TW201826677A - 用於以GaN電晶體為基礎之電力轉換器之自舉電容器過電壓管理電路 - Google Patents

用於以GaN電晶體為基礎之電力轉換器之自舉電容器過電壓管理電路 Download PDF

Info

Publication number
TW201826677A
TW201826677A TW106141834A TW106141834A TW201826677A TW 201826677 A TW201826677 A TW 201826677A TW 106141834 A TW106141834 A TW 106141834A TW 106141834 A TW106141834 A TW 106141834A TW 201826677 A TW201826677 A TW 201826677A
Authority
TW
Taiwan
Prior art keywords
shunt
diode
circuit
gate
low
Prior art date
Application number
TW106141834A
Other languages
English (en)
Other versions
TWI655835B (zh
Inventor
大衛 C. 羅伊施
約翰 葛雷瑟
麥克 A. 德魯義
Original Assignee
美商高效電源轉換公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高效電源轉換公司 filed Critical 美商高效電源轉換公司
Publication of TW201826677A publication Critical patent/TW201826677A/zh
Application granted granted Critical
Publication of TWI655835B publication Critical patent/TWI655835B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • G05F1/571Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overvoltage detector
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/042Modifications for accelerating switching by feedback from the output circuit to the control circuit
    • H03K17/04206Modifications for accelerating switching by feedback from the output circuit to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08122Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0063High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0072Low side switches, i.e. the lower potential [DC] or neutral wire [AC] being directly connected to the switch and not via the load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一種驅動電路,用於由增強模式GaN電晶體所構成之一半橋電晶體電路。一分流二極體係在介於自舉電容器與接地之間的一節點處連接至該自舉電容器,該分流二極體係藉由一分流電阻器與該半橋之中點節點解耦。該分流二極體有助益地提供一低電壓降路徑,用以在該半橋之高側與低側電晶體兩者都斷開時,於空檔時間充電期內將該自舉電容器充電。

