the surface of the nanoparticles is oxidized or nitrided.

另外,在奈米粒子含有Fe的情况下,基於防止氧化以抑制飽和磁化的降低的觀點,優選在惰性氣氛下進行保存。當在惰性氣氛中,特別是在氮氣氣氛下進行保存時,能夠期待奈米粒子的表面適度地氮化,並且能夠期待氮化鐵、尤其是Fe 16N 2的生成引起的奈米粒子的飽和磁化的提高效果。 In addition, when the nanoparticles contain Fe, it is preferable to store them in an inert atmosphere from the viewpoint of preventing oxidation and suppressing a decrease in saturation magnetization. When stored in an inert atmosphere, especially under a nitrogen atmosphere, moderate nitriding of the surface of the nanoparticles can be expected, and saturation of the nanoparticles due to the formation of iron nitride, especially Fe 16 N 2 , can be expected. Magnetization enhancement effect.

(分散處理)(distributed processing)

通過上述的步驟得到的磁性奈米粒子,通常處於一次粒子聚集成二次粒子(凝聚的)的形態。因此,優選進行分散處理以盡可能地粉碎二次粒子。通過適當地進行分散處理還可提高粒度的均勻性。作爲分散處理的方法,可列舉在分散介質中對磁性奈米粒子的粉末進行超聲波照射。超聲波照射的合適的條件,如以下所示例。The magnetic nanoparticles obtained through the above steps are usually in a form in which primary particles are aggregated into secondary particles (aggregated). Therefore, it is preferable to perform dispersion treatment so as to pulverize the secondary particles as much as possible. The uniformity of particle size can also be improved by proper dispersion treatment. As a method of the dispersion treatment, ultrasonic irradiation of magnetic nanoparticle powder in a dispersion medium is exemplified. Suitable conditions for ultrasonic irradiation are exemplified below.

・磁性奈米粒子在分散介質中的濃度:5~50mg/mL,優選爲7~20mg/mL・Concentration of magnetic nanoparticles in the dispersion medium: 5-50 mg/mL, preferably 7-20 mg/mL

・超聲波的頻率:20KHz~100KHz,優選爲30~50KHz・Frequency of ultrasonic wave: 20KHz~100KHz, preferably 30~50KHz

・超聲波照射時間:3分鐘以上,優選爲5分鐘~20分鐘・Ultrasonic irradiation time: 3 minutes or more, preferably 5 minutes to 20 minutes

・功率:每1mL分散介質1mL爲10W~200W,優選爲100W~150W・Power: 10W to 200W per 1mL of dispersion medium, preferably 100W to 150W

<4.用途><4. Use>

(與生物體物質的結合)(combination with biological substances)

在將本發明的磁性粒子粉末用作生物體物質結合用磁性擔載體的情况下,雖然能夠物理吸附生物體物質,但是基於以更高的效率與生物體物質結合的觀點,優選使得生物體物質結合於構成磁性粒子粉末的磁性粒子的表面。作爲有機化合物,可列舉從戊二醛、白蛋白、碳化二醯亞胺、鏈黴親和素、生物素以及具有官能基的金屬醇鹽中選擇的至少一種有機化合物。作爲金屬醇鹽所具有的官能基,可列舉:氨基、羧基、羥基、巰基(mercapto)以及縮水甘油氧基等。When the magnetic particle powder of the present invention is used as a magnetic carrier for binding biological substances, although it is possible to physically adsorb biological substances, from the viewpoint of binding to biological substances with higher efficiency, it is preferable to make the biological substances Bonded to the surface of the magnetic particles constituting the magnetic particle powder. Examples of the organic compound include at least one organic compound selected from glutaraldehyde, albumin, carbodiimide, streptavidin, biotin, and metal alkoxides having functional groups. As a functional group which a metal alkoxide has, an amino group, a carboxyl group, a hydroxyl group, a mercapto group, a glycidyloxy group, etc. are mentioned.

生物體物質是指,來自於生物的物質,但是不僅限於生物體物質本身,也包含與生物體物質具有相互作用的物質,例如可列舉:糖類、蛋白質、多肽、核酸、細胞、微生物、藥物或藥物候選物質、環境激素等有害物質或者生物素等其他的能夠用於生物體物質的固定的物質。Biological substances refer to substances derived from living organisms, but are not limited to biological substances themselves, and also include substances that interact with biological substances, such as sugars, proteins, polypeptides, nucleic acids, cells, microorganisms, drugs or Drug candidate substances, harmful substances such as environmental hormones, or other substances that can be used for immobilization of biological substances such as biotin.

