TW201705730A - Transmitter circuit, semiconductor apparatus and data transmission method - Google Patents

Transmitter circuit, semiconductor apparatus and data transmission method Download PDF

Info

Publication number
TW201705730A
TW201705730A TW105105641A TW105105641A TW201705730A TW 201705730 A TW201705730 A TW 201705730A TW 105105641 A TW105105641 A TW 105105641A TW 105105641 A TW105105641 A TW 105105641A TW 201705730 A TW201705730 A TW 201705730A
Authority
TW
Taiwan
Prior art keywords
output
signal
circuit
stop
pulse
Prior art date
Application number
TW105105641A
Other languages
Chinese (zh)
Other versions
TWI692226B (en
Inventor
武田晃一
長瀬寛和
渡部真平
Original Assignee
瑞薩電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞薩電子股份有限公司 filed Critical 瑞薩電子股份有限公司
Publication of TW201705730A publication Critical patent/TW201705730A/en
Application granted granted Critical
Publication of TWI692226B publication Critical patent/TWI692226B/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/19Monitoring patterns of pulse trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Dc Digital Transmission (AREA)
  • Electronic Switches (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Logic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)

Abstract

The transmitter circuit according to one embodiment includes a pulse generating circuit generating a pulse signal based on edges of input data, a first output driver outputting, based on the pulse signal, a first output pulse signal according to one of the edges to a first end of an external insulating coupling element, a second output driver outputting, based on the pulse signal, a second output pulse signal according to other one of the edges to a second end of the insulating coupling element, and an output stop circuit stopping the first and second output pulse signals from being output for a prescribed period from when a power supply voltage is turned on.

Description

發射器電路、半導體裝置及資料傳輸方法 Transmitter circuit, semiconductor device and data transmission method

本發明係有關發射器電路、半導體裝置及資料傳輸方法。 The present invention relates to a transmitter circuit, a semiconductor device, and a data transmission method.

在彼此之電源電壓不同的多個半導體晶片之間做訊號交換的情況中,該等半導體晶片必須與絕緣耦合元件在交換訊號上互相電絕緣。已知的絕緣耦合元件包含使用電容器、線圈等等的AC耦合元件和光耦合元件(光耦合器)。日本未經審查的專利申請公開案第2013-229812號揭示一種半導體裝置,其使用線圈做為絕緣耦合元件(亦即,所謂的微隔離器)來交換訊號的半導體裝置。 In the case of signal exchange between a plurality of semiconductor wafers having different power supply voltages, the semiconductor wafers must be electrically insulated from the insulating coupling elements on the switching signals. Known insulating coupling elements include AC coupling elements and optical coupling elements (optical couplers) that use capacitors, coils, and the like. Japanese Unexamined Patent Publication No. 2013-229812 discloses a semiconductor device that uses a coil as an insulating coupling element (that is, a so-called micro isolator) to exchange signals.

在日本未經審查的專利申請公開案第2013-229812號之揭示中,由資料訊號的邊緣所觸發的脈波訊號係發射自發射器電路。在此,從該發射器電路能夠區別於資料訊號的上升邊緣與下降邊緣之間的脈波訊號被發射出。因此,該資料訊號能夠被重建於接收器電路處。 In the disclosure of Japanese Unexamined Patent Application Publication No. 2013-229812, the pulse signal triggered by the edge of the data signal is transmitted from the transmitter circuit. Here, the pulse signal that can be distinguished from the rising edge and the falling edge of the data signal from the transmitter circuit is emitted. Therefore, the data signal can be reconstructed at the receiver circuit.

同時,日本未經審查的專利申請公開案第2005-045100和2012-253241號以及日本專利案第4750746號各自揭示設置於電源與接地之間的靜電放電保護電路,該靜電放電保護電路被安裝用來保護半導體裝置的內部電路免於由靜電放電所產生的高電壓脈波。在日本未經審查的專利申請公開案第2005-045100和2012-253241號中所揭示之靜電放電保護電路當感測到電源上的急遽增加時,就開啟NMOS電晶體。在日本專利案第4750746號中所揭示之靜電放電保護電路(GGNMOS:閘極接地的NMOS)當到達某位準的電源電位時,才開啟NMOS電晶體的寄生雙載子。藉由前述的操作,各個靜電放電保護電路在電源電位到達內部電路的擊穿電壓之前操作。因而,電源電壓的增加被抑制,並且內部電路受到保護。 In the meantime, Japanese Unexamined Patent Application Publication No. 2005-045100 and No. 2012-253241, and Japanese Patent No. 4750746 each disclose an electrostatic discharge protection circuit disposed between a power source and a ground, the electrostatic discharge protection circuit being mounted. The internal circuit of the semiconductor device is protected from high voltage pulses generated by electrostatic discharge. The electrostatic discharge protection circuit disclosed in Japanese Unexamined Patent Application Publication No. Hei No. Hei No. 2005-045100 and No. 2012-253241 turns on an NMOS transistor when a sudden increase in power is sensed. The electrostatic discharge protection circuit (GGNMOS: gate-grounded NMOS) disclosed in Japanese Patent No. 4750746 opens the parasitic bicarrier of the NMOS transistor when reaching a certain potential of the power supply. With the foregoing operation, each of the electrostatic discharge protection circuits operates before the power supply potential reaches the breakdown voltage of the internal circuit. Thus, an increase in the power supply voltage is suppressed, and the internal circuit is protected.

本案發明人已經發現下面的問題。 The inventor of the present invention has found the following problems.

舉例來說,已經發現到,當用諸如在日本未經審查的專利申請公開案第2013-229812號中所揭示之微隔離器來實施為靜電放電損壞測試的其中一種之人體放電模式(HBM)時,諸如發射器電路的擊穿或絕緣耦合元件的毀壞之失效可能會發生。已經發現到,浪湧電流的施加致使電源電壓超過規定電壓,而且發射器電路輸出錯誤的脈波,其最終招致前述的失效。 For example, it has been found that the human body discharge mode (HBM) which is one of the electrostatic discharge damage tests is implemented by a micro isolator such as disclosed in Japanese Unexamined Patent Application Publication No. 2013-229812. Failure, such as breakdown of the transmitter circuit or destruction of the insulating coupling element, may occur. It has been found that the application of a surge current causes the supply voltage to exceed a prescribed voltage, and that the transmitter circuit outputs an erroneous pulse wave, which ultimately causes the aforementioned failure.