Description

用於以GaN電晶體為基礎之電力轉換器之自舉電容器過電壓管理電路
本揭示係有關於用於以GaN電晶體為基礎之電力轉換器之自舉電容器過電壓管理電路。
常斷型增強模式(e模式)氮化鎵(GaN)電晶體自從出現後,相較於習知的Si技術,已展現出優越的內電路效能。e模式GaN電晶體、及一般的寬能隙電力裝置具備比Si MOSFET技術更高的效能,並且已導致改良型應用基本原理之開發,以完全利用該等優越電力裝置之能力,並且針對獨特裝置屬性將設計進一步最佳化。
對於e模式GaN電晶體,一項有差別的裝置屬性為比標準矽MOSFET更低之一最大閘極電壓能力。具體而言,閘極額外裕度(overhead margin)係定義為製造商所建議之閘極電壓與裝置之最大閘極電壓之間的差值,對於e模式GaN電晶體,相較於其矽MOSFET前導子,此差值很小。因此,驅動e模式GaN電晶體時,尤其是驅動非接地參考型e模式GaN電晶體,必須設計閘極驅動電路才能避免超出電晶體之最大閘極驅動電壓。
對於許多電力電子拓樸結構,所使用的是一非接地參考型功率電晶體,其包括以半橋為基礎的拓樸結構,諸如同步降壓、同步升壓、隔離式全橋、隔離式半橋、LLC以及許多其他拓樸結構。非接地參考型裝置之閘極電壓係使用一自舉電路所產生 -- 圖1A、1B-1D及1E分別展示用於一降壓轉換器組態之電路、電流流動及時序圖。
如圖1A所示,習知的降壓轉換器自舉驅動電路包括一對標示為Q1與Q2之電晶體12與14。一般而言,電晶體12與14分別稱為高側與低側開關。高側電晶體12之源極係於半橋輸出(VSW )處耦合至低側電晶體14之汲極。高側電晶體12之汲極係耦合至一高電壓源18 (VIN ),並且低側電晶體14之源極係耦合至接地。再者,高側電晶體12之閘極係耦合至閘極驅動器IC之閘極驅動輸出GH,並且低側電晶體14之閘極係耦合至閘極驅動器IC之閘極驅動輸出GL。閘極驅動器在所屬技術領域中屬於已知,因此本文中將不作詳細說明。然而,應瞭解的是,這種組態能夠在運作時使一個電晶體12或14 (Q1或Q2)切換為接通,並且使另一電晶體切換為斷開,反之亦然。
進一步如圖1A所示,一驅動電壓源20 (VDR )係耦合至閘極驅動器IC之一輸入。一自舉電容器22 (CB )係與閘極驅動器IC並聯耦合,並且一自舉二極體24 (DB )係耦合於驅動電壓源20 (VDR )與自舉電容器22 (CB )之間。
在期間t1 與t2 (圖1E)內,當接地參考型(低側)電晶體14 (Q2 )導通中(在圖1B與1C中由通過電晶體14 (Q2)自驅動電壓源20 (VDR )至接地之電流路徑表示),浮動自舉電容器22 (CB )係有效接地,並且可將該自舉電容器充電。具體而言,當低側電晶體14 (Q2 )導通中,將自舉電容器22 (CB )充電至: VCB = VDR – VRDB – VDB + VQ2 (方程式1) 其中VDR 為驅動器電壓,VDB 為自舉二極體24之順向電壓降,VRDB 為跨一任選電阻器RDB 用以限制自舉電容器充電速度之電壓降,以及VQ2 為跨低側電晶體14 (Q2 )之電壓。當自舉電容器22 (CB )已完全充電,自舉二極體24 (DB )將開始阻塞並且結束充電週期。
在高側電晶體12 (Q1 )之接通週期內,自舉電容器22 (CB )以驅動器IC閘極回流(GR )作為參考,其等效於切換節點(VSW ),用於透過驅動器IC閘極輸出(GH )驅動高側裝置12 (Q1 )。該自舉驅動期是在圖1E中以t3 作識別,並且圖1D中展示該電流路徑。
當低側裝置14 (Q2 )受到驅動而接通時,時間間隔t1 將有一跨自舉二極體24 (DB )之電壓降(VDB ≈ 0.3~0.7 V)、以及由跨Q2之負載(ILOAD RDS(ON) )所產生之一小電壓,並且以上在方程式1中所定義之自舉電容器電壓將維持低於所設定之驅動器電壓VDR ,而且VCB ≈ 4.0~4.7 V,其中該電容器電壓取決於二極體與裝置特性以及該電路之運作條件(例如ILOAD )。如圖1E所示,此期間t1 大致佔總體期間TSW = 1/fSW 之一大部分,而且範圍定義良好,因此是自舉電容器意欲的充電期。在大多數應用中,設計人員設法使自舉電容器22 (CB )需要的充電次數減到最少,而且標準設計未使用任選的限電荷電阻器RDB 。自舉二極體24 (DB )大致具有一大到足以確保適當充電電流之等效電阻性壓降。