作爲使具有官能基的金屬醇鹽結合於磁性粒子的表面的方法,例如能夠列舉:使用具有被氨基、羧基、羥基、巰基或縮水甘油氧基置換的烷基的醇鹽,對磁性粒子進行處理的方法。As a method for binding metal alkoxides having functional groups to the surface of magnetic particles, for example, treatment of magnetic particles with alkoxides having alkyl groups substituted by amino groups, carboxyl groups, hydroxyl groups, mercapto groups, or glycidyloxy groups can be cited. Methods.

作爲使戊二醛、白蛋白、碳化二醯亞胺、鏈黴親和素或生物素結合於磁性粒子的表面的方法,例如,可以列舉以下的方法。具有醛基的戊二醛以及具有羧基的生物素,通過與表面結合了具有氨基的金屬醇鹽的磁性粒子進行反應,從而能夠與磁性粒子的表面進行結合。另外,具有氨基的白蛋白和鏈黴親和素、以及具有碳化二醯亞胺基的碳化二醯亞胺,通過與表面結合了具有羧基的金屬醇鹽的磁性粒子進行反應,能夠與磁性粒子的表面進行接合。Examples of methods for binding glutaraldehyde, albumin, carbodiimide, streptavidin, or biotin to the surface of magnetic particles include the following methods. Glutaraldehyde having an aldehyde group and biotin having a carboxyl group can bind to the surface of the magnetic particle by reacting with the magnetic particle having a metal alkoxide having an amino group bonded to the surface. In addition, albumin and streptavidin having an amino group, and carbodiimide having a carbodiimide group react with the surface of a magnetic particle having a metal alkoxide having a carboxyl group, and can react with the magnetic particle. The surface is bonded.

使生物體物質結合於磁性粒子的方法沒有特別限定。例如,在生物體物質是抗體或抗原的情况下,由於具有氨基,因此通過與表面結合有戊二醛的磁性粒子進行反應,能夠使生物體物質結合於磁性粒子的表面。The method for binding biological substances to magnetic particles is not particularly limited. For example, when the biological substance is an antibody or an antigen, since it has an amino group, the biological substance can be bound to the surface of the magnetic particle by reacting with the magnetic particle having glutaraldehyde bound to the surface.

(適用於磁性屏蔽材料以及電波吸收體)(Applicable to magnetic shielding materials and radio wave absorbers)

根據本發明的一實施方式,能夠使用上述的磁性粒子粉末製造磁性屏蔽材料以及電波吸收體。例如,在磁性屏蔽用薄膜或電波吸收體用薄膜的表面上,通過噴射磁性粒子粉末,或者通過塗覆或噴霧該磁性粒子分散液,能夠形成柔性的磁性屏蔽層或電波吸收層。另外,在磁性屏蔽用成形體或電波吸收體用成形體等三次元狀的基體表面上,通過噴射磁性粒子粉末,或者通過塗覆或噴霧該磁性粒子分散液,能夠容易地形成曲面狀的磁性屏蔽層或電波吸收層。According to one embodiment of the present invention, a magnetic shielding material and a radio wave absorber can be produced using the magnetic particle powder described above. For example, a flexible magnetic shielding layer or radio wave absorbing layer can be formed by spraying magnetic particle powder or coating or spraying the magnetic particle dispersion on the surface of a magnetic shielding film or a radio wave absorber film. In addition, on the surface of a three-dimensional substrate such as a molded body for magnetic shielding or a molded body for radio wave absorbers, a curved magnetic surface can be easily formed by spraying magnetic particle powder, or by coating or spraying the magnetic particle dispersion. Shielding layer or radio wave absorbing layer.

實施例Example

以下與比較例一起示出本發明的實施例,但是提供這些實施例是爲了更好地理解本發明及其優點,不意在限定本發明。Examples of the present invention are shown below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the present invention.

<1.磁性奈米粒子的製作><1. Production of Magnetic Nanoparticles>

(實施例1)(Example 1)

使用奈米粒子製造裝置(日清工程株式會社製造),通過高頻率熱等離子體法製造Fe-Co合金製成的磁性奈米粒子的粉末。使用Ar作爲載體氣體,也使用Ar作爲等離子體氣體。磁性奈米粒子的大小,能夠通過改變來自原料供應機的原料的供應速度來進行調節。磁性奈米粒子的粉末,在從裝置回收之後,直到進行下述的各種分析以及試驗爲止,被保存在填充有氮氣的容器中。Using a nanoparticle production apparatus (manufactured by Nissin Engineering Co., Ltd.), powder of magnetic nanoparticles made of Fe—Co alloy was produced by a high-frequency thermal plasma method. Ar was used as the carrier gas, and Ar was also used as the plasma gas. The size of the magnetic nanoparticles can be adjusted by changing the supply speed of the raw material from the raw material supplier. The powder of the magnetic nanoparticles was stored in a container filled with nitrogen gas after being recovered from the device until various analyzes and tests described below were performed.