高速可操作性、低功率耗損、小面積占用率、及雜訊 免疫力為微隔離器的性能指標,其中一種改善它們的方案為致使大電流在短時間期間內從發射器電路流到為絕緣耦合元件的變壓器。舉例來說,在日本未經審查的專利申請公開案第2013-229812號中所揭示之微隔離器中的發射器電路係由輸出短脈波的脈波產生單元和具有高驅動性能的輸出驅動器單元所建構成。另一方面,脈波產生單元係與一問題相關聯,該問題為立即在電源被開啟之後,建構該脈波產生單元之延遲元件中的內部端子的狀態就不穩定,且藉此,該脈波產生單元易於輸出錯誤的脈波。此外,輸出驅動器單元被設計成在正常下以規定電壓(例如,5V),舉例來說,100mA的電流流過變壓器。在此,該輸出驅動器單元係與一問題相關聯,該問題為當大大地高於規定電壓的電源電壓被施加時,大於可允許值的電流當操時流過該驅動器或變壓器。 High speed operability, low power consumption, small area occupancy, and noise Immunity is a performance indicator for micro-isolators, one of which is to improve the flow of large currents from the transmitter circuit to the transformer that is an insulating coupling element in a short period of time. For example, the transmitter circuit in the micro isolator disclosed in Japanese Unexamined Patent Application Publication No. 2013-229812 is a pulse wave generating unit that outputs short pulse waves and an output driver with high driving performance. The unit is constructed. On the other hand, the pulse wave generating unit is associated with a problem that immediately after the power source is turned on, the state of the internal terminal in the delay element constructing the pulse wave generating unit is unstable, and thereby, the pulse The wave generating unit is apt to output an erroneous pulse wave. Further, the output driver unit is designed to flow through the transformer at a prescribed voltage (for example, 5 V) under normal conditions, for example, 100 mA. Here, the output driver unit is associated with a problem that when a power supply voltage that is substantially higher than a prescribed voltage is applied, a current greater than an allowable value flows through the driver or transformer when operating.

儘管組成元件係分別與問題相關聯,但是通常兩個問題不會同時發生,因而不致造成挑戰。然而,當HBM測試被實施於電源與接地之間時,進入電源被開啟於大大地高於規定電壓(例如,十幾(ten-odd)V)的電壓之狀態。然後,在脈波產生單元產生錯誤的脈波期間,大於可允許值(例如,幾百mA)的電流流過該驅動器或變壓器,其導致諸如發射器電路的擊穿或絕緣耦合元件的毀壞之失效。 Although the constituent elements are each associated with a problem, usually two problems do not occur at the same time and thus do not pose a challenge. However, when the HBM test is implemented between the power source and the ground, the incoming power source is turned on in a state of a voltage that is substantially higher than a prescribed voltage (for example, ten-odd V). Then, during the pulse wave generating unit generating the erroneous pulse wave, a current greater than the allowable value (for example, several hundred mA) flows through the driver or the transformer, which causes breakdown such as the emitter circuit or destruction of the insulating coupling element. Invalid.

有了日本未經審查的專利申請公開案第2005-045100和2012-253241號以及日本專利案第4750746號中所揭示 之靜電放電保護電路,儘管歸因於浪湧電流的施加之電源電壓的增加可以被抑制而低於擊穿電壓(例如,十幾(ten-odd)V),但是難以抑制浪湧電流到約為規定電壓(例如,5V)。此外,無法防止建構發射器電路的該脈波產生單元輸出錯誤的脈波。因此,結果是,高於規定電壓的供應電壓藉由該等錯誤的脈波而被傳送至驅動器和變壓器,其導致如上所述之失效。 Japanese Unexamined Patent Application Publication No. 2005-045100 and No. 2012-253241, and Japanese Patent No. 4750746 The electrostatic discharge protection circuit, although the increase in the power supply voltage due to the application of the surge current can be suppressed below the breakdown voltage (for example, ten-odd V), it is difficult to suppress the surge current to about To specify the voltage (for example, 5V). Furthermore, it is not possible to prevent the pulse wave generating unit that constructs the transmitter circuit from outputting an erroneous pulse wave. Therefore, as a result, a supply voltage higher than a prescribed voltage is transmitted to the driver and the transformer by the erroneous pulse waves, which causes failure as described above.

如上所述,習知的靜電放電保護電路無法有效地抑制靜電放電損壞測試時的失效。 As described above, the conventional electrostatic discharge protection circuit cannot effectively suppress the failure in the electrostatic discharge damage test.

其他的問題及新穎的特徵將從說明書的敘述及附圖而變得顯而易知。 Other problems and novel features will become apparent from the description and drawings.

依據一個實施例之發射器電路包含輸出停止電路,其使第一及第二輸出脈波訊號的輸出從當電源電壓被開啟時開始持續一段預定期間。 The transmitter circuit in accordance with one embodiment includes an output stop circuit that causes the outputs of the first and second output pulse signals to continue for a predetermined period of time from when the supply voltage is turned "on".

依據一個實施例,靜電放電損壞測試的失效能夠被抑制。 According to one embodiment, the failure of the electrostatic discharge damage test can be suppressed.

TX1、TX2‧‧‧發射器電路 TX1, TX2‧‧‧ transmitter circuit

L11、L21‧‧‧主要線圈 L11, L21‧‧‧ main coil

L12、L22‧‧‧次要線圈 L12, L22‧‧‧ secondary coil

RX1、RX2‧‧‧接收器電路 RX1, RX2‧‧‧ Receiver Circuit

CHP1、CHP2‧‧‧半導體晶片 CHP1, CHP2‧‧‧ semiconductor wafer

VDD1、VDD2‧‧‧電源電壓 VDD1, VDD2‧‧‧ power supply voltage

GND、GND1、GND2‧‧‧接地電壓 GND, GND1, GND2‧‧‧ Grounding voltage

PKG‧‧‧半導體封裝組件 PKG‧‧‧ semiconductor package components

Pd‧‧‧墊塊 Pd‧‧‧ pads

BW‧‧‧接合線 BW‧‧‧ bonding wire

T‧‧‧引線端子(外部端子) T‧‧‧ lead terminal (external terminal)

