TW202217433A - 光罩基底、相位偏移光罩、相位偏移光罩之製造方法及半導體裝置之製造方法 - Google Patents

光罩基底、相位偏移光罩、相位偏移光罩之製造方法及半導體裝置之製造方法 Download PDF

Info

Publication number
TW202217433A
TW202217433A TW110122566A TW110122566A TW202217433A TW 202217433 A TW202217433 A TW 202217433A TW 110122566 A TW110122566 A TW 110122566A TW 110122566 A TW110122566 A TW 110122566A TW 202217433 A TW202217433 A TW 202217433A
Authority
TW
Taiwan
Prior art keywords
film
phase shift
pattern
transmittance
light
Prior art date
Application number
TW110122566A
Other languages
English (en)
Inventor
野澤順
穐山圭司
Original Assignee
日商Hoya股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Hoya股份有限公司 filed Critical 日商Hoya股份有限公司
Publication of TW202217433A publication Critical patent/TW202217433A/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本發明提供一種光罩基底,其能夠於不使光罩製造程序複雜化之情況下,以期望精度形成透過率不同之圖案,且於各圖案能夠獲得所期望之相位偏移功能。 本發明之光罩基底之特徵在於:於相位偏移膜上具有透過率調整膜,相位偏移膜使透過相位偏移膜之ArF準分子雷射曝光用光、與於空氣中通過和上述相位偏移膜之厚度相同程度之距離的上述曝光用光之間,產生150度以上210度以下之相位差,關於透過率調整膜,將於曝光用光之波長下之折射率設為n U,將於曝光用光之波長下之消光係數設為k U,將厚度設為d U[nm]時,同時滿足下述式(1)及式(2)之關係。 式(1) d U≦-17.63×n U 3+142.0×n U 2-364.9×n U+315.8 式(2) d U≧-2.805×k U 3+19.48×k U 2-43.58×k U+38.11