(實施例2)(Example 2)

使用奈米粒子製造裝置(日清工程株式會社製造),通過高頻率熱等離子體法製造Fe-Ni合金製成的磁性奈米粒子的粉末。使用Ar作爲載體氣體,也使用Ar作爲等離子體氣體。磁性奈米粒子的大小,能夠通過改變來自原料供應機的原料的供應速度來進行調節。磁性奈米粒子的粉末,在從裝置回收之後,直到進行下述的各種分析以及試驗爲止,被保存在填充有氮氣的容器中。Using a nanoparticle production apparatus (manufactured by Nissin Engineering Co., Ltd.), powder of magnetic nanoparticles made of Fe—Ni alloy was produced by a high-frequency thermal plasma method. Ar was used as the carrier gas, and Ar was also used as the plasma gas. The size of the magnetic nanoparticles can be adjusted by changing the supply speed of the raw material from the raw material supplier. The powder of the magnetic nanoparticles was stored in a container filled with nitrogen gas after being recovered from the device until various analyzes and tests described below were performed.

(實施例3)(Example 3)

使用奈米粒子製造裝置(日清工程株式會社製造),通過高頻率熱等離子體法製造Co-Ni合金製成的磁性奈米粒子的粉末。使用Ar作爲載體氣體,也使用Ar作爲等離子體氣體。磁性奈米粒子的大小,能夠通過改變來自原料供應機的原料的供應速度來進行調節。磁性奈米粒子的粉末,在從裝置回收之後,直到進行下述的各種分析以及試驗爲止,被保存在填充有氮氣的容器中。Using a nanoparticle production apparatus (manufactured by Nissin Engineering Co., Ltd.), powder of magnetic nanoparticles made of a Co—Ni alloy was produced by a high-frequency thermal plasma method. Ar was used as the carrier gas, and Ar was also used as the plasma gas. The size of the magnetic nanoparticles can be adjusted by changing the supply speed of the raw material from the raw material supplier. The powder of the magnetic nanoparticles was stored in a container filled with nitrogen gas after being recovered from the device until various analyzes and tests described below were performed.

(實施例4)(Example 4)

使用奈米粒子製造裝置(日清工程株式會社製造),通過高頻率熱等離子體法製造Co-Ni-Cr合金製成的磁性奈米粒子的粉末。使用Ar作爲載體氣體,也使用Ar作爲等離子體氣體。磁性奈米粒子的大小,能夠通過改變來自原料供應機的原料的供應速度來進行調節。磁性奈米粒子的粉末,在從裝置回收之後,直到進行下述的各種分析以及試驗爲止,被保存在填充有氮氣的容器中。A powder of magnetic nanoparticles made of a Co—Ni—Cr alloy was produced by a high-frequency thermal plasma method using a nanoparticle production apparatus (manufactured by Nissin Engineering Co., Ltd.). Ar was used as the carrier gas, and Ar was also used as the plasma gas. The size of the magnetic nanoparticles can be adjusted by changing the supply speed of the raw material from the raw material supplier. The powder of the magnetic nanoparticles was stored in a container filled with nitrogen gas after being recovered from the device until various analyzes and tests described below were performed.

(實施例5)(Example 5)

使用奈米粒子製造裝置(日清工程株式會社製造),通過高頻率熱等離子體法製造氧化鐵製成的磁性奈米粒子的粉末。使用Ar作爲載體氣體,使用O 2以及Ar的混合氣體作爲等離子體氣體。磁性奈米粒子的大小,能夠通過改變來自原料供應機的原料的供應速度來進行調節。磁性奈米粒子的粉末,在從裝置回收之後,直到進行下述的各種分析以及試驗爲止,被保存在填充有氮氣的容器中。 Using a nanoparticle manufacturing device (manufactured by Nissin Engineering Co., Ltd.), powder of magnetic nanoparticles made of iron oxide was produced by a high-frequency thermal plasma method. Ar is used as the carrier gas, and a mixed gas of O2 and Ar is used as the plasma gas. The size of the magnetic nanoparticles can be adjusted by changing the supply speed of the raw material from the raw material supplier. The powder of the magnetic nanoparticles was stored in a container filled with nitrogen gas after being recovered from the device until various analyzes and tests described below were performed.