1‧‧‧半導體裝置 1‧‧‧Semiconductor device

PGC‧‧‧脈波產生電路 PGC‧‧‧ pulse wave generating circuit

OD1、OD2‧‧‧輸出驅動器 OD1, OD2‧‧‧ output driver

10‧‧‧輸出停止電路 10‧‧‧Output stop circuit

P10‧‧‧脈波訊號 P10‧‧‧ pulse wave signal

P11、P12‧‧‧輸出脈波訊號 P11, P12‧‧‧ output pulse wave signal

Din1‧‧‧輸入資料訊號 Din1‧‧‧ input data signal

VR‧‧‧接收訊號 VR‧‧‧ receiving signal

IN10、IN11、IN12、IN21、IN22‧‧‧反相器 IN10, IN11, IN12, IN21, IN22‧‧‧ Inverters

RED1、RED2‧‧‧上升邊緣偵測電路 RED1, RED2‧‧‧ rising edge detection circuit

OR1、OR2‧‧‧或閘 OR1, OR2‧‧‧ or gate

DC1、DC2‧‧‧延遲電路 DC1, DC2‧‧‧ delay circuit

AN1、AN2、AN11、AN12、AN21、AN22‧‧‧及閘 AN1, AN2, AN11, AN12, AN21, AN22‧‧‧ and gate

B1、B2‧‧‧緩衝器電路 B1, B2‧‧‧ snubber circuit

EP1、EP2‧‧‧邊緣脈波訊號 EP1, EP2‧‧‧ edge pulse signal

DB‧‧‧經反相的資料訊號 DB‧‧‧ reversed data signal

DD‧‧‧正常之經延遲的資料訊號 DD‧‧‧Normal delayed data signal

STP‧‧‧停止訊號 STP‧‧‧ stop signal

DDB‧‧‧經反相之經延遲的資料訊號 DDB‧‧‧ reversed delayed data signal

PDC‧‧‧脈波偵測電路 PDC‧‧‧ Pulse Detection Circuit

PWC1、PWC2‧‧‧脈波加寬電路 PWC1, PWC2‧‧‧ pulse widening circuit

SLC‧‧‧序向邏輯電路 SLC‧‧‧Oriented Logic Circuit

PPD1、PPD2‧‧‧正脈波偵測電路 PPD1, PPD2‧‧‧ positive pulse detection circuit

NPD1、NPD2‧‧‧負脈波偵測電路 NPD1, NPD2‧‧‧ negative pulse detection circuit

Dout1‧‧‧輸出資料訊號 Dout1‧‧‧ output data signal

TX10‧‧‧發射器電路 TX10‧‧‧transmitter circuit

R1‧‧‧電阻器元件 R1‧‧‧ resistor components

C1、C2、C11、C12、C21、C22‧‧‧電容器元件 C1, C2, C11, C12, C21, C22‧‧‧ capacitor components

N1、N2‧‧‧輸入 N1, N2‧‧‧ input

20‧‧‧輸出停止電路 20‧‧‧Output stop circuit

NM1‧‧‧NMOS電晶體 NM1‧‧‧NMOS transistor

PM1‧‧‧PMOS電晶體 PM1‧‧‧ PMOS transistor

N2‧‧‧閘極 N2‧‧‧ gate

30‧‧‧輸出停止電路 30‧‧‧Output stop circuit

ND‧‧‧非及閘 ND‧‧‧ Non-gate

CTR1、CTR2‧‧‧計數器 CTR1, CTR2‧‧‧ counter

N1、N2‧‧‧儲存節點 N1, N2‧‧‧ storage nodes

RT12、RT22‧‧‧規律的請求訊號 RT12, RT22‧‧‧ regular request signal

2‧‧‧半導體裝置系統 2‧‧‧Semiconductor device system

OSC1、OSC2‧‧‧振盪器電路 OSC1, OSC2‧‧‧ oscillator circuit

TM1、TM2‧‧‧計時器 TM1, TM2‧‧‧ timer

UVLO1、UVLO2‧‧‧欠電壓鎖定(UVLO)電路 UVLO1, UVLO2‧‧‧ undervoltage lockout (UVLO) circuit

A1、A2‧‧‧及閘 A1, A2‧‧‧ and gate

O1 to O6‧‧‧或閘 O1 to O6‧‧‧ or gate

TO1、TO2‧‧‧逾時訊號 TO1, TO2‧‧‧ timeout signal

PTD‧‧‧功率電晶體驅動器 PTD‧‧‧Power transistor driver

EDC‧‧‧錯誤偵測電路 EDC‧‧‧Error Detection Circuit

RT11、RT21‧‧‧非規律的請求訊號 RT11, RT21‧‧‧ irregular request signal

RST1、RST2、RST3‧‧‧重設訊號 RST1, RST2, RST3‧‧‧ reset signal

上述以及其他的態樣、優點及特徵將從下面配合附圖所提出之某些實施例的說明而變得更加顯而易知,在附圖中:圖1係顯示依據第一實施例之半導體裝置結構的方塊圖;圖2係顯示依據第一實施例之半導體裝置的安裝實例 的圖形;圖3係顯示依據第一實施例之發射器電路TX1之特定電路結構實例的電路圖;圖4係顯示依據第一實施例之發射器電路TX1操作的一個實例之時序圖表;圖5係顯示依據第一實施例之接收器電路RX1之特定電路結構實例的電路圖;圖6係顯示依據第一實施例之接收器電路RX1操作的一個實例之時序圖表;圖7係顯示依據第一實施例之比較實例之發射器電路TX10之特定電路結構的一個實例的電路圖;圖8係用以說明依據比較實例在用發射器電路TX10之HBM測試時失效發生之機制的時序圖表;圖9係用以說明在用發射器電路TX1之HBM測試抑制失效之機制的時序圖表;圖10係顯示依據第一實施例之輸出停止電路10之特定電路結構的一個實例的電路圖;圖11係用以說明當電源電壓被開啟時,依據第一實施例之輸出停止電路10之操作的時序圖表;圖12係顯示依據第一實施例之發射器電路TX1之變型的電路圖;圖13係顯示依據第一實施例之發射器電路TX1之變型的電路圖;圖14係顯示依據第一實施例之脈波產生電路PGC之 變型的電路圖;圖15係顯示依據第二實施例之輸出停止電路20之特定電路結構的一個實例的電路圖;圖16係用以說明當電源電壓被開啟時,依據第二實施例之輸出停止電路20之操作的時序圖表;圖17係顯示依據第三實施例之輸出停止電路30之特定電路結構的一個實例的電路圖;圖18係用以說明當電源電壓被開啟時,依據第三實施例之輸出停止電路30之操作的時序圖表;圖19係顯示依據第三實施例之半導體裝置系統2之結構的方塊圖;圖20係顯示應用有半導體裝置系統2之反相器裝置的圖形;圖21係顯示應用有半導體裝置系統2之反相器裝置之操作的時序圖表;圖22係在電容器被用作為絕緣耦合元件的情況中之半導體裝置的安裝實例;以及圖23係在GMR元件被用作為絕緣耦合元件的情況中之半導體裝置的安裝實例。 The above and other aspects, advantages and features will become more apparent from the following description of the embodiments of the accompanying drawings in which: FIG. Block diagram of device structure; FIG. 2 shows an example of installation of a semiconductor device according to the first embodiment FIG. 3 is a circuit diagram showing an example of a specific circuit configuration of the transmitter circuit TX1 according to the first embodiment; FIG. 4 is a timing chart showing an example of the operation of the transmitter circuit TX1 according to the first embodiment; A circuit diagram showing a specific circuit configuration example of the receiver circuit RX1 according to the first embodiment; FIG. 6 is a timing chart showing an example of the operation of the receiver circuit RX1 according to the first embodiment; FIG. 7 shows a first embodiment according to the first embodiment. A circuit diagram of an example of a specific circuit configuration of the transmitter circuit TX10 of the comparative example; FIG. 8 is a timing chart for explaining a mechanism of failure occurrence when testing with the HBM of the transmitter circuit TX10 according to a comparative example; A timing chart illustrating a mechanism for suppressing failure by the HBM test of the transmitter circuit TX1; FIG. 10 is a circuit diagram showing an example of a specific circuit configuration of the output stop circuit 10 according to the first embodiment; FIG. 11 is a diagram for explaining the power supply. When the voltage is turned on, the timing chart of the operation of the output stop circuit 10 according to the first embodiment; FIG. 12 shows the emission according to the first embodiment. FIG. 13 is a circuit diagram showing a modification of the transmitter circuit TX1 according to the first embodiment; FIG. 14 is a diagram showing a pulse wave generating circuit PGC according to the first embodiment. A circuit diagram of a modification; FIG. 15 is a circuit diagram showing an example of a specific circuit configuration of the output stop circuit 20 according to the second embodiment; FIG. 16 is a diagram for explaining an output stop circuit according to the second embodiment when the power supply voltage is turned on. FIG. 17 is a circuit diagram showing an example of a specific circuit configuration of the output stop circuit 30 according to the third embodiment; FIG. 18 is a diagram for explaining the third embodiment when the power supply voltage is turned on. A timing chart of the operation of the output stop circuit 30; FIG. 19 is a block diagram showing the structure of the semiconductor device system 2 according to the third embodiment; FIG. 20 is a view showing a pattern of the inverter device to which the semiconductor device system 2 is applied; A timing chart showing the operation of the inverter device to which the semiconductor device system 2 is applied; FIG. 22 is an example of mounting of a semiconductor device in the case where a capacitor is used as an insulating coupling element; and FIG. 23 is used as a GMR element. An example of the mounting of a semiconductor device in the case of an insulating coupling element.