在空檔時間內,即時間間隔t2 ,當Q1 與Q2 兩者都受到驅動而斷開時,e模式GaN電晶體之「內接二極體」功能使負載電流導通。GaN電晶體不具有如Si MOSFET中常見之一p-n接面內接二極體。憑藉零閘極對源極電壓,GaN電晶體在閘極底下沒有電子而斷開。隨著汲極電壓降低,閘極上產生一正偏壓,而且在達到臨界電壓時,閘極底下有足以形成一傳導通道之電子。GaN電晶體之多數載子「內接二極體」功能具有無反向恢復電荷QRR 之效益,這在高頻切換方面很有效益,但會產生比一Si MOSFET內接二極體更大的順向電壓降。更大的順向電壓降會增加相關的傳導損耗,並且為一習知的自舉驅動電路中之一e模式GaN電晶體建立一過電壓條件。
更具體而言,在空檔時間內,即時間間隔t2 ,相較於自舉二極體24 (DB )之電壓降(0.3 - 0.7 V),低側GaN電晶體14 (Q2 )之反向導通電壓(典型為2 - 2.5 V)更大,將使跨自舉電容器22 (CB )之電壓提升,遵循以上方程式,導致自舉電容器22 (CB )在受到驅動時,潛在過量充電到高於VDR 、潛在損壞、以及限制高側電晶體12 (Q1 )之生命週期。
圖2中展示具有圖1A所示習知自舉電路之一以GaN為基礎的設計之閘極對源極波形。對於兩t2 空檔時間條件(t2 ≈ 0 ns與t2 ≈ 6 ns),更低的閘極電壓VGS (Q2 )在一VDR 驅動器供應電壓設定點周圍維持固定,並且波形重疊非常緊密。對於最大空檔時間,自舉電容器電壓與上閘極VGS (Q1 )經測量為大約6 VDC (t2 ≈ 6 ns),遠高於所欲的運作範圍,而且閘極觸及電壓尖波中之一約略7 V之尖峰,遠高於GaN電晶體之6 V最大尖峰閘極電壓。就期間t2 遭受消除(t2 ≈ 0 ns)之無負載情況而言,自舉電容器電壓經測量為大約4.4 VDC ,接近意欲的電壓。因此,圖2展現將一習知的自舉驅動方法用於e模式GaN電晶體時,t2 空檔時段內自舉電容器過量充電的問題。
先前技術已提出若干經修改而避免上述自舉電容器過電壓條件之自舉驅動電路。
在美國專利第8,593,211號中,***與自舉二極體串聯之一主動箝位開關。在空檔時間t2 內,該箝位開關受到驅動而斷開,使充電路徑斷接,使過電壓受到限制。此設計有助益地主動控制自舉充電期。然而,此一設計增加了複雜度 -- 一IC必須主動監測並且比較各種電路運作條件,而且附加裝置(該主動箝位開關)引進更高的IC寄生損耗。
針對上述過電壓問題之另一先前技術解決方案是將一齊納二極體平行插至自舉電容器。當自舉電容器電壓超出該二極體之齊納電壓時,該齊納二極體箝位跨該自舉電容器(CB )之電壓。此一解決方案單純,僅需要對該電路新增單一組件(一齊納二極體)。然而,箝位是一種消散方法,其中過電壓在該齊納中消散。因此,在所有先前技術解決方案中,此電路具有最高的閘極驅動損耗。
針對過電壓之另一先前技術解決方案是***與低側e模式GaN電晶體(Q2 )並聯之一肖特基二極體。在空檔時間t2 內,該肖特基二極體具有一比e模式GaN裝置(Q2 )低很多的順向電壓而將會導通,使過電壓受到限制。雖然新增與Q2 並聯之一肖特基二極體使過電壓受到限制,也使功率級損耗降到最低,此解決方案之效果仍高度取決於該肖特基二極體之效能與封裝寄生效應。對於許多應用,例如更高電壓及更高電流,沒有適合的肖特基二極體,而且該電路也無法實施。
又另一先前技術解決方案不僅新增一肖特基二極體(如以上解決方案中所提)以提供一低電壓降路徑將自舉電容器充電,還新增一閘極電阻器限制會透過肖特基二極體流動之功率電流,藉此提升可用肖特基二極體之選擇。閘極電阻器當作一接通與斷開電阻器用於高側電晶體Q1 。然而,增大該接通與斷開電阻會顯著增加Q1 電力裝置中之切換相關損耗,並且顯著降低功率級效能。此外,尤其是對於高電壓應用而言,沒有適合的DQ2 ,而且該解決方案也因而受到限制或無法實施。