Description

光罩基底、相位偏移光罩、相位偏移光罩之製造方法及半導體裝置之製造方法
本發明係關於一種光罩基底、相位偏移光罩、相位偏移光罩之製造方法及半導體裝置之製造方法。
通常,於半導體裝置之製造步驟中,使用光微影法來形成微細圖案。又,形成該微細圖案時,通常使用若干個稱為轉印用光罩之基板。當進行半導體裝置之圖案微細化時,除須將形成於轉印用光罩之光罩圖案加以微細化以外,還須縮短光微影法中使用之曝光用光源之波長。近年來,製造半導體裝置時之曝光用光源不斷地縮短波長而自KrF準分子雷射(波長248 nm)發展至ArF準分子雷射(波長193 nm)。
作為轉印用光罩之種類,除先前之於透光性基板上具備包含鉻系材料之遮光圖案的二元光罩以外,還知有半色調式相位偏移光罩。半色調式相位偏移光罩之相位偏移膜廣泛使用矽化鉬(MoSi)系材料。
於專利文獻1中揭示有一種相位偏移光罩,其中於透明基板2上依序形成有蝕刻停止膜3、形成特定圖案之相位偏移層4,於形成於區域A之相位偏移層4上,形成有包含鉻之遮光性膜圖案5,於形成於區域B之相位偏移層4上,形成有包含矽化鉬之半透光性膜圖案6,雷文生型相位偏移光罩(Alternating Phase Shift Mask)及半色調式相位偏移光罩形成於同一基板上。 又,於專利文獻2中揭示有一種相位偏移光罩,其具備:半色調膜12,其設置於透光性基板11中供形成遮光圖案之部分、及供形成半遮光圖案之部分;及遮光膜13,其設置於半色調膜12中位於供形成遮光圖案之部分之半色調膜12上。半遮光圖案包括包含半色調膜12之第1半遮光圖案、及尺寸小於第1半遮光圖案之包含半色調膜之第2半遮光圖案,且於包含該第2半遮光圖案之區域之光透過路徑32中,包含調整該光透過路徑32之透光率之元素。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開平6-123961公報 [專利文獻2]日本專利特開2007-279441號公報
[發明所欲解決之問題]
近年來,所需圖案之種類開始多樣化、複雜化,半色調式相位偏移光罩上形成之轉印圖案中,有時亦同時存在更微細之圖案及相對稀疏之圖案。適於獲得良好相位偏移效果之透過率有時因圖案種類而異。即,根據所轉印之圖案之種類或間距等,可能存在較佳為提高透過率之情形、及較佳為抑制透過率之情形。而且,於轉印區域中如何設定具有相對較高透過率之區域、及具有相對較低透過率之區域係因轉印對象之半導體裝置而異,因此,需要一種設計自由度較高之光罩基底,其能夠與形成於轉印對象之圖案種類對應地,設定具有所期望之透過率之區域。
關於專利文獻1中記載之相位偏移光罩,於區域A中形成有遮光性膜圖案,於另一區域B中形成有半透光性膜圖案5,該相位偏移光罩本身有用。但,該相位偏移光罩中,於區域A設置有雷文生型相位偏移圖案,於區域B設置有半色調式相位偏移圖案,產生不同相位偏移效果之圖案於俯視下混在一起。不滿足半色調式相位偏移光罩設置不同透過率之半色調式相位偏移圖案的要求。
又,關於專利文獻2中記載之相位偏移光罩,藉由採用離子注入對半色調光罩基底注入Ga離子,來進行降低注入區域之透光率之處理。於製成通常之光罩時不會進行此種處理,且此種處理需要光罩製造裝置預先具備離子注入機構,導致光罩製造處理複雜化。繼而,注入至光罩基底之離子可能自所期望之區域擴散,因此,難以滿足製造微細圖案的要求。
因此,本發明係為了解決先前課題而完成者,目的在於提供一種光罩基底,其於透光性基板上具備相位偏移膜,且該相位偏移膜於由光罩基底製造相位偏移光罩時,能夠於不使程序(光罩製造程序)複雜化之情況下,以期望精度形成透過率不同之圖案,而且於各圖案能夠獲得所期望之相位偏移功能。又,本發明之目的在於提供一種使用該光罩基底而製造之相位偏移光罩及相位偏移光罩之製造方法。繼而,本發明之目的在於提供一種使用此種相位偏移光罩之半導體裝置之製造方法。 [解決問題之技術方法]
為了達成上述課題,本發明具有以下構成。 (構成1) 一種光罩基底,其特徵在於: 於透光性基板上具備相位偏移膜,且 於上述相位偏移膜上具有透過率調整膜, 上述相位偏移膜使透過上述相位偏移膜之ArF準分子雷射曝光用光、與於空氣中通過和上述相位偏移膜之厚度相同程度之距離的上述曝光用光之間,產生150度以上210度以下之相位差, 關於上述透過率調整膜,將於上述曝光用光之波長下之折射率設為n U,將於上述曝光用光之波長下之消光係數設為k U,將厚度設為d U[nm]時,同時滿足下述式(1)及式(2)之關係。 式(1) d U≦-17.63×n U 3+142.0×n U 2-364.9×n U+315.8 式(2) d U≧-2.805×k U 3+19.48×k U 2-43.58×k U+38.11
(構成2) 如構成1中記載之光罩基底,其特徵在於:上述透過率調整膜之上述折射率n U為1.2以上。 (構成3) 如構成1或2中記載之光罩基底,其特徵在於:上述透過率調整膜之上述消光係數k U為1.5以上。
(構成4) 如構成1至3中任一項中記載之光罩基底,其特徵在於:上述相位偏移膜使上述曝光用光以12%以上之透過率透過。 (構成5) 如構成1至4中任一項中記載之光罩基底,其特徵在於:上述透過率調整膜之上述消光係數k U與上述厚度d U[nm]滿足下述式(3)之關係。 式(3) d U≦8.646×k U 2-38.42×k U+61.89
(構成6) 如構成1至5中任一項中記載之光罩基底,其特徵在於:上述透過率調整膜含有矽及氮。 (構成7) 如構成1至6中任一項中記載之光罩基底,其特徵在於:於上述相位偏移膜與上述透過率調整膜之間,具備含有矽及氧之中間膜。
(構成8) 如構成1至6中任一項中記載之光罩基底,其特徵在於:上述相位偏移膜於與上述透光性基板側相反之表面側,具備含有矽及氧之最上層。 (構成9) 如構成1至8中任一項中記載之光罩基底,其特徵在於:於上述透過率調整膜上,具備遮光膜。
(構成10) 一種相位偏移光罩,其特徵在於: 於透光性基板上具備具有第1圖案之相位偏移膜,且 於上述相位偏移膜上,具備具有第2圖案之透過率調整膜, 上述相位偏移膜使透過上述相位偏移膜之ArF準分子雷射曝光用光、與於空氣中通過和上述相位偏移膜之厚度相同程度之距離的上述曝光用光之間,產生150度以上210度以下之相位差, 關於上述透過率調整膜,將於上述曝光用光之波長下之折射率設為n U,將於上述曝光用光之波長下之消光係數設為k U,將厚度設為d U[nm]時,同時滿足下述式(1)及式(2)之關係。 式(1) d U≦-17.63×n U 3+142.0×n U 2-364.9×n U+315.8 式(2) d U≧-2.805×k U 3+19.48×k U 2-43.58×k U+38.11 (構成11) 如構成10中記載之相位偏移光罩,其特徵在於:上述透過率調整膜之上述折射率n U為1.2以上。
(構成12) 如構成10或11中記載之相位偏移光罩,其特徵在於:上述透過率調整膜之上述消光係數k U為1.5以上。 (構成13) 如構成10至12中任一項中記載之相位偏移光罩,其特徵在於:上述相位偏移膜使上述曝光用光以12%以上之透過率透過。
(構成14) 如構成10至13中任一項中記載之相位偏移光罩,其特徵在於:上述透過率調整膜之上述消光係數k U與上述厚度d U[nm]滿足下述式(3)之關係。 式(3) d U≦8.646×k U 2-38.42×k U+61.89 (構成15) 如構成10至14中任一項中記載之相位偏移光罩,其特徵在於:上述透過率調整膜含有矽及氮。
(構成16) 如構成10至15中任一項中記載之相位偏移光罩,其特徵在於:於上述相位偏移膜與上述透過率調整膜之間,具備具有上述第2圖案之中間膜,上述中間膜含有矽及氧。 (構成17) 如構成10至15中任一項中記載之相位偏移光罩,其特徵在於:上述相位偏移膜於與上述透光性基板側相反之表面側,具備含有矽及氧之最上層。
(構成18) 如構成10至17中任一項中記載之相位偏移光罩,其特徵在於:於上述透過率調整膜上,具備具有第3圖案之遮光膜。 (構成19) 一種相位偏移光罩之製造方法,其特徵在於: 使用如構成9中記載之光罩基底,且包括以下步驟: 藉由乾式蝕刻,於上述遮光膜上形成第1圖案; 藉由以具有上述第1圖案之遮光膜為遮罩之乾式蝕刻,於上述透過率調整膜及上述相位偏移膜各膜上形成第1圖案; 藉由乾式蝕刻,於上述遮光膜上形成第2圖案; 藉由以具有上述第2圖案之遮光膜為遮罩之乾式蝕刻,於上述透過率調整膜上形成第2圖案;及 藉由乾式蝕刻,於上述遮光膜上形成第3圖案。 (構成20) 一種半導體裝置之製造方法,其特徵在於具備如下步驟:使用如構成18中記載之相位偏移光罩,將轉印圖案曝光轉印至半導體基板上之抗蝕膜上。 [發明之效果]
本發明之光罩基底能夠提供一種能夠於不使光罩製造程序複雜化之情況下,以期望精度形成透過率不同之圖案,且於各圖案能夠獲得所期望之相位偏移功能的光罩基底。
以下,對本發明之實施方式進行說明。本案發明人等針對相位偏移膜,銳意研究了於不使光罩製造程序複雜化之情況下,以期望精度形成透過率不同之圖案,而且於各圖案能夠獲得所期望之相位偏移功能的方法。 首先,為了形成透過率不同之圖案,想到於相位偏移膜上具有透過率調整膜之構成。其次,令相位偏移膜具有如下功能,即,使透過相位偏移膜之ArF準分子雷射曝光用光、與於空氣中通過和上述相位偏移膜之厚度相同程度之距離的上述曝光用光之間,產生150度以上210度以下之相位差(以下,適當稱為「所期望之相位偏移功能」)。藉由如此設定,於相位偏移光罩上去除了透過率調整膜之部位,ArF準分子雷射曝光用光(以下,適當稱為「曝光用光」)以特定透過率透過相位偏移膜,又,能夠獲得上述所期望之相位偏移功能。 另外,進一步研究了如下之透過率調整膜之構成,其中對於透過相位偏移膜及透過率調整膜之曝光用光,亦可獲得所期望之相位偏移功能,而且可獲得明顯不同於透過相位偏移膜之曝光用光的透過率。
首先,關於相位偏移功能,本發明人等研究了用於滿足以下情況的條件,該情況係透過相位偏移膜及透過率調整膜之積層構造的曝光用光相對於透過相位偏移膜之曝光用光的相位差增加量為20度以下。於該研究中,本發明人等著眼於透過率調整膜之最大膜厚與折射率n之關係,對相位偏移膜及透過率調整膜進行了光學模擬A1。於光學模擬A1中,於折射率n為1.2~2.0之範圍內,改變透過率調整膜之膜厚,同時算出用於滿足相位差增加量為20度以下之條件的透過率調整膜之最大膜厚。此處,相位偏移膜之膜厚設為60.4 nm,折射率n設為2.61,消光係數k設為0.36。再者,上述折射率n及消光係數k係針對ArF準分子雷射光之波長(波長193 nm)而言,若未作特別說明,則以後亦同樣如此。
又,於光學模擬A1中,於相位偏移膜與透過率調整膜之間設定中間膜。設想藉由乾式蝕刻對透過率調整膜進行圖案化時不會蝕刻至相位偏移膜而設置該中間膜。該中間膜之膜厚設為3 nm,折射率n設為1.56,消光係數k設為0.00。中間膜由於具有此種光學特性,故對光學模擬A1之結果造成之影響較輕微。
基於該光學模擬A1之結果,梳理了透過率調整膜之折射率n與最大膜厚之關係。圖9係表示透過率調整膜之最大膜厚與折射率n之關係的圖,該關係係由光學模擬A1之結果導出,用於滿足透過相位偏移膜及透過率調整膜之積層構造的曝光用光相對於透過相位偏移膜之曝光用光的相位差增加量為20度以下之條件。圖9中之曲線A11、A12、以及A13分別表示用於滿足相位差增加量為20度以下、15度以下、以及10度以下之條件的透過率調整膜之最大膜厚。
圖9中所示之用於滿足相位差增加量為20度以下之條件的透過率調整膜之最大膜厚之關係式(曲線A11之數式)如下。 d Umax=-17.63×n U 3+142.0×n U 2-364.9×n U+315.8 又,如圖9所示,滿足相位差增加量為15度以下及10度以下之條件之曲線A12、A13位於較曲線A11更靠下側。用於滿足相位差增加量為15度以下之條件的透過率調整膜之最大膜厚之關係式(曲線A12之數式)如下。 d Umax=-70.62×n U 3+406.5×n U 2-795.7×n U+540.1 進而,用於滿足相位差增加量為10度以下之條件的透過率調整膜之最大膜厚之關係式(曲線A13之數式)如下。 d Umax=201.1×n U 4-1407×n U 3+3700×n U 2-4356×n U+1956
由該等結果,發現透過率調整膜之膜厚d U[nm]及折射率n U滿足以下之式(1)之條件時, 式(1) d U≦-17.63×n U 3+142.0×n U 2-364.9×n U+315.8 透過相位偏移膜及透過率調整膜之積層構造的曝光用光相對於透過相位偏移膜之曝光用光的相位差增加量為20度以下。 又,發現透過率調整膜之膜厚d U[nm]、折射率n U滿足以下之式(1-A12)之條件時, 式(1-A12)    d U≦-70.62×n U 3+406.5×n U 2-795.7×n U+540.1 透過相位偏移膜及透過率調整膜之積層構造的曝光用光相對於透過相位偏移膜之曝光用光的相位差增加量為15度以下。 進而,發現透過率調整膜之膜厚d U[nm]、折射率n U滿足以下之式(1-A13)之條件時, 式(1-A13)    d U≦201.1×n U 4-1407×n U 3+3700×n U 2-4356×n U+1956 透過相位偏移膜及透過率調整膜之積層構造的曝光用光相對於透過相位偏移膜之曝光用光的相位差增加量為10度以下。