下面將參照附圖來詳細說明特定的實施例。注意,為了清楚地說明起見,下面所提及的說明及附圖被適當地省略或簡化。此外,在附圖中被顯示為實施各種製程之功能 方塊的元件能夠藉由中央處理單元(CPU)、記憶體、其他電路而被實施為硬體,並且可以藉由載入於記憶體等等中之程式而被實現為軟體。因此,習於此技藝者瞭解到這些功能方塊能夠以各種方式來予以實現,諸如單獨由硬體、單獨由軟體、或者藉由其組合,而且本發明並不限於它們的其中一者。注意,在附圖中,相同的參考符號被分配給相同的元件,並且重複的說明視需要而予以省略。 Specific embodiments will be described in detail below with reference to the drawings. Note that the descriptions and drawings referred to below are omitted or simplified as appropriate for the sake of clarity. In addition, it is shown in the drawings as a function of implementing various processes. The elements of the block can be implemented as hardware by a central processing unit (CPU), a memory, and other circuits, and can be implemented as a software by a program loaded in a memory or the like. Accordingly, those skilled in the art will appreciate that these functional blocks can be implemented in various ways, such as by hardware alone, by software alone, or by a combination thereof, and the invention is not limited to one of them. Note that in the drawings, the same reference numerals are assigned to the same elements, and the repeated description is omitted as needed.

(第一實施例) (First Embodiment) <半導體裝置1的結構> <Structure of Semiconductor Device 1>

首先,參照圖1,將說明依據第一實施例的半導體裝置。圖1為顯示依據第一實施例之半導體裝置1結構的方塊圖,依據第一實施例的半導體裝置包含發射器電路TX1、主要線圈L11、次要線圈L12、及接收器電路RX1,以及微隔離器的結構。 First, referring to Fig. 1, a semiconductor device according to a first embodiment will be explained. 1 is a block diagram showing the structure of a semiconductor device 1 according to a first embodiment, the semiconductor device according to the first embodiment including a transmitter circuit TX1, a main coil L11, a secondary coil L12, and a receiver circuit RX1, and micro isolation The structure of the device.

發射器電路TX1係形成於半導體晶片CHP1處。注意,半導體晶片CHP1係由屬於第一電源系統的第一電源(電源電壓VDD1、接地電壓GND1、電位差VDD1-GND1為,舉例來說,5V)來予以驅動。 The transmitter circuit TX1 is formed at the semiconductor wafer CHP1. Note that the semiconductor wafer CHP1 is driven by the first power source (power supply voltage VDD1, ground voltage GND1, potential difference VDD1-GND1, for example, 5V) belonging to the first power supply system.

主要線圈L11、次要線圈L12、及接收器電路RX1係形成於半導體晶片CHP2處。注意,半導體晶片CHP2係由屬於與該第一電源系統不同之第二電源系統的第二電源(電源電壓VDD2、接地電壓GND2、電位差VDD2-GND2為,舉例來說,5V)來予以驅動。 The main coil L11, the secondary coil L12, and the receiver circuit RX1 are formed at the semiconductor wafer CHP2. Note that the semiconductor wafer CHP2 is driven by a second power source (power supply voltage VDD2, ground voltage GND2, potential difference VDD2-GND2, for example, 5V) belonging to a second power supply system different from the first power supply system.

主要線圈L11和次要線圈L12建構絕緣耦合元件,該等絕緣耦合元件經由磁場或電場而使其電源電壓彼此不同的兩個半導體晶片CHP1,CHP2耦合,且同時使該等半導體晶片CHP1,CHP2互相電絕緣。藉由該等絕緣耦合元件,資料訊號能夠從半導體晶片CHP1上的發射器電路TX1發送至具有不同電源電壓(電位差VDD1-VDD2為,舉例來說,負幾百V至幾百V)之半導體晶片CHP2上的接收器電路RX1。 The main coil L11 and the secondary coil L12 are constructed with insulating coupling elements that are coupled via two magnetic fields or electric fields to two semiconductor wafers CHP1, CHP2 whose power supply voltages are different from each other, and at the same time make the semiconductor wafers CHP1, CHP2 mutually Electrical insulation. With the insulating coupling elements, the data signal can be transmitted from the transmitter circuit TX1 on the semiconductor wafer CHP1 to the semiconductor wafer having different power supply voltages (the potential difference VDD1 - VDD2 is, for example, a few hundred V to several hundreds of V) Receiver circuit RX1 on CHP2.

在此,參照圖2,將說明半導體裝置1的安裝實例。圖2為顯示半導體裝置1的安裝實例之圖形。注意,圖2主要用來解釋發射器電路TX1、接收器電路RX1、設置在發射器電路TX1與接收器電路RX1之間的主要線圈L11和次要線圈L12的安裝實例。 Here, an example of mounting of the semiconductor device 1 will be described with reference to FIG. FIG. 2 is a diagram showing an example of mounting of the semiconductor device 1. Note that FIG. 2 is mainly used to explain a mounting example of the transmitter circuit TX1, the receiver circuit RX1, the primary coil L11 and the secondary coil L12 disposed between the transmitter circuit TX1 and the receiver circuit RX1.