另一先前技術電路是一種同步自舉GaN FET,請參閱美國專利第9,667,245號的說明。此電路中將自舉二極體以一e模式GaN電晶體取代,其係由Q2 之閘極驅動,該電路主動調節過電壓,並且使高頻驅動損耗減到最少。此電路的缺點在於複雜度。需要附加組件。此外,自舉電晶體必須為可阻絕全半橋供應電壓之一高電壓電晶體。
因此,需要一種驅動電路,其避免上述的自舉電容器過電壓條件,並且還克服上述先前解決方案的缺陷。
本發明提供一種經修改用於一半橋電晶體電路之驅動電路,其藉由提供一分流二極體,避免上述的閘極驅動過電壓條件,並且克服以上所提先前技術之缺陷,該分流二極體係在介於自舉電容器與接地之間的一節點VB處連接至該自舉電容器,該分流二極體係藉由一分流電阻器與該半橋(VSW )之中點節點解耦。該分流二極體有助益地提供一低電壓降路徑,用以在該半橋之高側與低側電晶體兩者都斷開時,於空檔時間充電期內將該自舉電容器充電。該分流電阻器控制並且限制通過該分流二極體之電流。
有助益的是,在本發明之電路中,該高側電晶體之源極係直接連接至該閘極驅動器之閘極驅動回流(GR),對於該高側電晶體之斷開換向,消除了斷開電阻。
本發明之電路尤其是針對運用增強模式GaN電晶體之半橋電路,其如以上所述,具有在該電晶體受到驅動而斷開時導通負載電流之一「內接二極體」功能,但會有比一習知Si MOSFET內接二極體更大的順向電壓降。GaN電晶體之大反向導通電壓降將導致該自舉電容器過量充電。藉由新增一分流二極體以提供用於將該自舉電容器充電之一低電壓降路徑,本發明避免高側GaN電晶體之一過電壓條件。
在本發明之一第二實施例中,一接通二極體係相對該分流電阻器反並聯電氣連接。在本發明之一第三實施例中,提供與該接通二極體串聯之一接通電阻器。在本發明之一第四實施例中,一第二分流二極體係與該分流電阻器串聯電氣連接。
在以下詳細說明中,請參照本發明之例示性實施例。該等例示性實施例係經充分詳細說明而使得所屬技術領域中具有通常知識者能夠加以實踐。要瞭解的是,可以運用其他實施例,也可進行各種變更而不脫離本發明之精神與範疇。
請參照圖3A,本發明之電路運用一分流二極體32 (DSHUNT ),其係藉由一分流電阻器34 (RSHUNT )與電力電路(節點GR/VSW )解耦,並且於其陰極處連接至一節點VB ,以在空檔時間充電期t2 內提供一低電壓降路徑將自舉電容器22 (CB )充電。分流電阻器34 (RSHUNT )控制並限制通過分流二極體32 (DSHUNT )之電流。
有助益的是,高側GaN電晶體12 (Q1 )之源極係直接連接至閘極驅動回流(GR),對於高側GaN電晶體12 (Q1 )之斷開換向,消除了斷開電阻。
分流二極體32 (DSHUNT )可經設計/選擇而具有與自舉二極體24 (DB )類似或相同的特性,以提供最靠近驅動電壓VDR 之一自舉電容器電壓VCB 。替代地,分流二極體32 (DSHUNT )可經設計/選擇而具有與自舉二極體24 (DB )不同的特性,以產生高於及/或低於驅動電壓VDR 之電壓。分流二極體32 (DSHUNT )可用一習知二極體或一肖特基二極體來實施,但必須具有支援VIN 之電壓能力。
請參照圖3C,在操作圖3A之電路時,於期間t1 內,如先前技術,功率電晶體Q2 係受到驅動而接通並具有一低阻抗與電壓降,而且自舉電容器充電路徑有通過Q2 ,使分流網路因分流二極體32 (DSHUNT )阻塞而無作動。如圖3D所示,在期間t2 內,功率電晶體Q1 與Q2 受到驅動而為斷開,並且Q2 具有一高電壓降,使該分流網路因分流二極體32 (DSHUNT )導通而作動。該自舉電容器充電路徑因此通過分流二極體32 (DSHUNT ),而不是通過Q2 。如圖3E所示,在期間t3 內,功率電晶體Q1 僅由自舉電容器驅動而接通,並且DSHUNT 網路無作動。
本發明之電路因若干理由而優於上述先前技術電路。首先,分流二極體32 (DSHUNT )不一定要是如上述先前技術電路中之一肖特基二極體,使本發明適用於更多應用。其次,分流電阻器34 (RSHUNT )與電力電路之解耦並非在具有一閘極電阻器之上述先前技術電路中完成,允許獨立設計RSHUNT 以將DSHUNT 所輸送之電流最佳化而不影響Q1 之斷開換向,改善了功率級效能。本發明顯著地比上述主動箝位開關及同步自舉電路更單純。最後,本發明顯著地比上述先前技術齊納二極體解決方案更有效能,因為分流二極體32具有非消散性。