進而,本發明人等改變相位偏移膜之條件並嘗試進行了相同之光學模擬B1。該相位偏移膜設為自透光性基板側起積層有第1層、第2層、及第3層之構造。關於第1層,膜厚設為41 nm,折射率n設為2.61,消光係數k設為0.36。關於第2層,膜厚設為24 nm,折射率n設為2.18,消光係數k設為0.12。關於第3層,膜厚設為4 nm,折射率n設為1.56,消光係數k設為0.00。再者,於光學模擬B中,第3層亦能發揮上述中間膜之功能,因此,設為在相位偏移膜與透過率調整膜之間未設置中間膜之構成。基於該光學模擬B1之結果,梳理了透過率調整膜之折射率n與最大膜厚之關係。
圖10係針對透過率調整膜之最大膜厚與折射率n之關係,將光學模擬A1與光學模擬B1之結果加以對比所得之圖。圖10所示之曲線A11、A12及A13為光學模擬A1之結果,與圖9所示者相同。圖10所示之曲線B11、B12及B13分別為光學模擬B1之結果,分別表示用於滿足相位差增加量分別為14度以下、11度以下、6度以下之條件的透過率調整膜之最大膜厚。
於圖10中,曲線A11位於較曲線B11(相位差增加量為閾值14度之曲線)更靠下方。這表示滿足基於曲線A11而導出之式(1)之關係的透過率調整膜設置於光學模擬B1中使用之相位偏移膜之上時,相位差增加量亦為14度以下。同樣地,曲線A12位於較曲線B12更靠下方。這表示滿足基於曲線A12而導出之式(1-A12)之關係的透過率調整膜設置於光學模擬B1中使用之相位偏移膜之上時,相位差增加量亦為11度以下。同樣地,曲線A13位於較曲線B13更靠下方。這表示滿足基於曲線A13而導出之式(1-A13)之關係的透過率調整膜設置於光學模擬B1中使用之相位偏移膜之上時,相位差增加量亦為6度以下。該等結果意味著,只要為滿足式(1)之關係的透過率調整膜,則無論設置於其下之相位偏移膜之光學特性如何,上述相位差增加量均為20度以下。
另一方面,為了能夠獲得明顯不同於透過相位偏移膜之曝光用光之透過率的透過率,本發明人等對以下條件進行了研究,該條件滿足透過相位偏移膜及透過率調整膜之積層構造的曝光用光之透過率Ts相對於透過相位偏移膜之曝光用光之透過率Tp的比(即,Ts/Tp,以下,有時將其簡稱為透過率之比)為0.5以下。於該研究中,本發明人等著眼於透過率調整膜之最小膜厚與消光係數k之關係,分別對相位偏移膜及透過率調整膜進行了光學模擬A2及B2。於光學模擬A2及B2中,於消光係數k為1.5至2.0之範圍內,改變透過率調整膜之膜厚,同時算出用於滿足透過率之比為0.5以下之條件的透過率調整膜之最小膜厚。再者,關於相位偏移膜,於光學模擬A2中,使用與光學模擬A1相同者,於光學模擬B2中,使用與光學模擬B1相同者。
然後,基於該模擬A2及B2之各結果,梳理了透過率調整膜之消光係數k與最小膜厚之關係。圖11係針對透過率調整膜之最小膜厚與消光係數k之關係,將光學模擬A2與光學模擬B2之結果加以對比所得之圖。圖11所示之曲線A21及A22為光學模擬A2之結果,分別表示用於滿足透過率之比為分別0.50以下、0.45以下之條件的透過率調整膜之最小膜厚。曲線B21及B22為光學模擬B2之結果,分別表示用於滿足透過率之比為分別0.50以下、0.43以下之條件的透過率調整膜之最小膜厚。
圖11中所示之用於滿足透過率之比為0.5以下之條件的透過率調整膜之最小膜厚之關係式(曲線A21之數式)如下。 d Umin=-2.805×k U 3+19.48×k U 2-43.58×k U+38.11 又,如圖11所示,滿足透過率之比為0.45以下之條件之曲線A22位於較曲線A21更靠上側。用於滿足透過率之比為0.45以下之條件的透過率調整膜之最小膜厚之關係式(曲線A22之數式)如下。 d Umin=8.592×k U 3-38.60×k U 2+54.28×k U-15.36
由該等結果,發現透過率調整膜之膜厚d U[nm]及消光係數k U滿足下述式(2)之條件時, 式(2) d U≧-2.805×k U 3+19.48×k U 2-43.58×k U+38.11 透過相位偏移膜及透過率調整膜之積層構造的曝光用光之透過率相對於透過相位偏移膜之曝光用光之透過率的比為0.5以下。 又,發現透過率調整膜之膜厚d U[nm]及消光係數k U滿足下述式(2-A22)之條件時, 式(2-A22)    d U≧8.592×k U 3-38.60×k U 2+54.28×k U-15.36 透過相位偏移膜及透過率調整膜之積層構造的曝光用光之透過率相對於透過相位偏移膜之曝光用光之透過率的比為0.45以下。
於圖11中,曲線A21位於較曲線B21(透過率之比為閾值0.50之曲線)更靠上方。這表示,滿足基於曲線A21而導出之式(2)之關係的透過率調整膜設置於光學模擬B2中使用之相位偏移膜上時,透過率之比亦為0.50以下。同樣地,曲線A22位於較曲線B22(透過率之比為閾值0.43之曲線)更靠上方。這表示,滿足基於曲線A22而導出之式(2-A22)之關係的透過率調整膜設置於光學模擬B2中使用之相位偏移膜上時,透過率之比亦為0.45以下。該等結果意味著,只要為滿足式(2)之關係的透過率調整膜,則無論設置於其下之相位偏移膜之光學特性如何,上述透過率之比均為0.50以下。
以此方式,本發明人等徹底查明只要為滿足式(1)及式(2)之關係的透過率調整膜,則上述相位差增加量為20度以下,上述透過率之比為0.50以下。本發明係如上銳意研究而完成者。
<第1實施方式> [光罩基底及其製造] 以下,一面參照圖式一面對實施方式進行說明。 圖1係表示本發明第1實施方式之光罩基底10之構成的剖視圖。圖1所示之本發明之光罩基底10具有於透光性基板1上依序積層有相位偏移膜2、中間膜3、透過率調整膜4、遮光膜5、硬罩膜6及抗蝕膜7之構造。
透光性基板1除能夠由合成石英玻璃形成以外,還能夠由石英玻璃、鋁矽酸鹽玻璃、鈉鈣玻璃、低熱膨脹玻璃(SiO 2-TiO 2玻璃等)等形成。其中,合成石英玻璃對ArF準分子雷射光之透過率較高,尤其適宜作為形成光罩基底之透光性基板1之材料。形成透光性基板1之材料於ArF曝光用光之波長(約193 nm)下之折射率n較佳為1.5以上1.6以下,更佳為1.52以上1.59以下,進而較佳為1.54以上1.58以下。
相位偏移膜2較佳為以透過之ArF曝光用光與於空氣中通過和該相位偏移膜2之厚度相同程度之距離的光之間產生的相位差成為150度以上210度以下之範圍之方式加以調整,以獲得適當之相位偏移效果。相位偏移膜2之上述相位差較佳為155度以上,更佳為160度以上。另一方面,相位偏移膜2之上述相位差較佳為195度以下,更佳為190度以下。
相位偏移膜2較佳為使曝光用光以12%以上之透過率透過。近年來,開始使用NTD(Negative Tone Development,負顯影)作為針對半導體基板(晶圓)上之抗蝕膜之曝光、顯影程序,因此經常使用明場光罩(圖案開口率高之轉印用光罩)。於明視野相位偏移光罩中,將相位偏移膜對曝光用光之透過率設為12%以上,藉此,透過透光部之光之0次光與1次光取得良好平衡。該平衡變得良好後,透過相位偏移膜之曝光用光干涉0次光而使光強度衰減之效果變得更大,從而抗蝕膜上之圖案解像性提高。為了進一步提高由相位偏移效果產生之轉印圖像(投影光學圖像)之圖案邊緣強調效果,相位偏移膜2更佳為使曝光用光以19%以上之透過率透過,更佳為使曝光用光以28%以上之透過率透過。另一方面,相位偏移膜2對ArF曝光用光之透過率較佳為50%以下,更佳為40%以下。若相位偏移膜2對ArF曝光用光之透過率超過50%,則旁瓣之影響變得過強,故而不佳。
相位偏移膜2之厚度較佳為90 nm以下,更佳為80 nm以下。另一方面,相位偏移膜2之厚度較佳為40 nm以上,更佳為50 nm以上。
於相位偏移膜2中,為了滿足與上述光學特性及膜厚相關之諸條件,相位偏移膜之折射率n較佳為2.0以上,更佳為2.1以上。又,相位偏移膜2之折射率n較佳為3.0以下,更佳為2.9以下。相位偏移膜2之消光係數k較佳為0.9以下,更佳為0.6以下。又,相位偏移膜2之消光係數k較佳為0.1以上。
包含相位偏移膜2之薄膜之折射率n及消光係數k並不僅取決於該薄膜之組成。該薄膜之膜密度或結晶狀態等亦為影響折射率n或消光係數k之要素。因此,調整藉由反應性濺鍍成膜薄膜時之諸條件,以成為所期望之折射率n及消光係數k之方式成膜該薄膜。要想使該薄膜成為上述折射率n及消光係數k之範圍,藉由反應性濺鍍進行成膜時,不能僅調整惰性氣體與反應性氣體(氧氣、氮氣等)之混合氣體之比率。還廣泛涉及藉由反應性濺鍍進行成膜時之成膜室內之壓力、對濺鍍靶施加之電力、靶與透光性基板1之間之距離等位置關係等。該等成膜條件係成膜裝置所固有者,可以所形成之薄膜具有所期望之折射率n及消光係數k之方式適當調整。
相位偏移膜2由含有非金屬元素及矽之材料形成。由含有矽及過渡金屬之材料形成之薄膜有消光係數k變高之傾向。為了減薄相位偏移膜2之整體膜厚,亦可由含有非金屬元素、矽及過渡金屬之材料形成相位偏移膜2。作為該情形時所含之過渡金屬,例如可例舉鉬(Mo)、鉭(Ta)、鎢(W)、鈦(Ti)、鉻(Cr)、鉿(Hf)、鎳(Ni)、釩(V)、鋯(Zr)、釕(Ru)、銠(Rh)、鋅(Zn)、鈮(Nb)、鈀(Pd)等任一種金屬或該等金屬之合金。另一方面,相位偏移膜2較佳為由包含非金屬元素及矽之材料、或包含半金屬元素、非金屬元素及矽之材料形成。
於相位偏移膜2含有半金屬元素之情形時,若含有選自硼、鍺、銻及碲中之1種以上之半金屬元素,則能夠期待提高用作濺鍍靶之矽之導電性,故而較佳。 於相位偏移膜2含有非金屬元素之情形時,較佳為含有選自氮、氧、碳、氟及氫中之1種以上之非金屬元素。該非金屬元素亦包含氦(He)、氬(Ar)、氪(Kr)及氙(Xe)等惰性氣體。 再者,於相位偏移膜2之整體組成中,氮及氧之合計含量較佳為40原子%以上,更佳為50原子%以上。
相位偏移膜2亦可由含有金屬元素及氧之材料形成。作為該情形時所含有之金屬元素,例如可例舉鋯(Zr)、鉭(Ta)、鎢(W)、鈦(Ti)、鉻(Cr)、鉬(Mo)、鉿(Hf)、鎳(Ni)、釩(V)、釕(Ru)、銠(Rh)、鋅(Zn)、鈮(Nb)、鈀(Pd)等任一種金屬或該等金屬之合金。於該情形時,相位偏移膜2之氧含量較佳為40原子%以上,更佳為50原子%以上。
於本實施方式中,於相位偏移膜2與透過率調整膜4之間,具備含有矽及氧之中間膜3。該中間膜3作為對相位偏移膜2之蝕刻終止膜而發揮功能,僅具有於相位偏移膜2上形成圖案之乾式蝕刻結束前作為蝕刻遮罩發揮功能之膜厚即足夠。又,並無特別限定,該中間膜3較佳為由與基板1相同之材料構成。藉由如此設定,採用乾式蝕刻於相位偏移膜2上形成圖案時,露出之透光性基板1之表面受蝕刻氣體之影響而被蝕刻時,中間膜3亦被蝕刻相同程度之量。因此,形成有相位偏移圖案時,可確保透過透光性基板1之露出部位之曝光用光與透過相位偏移膜2(及中間膜3)之曝光用光的相位差在上述較佳範圍內。如此,本實施方式之光罩基底藉由設置中間膜3,能夠提高相位偏移功能之可靠性,故而較佳。中間膜3之氧含量較佳為50原子%以上,更佳為55原子%以上,進而較佳為60原子%以上。中間膜3之厚度較佳為1 nm以上,更佳為2 nm以上。又,中間膜3之厚度較佳為10 nm以下,更佳為5 nm以下。
光罩基底10於中間膜3上具有透過率調整膜4。關於該透過率調整膜4,將曝光用光之波長下之折射率設為n U,將於曝光用光之波長下之消光係數設為k U,將厚度設為d U[nm]時,同時滿足下述式(1)及式(2)之關係。 式(1) d U≦-17.63×n U 3+142.0×n U 2-364.9×n U+315.8 式(2) d U≧-2.805×k U 3+19.48×k U 2-43.58×k U+38.11 如上所述,只要為滿足式(1)之透過率調整膜4,則能夠滿足透過相位偏移膜2及透過率調整膜4之積層構造的曝光用光相對於透過相位偏移膜2之曝光用光的相位差增加量為20度以下之條件。而且,只要為滿足式(2)之透過率調整膜4,則能夠滿足透過相位偏移膜2及透過率調整膜4之積層構造的曝光用光之透過率相對於透過相位偏移膜2之曝光用光之透過率的比為0.50以下之條件。
另外,透過率調整膜4之折射率n U較佳為1.2以上,更佳為1.5以上。又,透過率調整膜4之折射率n U較佳為3.0以下,更佳為2.5以下。另一方面,透過率調整膜4之消光係數k U較佳為1.5以上,更佳為2.0以上。又,透過率調整膜4之消光係數k U較佳為3.0以下,更佳為2.5以下。 又,透過率調整膜4之消光係數k U及厚度d U[nm]較佳為滿足下述式(3)之關係。 式(3) d U≦8.646×k U 2-38.42×k U+61.89
對該式(3)之導出經過進行說明。本發明人等研究了於具有12%以上之透過率之相位偏移膜2上設置有透過率調整膜4時,透過相位偏移膜2及透過率調整膜4之透過率(以下,有時稱為積層體透過率)成為2%以上之條件。於該研究中,本發明人等著眼於透過率調整膜之最大膜厚與消光係數k之關係,分別對相位偏移膜及透過率調整膜進行了光學模擬A3及B3。於光學模擬A3及B3中,於消光係數k為1.5~2.0之範圍內,改變透過率調整膜之膜厚,同時算出用於滿足積層體透過率為2%以上之條件的透過率調整膜之最大膜厚。再者,關於相位偏移膜,於光學模擬A3中,使用與光學模擬A1及A2相同者,於光學模擬B3中,使用與光學模擬B1及B2相同者。