在圖2所示的安裝實例中,兩個半導體晶片CHP1,CHP2被安裝在半導體封裝組件PKG上,該等半導體晶片CHP1,CHP2各自具有墊塊Pd。然後,該等半導體晶片CHP1,CHP2的該等墊塊Pd經由未顯示出之接合導線而被連接至設置在該半導體封裝組件PKG上的多個引線端子(外部端子)T。 In the mounting example shown in FIG. 2, two semiconductor wafers CHP1, CHP2 are mounted on a semiconductor package assembly PKG, each of which has a pad Pd. Then, the pads Pd of the semiconductor wafers CHP1, CHP2 are connected to a plurality of lead terminals (external terminals) T provided on the semiconductor package assembly PKG via bonding wires not shown.

如圖2所示,發射器電路TX1係形成在該半導體晶片CHP1處,在該半導體晶片CHP2處,接收器電路RX1、主要線圈L11、及次要線圈L12被形成。此外,在該半導體晶片CHP1處,連接至發射器電路TX1之輸出的墊塊Pd被形成。在該半導體晶片CHP2處,分別連接至 主要線圈L11之相對端的墊塊Pd被形成。然後,該發射器電路TX1經由該等墊塊和接合導線BW而被連接至形成在該半導體晶片CHP2處的該主要線圈L11。 As shown in FIG. 2, a transmitter circuit TX1 is formed at the semiconductor wafer CHP1, and at the semiconductor wafer CHP2, a receiver circuit RX1, a main coil L11, and a secondary coil L12 are formed. Further, at the semiconductor wafer CHP1, a pad Pd connected to the output of the transmitter circuit TX1 is formed. At the semiconductor wafer CHP2, respectively connected to A pad Pd at the opposite end of the main coil L11 is formed. Then, the transmitter circuit TX1 is connected to the main coil L11 formed at the semiconductor wafer CHP2 via the pads and the bonding wires BW.

注意,在圖2所示的實例中,主要線圈L11及次要線圈L12分別被形成在堆疊於其中一個半導體晶片CHP2中之頂部到底部(top-bottom)方向上的第一互連層及第二互連層。此外,主要線圈L11及次要線圈L12可以被形成在具有該發射器電路TX1的該半導體晶片CHP1處。或者,主要線圈L11及次要線圈L12可以被形成在形成於其中形成有該發射器電路TX1的該半導體晶片CHP1與其中形成有該接收器電路RX1的該半導體晶片CHP2之間的第三半導體晶片處。 Note that in the example shown in FIG. 2, the primary coil L11 and the secondary coil L12 are respectively formed in a first interconnect layer and a top-bottom direction stacked in one of the semiconductor wafers CHP2. Two interconnect layers. Further, the primary coil L11 and the secondary coil L12 may be formed at the semiconductor wafer CHP1 having the transmitter circuit TX1. Alternatively, the primary coil L11 and the secondary coil L12 may be formed in a third semiconductor wafer formed between the semiconductor wafer CHP1 in which the emitter circuit TX1 is formed and the semiconductor wafer CHP2 in which the receiver circuit RX1 is formed. At the office.

此外,主要線圈L11及發射器電路TX1可以被形成在該半導體晶片CHP1處,並且次要線圈L12及接收器電路RX1可以被形成在該半導體晶片CHP2處。然後,該半導體晶片CHP1和該半導體晶片CHP2可以互相接合。 Further, the main coil L11 and the transmitter circuit TX1 may be formed at the semiconductor wafer CHP1, and the secondary coil L12 and the receiver circuit RX1 may be formed at the semiconductor wafer CHP2. Then, the semiconductor wafer CHP1 and the semiconductor wafer CHP2 can be bonded to each other.

或者,發射器電路TX1、接收器電路RX1、主要線圈L11、及次要線圈L12可以被形成在一個半導體晶片上。在此情況中,配置有該發射器電路TX1的區域和配置有該接收器電路RX1的區域係配置成藉由形成於該半導體晶片中的絕緣層而互相絕緣。 Alternatively, the transmitter circuit TX1, the receiver circuit RX1, the primary coil L11, and the secondary coil L12 may be formed on one semiconductor wafer. In this case, the region in which the transmitter circuit TX1 is disposed and the region in which the receiver circuit RX1 is disposed are configured to be insulated from each other by an insulating layer formed in the semiconductor wafer.

回到參照圖1,將說明半導體裝置1的代表性結構。發射器電路TX1基於屬於第一電源系統的第一電源而操作,另一方面,接收器電路RX1基於屬於第二電源系統 的第二電源而操作。 Referring back to FIG. 1, a representative structure of the semiconductor device 1 will be explained. The transmitter circuit TX1 operates based on the first power source belonging to the first power system, and on the other hand, the receiver circuit RX1 is based on the second power system. The second power supply operates.

該發射器電路TX1包含脈波產生電路PGC、輸出驅動器OD1,OD2、及輸出停止電路10。 The transmitter circuit TX1 includes a pulse wave generating circuit PGC, output drivers OD1, OD2, and an output stop circuit 10.

脈波產生電路PGC依據輸入資料訊號Din1的邊緣而產生脈波訊號P10。 The pulse wave generating circuit PGC generates the pulse wave signal P10 according to the edge of the input data signal Din1.

輸出驅動器OD1基於該脈波訊號P10而將輸出脈波訊號P11輸出到主要線圈L11的第一端,該輸出脈波訊號P11為用來發送該輸入資料訊號Din1的上升邊緣之脈波訊號。 The output driver OD1 outputs the output pulse signal P11 to the first end of the main coil L11 based on the pulse signal P10. The output pulse signal P11 is a pulse signal for transmitting the rising edge of the input data signal Din1.

輸出驅動器OD2基於該脈波訊號P10而將輸出脈波訊號P12輸出到主要線圈L11的第二端,該輸出脈波訊號P12為用來發送該輸入資料訊號Din1的下降邊緣之脈波訊號。 The output driver OD2 outputs the output pulse signal P12 to the second end of the main coil L11 based on the pulse signal P10. The output pulse signal P12 is a pulse signal for transmitting the falling edge of the input data signal Din1.

輸出停止電路10使該等輸出脈波訊號P11,P12的輸出停止一段從當電源電壓被開啟時開始的預定期間。在圖1的實例中,自輸出停止電路10輸出的停止訊號STP被輸入至輸出驅動器OD1,OD2。也就是說,藉由自輸出停止電路10輸出的停止訊號STP,來自輸出驅動器OD1,OD2之輸出脈波訊號P11,P12的輸出被停止。 The output stop circuit 10 stops the output of the output pulse signals P11, P12 for a predetermined period from when the power supply voltage is turned on. In the example of FIG. 1, the stop signal STP output from the output stop circuit 10 is input to the output drivers OD1, OD2. That is, the output of the output pulse signals P11, P12 from the output drivers OD1, OD2 is stopped by the stop signal STP output from the output stop circuit 10.