圖3A所示本發明之電路之一缺點在於分流電阻器34 (RSHUNT )當作一接通電阻器,影響到低側電晶體Q1 之接通換向。因此,如圖4A所示,在本發明之一第二實施例中,為了改善圖3A之實施例之接通速度,針對Q1 之接通提供一反平行接通二極體40 (DON )。在第二實施例中,RSHUNT 分支將於t2 空檔時段(圖4C中所示)內作動,控制通過分流二極體32 (DSHUNT )導通之電流,並且限制自舉電容器充電。如圖4D所示,DON 分支將在t3 接通期內作動,提供一低阻抗路徑以提升電晶體Q1 之接通速度。有助益的是,圖4A之第二實施例在Q1 之接通或斷開路徑中沒有電阻,提供最有能力之電力裝置切換效能,同時將RSHUNT /DSHUNT 網路用於管理自舉電容器過電壓。因此,與圖3A所示之第一實施例不一樣,在圖4A之第二實施例中,分流電阻器34對高側電晶體Q1 之電力切換沒有影響。任選地,如圖4E所示,可新增一串聯電阻器42 (RON )以提供一接通電阻器。
在本發明之一第三實施例中,圖5中有展示,與分流電阻器(RSHUNT )串聯***一第二分流二極體52 (DSHUNT2 )以對有效阻抗與電壓降提供附加控制。
如圖6所示,在一第四實施例中,本發明係延伸到具有更多位準之轉換器。圖6中展示的是本發明之第一實施例之實作態樣,但本文中所述本發明之其他實施例亦可依照一類似方式,延伸到具有更多位準之轉換器。
在本發明之一第五實施例中,圖7A與7B中有展示,分流二極體32 (DSHUNT )可用一主動半導體來取代,即電晶體70 (QSHUNT ),其係以電晶體12 (Q1 )之互補閘極驅動信號來驅動。美國專利第8,536,847號揭示在一自舉驅動電路中依照一類似方式運用一電晶體Q3 之一電路,但這項專利之電路需要一複雜的參考電壓電路,因為電力接腳與閘極驅動接腳係以不同電位為基準。如果以相同電位為基準,則不會有用以限制功率電流以免在更小Q3 中導通之平衡方法。相比之下,在本發明中,分流電阻器34 (RSHUNT )單純地提供阻抗以控制電晶體70 (QSHUNT )與低側電晶體14 (Q2 )之間的充電比,這兩者都以GND為基準,同時還容許將該等電力與閘極驅動接腳直接連接,但不需要一參考電壓電路。
本發明之電路在其上述各項實施例中可予以分立地實施,或單塊地完全整合到單一積體電路。可將該電路之各種二極體實施成主動開關。亦可將本發明之閘極驅動電路整合於具有電力裝置與被動組件之一晶片中。
以上說明與圖式僅視為說明達到本文中所述特徵與優點之特定實施例。特定電路之修改與替代對所屬技術領域中具有通常知識者將明顯可知。因此,本說明之實施例並非視為受前述說明與圖式所限制。
12、14、70‧‧‧電晶體
18‧‧‧高電壓源
20‧‧‧驅動電壓源
22‧‧‧自舉電容器
24‧‧‧自舉二極體
32、52‧‧‧分流二極體
34‧‧‧分流電阻器
40‧‧‧反平行接通二極體
42‧‧‧串聯電阻器
本發明之其他特徵與優點在搭配圖式閱讀以下說明時將變為顯而易見,其中:
圖1A繪示布置成一半橋驅動e模式GaN電晶體之一習知降壓轉換器自舉電路,圖1B至1D展示在各種時段內通過該電路之電流路徑,並且圖1E為該電路之時序圖。
圖2展示具有圖1A所示習知自舉電路之一以GaN為基礎的設計之閘極對源極波形。
圖3A展示本發明之電路之一第一實施例,圖3B展示第一實施例之特定細節,圖3C至3E展示各種時段內之電流路徑,並且圖3E為該電路之一時序圖。
圖4A展示本發明中具有一接通二極體之電路之一第二實施例,圖4B至4D展示各種時段內之電流路徑,並且圖4E展示新增一任選接通電阻器。
圖5展示本發明中具有一第二分流二極體之電路之一第三實施例。
圖6展示本發明之一第四實施例,其中本發明係延伸到具有更多位準之轉換器。
圖7A展示本發明中以一分流電晶體替代分流二極體之電路之一第五實施例,並且圖7B展示第五實施例之特定細節。