然後,基於該模擬A3及B3之各結果,梳理了透過率調整膜之消光係數k與最大膜厚之關係。圖12係針對透過率調整膜之最大膜厚與消光係數k之關係,將光學模擬A3與光學模擬B3之結果加以對比所得之圖。圖12所示之曲線A31及A32為光學模擬A3之結果,分別表示用於滿足積層體透過率分別為2%以上、4%以上之條件的透過率調整膜之最大膜厚。曲線B31及B32為光學模擬B2之結果,分別表示用於滿足積層體透過率分別為2%以上、4%以上之條件的透過率調整膜之最大膜厚。
圖12中所示之用於滿足積層體透過率為2%以上之條件的透過率調整膜之最大膜厚之關係式(曲線A31之數式)如下。 d Umax=8.646×k U 2-38.42×k U+61.89 又,如圖12所示,滿足積層體透過率為4%以上之條件之曲線A32位於較曲線A31更靠下側。用於滿足積層體透過率為4%以上之條件的透過率調整膜之最大膜厚之關係式(曲線A32之數式)如下。 d Umax=5.101×k U 2-22.46×k U+38.44
由該等結果,發現透過率調整膜之膜厚d U[nm]及消光係數k U滿足下述式(3)之條件時, 式(3) d U≦8.646×k U 2-38.42×k U+61.89 積層體透過率為2%以上。 又,發現透過率調整膜之膜厚d U[nm]及消光係數k U滿足下述式(3-A32)之條件時, 式(3-A32)    d U≦5.101×k U 2-22.46×k U+38.44 積層體透過率為4%以上。
於圖11中,曲線A31位於較曲線B31(積層體透過率為閾值2%以上之曲線)更靠下方。這表示,滿足基於曲線A31而導出之式(3)之關係的透過率調整膜設置於光學模擬B3中使用之相位偏移膜上時,積層體透過率亦為2%以上。同樣地,曲線A32位於較曲線B32(積層體透過率為閾值4%以上之曲線)更靠下方。這表示,滿足基於曲線A32而導出之式(3-A32)之關係的透過率調整膜設置於光學模擬B3中使用之相位偏移膜上時,積層體透過率亦為4%以上。 該等結果意味著,只要為滿足式(3)之關係的透過率調整膜,則無論設置於其下之相位偏移膜之光學特性如何,積層體透過率均為2%以上。
透過率調整膜4可使用任一種材料,只要可獲得上述光學特性即可。透過率調整膜4較佳為含有矽,更佳為含有矽及非金屬元素。又,基於容易獲得所期望之特性之方面而言,透過率調整膜4較佳為含有矽及氮。透過率調整膜4中,矽與氮之合計含量更佳為97原子%以上,進而較佳為99原子%以上。
光罩基底10設為透過率調整膜4上具備遮光膜5之構成。遮光膜5須使用對在透過率調整膜4上形成圖案時所使用之蝕刻氣體具有充分之蝕刻選擇性的材料。該情形時之遮光膜5較佳為由含鉻材料形成。作為形成遮光膜5之含鉻材料,除鉻金屬以外,還可例舉鉻中含有選自氧、氮、碳、硼及氟中之一種以上之元素之材料。
通常,鉻系材料係被氯系氣體與氧氣之混合氣體蝕刻,但鉻金屬相對於該蝕刻氣體之蝕刻速率不太高。出於提高相對於氯系氣體與氧氣之混合氣體之蝕刻氣體的蝕刻速率之方面之考慮,作為形成遮光膜5之材料,較佳為鉻中含有選自氧、氮、碳、硼及氟中之一種以上之元素之材料。又,形成遮光膜5之含鉻材料亦可含有鉬、銦及錫中之一種以上之元素。藉由含有鉬、銦及錫中之一種以上之元素,能夠進一步提高相對於氯系氣體與氧氣之混合氣體之蝕刻速率。
另一方面,作為遮光膜5,亦可具備自透過率調整膜4側起依序積層有包含含鉻材料之層及包含含矽材料之層的構造。關於該情形時之含鉻材料之具體事項,與上述遮光膜5之情形相同。
關於光罩基底10,較佳為於遮光膜5上進而積層有硬罩膜6之構成,該硬罩膜6係由對於遮光膜5之蝕刻時所用之蝕刻氣體具有蝕刻選擇性之材料形成。硬罩膜6基本上不受光學濃度之限制,因此,硬罩膜6之厚度與遮光膜5之厚度相比能夠大幅減薄。而且,有機系材料之抗蝕膜7僅具有在該硬罩膜6上形成圖案之乾式蝕刻結束前作為蝕刻遮罩發揮功能之膜厚即足夠。因此,抗蝕膜7之厚度能夠較先前大幅減薄。抗蝕膜7之薄膜化對提高抗蝕解像度及防止圖案崩塌有效果,於應對微細化要求之方面極其重要。
於遮光膜5由含鉻材料形成之情形時,該硬罩膜6較佳為由含矽材料形成。再者,該情形時之硬罩膜6存在與有機系材料之抗蝕膜之密接性較低之傾向。因此,較佳為對硬罩膜6之表面實施HMDS(Hexamethyldisilazane,六甲基二矽氮烷)處理,以提高表面之密接性。再者,該情形時之硬罩膜6更佳為由SiO 2、SiN、SiON等形成。
又,於遮光膜5由含鉻材料形成之情形時,作為硬罩膜6之材料,除上述材料以外,亦可使用含鉭材料。作為該情形時之含鉭材料,除鉭金屬以外,可例舉鉭中含有選自氮、氧、硼及碳中之一種以上之元素之材料等。例如,可例舉Ta、TaN、TaO、TaON、TaBN、TaBO、TaBON、TaCN、TaCO、TaCON、TaBCN、TaBOCN等。又,於遮光膜5由含矽材料形成之情形時,硬罩膜6較佳為由上述含鉻材料形成。
於光罩基底10中,較佳為與硬罩膜6之表面相接地,以100 nm以下之膜厚形成有機系材料之抗蝕膜7。於與DRAM(Dynamic Random Access Memory,動態隨機存取記憶體)hp(Half Pitch,半間距)32 nm世代對應之微細圖案之情形時,有時在應形成於硬罩膜6上之轉印圖案(相位偏移圖案)上設置線寬40 nm之SRAF(Sub-Resolution Assist Feature,次級解析輔助圖案)。但,於該情形時,抗蝕圖案之截面縱橫比亦能夠減小為1:2.5,因此,能夠抑制於抗蝕膜7之顯影時、沖洗時等,抗蝕圖案坍塌或脫離。再者,抗蝕膜7之膜厚更佳為80 nm以下。再者,於由含矽材料形成硬罩膜6之情形時,形成抗蝕膜前,較佳為使用HMDS(Hexamethyldisilazane,六甲基二矽氮烷)等對硬罩膜6之表面進行矽烷化處理。
相位偏移膜2、中間膜3、透過率調整膜4、遮光膜5、硬罩膜6係藉由濺鍍而形成,但亦可使用DC(direct current,直流)濺鍍、RF(radio frequency,射頻)濺鍍及離子束濺鍍等任一種濺鍍。於使用導電性較低之靶之情形時,較佳為使用RF濺鍍或離子束濺鍍。出於成膜速率之考慮,更佳為使用RF濺鍍。又,抗蝕膜7係藉由旋轉塗佈法而形成。
如此,參照圖1對本實施方式之光罩基底10之構成進行了說明,但並不限定於該構成,例如亦可為不具有中間膜3、硬罩膜6、抗蝕膜7之構成之光罩基底。又,亦可為於基板1與相位偏移膜2之間設置有蝕刻終止膜之構成之光罩基底。作為該情形時之蝕刻終止膜之材料,例如可例舉含有鋁、矽及氧之材料、含有鋁、鉿及氧之材料、含有鉿及氧之材料、含鉻材料等。關於該等方面,下述第2實施方式之光罩基底亦同樣如此。
[相位偏移光罩及其製造] 於該第1實施方式之相位偏移光罩100(參照圖2)中,於透光性基板1上,具備具有第1圖案之相位偏移膜(相位偏移圖案)2a,於該相位偏移圖案2a上,具備具有第2圖案之透過率調整膜(透過率調整圖案)4b。又,於該相位偏移圖案2a與該透過率調整圖案4b之間,具備具有第2圖案之中間膜(中間圖案)3b。繼而,於該透過率調整膜4b上,具備具有第3圖案之遮光膜(遮光圖案)5c。
即,該第1實施方式之相位偏移光罩100之特徵在於:於透光性基板1上,具備相位偏移圖案2a,於該相位偏移圖案2a上,具備中間圖案3b、透過率調整圖案4b、遮光圖案5c,該相位偏移圖案2a使透過該相位偏移圖案2a之ArF準分子雷射曝光用光、與於空氣中通過和該相位偏移圖案2a之厚度相同程度之距離的曝光用光之間,產生150度以上210度以下之相位差,關於該透過率調整圖案4b,將於曝光用光之波長下之折射率設為n U,將於曝光用光之波長下之消光係數設為k U,將厚度設為d U[nm]時,同時滿足下述式(1)及式(2)之關係。 式(1) d U≦-17.63×n U 3+142.0×n U 2-364.9×n U+315.8 式(2) d U≧-2.805×k U 3+19.48×k U 2-43.58×k U+38.11 而且,該相位偏移光罩100中之透光性基板1、相位偏移圖案2a、中間圖案3b、透過率調整圖案4b及遮光圖案5c之具體構成與光罩基底10之情形相同。
以下,按照作為主要部分剖視模式圖之圖3及圖4所示之製造步驟,對該第1實施方式之相位偏移光罩100之製造方法進行說明。 對於圖1所示之光罩基底10中藉由旋轉塗佈法而形成之抗蝕膜7,利用電子束描繪應形成於相位偏移膜2上之第1圖案,進而進行顯影處理等特定處理,藉此形成具有第1圖案之抗蝕膜(抗蝕圖案)7a(參照圖3(a))。該第1圖案包含形成於相位偏移膜2而用以發揮相位偏移效果之相位偏移圖案、及對準標記用圖案(圖2左側之開口部)。 繼而,以第1抗蝕圖案7a為遮罩,使用氟系氣體對硬罩膜6進行乾式蝕刻,形成具有第1圖案之硬罩膜(硬罩圖案)6a(參照圖3(b))。
然後,以第1抗蝕圖案7a及硬罩圖案6a為遮罩,使用氯系氣體與氧系氣體之混合氣體對遮光膜5進行乾式蝕刻,形成具有第1圖案之遮光膜(遮光圖案)5a(參照圖3(c))。繼而,將第1抗蝕圖案7a去除後進行洗淨處理,以遮光圖案5a及硬罩圖案6a為遮罩,使用氟系氣體對透過率調整膜4、中間膜3及相位偏移膜2進行乾式蝕刻,形成具有第1圖案之透過率調整膜(透過率調整圖案)4a、具有第1圖案之中間膜(中間圖案)3a、部分地具有第1圖案之相位偏移膜(相位偏移圖案)2a'(參照圖3(d))。藉由該乾式蝕刻,將硬罩圖案6a去除。再者,於針對該相位偏移膜2之乾式蝕刻中,較佳為以如下方式調整相位偏移膜2a'殘留之部分之厚度:於藉由乾式蝕刻在下述透過率調整膜4上形成透過率調整圖案4b之步驟中,於透過率調整圖案4b之形成結束時,殘留有相位偏移膜2a'之部分亦幾乎同時被去除。
繼而,藉由旋轉塗佈法形成抗蝕膜。然後,利用電子束對抗蝕膜描繪應形成於透過率調整膜4上之圖案,進而進行顯影處理等特定處理,藉此形成具有第2圖案之抗蝕膜(抗蝕圖案)8b(參照圖4(a))。然後,以抗蝕圖案8b為遮罩,使用氯系氣體與氧氣之混合氣體,對遮光膜5a進行乾式蝕刻,形成具有第2圖案之遮光膜(遮光圖案5b)(參照圖4(a))。
繼而,將抗蝕圖案8b去除後進行洗淨處理,以遮光圖案5b為遮罩,使用氟系氣體,對透過率調整膜4進行乾式蝕刻,形成具有第2圖案之透過率調整膜(透過率調整圖案)4b(參照圖4(b))。此時,部分地具有第1圖案之相位偏移膜(相位偏移圖案)2a'所露出之殘留部分亦被去除,形成具有第1圖案之相位偏移膜(相位偏移圖案)2a'(參照圖4(b))。
繼而,以遮光圖案5b及透過率調整圖案4b為遮罩,使用氟系氣體,對中間圖案3a進行乾式蝕刻(過蝕刻),形成具有第2圖案之中間膜(中間圖案)3b(參照圖4(c))。此時,透光性基板1之露出部分有時由於氟系氣體而被挖入,但如上所述中間膜3由與透光性基板1相同之材料形成,因此,於透光性基板1之露出部分與相位偏移圖案2a之露出部分之間,能夠確保所期望之相位差。
繼而,藉由旋轉塗佈法形成抗蝕膜。然後,利用電子束對抗蝕膜描繪應形成於遮光膜5上之圖案,進而進行顯影處理等特定處理,藉此形成具有第3圖案之抗蝕膜(抗蝕圖案)9c(參照圖4(d))。然後,以抗蝕圖案9c為遮罩,使用氯系氣體與氧氣之混合氣體,對遮光圖案5b進行乾式蝕刻,形成具有第3圖案之遮光膜(遮光圖案)5c(參照圖4(d))。 然後,將抗蝕圖案9c去除後進行洗淨步驟。以此方式,能夠製造圖2所示之相位偏移光罩100。
[半導體裝置之製造] 第1實施方式之半導體裝置之製造方法之特徵在於:使用第1實施方式之相位偏移光罩100或利用第1實施方式之光罩基底10而製造之相位偏移光罩100,將轉印圖案曝光轉印至半導體基板上之抗蝕膜上。因此,若使用第1實施方式之相位偏移光罩100來曝光轉印至半導體裝置上之抗蝕膜上,則能夠以充分滿足設計規格之精度於半導體裝置上之抗蝕膜上形成圖案。
<第2實施方式> [光罩基底及其製造] 圖5係表示本發明第2實施方式之光罩基底20之構成的剖視圖。圖5所示之光罩基底20於如下方面與圖1所示之光罩基底10不同:以積層有第1層12、第2層13、第3層14之3層構造構成相位偏移膜15;及於該相位偏移膜15上具備透過率調整膜16。以下,對於與第1實施方式之光罩基底10共通之方面,適當省略其說明。
本實施方式中之相位偏移膜15構成為第1層12、第2層13、第3層14於ArF曝光用光之波長下之各折射率n 1、n 2、n 3滿足n 1>n 2>n 3之關係,且第1層12、第2層13及第3層14之各消光係數k 1、k 2、k 3滿足k 1>k 2>k 3之關係。此外,構成為第1層12、第2層13、第3層14之各膜厚d 1、d 2、d 3滿足d 1>d 2>d 3之關係。 相位偏移膜15由滿足此種關係之第1層12、第2層13、第3層14構成,藉此,能夠製成具有高於第1實施方式中之相位偏移膜2之透過率之相位偏移膜。再者,該相位偏移膜15之構成包含光學模擬B1、B2、B3之模擬時所設定之相位偏移膜之條件。
構成相位偏移膜15之材料可使用與第1實施方式之相位偏移膜2相同者。又,於相位偏移膜15之整體組成中,氮及氧之合計含量較佳為40原子%以上,更佳為50原子%以上。 第1層12較佳為由含有矽及氮之材料形成,第2層13較佳為由含有矽、氧、及氮之材料形成,作為最上層之第3層14較佳為由含有矽及氧之材料形成。
又,透過率調整膜16積層於相位偏移膜15上,該方面與第1實施方式中之透過率調整膜4不同。其他應滿足之條件與第1實施方式中之透過率調整膜4相同。