<2.XRF的元素分析><2. Elemental analysis by XRF>

對於通過上述的製造方法得到的各實施例的磁性奈米粒子,使用掃描型熒光X射線分析裝置(株式會社理學製造ZSX Primus II),進行除了雜質以外的元素分析。結果在表1中示出。根據該結果可知,對於實施例1~4得到了具有規定的組成的合金製成的磁性奈米粒子。The magnetic nanoparticles of each example obtained by the above-mentioned production method were analyzed for elements other than impurities using a scanning fluorescent X-ray analyzer (ZSX Primus II manufactured by Rigaku Co., Ltd.). The results are shown in Table 1. From this result, it can be seen that in Examples 1 to 4, magnetic nanoparticles made of an alloy having a predetermined composition were obtained.

<3.X射線衍射><3. X-ray diffraction>

對於通過上述的製造方法得到的實施例5的磁性奈米粒子,使用X射線衍射裝置(株式會社理學製造RINT-ULTIMA III)對結晶結構進行了分析。由分析的結果得到的實施例5的X射線衍射圖譜在圖7中示出。根據該結果可知,實施例5的磁性奈米粒子,由Fe 2O 3構成。 The crystal structure of the magnetic nanoparticles of Example 5 obtained by the above-mentioned production method was analyzed using an X-ray diffraction apparatus (RINT-ULTIMA III manufactured by Rigaku Corporation). The X-ray diffraction pattern of Example 5 obtained from the analysis results is shown in FIG. 7 . From this result, it can be seen that the magnetic nanoparticles of Example 5 are composed of Fe 2 O 3 .

<4.BET比表面積><4. BET specific surface area>

對於通過上述的製造方法得到的各實施例的磁性奈米粒子,按照JIS Z8830:2013,使用Macsorb(註冊商標)HM model-1208通過流動法求出BET比表面積。結果在表1中示出。The BET specific surface area of the magnetic nanoparticles of each example obtained by the above-mentioned production method was determined by a flow method using Macsorb (registered trademark) HM model-1208 in accordance with JIS Z8830:2013. The results are shown in Table 1.

<5.分散處理><5. Decentralized processing>

將通過上述的製造方法得到的各實施例的磁性奈米粒子的粉末50mg放入1mL的蒸餾水中,使用激光衍射/散射式粒子直徑分布測定裝置(株式會社堀場製作所製造的LA-960V2)上附帶的超聲波探頭,通過以130W照射超聲波(40kHz)5分鐘進行分散處理,得到磁性粒子分散液。通過分散處理,分散液中的磁性粒子成爲磁性奈米粒子的聚集適度地被粉碎的二次粒子的形態。Put 50 mg of the magnetic nanoparticle powder of each example obtained by the above-mentioned production method into 1 mL of distilled water, and use a laser diffraction/scattering type particle diameter distribution measuring device (LA-960V2 manufactured by Horiba Seisakusho Co., Ltd.) The ultrasonic probe was used to irradiate ultrasonic waves (40kHz) at 130W for 5 minutes to perform dispersion treatment to obtain a magnetic particle dispersion. Through the dispersion treatment, the magnetic particles in the dispersion liquid are in the form of secondary particles in which aggregation of magnetic nanoparticles is properly pulverized.

<6.粒度分布測定><6. Particle size distribution determination>

在上述的分散處理之後,通過使用激光衍射/散射式粒子直徑分布測定裝置(株式會社堀場製作所製造LA-960V2)進行磁性粒子分散液的粒子直徑分布測定,求出磁性粒子分散液中的磁性粒子的體積基準的中值直徑(D50)、累計90%直徑(D90)、累計10%直徑(D10)、以及平均粒徑。該測定結果相當於磁性粒子的二次粒子的中值直徑(D50)。結果在表1中示出。另外,圖2~6中示出了對實施例1~5的磁性粒子粉末進行分散處理後的粒度分布圖。After the above dispersion treatment, measure the particle diameter distribution of the magnetic particle dispersion liquid using a laser diffraction/scattering particle diameter distribution measuring device (LA-960V2 manufactured by Horiba Seisakusho Co., Ltd.), to determine the magnetic particle size in the magnetic particle dispersion liquid. The volume-based median diameter (D50), cumulative 90% diameter (D90), cumulative 10% diameter (D10), and average particle diameter. This measurement result corresponds to the median diameter (D50) of the secondary particles of the magnetic particles. The results are shown in Table 1. In addition, FIGS. 2 to 6 show particle size distribution diagrams of the magnetic particle powders of Examples 1 to 5 after the dispersion treatment.