Claims (15)

  1. 一種布置成一半橋拓樸結構之電路,其包含: 一高側電晶體與一低側電晶體,各具有一源極、一汲極與一閘極,該高側電晶體之該源極係於一第一節點處電氣連接至該低側電阻器之該汲極; 一閘極驅動器,其係電氣耦合至該高側電晶體之該閘極; 一自舉電容器,其係與該閘極驅動器並聯電氣耦合; 一分流二極體,其具有一陰極與一陽極,該分流二極體之該陰極係於一第二節點處連接至該電容器,並且該分流二極體之該陽極係連接至接地,該分流二極體提供一低電壓降路徑以將該自舉電容器充電;以及 一分流電阻器,其係電氣連接於該第一節點與該第二節點之間,用以將該分流二極體與該第一節點解耦,並且用以控制並限制通過該分流二極體之電流。
  2. 如請求項1之電路,其中該等高側與低側電晶體為增強模式GaN電晶體。
  3. 如請求項1之電路,其更包含與該分流電阻器反並聯電氣連接之一接通二極體。
  4. 如請求項3之電路,其更包含與該接通二極體串聯之一接通電阻器。
  5. 如請求項3之電路,其更包含一第二分流二極體,該第二分流二極體與該分流電阻器串聯連接。
  6. 如請求項1之電路,其更包含附加分流二極體及分流電阻器,其係連接至附加高側電晶體之各別源極。
  7. 如請求項1之電路,其中該分流二極體係以一分流電晶體替代,該分流電晶體係以與對該低側電晶體之該閘極施加之信號互補之一閘極驅動信號來驅動。
  8. 如請求項1之電路,其中該閘極驅動器、該自舉電容器、該分流二極體與該分流電阻器全都完全單塊地整合到單一積體電路。
  9. 如請求項1之電路,其中該積體電路包括該等高側與低側電晶體及該電路之被動組件。
  10. 一種方法,其避免布置成一半橋組態之一電路中出現閘極驅動過電壓,其中該電路之該半橋包含一高側電晶體與一低側電晶體,各具有一源極、一汲極與一閘極,該高側電晶體之該源極係於一第一節點處電氣連接至該低側電阻器之該汲極,並且該電路更包含與該高側電晶體之該閘極電氣耦合之一閘極驅動器、及與該閘極驅動器並聯電氣耦合之一自舉電容器,其中該方法包含將該自舉電容器充電,當該等高側與低側電晶體兩者都斷開時,透過並聯電氣連接至該低側電晶體之一分流網路,如與該低側電晶體之反向電壓降作比較,該分流網路提供一低電壓降充電路徑,其中該分流網路包含: 一分流二極體,其具有一陰極與一陽極,該分流二極體之該陰極係於一第二節點處連接至該電容器,並且該分流二極體之該陽極係連接至接地,以及 一分流電阻器,其係電氣連接於該第一節點與該第二節點之間,用以將該分流二極體與該第一節點解耦,並且用以控制並限制通過該分流二極體之電流。
  11. 如請求項10之方法,其中該等高側與低側電晶體為增強模式GaN電晶體。
  12. 如請求項10之方法,其中該分流網路更包含相對該分流電阻器反並聯電氣連接之一接通二極體。
  13. 如請求項10之方法,其中該分流網路更包含與該接通二極體串聯之一接通電阻器。
  14. 如請求項13之方法,其更包含一第二分流二極體,該第二分流二極體係設置成與該分流電阻器串聯。
  15. 如請求項10之方法,其中該分流二極體係以一分流電晶體替代,並且該分流電晶體係以與對該低側電晶體之該閘極施加之信號互補之一閘極驅動信號來驅動。
TW106141834A 2016-12-01 2017-11-30 用於以GaN電晶體為基礎之電力轉換器之自舉電容器過電壓管理電路 TWI655835B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662428854P 2016-12-01 2016-12-01
US62/428,854 2016-12-01