如上所述,本實施方式中之光罩基底20於相位偏移膜15上具有透過率調整膜16。關於該透過率調整膜16,將曝光用光之波長下之折射率設為n U,將於曝光用光之波長下之消光係數設為k U,將厚度設為d U[nm]時,同時滿足下述式(1)及式(2)之關係。 式(1) d U≦-17.63×n U 3+142.0×n U 2-364.9×n U+315.8 式(2) d U≧-2.805×k U 3+19.48×k U 2-43.58×k U+38.11 如上所述,只要為滿足式(1)之透過率調整膜16,則能夠滿足透過相位偏移膜15及透過率調整膜16之積層構造的曝光用光相對於透過相位偏移膜15之曝光用光的相位差增加量為20度以下之條件。繼而,只要為滿足式(2)之透過率調整膜16,則能夠滿足透過相位偏移膜15及透過率調整膜16之積層構造的曝光用光之透過率相對於透過相位偏移膜15之曝光用光之透過率的比為0.50以下之條件。
[相位偏移光罩及其製造] 於該第2實施方式之相位偏移光罩200(參照圖6)中,於透光性基板1上,具備具有第1圖案之相位偏移膜(相位偏移圖案)15a,於該相位偏移圖案15a上,具備具有第2圖案之透過率調整膜(透過率調整圖案)16b。又,該相位偏移圖案15a於與透光性基板1側相反之表面側,具備具有第1圖案之第3層14a,該第3層14a含有矽及氧,作為最上層。而且,於該透過率調整圖案16b之上,具備具有第3圖案之遮光膜(遮光圖案)5c。
即,該第2實施方式之相位偏移光罩200之特徵在於:於透光性基板1上具備相位偏移圖案15a,於該相位偏移圖案15a上,具備透過率調整圖案16b、遮光圖案5c,該相位偏移圖案15a使透過該相位偏移圖案15a之ArF準分子雷射曝光用光、與於空氣中通過和該相位偏移圖案15a之厚度相同程度之距離的曝光用光之間,產生150度以上210度以下之相位差,關於該透過率調整圖案16b,將於曝光用光之波長下之折射率設為n U,將於曝光用光之波長下之消光係數設為k U,將厚度設為d U[nm]時,同時滿足下述式(1)及式(2)之關係。 式(1) d U≦-17.63×n U 3+142.0×n U 2-364.9×n U+315.8 式(2) d U≧-2.805×k U 3+19.48×k U 2-43.58×k U+38.11 而且,該相位偏移光罩200中之透光性基板1、相位偏移圖案15a、透過率調整圖案16b及遮光圖案5c之具體構成與光罩基底20之情形相同。
以下,按照作為主要部分剖視模式圖之圖7及圖8所示之製造步驟,對該第2實施方式之相位偏移光罩200之製造方法進行說明。 對於圖5所示之光罩基底20中藉由旋轉塗佈法而形成之抗蝕膜7,利用電子束描繪應形成於相位偏移膜15上之第1圖案,進而進行顯影處理等特定處理,藉此形成具有第1圖案之抗蝕膜(抗蝕圖案)7a(參照圖7(a))。該第1圖案包含形成於相位偏移膜15而用以發揮相位偏移效果之相位偏移圖案、及對準標記用圖案(圖6左側之開口部)。 繼而,以第1抗蝕圖案7a為遮罩,使用氟系氣體對硬罩膜6進行乾式蝕刻,形成具有第1圖案之硬罩膜(硬罩圖案)6a(參照圖7(b))。
然後,以第1抗蝕圖案7a及硬罩圖案6a為遮罩,使用氯系氣體與氧系氣體之混合氣體對遮光膜5進行乾式蝕刻,形成具有第1圖案之遮光膜(遮光圖案)5a(參照圖7(c))。繼而,將第1抗蝕圖案7a去除後進行洗淨處理,以遮光圖案5a及硬罩圖案6a為遮罩,使用氟系氣體對透過率調整膜16及相位偏移膜15進行乾式蝕刻,形成具有第1圖案之透過率調整膜(透過率調整圖案)16a、部分地具有第1圖案之相位偏移膜(相位偏移圖案)15a'(參照圖7(d))。該相位偏移圖案15a'由部分地具有第1圖案之第1層12a'、具有第1圖案之第2層13a、具有第1圖案之第3層14a構成。藉由該乾式蝕刻,將硬罩圖案6a去除。再者,於針對該相位偏移膜15進行之乾式蝕刻中,較佳為以如下方式調整相位偏移膜15a'(第1層12a')殘留之部分之厚度:於藉由乾式蝕刻在下述透過率調整膜16上形成透過率調整圖案16b之步驟中,在透過率調整圖案16b之形成結束時,殘留有相位偏移膜15a'(第1層12a')之部分亦幾乎同時被去除。
繼而,藉由旋轉塗佈法形成抗蝕膜。然後,利用電子束對抗蝕膜描繪應形成於透過率調整膜16上之圖案,進而進行顯影處理等特定處理,藉此形成具有第2圖案之抗蝕膜(抗蝕圖案)8b(參照圖8(a))。然後,以抗蝕圖案8b為遮罩,使用氯系氣體與氧氣之混合氣體,對遮光膜5a進行乾式蝕刻,形成具有第2圖案之遮光膜(遮光圖案5b)(參照圖8(a))。
繼而,將抗蝕圖案8b去除後進行洗淨處理,以遮光圖案5b為遮罩,使用氟系氣體,對透過率調整膜16進行乾式蝕刻,形成具有第2圖案之透過率調整膜(透過率調整圖案)16b(參照圖8(b))。此時,部分地具有第1圖案之相位偏移膜(相位偏移圖案)15a'所露出之殘留部分亦被去除,形成具有第1圖案之相位偏移膜(相位偏移圖案)15a(參照圖8(b))。
繼而,藉由旋轉塗佈法形成抗蝕膜。然後,利用電子束對抗蝕膜描繪應形成於遮光膜5上之圖案,進而進行顯影處理等特定處理,藉此形成具有第3圖案之抗蝕膜(抗蝕圖案)9c(參照圖8(c))。然後,以抗蝕圖案9c為遮罩,使用氯系氣體與氧氣之混合氣體,對遮光圖案5b進行乾式蝕刻,形成具有第3圖案之遮光膜(遮光圖案)5c(參照圖8(c))。 然後,將抗蝕圖案9c去除後進行洗淨步驟。以此方式,能夠製造圖6所示之相位偏移光罩200。
[半導體裝置之製造] 第2實施方式之半導體裝置之製造方法之特徵在於:使用第2實施方式之相位偏移光罩200或利用第1實施方式之光罩基底20而製造之相位偏移光罩200,將轉印圖案曝光轉印至半導體基板上之抗蝕膜上。因此,若使用第2實施方式之相位偏移光罩200來曝光轉印至半導體裝置上之抗蝕膜上,則能夠以充分滿足設計規格之精度於半導體裝置上之抗蝕膜上形成圖案。
<第3實施方式> [光罩基底及其製造] 圖13係表示本發明第3實施方式之光罩基底30之構成的剖視圖。圖13所示之光罩基底30於以下方面與圖1所示之光罩基底10不同:於相位偏移膜2上直接設置透過率調整膜41;及於透過率調整膜41與遮光膜5之間配置有蝕刻終止膜31。以下,對於與第1實施方式之光罩基底10共通之方面,適當省略其說明。
本實施方式中之透過率調整膜41由含鉻材料形成。該透過率調整膜41與相位偏移膜2之間具有充分之蝕刻選擇性,因此未設置相當於第1實施方式中之中間膜3之膜。透過率調整膜41較佳為由鉻中含有選自氧、氮、碳、硼及氟中之一種以上之元素之材料形成。又,透過率調整膜41可使用遮光膜5所使用之鉻系材料。以同時滿足上述式(1)及式(2)之關係之方式設計該透過率調整膜41於曝光用光之波長下之折射率n U、於曝光用光之波長下之消光係數k U、厚度d U[nm]。
於遮光膜5由上述含鉻材料形成之情形時,本實施方式中之蝕刻終止膜31於藉由乾式蝕刻對遮光膜5進行圖案化時發揮蝕刻終止功能。蝕刻終止膜31可使用含矽材料。蝕刻終止膜31較佳為由含有矽及氧之材料形成。另一方面,蝕刻終止膜31亦可由含有鉭及氧之材料形成。蝕刻終止膜31之厚度較佳為1 nm以上,更佳為2 nm以上。又,蝕刻終止膜31之厚度較佳為10 nm以下,更佳為5 nm以下。再者,於本實施方式中,由含矽材料或含鉭材料形成遮光膜5之情形時,亦可不設置蝕刻終止膜31。
如上所述,本實施方式中之光罩基底30於相位偏移膜2上具有透過率調整膜41。關於該透過率調整膜41,將於曝光用光之波長下之折射率設為n U,將於曝光用光之波長下之消光係數設為k U,將厚度設為d U[nm]時,同時滿足下述式(1)及式(2)之關係。 式(1) d U≦-17.63×n U 3+142.0×n U 2-364.9×n U+315.8 式(2) d U≧-2.805×k U 3+19.48×k U 2-43.58×k U+38.11 如上所述,只要為滿足式(1)之透過率調整膜41,則能夠滿足透過相位偏移膜2及透過率調整膜41之積層構造的曝光用光相對於透過相位偏移膜2之曝光用光的相位差增加量為20度以下之條件。繼而,只要為滿足式(2)之透過率調整膜41,則能夠滿足透過相位偏移膜2及透過率調整膜41之積層構造的曝光用光之透過率相對於透過相位偏移膜2之曝光用光之透過率的比為0.50以下之條件。
[相位偏移光罩及其製造] 於該第3實施方式之相位偏移光罩300(參照圖14)中,於透光性基板1上,具備具有第1圖案之相位偏移膜(相位偏移圖案)2a,於該相位偏移圖案2a上,具備具有第2圖案之透過率調整膜(透過率調整圖案)41b。又,於該透過率調整圖案41b上,具備具有第2圖案之蝕刻終止膜(蝕刻終止圖案)31b。繼而,於該蝕刻終止膜31b上,具備具有第3圖案之遮光膜(遮光圖案)5c。
即,該第3實施方式之相位偏移光罩300之特徵在於:於透光性基板1上,具備相位偏移圖案2a,於該相位偏移圖案2a上,具備透過率調整圖案41b、蝕刻終止圖案31b、遮光圖案5c,該相位偏移圖案2a使透過該相位偏移圖案2a之ArF準分子雷射曝光用光、與於空氣中通過和該相位偏移圖案2a之厚度相同程度之距離的曝光用光之間,產生150度以上210度以下之相位差,關於該透過率調整圖案41b,將於曝光用光之波長下之折射率設為n U,將於曝光用光之波長下之消光係數設為k U,將厚度設為d U[nm]時,同時滿足下述式(1)及式(2)之關係。 式(1) d U≦-17.63×n U 3+142.0×n U 2-364.9×n U+315.8 式(2) d U≧-2.805×k U 3+19.48×k U 2-43.58×k U+38.11 而且,該相位偏移光罩300中之透光性基板1、相位偏移圖案2a、透過率調整圖案41b、蝕刻終止圖案31b及遮光圖案5c之具體構成與光罩基底30之情形相同。
以下,按照作為主要部分剖視模式圖之圖15及圖16所示之製造步驟,對該第3實施方式之相位偏移光罩300之製造方法進行說明。 對於圖13所示之光罩基底30中藉由旋轉塗佈法而形成之抗蝕膜7,利用電子束描繪應形成於相位偏移膜2上之第1圖案,進而進行顯影處理等特定處理,藉此形成具有第1圖案之抗蝕膜(抗蝕圖案)7a(參照圖15(a))。該第1圖案包含形成於相位偏移膜2而用以發揮相位偏移效果之相位偏移圖案。 繼而,以第1抗蝕圖案7a為遮罩,使用氯系氣體與氧氣之混合氣體,對遮光膜5進行乾式蝕刻,形成具有第1圖案之遮光膜(遮光圖案)5a(參照圖15(b))。
然後,以第1抗蝕圖案7a及遮光圖案5a為遮罩,使用氟系氣體,對蝕刻終止膜31進行乾式蝕刻,形成具有第1圖案之蝕刻終止膜(蝕刻終止圖案)31a(參照圖15(c))。然後,將第1抗蝕圖案7a去除後進行洗淨處理。繼而,藉由旋轉塗佈法形成抗蝕膜。然後,利用電子束對抗蝕膜描繪應形成於蝕刻終止膜31及透過率調整膜41上之圖案,進而進行顯影處理等特定處理,藉此形成具有第2圖案之抗蝕膜(抗蝕圖案)8b(參照圖15(d))。
然後,以抗蝕圖案8b為遮罩,使用氯系氣體與氧氣之混合氣體,對遮光膜5a進行乾式蝕刻,形成具有第2圖案之遮光膜(遮光圖案5b)(參照圖16(a))。此時,亦對透過率調整膜41進行以蝕刻終止圖案31a為遮罩之乾式蝕刻,形成具有第1圖案之透過率調整膜(透過率調整圖案)41a。然後,將第2抗蝕圖案8b去除後進行洗淨處理。繼而,以透過率調整圖案41a為遮罩,使用氟系氣體,對相位偏移膜2進行乾式蝕刻,形成具有第1圖案之相位偏移膜(相位偏移圖案)2a(參照圖16(b))。此時,亦對蝕刻終止圖案31a進行以遮光圖案5b為遮罩之乾式蝕刻,形成具有第2圖案之蝕刻終止膜(蝕刻終止圖案)31b。
然後,將第2抗蝕圖案8b去除後進行洗淨處理。繼而,藉由旋轉塗佈法形成抗蝕膜。然後,利用電子束對抗蝕膜描繪應形成於遮光膜5上之圖案,進而進行顯影處理等特定處理,藉此形成具有第3圖案之抗蝕膜(抗蝕圖案)9c(參照圖16(c))。然後,以抗蝕圖案9c為遮罩,使用氯系氣體與氧氣之混合氣體,對遮光膜5b進行乾式蝕刻,形成具有第3圖案之遮光膜(遮光圖案5c)(參照圖16(d))。此時,亦對透過率調整圖案41a進行以蝕刻終止圖案31b為遮罩之乾式蝕刻,形成具有第2圖案之透過率調整膜(透過率調整圖案)41b。然後,將抗蝕圖案9c去除後進行洗淨步驟。以此方式,能夠製造圖14所示之相位偏移光罩300。
[半導體裝置之製造] 第3實施方式之半導體裝置之製造方法之特徵在於:使用第3實施方式之相位偏移光罩300或利用第3實施方式之光罩基底30而製造之相位偏移光罩300,將轉印圖案曝光轉印至半導體基板上之抗蝕膜上。因此,若使用第3實施方式之相位偏移光罩300來曝光轉印至半導體裝置上之抗蝕膜上,則能夠以充分滿足設計規格之精度於半導體裝置上之抗蝕膜上形成圖案。 [實施例]
以下,藉由實施例更具體地說明本發明之實施方式。 (實施例1) [光罩基底之製造] 準備主表面尺寸為約152 mm×約152 mm且厚度為約6.35 mm之包含合成石英玻璃之透光性基板1。該透光性基板1係端面及主表面被研磨成特定之表面粗糙度後,實施特定之洗淨處理及乾燥處理而成者。測定該透光性基板1之光學特性,結果,ArF曝光用光之波長下之折射率n為1.556,消光係數k為0.00。