<7.飽和磁化的測定><7. Determination of saturation magnetization>

對於通過上述的製造方法得到的各實施例的磁性奈米粒子的粉末,使用振動樣品式磁力計(VSM)(株式會社玉川製作所製造,高靈敏度VSM TM-VSM261483-HGC型)來測定飽和磁化(Ms:emu/g)。具體地,將在填充有氮氣的容器中保存了4個月後的該磁性奈米粒子的粉末,在氮氣淨化手套箱(氧濃度800ppm以下)中自容器中取出該磁性奈米粒子的粉末,並填充在測定用樣品保持器中並關閉蓋。將測定用樣品保持器放置在振動樣品式磁力計(VSM)中,在大氣中、20℃下、最大施加磁場=+/-25kOe的條件下得到M(emu/g)-H(Oe)曲線,測定飽和磁化(Ms:emu/g)(表1中的「Ms1」)。飽和磁化的測定,是將該磁性奈米粒子的粉末在填充有氮氣的容器中自Ms1的測定之時開始再保存7個月之後進行(表1中的「Ms2」)。結果在表1中示出。需要說明的是,在飽和磁化的測量時,使用Ni圓盤用於磁化量的校正。The saturation magnetization ( Ms: emu/g). Specifically, the powder of the magnetic nanoparticles stored in a container filled with nitrogen for 4 months was taken out from the container in a nitrogen-purified glove box (oxygen concentration below 800ppm), And fill in the sample holder for measurement and close the cap. Place the sample holder for measurement in the vibrating sample magnetometer (VSM), and obtain the M (emu/g)-H (Oe) curve under the condition of the maximum applied magnetic field = +/-25kOe in the air at 20°C , to measure the saturation magnetization (Ms: emu/g) ("Ms1" in Table 1). The measurement of saturation magnetization was carried out after storing the magnetic nanoparticle powder in a container filled with nitrogen gas for another 7 months from the measurement of Ms1 ("Ms2" in Table 1). The results are shown in Table 1. It should be noted that, in the measurement of the saturation magnetization, a Ni disk was used for correction of the magnetization amount.

<8.聚磁性評價><8. Polymagnetic Evaluation>

將通過上述的製造方法得到的各實施例的磁性奈米粒子的粉末50mg放入1mL的蒸餾水中,使用激光衍射/散射式粒子直徑分布測定裝置(株式會社堀場製作所製造的LA-960V2)中附帶的超聲波探頭,通過以130W照射超聲波(40kHz)5分鐘進行分散處理,得到磁性粒子分散液。在分散處理後的磁性粒子分散液中再添加蒸餾水得到10mg/mL的磁性粒子濃度之後,將1mL的磁性粒子分散液注入1.5mL試管中。將試管設置於聚磁用磁鐵架(Thermo Fisher公司製造DynaMag2)並測量聚磁時間。具體地,在將試管設置於聚磁用磁鐵架之後,將聚磁開始進行直到試管中的液體完全變成透明爲止的時間記做聚磁時間。聚磁時間,也可以將上述的一系列操作拍攝成視頻,並慢速播放(播放時間爲2~3倍),從而由目視確定聚磁時間。作爲參考,將拍攝聚磁開始時間點和聚磁結束時間點的試管的狀態的照片,分別在圖8、圖9中示出。圖中,右側用於參照,左側爲試驗對象。結果在表1中示出。Put 50 mg of the magnetic nanoparticle powder of each example obtained by the above-mentioned production method into 1 mL of distilled water, and use a laser diffraction/scattering type particle diameter distribution measuring device (LA-960V2 manufactured by Horiba, Ltd.) The ultrasonic probe was used to irradiate ultrasonic waves (40kHz) at 130W for 5 minutes to perform dispersion treatment to obtain a magnetic particle dispersion. After adding distilled water to the magnetic particle dispersion after the dispersion treatment to obtain a magnetic particle concentration of 10 mg/mL, 1 mL of the magnetic particle dispersion was poured into a 1.5 mL test tube. The test tube was set in a magnet stand for magnetic concentration (DynaMag2 manufactured by Thermo Fisher Co., Ltd.), and the magnetic concentration time was measured. Specifically, after the test tube is set on the magnet stand for magnetic concentration, the time from the start of magnetic concentration until the liquid in the test tube becomes completely transparent is recorded as the magnetic concentration time. Magnetic gathering time, the above series of operations can also be shot into a video and played slowly (2 to 3 times the playback time), so that the magnetic gathering time can be determined visually. For reference, photographs of the state of the test tube at the start time point of magnetic concentration and the end time point of magnetic concentration will be taken, which are shown in FIG. 8 and FIG. 9 respectively. In the figure, the right side is used for reference, and the left side is the test object. The results are shown in Table 1.