Publications (2)

Publication Number Publication Date
TW201826677A true TW201826677A (zh) 2018-07-16
TWI655835B TWI655835B (zh) 2019-04-01

Family

ID=62241923

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106141834A TWI655835B (zh) 2016-12-01 2017-11-30 用於以GaN電晶體為基礎之電力轉換器之自舉電容器過電壓管理電路

Country Status (7)

Country Link
US (1) US10454472B2 (zh)
JP (1) JP6839280B2 (zh)
KR (1) KR102236287B1 (zh)
CN (1) CN110024290B (zh)
DE (1) DE112017006120B4 (zh)
TW (1) TWI655835B (zh)
WO (1) WO2018102299A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI780918B (zh) * 2021-09-17 2022-10-11 國立陽明交通大學 單閘極驅動控制的同步整流降壓轉換器
TWI827837B (zh) * 2019-05-17 2024-01-01 美商史內德電子It公司 電力開關電路以及用於維持電力開關電路的工作效率的方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8827889B2 (en) 2012-05-21 2014-09-09 University Of Washington Through Its Center For Commercialization Method and system for powering implantable devices
US9859732B2 (en) * 2014-09-16 2018-01-02 Navitas Semiconductor, Inc. Half bridge power conversion circuits using GaN devices
JP6819256B2 (ja) * 2016-12-07 2021-01-27 富士電機株式会社 駆動回路及び該回路を含んでなる半導体モジュール
CN110635687B (zh) * 2018-06-22 2021-02-02 台湾积体电路制造股份有限公司 降压转换器电路以及降压转换方法
US10644601B2 (en) 2018-06-22 2020-05-05 Taiwan Semiconductor Manufacturing Co., Ltd. Dead-time conduction loss reduction for buck power converters
US11909299B2 (en) * 2018-07-19 2024-02-20 Mitsubishi Electric Corporation Power converting apparatus, motor driving apparatus, and air conditioner
TWI732280B (zh) * 2018-08-28 2021-07-01 美商高效電源轉換公司 串級自舉式GaN功率開關及驅動器
US10574229B1 (en) 2019-01-23 2020-02-25 Tagore Technology, Inc. System and device for high-side supply
DE102019207981A1 (de) * 2019-05-31 2020-12-03 Robert Bosch Gmbh Schaltungsanordnung mit mindestens einer Halbbrücke
CN110661427B (zh) * 2019-09-27 2020-07-24 浙江大学 基于氮化镓器件有源箝位反激式ac-dc变换器的数字控制装置
EP3806333A1 (en) * 2019-10-08 2021-04-14 Delta Electronics, Inc. Gate-driving circuit
CN114414977B (zh) * 2019-10-30 2023-12-19 英诺赛科(珠海)科技有限公司 量测高电子移动率晶体管之装置
JP7308137B2 (ja) * 2019-12-03 2023-07-13 ローム株式会社 スイッチング回路のゲート駆動回路および制御回路、スイッチング電源
CN111865149B (zh) * 2020-09-07 2022-04-05 珠海格力电器股份有限公司 电机控制电路及无刷直流电机
CN113054962B (zh) * 2021-03-25 2024-03-19 苏州华太电子技术股份有限公司 共源共栅GaN功率器件及其半桥应用电路
US11973063B2 (en) 2021-07-19 2024-04-30 Infineon Technologies Ag Semiconductor package with low parasitic connection to passive device
US20230110867A1 (en) * 2021-10-12 2023-04-13 Tagore Technology, Inc. Gate bias circuit for a driver monolithically integrated with a gan power fet
CN114400994B (zh) * 2022-01-10 2024-06-14 宁波正洋汽车部件有限公司 基于电容自举升压的nmos高侧开关控制电路及方法
WO2023228635A1 (ja) * 2022-05-25 2023-11-30 ローム株式会社 半導体装置、スイッチング電源