主要線圈L11及次要線圈L12使自該發射器電路TX1輸出的輸出脈波訊號P11,P12轉換成接收訊號VR,並且將該接收訊號VR發送至接收器電路RX1。明確地說,藉由輸出脈波訊號P11,P12的轉變(transition),流經主要線圈L11的電流改變。據此,為跨於次要線圈L12之相 對端上的電壓之接收訊號VR改變。 The primary coil L11 and the secondary coil L12 convert the output pulse signals P11, P12 output from the transmitter circuit TX1 into the received signal VR, and transmit the received signal VR to the receiver circuit RX1. Specifically, the current flowing through the main coil L11 is changed by the transition of the output pulse signal P11, P12. According to this, the phase spans the secondary coil L12 The receiving signal VR of the voltage on the opposite end is changed.

接收器電路RX1基於次要線圈L12之接收訊號VR而重新建構該輸入資料訊號Din1,並且輸出該重新建構的訊號作為輸出資料訊號Dout1。 The receiver circuit RX1 reconstructs the input data signal Din1 based on the received signal VR of the secondary coil L12, and outputs the reconstructed signal as the output data signal Dout1.

依據第一實施例之該發射器電路TX1包含該輸出停止電路10,其使該輸出脈波訊號P11和該輸出脈波訊號P12的輸出停止一段從當電源電壓VDD1被開啟時開始的預定期間。因此,其使抑制與該電源電壓VDD1的開啟相關聯之錯誤脈波的輸出變成可能,在靜電放電損壞測試時該電源電壓VDD1上的增加為類似於該電源電壓VDD1的開啟之物理現象。因此,有了依據第一實施例之該發射器電路TX1,也在靜電放電損壞測試時,該輸出停止電路10啟動,並且歸因於與該電源電壓VDD1上的增加相關聯之錯誤脈波的任何失效能夠被抑制。 The transmitter circuit TX1 according to the first embodiment includes the output stop circuit 10, which stops the output of the output pulse signal P11 and the output pulse signal P12 for a predetermined period from when the power supply voltage VDD1 is turned on. Therefore, it makes it possible to suppress the output of the erroneous pulse wave associated with the turn-on of the power supply voltage VDD1, which is a physical phenomenon similar to the turn-on of the power supply voltage VDD1 at the time of the electrostatic discharge damage test. Therefore, with the transmitter circuit TX1 according to the first embodiment, the output stop circuit 10 is also activated at the time of the electrostatic discharge damage test, and is attributed to the erroneous pulse wave associated with the increase in the power supply voltage VDD1. Any failure can be suppressed.

<發射器電路TX1的特定電路結構> <Specific Circuit Structure of Transmitter Circuit TX1>

接著,參照圖3,將說明發射器電路TX1的特定電路結構。下面所示的電路結構僅為例子。圖3為顯示依據第一實施例之發射器電路TX1的特定電路結構之實例的電路圖。如圖1及圖3所示,發射器電路TX1包含脈波產生電路PGC、輸出驅動器OD1,OD2、及輸出停止電路10。 Next, referring to Fig. 3, a specific circuit configuration of the transmitter circuit TX1 will be explained. The circuit structure shown below is only an example. Fig. 3 is a circuit diagram showing an example of a specific circuit configuration of the transmitter circuit TX1 according to the first embodiment. As shown in FIGS. 1 and 3, the transmitter circuit TX1 includes a pulse wave generating circuit PGC, output drivers OD1, OD2, and an output stopping circuit 10.

如圖3所示,脈波產生電路PGC包含一個反相器IN10、兩個上升邊緣偵測電路RED1,RED2、和一個或 (OR)閘OR1。在此,上升邊緣偵測電路RED1,RED2在電路結構上互相類似,上升邊緣偵測電路RED1包含延遲電路DC1、反相器IN11、和一個及(AND)閘AN11,上升邊緣偵測電路RED2包含延遲電路DC2、反相器IN12、、和一個及(AND)閘AN12。 As shown in FIG. 3, the pulse wave generating circuit PGC includes an inverter IN10, two rising edge detecting circuits RED1, RED2, and one or (OR) gate OR1. Here, the rising edge detection circuits RED1 and RED2 are similar in circuit structure, and the rising edge detection circuit RED1 includes a delay circuit DC1, an inverter IN11, and an AND gate AN11, and the rising edge detection circuit RED2 includes The delay circuit DC2, the inverter IN12, and an AND gate AN12.

如圖3所示,輸出驅動器OD1,OD2實質上在電路結構方面係互相類似的。輸出驅動器OD1包含及(AND)閘AN1、緩衝器電路B1、和反相器IN1,輸出驅動器OD2包含及(AND)閘AN2、緩衝器電路B2、和反相器IN2。 As shown in FIG. 3, the output drivers OD1, OD2 are substantially similar to each other in terms of circuit configuration. The output driver OD1 includes an AND gate AN1, a buffer circuit B1, and an inverter IN1, and the output driver OD2 includes an AND gate AN2, a buffer circuit B2, and an inverter IN2.

注意,如圖3所示,介於輸出驅動器OD1,OD2之間的差異在於,在輸入資料訊號Din1被輸入至輸出驅動器OD1的同時,該輸入資料訊號Din1的反相訊號被輸入至輸出驅動器OD2。也就是說,及(AND)閘AN2包含在用於輸入資料訊號Din1之輸入端子處的反相器。 Note that, as shown in FIG. 3, the difference between the output drivers OD1, OD2 is that, while the input data signal Din1 is input to the output driver OD1, the inverted signal of the input data signal Din1 is input to the output driver OD2. . That is, the AND gate AN2 is included in the inverter for inputting the input terminal of the data signal Din1.

在下面,將說明連接關係。 In the following, the connection relationship will be explained.

輸入資料訊號Din1被輸入至上升邊緣偵測電路RED1,該上升邊緣偵測電路RED1在輸入資料訊號Din1的上升邊緣處輸出邊緣脈波訊號EP1。明確地說,輸入資料訊號Din1被延遲電路DC1所延遲,並且被反相器IN11所反相,自反相器IN11所輸出的經反相之經延遲的資料訊號DDB連同該輸入資料訊號Din1一起被輸入至及(AND)閘AN11。然後,及(AND)閘AN11將該邊緣脈波訊號EP1輸出。 The input data signal Din1 is input to the rising edge detection circuit RED1, and the rising edge detection circuit RED1 outputs the edge pulse signal EP1 at the rising edge of the input data signal Din1. Specifically, the input data signal Din1 is delayed by the delay circuit DC1 and inverted by the inverter IN11, and the inverted delayed data signal DDB outputted from the inverter IN11 is together with the input data signal Din1. It is input to AND gate AN11. Then, the AND gate AN11 outputs the edge pulse signal EP1.