(比較例1)(comparative example 1)

準備市售的磁性奈米粒子的粉末(核-殼型氧化鐵:Thermo Fisher公司製造Dynabeads M-280 streptavidin)。對於該磁性奈米粒子的粉末使用與實施例相同的方法進行分散處理以及粒度分布測定,從而求出磁性粒子分散液中的磁性粒子的體積基準的中值直徑(D50)。另外,對該磁性奈米粒子的粉末使用與實施例相同的方法進行飽和磁化的測定以及聚磁性評價。結果在表1中示出。A powder of commercially available magnetic nanoparticles (core-shell type iron oxide: Dynabeads M-280 streptavidin manufactured by Thermo Fisher Corporation) was prepared. The powder of the magnetic nanoparticles was subjected to dispersion treatment and particle size distribution measurement by the same method as in the examples to obtain the volume-based median diameter (D50) of the magnetic particles in the magnetic particle dispersion. In addition, the measurement of saturation magnetization and the evaluation of polymagnetism were performed on the powder of the magnetic nanoparticles by the same method as in the examples. The results are shown in Table 1.

Figure 02_image001
表1
Figure 02_image001
Table 1

以上所述僅為本發明較佳可行實施例而已,舉凡應用本發明說明書及申請專利範圍所爲之等效變化,理應包含在本發明之專利範圍內。The above description is only a preferred feasible embodiment of the present invention, and all equivalent changes made by applying the description of the present invention and the scope of the patent application should be included in the scope of the patent of the present invention.

[本發明] 10:奈米粒子製造裝置 11:原料供應機 12:探頭 13:線圈 14:等離子體噴槍 15:水冷室 16:高頻率電源 17:奈米粒子 18:回收過濾器 19:石英管 [this invention] 10: Nanoparticle manufacturing device 11: Raw material supply machine 12: Probe 13: Coil 14: Plasma spray gun 15: Water cooling chamber 16: High frequency power supply 17: Nanoparticles 18: Recycling filter 19: Quartz tube

圖1是示出奈米粒子製造裝置的結構例的示意圖。 圖2是對實施例1的磁性粒子粉末進行分散處理後的粒度分布圖。 圖3是對實施例2的磁性粒子粉末進行分散處理後的粒度分布圖。 圖4是對實施例3的磁性粒子粉末進行分散處理後的粒度分布圖。 圖5是對實施例4的磁性粒子粉末進行分散處理後的粒度分布圖。 圖6是對實施例5的磁性粒子粉末進行分散處理後的粒度分布圖。 圖7是實施例5的磁性粒子粉末的X射線衍射圖譜。 圖8是示例性地示出聚磁開始時間點的試管的狀態的照片。 圖9是示例性地示出聚磁結束時間點的試管的狀態的照片。 FIG. 1 is a schematic diagram showing a configuration example of a nanoparticle manufacturing apparatus. 2 is a particle size distribution diagram of the magnetic particle powder of Example 1 after dispersion treatment. 3 is a particle size distribution diagram of the magnetic particle powder of Example 2 after dispersion treatment. 4 is a particle size distribution diagram of the magnetic particle powder of Example 3 after dispersion treatment. 5 is a particle size distribution diagram of the magnetic particle powder of Example 4 after dispersion treatment. 6 is a particle size distribution diagram of the magnetic particle powder of Example 5 after dispersion treatment. FIG. 7 is an X-ray diffraction pattern of the magnetic particle powder of Example 5. FIG. FIG. 8 is a photograph exemplarily showing the state of the test tube at the time point when magnetization concentration starts. FIG. 9 is a photograph exemplarily showing the state of the test tube at the time point when the magnetization concentration is completed.