然後,於成膜濺鍍裝置內設置透光性基板1,使用矽(Si)靶,藉由以氬(Ar)氣及氮(N 2)氣之混合氣體為濺鍍氣體之反應性濺鍍,與透光性基板1之表面相接地,以60.4 nm之厚度形成包含矽及氮之相位偏移膜2(SiN膜,Si:N=34.8原子%:65.2原子%)。繼而,使用矽(Si)靶,藉由以氬(Ar)及氧(O 2)之混合氣體為濺鍍氣體之反應性濺鍍,於相位偏移膜2上,以3.0 nm之厚度形成包含矽及氧之中間膜3(SiO 2膜)。繼而,藉由以氬(Ar)及氮(N 2)之混合氣體為濺鍍氣體之反應性濺鍍,以12.0 nm之厚度形成包含矽及氮之透過率調整膜4。
使用相位偏移量測定裝置(Lasertec公司製造,MPM193),於另一透光性基板上同樣地形成相位偏移膜,測定對波長193 nm之光之透過率及相位差,結果,透過率為18.6%,相位差為180.0度(deg)。又,於另一透光性基板上同樣地形成相位偏移膜及透過率調整膜,測定對波長193 nm之光之透過率及相位差,結果,透過率為6.1%,相位差為180.0度(deg)。再者,中間膜3薄至膜厚3 nm,與透光性基板同樣地具有較高之透過率,因此,可忽略中間膜3之有無對透過率及相位差造成之影響。
進而,測定該相位偏移膜2、中間膜3、透過率調整膜4之光學特性,結果,相位偏移膜2係折射率n為2.61,消光係數k為0.36,中間膜3係折射率n為1.56,消光係數k為0.00,透過率調整膜4係折射率n U為1.52,消光係數k U為2.09。 該等透過率調整膜4之膜厚d U[nm]、折射率n U及消光係數k U之值滿足式(1)、式(2)、式(3)之任一者之關係。
然後,於成膜濺鍍裝置內設置形成有相位偏移膜2、中間膜3、透過率調整膜4之透光性基板1,使用鉻(Cr)靶,藉由以氬(Ar)、二氧化碳(CO 2)及氦(He)之混合氣體為濺鍍氣體之反應性濺鍍,以44 nm之厚度於透過率調整膜4上形成包含CrOC之遮光膜5。測定該相位偏移膜2、中間膜3、透過率調整膜4及遮光膜5之積層構造相對於波長193 nm之光之光學濃度(OD),結果為3.0以上。
繼而,相對於形成有該遮光膜5之透光性基板1,使用矽(Si)靶,以氬(Ar)、氧(O 2)及氮(N 2)之混合氣體為濺鍍氣體,藉由反應性濺鍍,於遮光膜5上,以12 nm之厚度形成包含矽、氮及氧之硬罩膜6。繼而,對硬罩膜6之表面實施HMDS處理。繼而,藉由旋轉塗佈法,與硬罩膜6之表面相接地,以膜厚80 nm形成包含電子束描繪用化學增幅型抗蝕劑之抗蝕膜7。 按照以上順序,製造具備於透光性基板1上積層有相位偏移膜2、中間膜3、透過率調整膜4、遮光膜5、硬罩膜6及抗蝕膜7之構造之光罩基底10。
[相位偏移光罩之製造] 然後,使用該實施例1之光罩基底10,按照實施方式1所述之相位偏移光罩之製造方法之順序,製作實施例1之相位偏移光罩100。
將所製作之實施例1之半色調式相位偏移光罩100設置於以ArF準分子雷射為曝光用光之曝光裝置之光罩台,自相位偏移光罩100之透光性基板1側照射ArF曝光用光,將圖案曝光轉印至半導體裝置上之抗蝕膜上。該轉印圖案包含相對微細之圖案、及相對稀疏之圖案。 對曝光轉印後之抗蝕膜進行特定處理,形成抗蝕圖案,藉由SEM(Scanning Electron Microscope,掃描式電子顯微鏡)觀察該抗蝕圖案。結果,判明任一圖案中均形成所期望之轉印圖案。根據該結果,可謂能夠以該抗蝕圖案為遮罩而於半導體裝置上高精度地形成電路圖案。
(實施例2) [光罩基底之製造] 關於該實施例2之光罩基底20,相位偏移膜15由積層有第1層12、第2層13、第3層14之3層構造構成,且於該相位偏移膜15上具備透過率調整膜16,除該構成以外,以與實施例1之光罩基底10相同之方式加以製造。具體而言,於該實施例2之光罩基底20中,相位偏移膜15之第1層12a係使用包含矽及氮且波長193 nm之光之折射率n為2.61、消光係數k為0.36之材料,以41 nm之膜厚形成,第2層13a係使用包含矽、氧及氮且波長193 nm之光之折射率n為2.18、消光係數k為0.12之材料,以24 nm之膜厚形成,第3層14a係使用包含矽及氧且波長193 nm之光之折射率n為1.56、消光係數k為0.00之材料,以4 nm之膜厚形成。繼而,透過率調整膜16係使用包含矽及氮且波長193 nm之光之折射率n U為1.52、消光係數k U為2.09之材料,以11.7 nm之膜厚d U成膜。因此,遮光膜5、硬罩膜6、抗蝕膜7之材料或製造方法與實施例1相同。 該等透過率調整膜16之膜厚d U[nm]、折射率n U及消光係數k U之值亦滿足式(1)、式(2)、式(3)之任一者之關係。
使用相位偏移量測定裝置(Lasertec公司製造,MPM193),於另一透光性基板上同樣地形成相位偏移膜,測定對波長193 nm之光之透過率及相位差,結果,透過率為28.0%,相位差為180.0度(deg)。又,於另一透光性基板上同樣地形成相位偏移膜及透過率調整膜,測定對波長193 nm之光之透過率及相位差,結果,透過率為6.0%,相位差為178.0度(deg)。
[相位偏移光罩之製造] 然後,使用該實施例2之光罩基底20,按照實施方式2所述之相位偏移光罩之製造方法之順序,製作實施例2之相位偏移光罩200。
將所製作之實施例2之半色調式相位偏移光罩200設置於以ArF準分子雷射為曝光用光之曝光裝置之光罩台,自相位偏移光罩200之透光性基板1側照射ArF曝光用光,將圖案曝光轉印至半導體裝置上之抗蝕膜上。該轉印圖案包含相對微細之圖案、及相對稀疏之圖案。 對曝光轉印後之抗蝕膜進行特定處理,形成抗蝕圖案,藉由SEM(Scanning Electron Microscope)觀察該抗蝕圖案。結果,判明任一圖案中均形成所期望之轉印圖案。根據該結果,可謂能夠以該抗蝕圖案為遮罩而於半導體裝置上高精度地形成電路圖案。
(實施例3) [光罩基底之製造] 準備主表面尺寸為約152 mm×約152 mm且厚度為約6.35 mm之包含合成石英玻璃之透光性基板1。該透光性基板1係端面及主表面被研磨成特定之表面粗糙度,然後,實施特定之洗淨處理及乾燥處理者。測定該透光性基板1之光學特性,結果,ArF曝光用光之波長下之折射率n為1.556,消光係數k為0.00。
然後,於成膜濺鍍裝置內設置透光性基板1,使用矽(Si)靶,藉由以氬(Ar)氣體及氮(N 2)之混合氣體為濺鍍氣體之反應性濺鍍,與透光性基板1之表面相接地,以60 nm之厚度形成包含矽及氮之相位偏移膜2(SiN膜,Si:N=34.8原子%:65.2原子%)。繼而,使用鉻(Cr)靶,藉由以氬(Ar)、二氧化碳(CO 2)及氦(He)之混合氣體為濺鍍氣體之反應性濺鍍,以11 nm之厚度於相位偏移膜2上形成包含CrOC之透過率調整膜41。繼而,使用矽(Si)靶,藉由以氬(Ar)及氧(O 2)之混合氣體為濺鍍氣體之反應性濺鍍,以3.0 nm之厚度於透過率調整膜41上形成包含矽及氧之蝕刻終止膜31(SiO 2膜)。
使用相位偏移量測定裝置(Lasertec公司製造,MPM193),於另一透光性基板上同樣地形成相位偏移膜,測定對波長193 nm之光之透過率及相位差,結果,透過率為18.6%,相位差為180.0度(deg)。又,於另一透光性基板上同樣地形成相位偏移膜及透過率調整膜,測定對波長193 nm之光之透過率及相位差,結果,透過率為6.0%,相位差為191.0度(deg)。再者,蝕刻終止膜31薄至膜厚3 nm,與透光性基板同樣地具有較高之透過率,因此,可忽略蝕刻終止膜31之有無對透過率及相位差造成之影響。
進而,測定該相位偏移膜2、透過率調整膜41、蝕刻終止膜31之光學特性,結果,相位偏移膜2係折射率n為2.61,消光係數k為0.36,透過率調整膜41係折射率n U為1.82,消光係數k U為1.83,蝕刻終止膜31係折射率n為1.56,消光係數k為0.00。 該透過率調整膜41之膜厚d U[nm]、折射率n U及消光係數k U之值滿足式(1)、式(2)、式(3)之任一者之關係。
然後,於蝕刻終止膜31上,以78 nm之厚度形成3層構造之遮光膜5。具體而言,於成膜濺鍍裝置內設置形成有相位偏移膜2、透過率調整膜41、蝕刻終止膜31之透光性基板1,使用鉻(Cr)靶,藉由以氬(Ar)、氮(N 2)、二氧化碳(CO 2)及氦(He)之混合氣體為濺鍍氣體之反應性濺鍍,以31 nm之厚度形成包含CrOCN之第1層。繼而,使用鉻(Cr)靶,藉由以氬(Ar)、氮(N 2)、二氧化碳(CO 2)及氦(He)之混合氣體為濺鍍氣體之反應性濺鍍,以41 nm之厚度形成包含CrOCN之第2層。進而,使用鉻(Cr)靶,藉由以氬(Ar)、氮(N 2)及氦(He)之混合氣體為濺鍍氣體之反應性濺鍍,以6 nm之厚度形成包含CrN之第3層。
測定該相位偏移膜2、透過率調整膜41、蝕刻終止膜31及遮光膜5之積層構造相對於波長193 nm之光之光學濃度(OD),結果為3.2以上。繼而,藉由旋轉塗佈法,與遮光膜5之表面相接地,以膜厚80 nm形成包含電子束描繪用化學增幅型抗蝕劑之抗蝕膜7。 按照以上順序,製造具備於透光性基板1上積層有相位偏移膜2、透過率調整膜41、蝕刻終止膜31、遮光膜5及抗蝕膜7之構造之光罩基底30。
[相位偏移光罩之製造] 然後,使用該實施例3之光罩基底30,按照實施方式3所述之相位偏移光罩之製造方法之順序,製作實施例3之相位偏移光罩300。
將所製作之實施例3之半色調式相位偏移光罩300設置於以ArF準分子雷射為曝光用光之曝光裝置之光罩台,自相位偏移光罩300之透光性基板1側照射ArF曝光用光,將圖案曝光轉印至半導體裝置上之抗蝕膜上。該轉印圖案包含相對微細之圖案、及相對稀疏之圖案。 對曝光轉印後之抗蝕膜進行特定處理,形成抗蝕圖案,藉由SEM(Scanning Electron Microscope)觀察該抗蝕圖案。結果,判明任一圖案中均形成所期望之轉印圖案。根據該結果,可謂能夠以該抗蝕圖案為遮罩而於半導體裝置上高精度地形成電路圖案。
1:透光性基板 2:相位偏移膜 2a:具有第1圖案之相位偏移膜(相位偏移圖案) 2a':部分地具有第1圖案之相位偏移膜(相位偏移圖案) 3:中間膜 3a:具有第1圖案之中間膜(中間圖案) 3b:具有第2圖案之中間膜(中間圖案) 4:透過率調整膜 4a:具有第1圖案之透過率調整膜(透過率調整圖案) 4b:具有第2圖案之透過率調整膜(透過率調整圖案) 5:遮光膜 5a:具有第1圖案之遮光膜(遮光圖案) 5b:具有第2圖案之遮光膜(遮光圖案) 5c:具有第3圖案之遮光膜(遮光圖案) 6:硬罩膜 6a:具有第1圖案之硬罩膜(硬罩圖案) 7:抗蝕膜 7a:具有第1圖案之抗蝕膜(抗蝕圖案) 8b:具有第2圖案之抗蝕膜(抗蝕圖案) 9c:具有第3圖案之抗蝕膜(抗蝕圖案) 10:光罩基底 12:第1層 12a:具有第1圖案之第1層 12a':部分地具有第1圖案之第1層 13:第2層 13a:具有第1圖案之第2層 14:第3層 14a:具有第1圖案之第3層 15:相位偏移膜 15a:具有第1圖案之相位偏移膜(相位偏移圖案) 15a':部分地具有第1圖案之相位偏移膜(相位偏移圖案) 16:透過率調整膜 16a:具有第1圖案之透過率調整膜(透過率調整圖案) 16b:具有第2圖案之透過率調整膜(透過率調整圖案) 20:光罩基底 30:光罩基底 31:蝕刻終止膜 31a:具有第1圖案之蝕刻終止膜(蝕刻終止圖案) 31b:具有第2圖案之蝕刻終止膜(蝕刻終止圖案) 41:透過率調整膜 41a:具有第1圖案之透過率調整膜(透過率調整圖案) 41b:具有第2圖案之透過率調整膜(透過率調整圖案) 100:相位偏移光罩 200:相位偏移光罩 300:相位偏移光罩
圖1係表示本發明第1實施方式中之光罩基底之構成的剖視圖。 圖2係表示本發明第1實施方式中之相位偏移光罩之構成的剖視圖。 圖3(a)~(d)係表示本發明第1實施方式中的相位偏移光罩之製造步驟之主要部分的剖視模式圖。 圖4(a)~(d)係表示本發明第1實施方式中的相位偏移光罩之製造步驟之主要部分的剖視模式圖。 圖5係表示本發明第2實施方式中之光罩基底之構成的剖視圖。 圖6係表示本發明第2實施方式中之相位偏移光罩之構成的剖視圖。 圖7(a)~(d)係表示本發明第2實施方式中的相位偏移光罩之製造步驟之主要部分的剖視模式圖。 圖8(a)~(c)係表示本發明第2實施方式中的相位偏移光罩之製造步驟之主要部分的剖視模式圖。 圖9係表示透過率調整膜之最大膜厚與折射率n之關係的圖,該關係係由光學模擬A1之結果導出,用於滿足相位差增加量為特定值以下之條件。 圖10係表示透過率調整膜之最大膜厚與折射率n之關係的圖,該關係係由光學模擬A1及B1之結果導出,用於滿足相位差增加量為特定值以下之條件。 圖11係表示透過率調整膜之最小膜厚與消光係數k之關係的圖,該關係係由光學模擬A2及B2之結果導出,用於滿足透過率之比為特定值以下之條件。 圖12係表示透過率調整膜之最大膜厚與消光係數k之關係的圖,該關係係由光學模擬A3及B3之結果導出,用於滿足透過相位偏移膜及透過率調整膜之積層構造的曝光用光之透過率為特定值以上之條件。 圖13係表示本發明第3實施方式中之光罩基底之構成的剖視圖。 圖14係表示本發明第3實施方式中之相位偏移光罩之構成的剖視圖。 圖15(a)~(d)係表示本發明第3實施方式中的相位偏移光罩之製造步驟之主要部分的剖視模式圖。 圖16(a)~(d)係表示本發明第3實施方式中的相位偏移光罩之製造步驟之主要部分的剖視模式圖。
1:透光性基板
2:相位偏移膜
3:中間膜
4:透過率調整膜
5:遮光膜
6:硬罩膜
7:抗蝕膜
10:光罩基底