另一方面,該輸入資料訊號Din1的反相訊號經由反相器IN10(在下文中被稱為經反相的資料訊號DB)而被輸入至上升邊緣偵測電路RED2,該上升邊緣偵測電路RED2在該經反相的資料訊號DB的上升邊緣處(也就是說,在輸入資料訊號Din1的下降邊緣處)輸出邊緣脈波訊號EP2。明確地說,該經反相的資料訊號DB被延遲電路DC2所延遲,並且被反相器IN12所反相,而為正常之經延遲的資料訊號DD,來自該反相器IN12之該正常之經延遲的資料訊號DD和該經反相的資料訊號DB一起被輸入至及(AND)閘AN12。然後,及(AND)閘AN12將該邊緣脈波訊號EP2輸出。 On the other hand, the inverted signal of the input data signal Din1 is input to the rising edge detection circuit RED2 via the inverter IN10 (hereinafter referred to as the inverted data signal DB), and the rising edge detection circuit RED2 An edge pulse signal EP2 is output at the rising edge of the inverted data signal DB (that is, at the falling edge of the input data signal Din1). Specifically, the inverted data signal DB is delayed by the delay circuit DC2 and inverted by the inverter IN12 to be a normal delayed data signal DD, which is normal from the inverter IN12. The delayed data signal DD is input to the AND gate AN12 together with the inverted data signal DB. Then, the AND gate AN12 outputs the edge pulse signal EP2.

自兩個上升邊緣偵測電路RED1,RED2輸出的該等邊緣脈波訊號EP1,EP2兩者皆被輸入至或(OR)閘OR1,該或(OR)閘OR1將發送該輸入資料訊號Din1之上升邊緣和下降邊緣的輸出脈波P10輸出作為脈波產生電路PGC的輸出訊號。 Since the two rising edge detection circuits RED1, RED2 output the edge pulse signals EP1, EP2 are both input to the OR gate OR1, the OR gate OR1 will send the input data signal Din1 The output pulse P10 of the rising edge and the falling edge is output as an output signal of the pulse wave generating circuit PGC.

該輸出脈波P10被輸入至分別建構輸出驅動器OD1,OD2的及(AND)閘AN1,AN2。此外,該輸入資料訊號Din1被輸入至及(AND)閘AN1,另一方面,該輸入資料訊號Din1的反相訊號被輸入至及(AND)閘AN2。 The output pulse wave P10 is input to the AND gates AN1, AN2 which respectively construct the output drivers OD1, OD2. In addition, the input data signal Din1 is input to the AND gate AN1. On the other hand, the inverted signal of the input data signal Din1 is input to the AND gate AN2.

結果是,及(AND)閘AN1輸出用以發送輸入資料訊號Din1的上升邊緣的H(高)-有效脈波訊號,此脈波訊號經由緩衝器電路B1而被輸入至反相器IN1。然後,反相器IN1輸出用以發送輸入資料訊號Din1的上升邊緣 的L(低)-有效輸出脈波訊號P11作為輸出驅動器OD1的輸出訊號。 As a result, the AND gate AN1 outputs an H (high)-effective pulse signal for transmitting the rising edge of the input data signal Din1, and the pulse signal is input to the inverter IN1 via the buffer circuit B1. Then, the inverter IN1 outputs a rising edge for transmitting the input data signal Din1. The L (low)-effective output pulse signal P11 is used as the output signal of the output driver OD1.

另一方面,及(AND)閘AN2輸出用以發送輸入資料訊號Din1的下降邊緣的H(高)-有效脈波訊號,此脈波訊號經由緩衝器電路B2而被輸入至反相器IN2。然後,反相器IN2輸出用以發送輸入資料訊號Din1的下降邊緣的L(低)-有效輸出脈波訊號P12作為輸出驅動器OD2的輸出訊號。 On the other hand, the AND gate AN2 outputs an H (high)-effective pulse signal for transmitting the falling edge of the input data signal Din1, and the pulse signal is input to the inverter IN2 via the buffer circuit B2. Then, the inverter IN2 outputs an L (low)-effective output pulse signal P12 for transmitting the falling edge of the input data signal Din1 as an output signal of the output driver OD2.

在此,自輸出停止電路10所輸出的停止訊號STP被輸入至分別建構該等輸出驅動器OD1,OD2的及(AND)閘AN1,AN2。在停止訊號STP為L位準的周期期間,分別輸出自該等輸出驅動器OD1,OD2之輸出脈波訊號P11,P12的輸出總是到達H位準。也就是說,在該停止訊號STP為L位準的周期期間,雖然脈波訊號P10係輸出自脈波產生電路PGC,但是輸出脈波訊號P11,P12並非輸出自輸出驅動器OD1,OD2。 Here, the stop signal STP outputted from the output stop circuit 10 is input to the AND gates AN1, AN2 which respectively construct the output drivers OD1, OD2. During the period in which the stop signal STP is at the L level, the output pulse signals P11 from the output drivers OD1, OD2 are respectively output, and the output of P12 always reaches the H level. That is to say, during the period in which the stop signal STP is at the L level, although the pulse signal P10 is output from the pulse wave generating circuit PGC, the output pulse signals P11, P12 are not output from the output drivers OD1, OD2.

注意,脈波產生電路PGC可以不包含或(OR)閘OR1。在此情況中,邊緣脈波訊號EP1,EP2分別被直接輸入至及(AND)閘AN1,AN2。衹有邊緣脈波訊號EP1和停止訊號STP應該被輸入至及(AND)閘AN1,並且輸入資料訊號Din1不需要被輸入。此外,衹有邊緣脈波訊號EP2和停止訊號STP應該被輸入至及(AND)閘AN2,並且輸入資料訊號Din1的反相訊號不需要被輸入。 Note that the pulse wave generating circuit PGC may not include OR gate OR1. In this case, the edge pulse signals EP1, EP2 are directly input to the AND gates AN1, AN2, respectively. Only the edge pulse signal EP1 and the stop signal STP should be input to the AND gate AN1, and the input data signal Din1 need not be input. In addition, only the edge pulse signal EP2 and the stop signal STP should be input to the AND gate AN2, and the inverted signal of the input data signal Din1 need not be input.

<發射器電路TX1的操作> <Operation of Transmitter Circuit TX1>

接著,參照圖4,將說明發射器電路TX1的正常操作。圖4為顯示依據第一實施例之發射器電路TX1的正常操作之一個實例的時序圖。注意,在圖4所示的正常操作模式中,輸出停止電路10並未啟動。 Next, referring to Fig. 4, the normal operation of the transmitter circuit TX1 will be explained. Fig. 4 is a timing chart showing an example of normal operation of the transmitter circuit TX1 according to the first embodiment. Note that in the normal operation mode shown in FIG. 4, the output stop circuit 10 is not activated.