Claims (15)

一種磁性粒子粉末,其中,BET比表面積爲10 m 2/g~50 m 2/g,中值直徑(D50)爲0.5μm~10μm,飽和磁化(Ms)爲50emu/g以上。 A magnetic particle powder, wherein the BET specific surface area is 10 m 2 /g to 50 m 2 /g, the median diameter (D50) is 0.5 μm to 10 μm, and the saturation magnetization (Ms) is 50 emu/g or more. 如請求項1所述之磁性粒子粉末,包含由含有從Fe、Ni以及Co中選擇的一種或兩種以上的金屬的合金製成的磁性粒子。The magnetic particle powder according to Claim 1 includes magnetic particles made of an alloy containing one or two or more metals selected from Fe, Ni and Co. 如請求項2所述之磁性粒子粉末,包含由含有從Fe、Ni以及Co中選擇的一種或兩種以上的金屬並且還含有從Cr、Ti、Pt以及Pd中選擇的一種或兩種以上的金屬的合金製成的磁性粒子。The magnetic particle powder as described in claim 2, comprising one or more metals selected from Fe, Ni and Co and also containing one or more metals selected from Cr, Ti, Pt and Pd Magnetic particles made of metal alloys. 如請求項1或2所述之磁性粒子粉末,包含從Fe、Ni以及Co中選擇的一種或兩種以上的金屬的氮化物以及氧化物中的至少一種。The magnetic particle powder according to claim 1 or 2, comprising at least one of nitrides and oxides of one or more metals selected from Fe, Ni and Co. 如請求項1或2所述之磁性粒子粉末,其中飽和磁化(Ms)爲130emu/g以上。The magnetic particle powder according to claim 1 or 2, wherein the saturation magnetization (Ms) is 130 emu/g or more. 如請求項1或2所述之磁性粒子粉末,其中累計90%直徑(D90)與中值直徑(D50)之差爲10μm以下。The magnetic particle powder according to claim 1 or 2, wherein the difference between the cumulative 90% diameter (D90) and the median diameter (D50) is 10 μm or less. 如請求項1或2所述之磁性粒子粉末,其中累計10%直徑(D10)與中值直徑(D50)之差爲5μm以下。The magnetic particle powder according to claim 1 or 2, wherein the difference between the cumulative 10% diameter (D10) and the median diameter (D50) is 5 μm or less. 一種磁性粒子分散液,是在分散介質中,分散有BET比表面積爲10 m 2/g~50 m 2/g、中值直徑(D50)爲0.5μm~10μm並且飽和磁化(Ms)爲50emu/g以上的多個磁性粒子。 A magnetic particle dispersion, which is dispersed in a dispersion medium with BET with a specific surface area of 10 m 2 /g-50 m 2 /g, a median diameter (D50) of 0.5 μm-10 μm, and a saturation magnetization (Ms) of 50 emu/g Multiple magnetic particles above g. 如請求項8所述之磁性粒子分散液,其中,多個磁性粒子包含:由含有從Fe、Ni以及Co中選擇的一種或兩種以上的金屬的合金製成的磁性粒子。The magnetic particle dispersion according to claim 8, wherein the plurality of magnetic particles include magnetic particles made of an alloy containing one or two or more metals selected from Fe, Ni, and Co. 如請求項9所述之磁性粒子分散液,其中,多個磁性粒子包含:由含有從Fe、Ni以及Co中選擇的一種或兩種以上的金屬並且還含有從Cr、Ti、Pt以及Pd中選擇的一種或兩種以上的金屬的合金製成的磁性粒子。The magnetic particle dispersion liquid as described in Claim 9, wherein, a plurality of magnetic particles comprise: one or two or more metals selected from Fe, Ni and Co and also containing Cr, Ti, Pt and Pd Magnetic particles made of an alloy of one or more than two metals selected. 如請求項8或9所述之磁性粒子分散液,其中,多個磁性粒子包含:從Fe、Ni以及Co中選擇的一種或兩種以上的金屬的氮化物以及氧化物中的至少一種。The magnetic particle dispersion according to Claim 8 or 9, wherein the plurality of magnetic particles contain at least one of nitrides and oxides of one or more metals selected from Fe, Ni and Co. 如請求項8或9所述之磁性粒子分散液,其中,多個磁性粒子的飽和磁化(Ms)爲130emu/g以上。The magnetic particle dispersion according to Claim 8 or 9, wherein the saturation magnetization (Ms) of the plurality of magnetic particles is 130 emu/g or more. 如請求項8或9所述之磁性粒子分散液,其中,以5mg/mL~100mg/mL的濃度含有多個磁性粒子。The magnetic particle dispersion according to claim 8 or 9, wherein a plurality of magnetic particles are contained at a concentration of 5 mg/mL to 100 mg/mL. 如請求項8或9所述之磁性粒子分散液,其中,多個磁性粒子的累計90%直徑(D90)與中值直徑(D50)之差爲10μm以下。The magnetic particle dispersion according to claim 8 or 9, wherein the difference between the cumulative 90% diameter (D90) and the median diameter (D50) of the plurality of magnetic particles is 10 μm or less. 如請求項8或9所述之磁性粒子分散液,其中,多個磁性粒子的累計10%直徑(D10)與中值直徑(D50)之差爲5μm以下。The magnetic particle dispersion according to claim 8 or 9, wherein the difference between the cumulative 10% diameter (D10) and the median diameter (D50) of the plurality of magnetic particles is 5 μm or less.
TW111117446A 2021-07-13 2022-05-10 Magnetic particle powder and magnetic particle dispersion TW202302467A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-115817 2021-07-13
JP2021115817A JP2023012279A (en) 2021-07-13 2021-07-13 Magnetic particle powder and magnetic particle dispersion