Claims (20)

  1. 一種光罩基底,其特徵在於: 於透光性基板上具備相位偏移膜,且 於上述相位偏移膜上具有透過率調整膜, 上述相位偏移膜使透過上述相位偏移膜之ArF準分子雷射曝光用光、與於空氣中通過和上述相位偏移膜之厚度相同程度之距離的上述曝光用光之間,產生150度以上210度以下之相位差, 關於上述透過率調整膜,將於上述曝光用光之波長下之折射率設為n U,將於上述曝光用光之波長下之消光係數設為k U,將厚度設為d U[nm]時,同時滿足下述式(1)及式(2)之關係: 式(1) d U≦-17.63×n U 3+142.0×n U 2-364.9×n U+315.8 式(2) d U≧-2.805×k U 3+19.48×k U 2-43.58×k U+38.11。
  2. 如請求項1之光罩基底,其中上述透過率調整膜之上述折射率n U為1.2以上。
  3. 如請求項1或2之光罩基底,其中上述透過率調整膜之上述消光係數k U為1.5以上。
  4. 如請求項1或2之光罩基底,其中上述相位偏移膜使上述曝光用光以12%以上之透過率透過。
  5. 如請求項1或2之光罩基底,其中上述透過率調整膜之上述消光係數k U與上述厚度d U[nm]滿足下述式(3)之關係: 式(3) d U≦8.646×k U 2-38.42×k U+61.89。
  6. 如請求項1或2之光罩基底,其中上述透過率調整膜含有矽及氮。
  7. 如請求項1或2之光罩基底,其中於上述相位偏移膜與上述透過率調整膜之間,具備含有矽及氧之中間膜。
  8. 如請求項1或2之光罩基底,其中上述相位偏移膜於與上述透光性基板側相反之表面側,具備含有矽及氧之最上層。
  9. 如請求項1或2之光罩基底,其中於上述透過率調整膜之上具備遮光膜。
  10. 一種相位偏移光罩,其特徵在於: 於透光性基板上具備具有第1圖案之相位偏移膜,且 於上述相位偏移膜上,具備具有第2圖案之透過率調整膜, 上述相位偏移膜使透過上述相位偏移膜之ArF準分子雷射曝光用光、與於空氣中通過和上述相位偏移膜之厚度相同程度之距離的上述曝光用光之間,產生150度以上210度以下之相位差, 關於上述透過率調整膜,將於上述曝光用光之波長下之折射率設為n U,將於上述曝光用光之波長下之消光係數設為k U,將厚度設為d U[nm]時,同時滿足下述式(1)及式(2)之關係: 式(1) d U≦-17.63×n U 3+142.0×n U 2-364.9×n U+315.8 式(2) d U≧-2.805×k U 3+19.48×k U 2-43.58×k U+38.11。
  11. 如請求項10之相位偏移光罩,其中上述透過率調整膜之上述折射率n U為1.2以上。
  12. 如請求項10或11之相位偏移光罩,其中上述透過率調整膜之上述消光係數k U為1.5以上。
  13. 如請求項10或11之相位偏移光罩,其中上述相位偏移膜使上述曝光用光以12%以上之透過率透過。
  14. 如請求項10或11之相位偏移光罩,其中上述透過率調整膜之上述消光係數k U與上述厚度d U[nm]滿足下述式(3)之關係: 式(3) d U≦8.646×k U 2-38.42×k U+61.89。
  15. 如請求項10或11之相位偏移光罩,其中上述透過率調整膜含有矽及氮。
  16. 如請求項10或11之相位偏移光罩,其中於上述相位偏移膜與上述透過率調整膜之間,具備具有上述第2圖案之中間膜,上述中間膜含有矽及氧。
  17. 如請求項10或11之相位偏移光罩,其中上述相位偏移膜於與上述透光性基板側相反之表面側,具備含有矽及氧之最上層。
  18. 如請求項10或11之相位偏移光罩,其中於上述透過率調整膜之上,具備具有第3圖案之遮光膜。
  19. 一種相位偏移光罩之製造方法,其特徵在於: 使用如請求項9之光罩基底,且包括如下步驟: 藉由乾式蝕刻,於上述遮光膜上形成第1圖案; 藉由以具有上述第1圖案之遮光膜為遮罩之乾式蝕刻,於上述透過率調整膜及上述相位偏移膜各膜上形成第1圖案; 藉由乾式蝕刻,於上述遮光膜上形成第2圖案; 藉由以具有上述第2圖案之遮光膜為遮罩之乾式蝕刻,於上述透過率調整膜上形成第2圖案;及 藉由乾式蝕刻,於上述遮光膜上形成第3圖案。
  20. 一種半導體裝置之製造方法,其特徵在於,包括如下步驟:使用如請求項18之相位偏移光罩,將轉印圖案曝光轉印至半導體基板上之抗蝕膜上。
TW110122566A 2020-06-30 2021-06-21 光罩基底、相位偏移光罩、相位偏移光罩之製造方法及半導體裝置之製造方法 TW202217433A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020112702 2020-06-30
JP2020-112702 2020-06-30