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760282A (en) 1986-11-13 1988-07-26 National Semiconductor Corporation High-speed, bootstrap driver circuit
US5408150A (en) * 1992-06-04 1995-04-18 Linear Technology Corporation Circuit for driving two power mosfets in a half-bridge configuration
JP2601505Y2 (ja) * 1993-04-30 1999-11-22 株式会社島津製作所 ブリッジインバータ回路
US5373435A (en) * 1993-05-07 1994-12-13 Philips Electronics North America Corporation High voltage integrated circuit driver for half-bridge circuit employing a bootstrap diode emulator
GB2324664B (en) * 1997-04-23 2001-06-27 Int Rectifier Corp Resistor in series with bootstrap diode for monolithic gate device
US6798269B2 (en) * 2000-07-25 2004-09-28 Stmicroelectronics S.R.L. Bootstrap circuit in DC/DC static converters
US20030015144A1 (en) * 2001-06-18 2003-01-23 Harold Bennett Push-through pet food container and dispenser
WO2008114455A1 (ja) * 2007-03-21 2008-09-25 Fujitsu Microelectronics Limited スイッチング容量生成回路
US20080290841A1 (en) * 2007-05-23 2008-11-27 Richtek Technology Corporation Charging Circuit for Bootstrap Capacitor and Integrated Driver Circuit Using Same
JP5191711B2 (ja) * 2007-09-05 2013-05-08 株式会社ジャパンディスプレイイースト 液晶表示装置
JP5071248B2 (ja) * 2008-06-03 2012-11-14 住友電気工業株式会社 レーザダイオード駆動回路
US9041379B2 (en) * 2009-09-10 2015-05-26 Lumastream Canada Ulc Bootstrap startup and assist circuit
EP2537253B1 (en) * 2010-02-18 2018-05-09 Danfoss Drives A/S Method for implementing bootstrap-supply charging in a motor controller at energized motor and motor controller using such a method
US9136836B2 (en) 2011-03-21 2015-09-15 Semiconductor Components Industries, Llc Converter including a bootstrap circuit and method
JP2013062717A (ja) 2011-09-14 2013-04-04 Mitsubishi Electric Corp 半導体装置
US8593211B2 (en) * 2012-03-16 2013-11-26 Texas Instruments Incorporated System and apparatus for driver circuit for protection of gates of GaN FETs
US8619445B1 (en) 2013-03-15 2013-12-31 Arctic Sand Technologies, Inc. Protection of switched capacitor power converter
JP5991939B2 (ja) * 2013-03-25 2016-09-14 三菱電機株式会社 半導体デバイス駆動回路および半導体デバイス駆動装置
JP6252388B2 (ja) * 2014-07-11 2017-12-27 スズキ株式会社 エンジンの動弁装置
US9859732B2 (en) 2014-09-16 2018-01-02 Navitas Semiconductor, Inc. Half bridge power conversion circuits using GaN devices
US9667245B2 (en) * 2014-10-10 2017-05-30 Efficient Power Conversion Corporation High voltage zero QRR bootstrap supply
CN204244063U (zh) * 2014-10-24 2015-04-01 意法半导体研发(深圳)有限公司 反相升降压型变换器驱动电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI827837B (zh) * 2019-05-17 2024-01-01 美商史內德電子It公司 電力開關電路以及用於維持電力開關電路的工作效率的方法
TWI780918B (zh) * 2021-09-17 2022-10-11 國立陽明交通大學 單閘極驅動控制的同步整流降壓轉換器

Also Published As

Publication number Publication date
WO2018102299A1 (en) 2018-06-07
JP2019537417A (ja) 2019-12-19
KR20190089200A (ko) 2019-07-30
KR102236287B1 (ko) 2021-04-07
US10454472B2 (en) 2019-10-22
TWI655835B (zh) 2019-04-01
US20180159529A1 (en) 2018-06-07
DE112017006120B4 (de) 2020-12-10
CN110024290B (zh) 2021-04-13
DE112017006120T5 (de) 2019-09-05
JP6839280B2 (ja) 2021-03-03
CN110024290A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
TWI655835B (zh) 用於以GaN電晶體為基礎之電力轉換器之自舉電容器過電壓管理電路
JP6705936B2 (ja) 回路を動作させる方法及び回路
US20230327661A1 (en) Cascode switches including normally-off and normally-on devices and circuits comprising the switches
US8848405B2 (en) Highly efficient half-bridge DC-AC converter
US7180762B2 (en) Cascoded rectifier
US10084446B2 (en) Driver circuit, corresponding integrated circuit and device
CN113098469A (zh) 用于GaN开关的时间可编程失效安全下拉电路
TWI754524B (zh) 閘極驅動電路以及電力電路
TWI425730B (zh) 具有完整漏源電壓鉗位元的功率開關裝置及限制耦合變壓器推拉式整流器之主開關場效應電晶體的最大漏源電壓的裝置及方法
US20020012253A1 (en) Driving device and method of switching element in power conversion apparatus using current-controlled semiconductor switching element
US20230336169A1 (en) Efficient Switching Circuit
US10186859B2 (en) Reverse current protection for a switching unit
US9219412B2 (en) Buck converter with reverse current protection, and a photovoltaic system
US11791815B2 (en) Driver circuit, corresponding device and method of operation
TWI771816B (zh) 開關穩壓器
JP2024523600A (ja) 窒化ガリウム双方向高電子移動度トランジスタ基板電圧管理回路
KR20190014374A (ko) 액티브 클램프 포워드 컨버터 및 그 구동방법
TWI846201B (zh) 用於電源轉換設備的控制裝置
US20240258904A1 (en) Pulsed transistor driver circuit
US20230038798A1 (en) Synchronous bootstrap half bridge rectifier
WO2018216251A1 (ja) ゲート駆動回路