Publications (1)

Publication Number Publication Date
TW202302467A true TW202302467A (en) 2023-01-16

Family

ID=84919193

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111117446A TW202302467A (en) 2021-07-13 2022-05-10 Magnetic particle powder and magnetic particle dispersion

Country Status (3)

Country Link
JP (1) JP2023012279A (en)
TW (1) TW202302467A (en)
WO (1) WO2023286409A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811658B2 (en) * 2006-09-20 2011-11-09 日立金属株式会社 Coated metal fine particles and production method thereof,
JP5403213B2 (en) * 2008-10-22 2014-01-29 戸田工業株式会社 Surface-treated magnetic iron oxide particle powder, and black paint and rubber / resin composition using the surface-treated magnetic iron oxide particle powder
JP5858419B2 (en) * 2011-04-27 2016-02-10 戸田工業株式会社 Method for producing ferromagnetic particle powder, anisotropic magnet, bonded magnet, and dust magnet

Also Published As

Publication number Publication date
WO2023286409A1 (en) 2023-01-19
JP2023012279A (en) 2023-01-25

Similar Documents

Publication Publication Date Title
JP4560784B2 (en) Fine metal particles, method for producing the same, and magnetic beads
EP1568427B1 (en) Production method of fine composite metal particles
JP5359905B2 (en) Fine metal particles, method for producing the same, and magnetic beads
JP5058031B2 (en) Core-shell magnetic particles, high-frequency magnetic material, and magnetic sheet
TW584870B (en) Single-crystal ferrite fine powder
JP5229526B2 (en) Magnetic ultrafine particles and method for producing the same
US20110027588A1 (en) Magnetic powder and method of manufacturing the same
Naughton et al. Lattice expansion and saturation magnetization of nickel–zinc ferrite nanoparticles prepared by aqueous precipitation
Cui et al. High magnetization Fe-Co and Fe-Ni submicron and nanosize particles by thermal decomposition and hydrogen reduction
JP5168637B2 (en) Metal magnetic fine particles and production method thereof, dust core
WO2006100986A1 (en) Coated metal fine particle and method for producing same
KR102547326B1 (en) Mn-Zn-based ferrite particles, resin moldings, soft magnetic mixed powders, and magnetic cores
JP4734521B2 (en) Metallic magnetic powder and method for producing the same
JP4811658B2 (en) Coated metal fine particles and production method thereof,
TW202302467A (en) Magnetic particle powder and magnetic particle dispersion
Enz et al. Structure and magnetic properties of iron nanoparticles stabilized in carbon
Casula et al. Near equiatomic FeCo nanocrystalline alloy embedded in an alumina aerogel matrix: Microstructural features and related magnetic properties
JP2011132581A (en) Method for producing nanoparticle of nickel-iron alloy with high saturation magnetization, and nanoparticle of nickel-iron alloy with high saturation magnetization
JP2006179567A (en) Iron nitride magnetic powder displaying excellent storing stability
JP2008179841A (en) Method for producing nickel-iron-molybdenum alloy nanoparticle, and nickel-iron-molybdenum alloy nanoparticle
El-Khatib et al. Synthesis and characterization of cobalt nanoparticles prepared by arc discharge method using an ultrasonic nebulizer
Xu Magnetic properties of nano-composite particles
JP2005232514A (en) Metal particulate, and method for producing metal particulate
JP2012156437A (en) Magnetic particle, method of manufacturing the same, magnetic powder for magnetic recording, and magnetic recording medium
COŞKUN et al. The Magnetic Anisotropy Effectiveness on NiFe2O4 and NiFe2O4@ SiO2 Nanoparticles for Hyperthermia Applications