Publications (1)

Publication Number Publication Date
TW202217433A true TW202217433A (zh) 2022-05-01

Family

ID=79315296

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110122566A TW202217433A (zh) 2020-06-30 2021-06-21 光罩基底、相位偏移光罩、相位偏移光罩之製造方法及半導體裝置之製造方法

Country Status (6)

Country Link
US (1) US20230194973A1 (zh)
JP (1) JPWO2022004350A1 (zh)
KR (1) KR20230029606A (zh)
CN (1) CN115769144A (zh)
TW (1) TW202217433A (zh)
WO (1) WO2022004350A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123961A (ja) 1992-10-12 1994-05-06 Hoya Corp 位相シフトマスク及び位相シフトマスクブランク並びに位相シフトマスクの製造方法
JP5165833B2 (ja) * 2005-02-04 2013-03-21 信越化学工業株式会社 フォトマスクブランク、フォトマスク、およびフォトマスクブランクの製造方法
JP2007279441A (ja) 2006-04-07 2007-10-25 Toshiba Corp ハーフトーン型位相シフトマスク及びその製造方法
JP2008310091A (ja) * 2007-06-15 2008-12-25 Shin Etsu Chem Co Ltd ハーフトーン型位相シフトマスク
JP6505891B2 (ja) * 2018-03-02 2019-04-24 Hoya株式会社 マスクブランク、位相シフトマスクおよびこれらの製造方法
JP6938428B2 (ja) * 2018-05-30 2021-09-22 Hoya株式会社 マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP7179543B2 (ja) * 2018-09-12 2022-11-29 Hoya株式会社 マスクブランク、転写用マスクおよび半導体デバイスの製造方法

Also Published As

Publication number Publication date
JPWO2022004350A1 (zh) 2022-01-06
US20230194973A1 (en) 2023-06-22
CN115769144A (zh) 2023-03-07
KR20230029606A (ko) 2023-03-03
WO2022004350A1 (ja) 2022-01-06

Similar Documents

Publication Publication Date Title
US9075320B2 (en) Mask blank, transfer mask, method of manufacturing a transfer mask, and method of manufacturing a semiconductor device
JP6058757B1 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
WO2014010408A1 (ja) マスクブランク及び位相シフトマスクの製造方法
KR20100035677A (ko) 마스크 블랭크 및 전사용 마스크의 제조 방법
JP6328863B1 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法及び半導体デバイスの製造方法
JP7106492B2 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
KR102296523B1 (ko) 포토마스크 블랭크 및 그의 제조 방법
KR102431557B1 (ko) 마스크 블랭크, 위상 시프트 마스크, 위상 시프트 마스크의 제조 방법 및 반도체 디바이스의 제조 방법
WO2010113787A1 (ja) マスクブランク及び転写用マスクの製造方法
JP2011100108A (ja) マスクブランク、転写用マスク、および転写用マスクセット
JP2018116269A (ja) 表示装置製造用の位相シフトマスクブランク、表示装置製造用の位相シフトマスクの製造方法、並びに表示装置の製造方法
TWI758382B (zh) 相移光罩基底、相移光罩之製造方法、及顯示裝置之製造方法
JP2019070854A (ja) 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
CN111742259B (zh) 掩模坯料、相移掩模及半导体器件的制造方法
WO2019188397A1 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
JP6927177B2 (ja) 位相シフト型フォトマスクブランク及び位相シフト型フォトマスク
CN112740105A (zh) 掩模坯料、转印用掩模及半导体器件的制造方法
CN114245880B (zh) 掩模坯料、相移掩模及半导体器件的制造方法
TWI809232B (zh) 遮罩基底、相移遮罩、相移遮罩之製造方法及半導體元件之製造方法
TW202217433A (zh) 光罩基底、相位偏移光罩、相位偏移光罩之製造方法及半導體裝置之製造方法
KR101751542B1 (ko) 마스크 블랭크, 전사용 마스크, 및 전사용 마스크 세트
TW202303261A (zh) 光罩基底、相位偏移光罩及半導體裝置之製造方法
JP2023149342A (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法