圖4顯示,按照從上面開始的順序,輸入資料訊號Din1、經反相之經延遲的資料訊號DDB、邊緣脈波訊號EP1、經反相的資料訊號DB、正常之經延遲的資料訊號DD、邊緣脈波訊號EP2、脈波訊號P10、輸出脈波訊號P11、和輸出脈波訊號P12。 4 shows, in the order from the above, the input data signal Din1, the inverted delayed data signal DDB, the edge pulse signal EP1, the inverted data signal DB, the normal delayed data signal DD, The edge pulse signal EP2, the pulse signal P10, the output pulse signal P11, and the output pulse signal P12.

在第二層處所示之經反相之經延遲的資料訊號DDB為藉由使在頂層處所示之輸入資料訊號Din1反相並且延遲一段延遲時間Td所取得的訊號。 The inverted, delayed data signal DDB shown at the second level is a signal obtained by inverting the input data signal Din1 shown at the top layer and delaying the delay time Td.

在第三層處所示之邊緣脈波訊號EP1為具有寬度Td並且表示在頂層處所示之輸入資料訊號Din1的上升邊緣的脈波訊號,該邊緣脈波訊號EP1係藉由在頂層處所示之該輸入資料訊號Din1和在第二層處所示之該經反相之經延遲的資料訊號DDB之及(AND)邏輯所取得的。 The edge pulse signal EP1 shown at the third layer is a pulse wave signal having a width Td and representing the rising edge of the input data signal Din1 shown at the top layer, the edge pulse signal EP1 being at the top floor The input data signal Din1 is shown and the AND-delayed data signal DDB (AND) logic shown at the second layer is obtained.

在第四層處所示之經反相的資料訊號DB為在頂層處所示之該輸入資料訊號Din1的反相訊號。 The inverted data signal DB shown at the fourth layer is the inverted signal of the input data signal Din1 shown at the top layer.

在第五層處所示之正常之經延遲的資料訊號DD為藉由使在頂層處所示之該輸入資料訊號Din1延遲一段延遲時間Td所取得的訊號。 The normal delayed data signal DD shown at the fifth layer is a signal obtained by delaying the input data signal Din1 shown at the top layer by a delay time Td.

在第六層處所示之邊緣脈波訊號EP2為具有寬度Td並且表示在頂層處所示之該輸入資料訊號Din1的下降邊緣的脈波訊號,該邊緣脈波訊號EP2係藉由在第四層處所示之該經反相的資料訊號DB和在第五層處所示之正常之經延遲的資料訊號DD之及(AND)邏輯所取得的。 The edge pulse signal EP2 shown at the sixth layer is a pulse signal having a width Td and representing the falling edge of the input data signal Din1 shown at the top layer, and the edge pulse signal EP2 is at the fourth The inverted data signal DB shown at the layer and the AND of the normal delayed data signal DD shown at the fifth layer are obtained.

在第七層處所示之脈波訊號P10為表示在頂層處所示之該輸入資料訊號Din1的上升邊緣和下降邊緣的脈波訊號,該脈波訊號P10係藉由在第三層處所示之該邊緣脈波訊號EP1和在第六層處所示之該邊緣脈波訊號EP2的或(OR)邏輯所取得的。 The pulse signal P10 shown at the seventh layer is a pulse signal indicating the rising edge and the falling edge of the input data signal Din1 shown at the top layer, and the pulse signal P10 is at the third floor. The edge pulse signal EP1 is shown and the OR logic of the edge pulse signal EP2 shown at the sixth layer is obtained.

在第八層處所示之輸出脈波訊號P11為表示在頂層處所示之該輸入資料訊號Din1的上升邊緣之L-有效脈波訊號,該輸出脈波訊號P11為藉由使經由在頂層處所示之該輸入資料訊號Din1和在第七層處所示之該脈波訊號P10之及(AND)邏輯所取得的訊號反相所取得之訊號。 The output pulse signal P11 shown at the eighth layer is an L-effective pulse signal indicating the rising edge of the input data signal Din1 shown at the top layer, and the output pulse signal P11 is passed through the top layer. The signal obtained by inverting the signal obtained by the input data signal Din1 and the AND signal of the pulse signal P10 shown at the seventh layer.

在底層處所示之輸出脈波訊號P12為表示在頂層處所示之該輸入資料訊號Din1的下降邊緣之L-有效脈波訊號,該輸出脈波訊號P12為藉由使在第四層處所示之該經反相的資料訊號DB和在第七層處所示之該脈波訊號P10之及(AND)邏輯所取得的訊號反相所取得之訊號。 The output pulse signal P12 shown at the bottom layer is an L-effective pulse signal indicating the falling edge of the input data signal Din1 shown at the top layer, and the output pulse signal P12 is at the fourth layer. The inverted signal data DB and the signal obtained by inverting the signal obtained by the AND logic of the pulse signal P10 shown at the seventh layer are shown.

接著,將說明時間序列。 Next, the time series will be explained.

在時間點t1,在頂層處所示之該輸入資料訊號Din1從L位準切換至H位準(亦即,上升邊緣)。因此,在第三層處所示之該邊緣脈波訊號EP1和在第七層處所示之 該脈波訊號P10從L位準切換至H位準,並且在第八層處所示之該輸出脈波訊號P11從H位準切換至L位準。 At time t1, the input data signal Din1 shown at the top level is switched from the L level to the H level (i.e., the rising edge). Therefore, the edge pulse signal EP1 shown at the third layer is shown at the seventh layer. The pulse signal P10 is switched from the L level to the H level, and the output pulse signal P11 shown at the eighth layer is switched from the H level to the L level.

在時間點t2,在第二層處所示之該經反相之經延遲的資料訊號DDB從H位準切換至L位準。因此,在第三層處所示之該邊緣脈波訊號EP1和在第七層處所示之該脈波訊號P10從H位準切換至L位準,並且在第八層處所示之該輸出脈波訊號P11從L位準切換至H位準。 At time t2, the inverted, delayed data signal DDB shown at the second level switches from the H level to the L level. Therefore, the edge pulse signal EP1 shown at the third layer and the pulse signal P10 shown at the seventh layer are switched from the H level to the L level, and the same is shown at the eighth layer. The output pulse signal P11 is switched from the L level to the H level.

在時間點t3,在頂層處所示之該輸入資料訊號Din1從從H位準切換至L位準(亦即,下降邊緣),並且在第四層處所示之該經反相的資料訊號DB從L位準切換至H位準。因此,在第六層處所示之該邊緣脈波訊號EP2和在第七層處所示之該脈波訊號P10從L位準切換至H位準,並且在底層處所示之該輸出脈波訊號P12從H位準切換至L位準。 At time t3, the input data signal Din1 shown at the top layer is switched from the H level to the L level (ie, the falling edge), and the inverted data signal is shown at the fourth layer. The DB switches from the L level to the H level. Therefore, the edge pulse signal EP2 shown at the sixth layer and the pulse signal P10 shown at the seventh layer are switched from the L level to the H level, and the output pulse is shown at the bottom layer. The wave signal P12 is switched from the H level to the L level.

在時間點t4,在第五層處所示之該正常之經延遲的資料訊號DD從H位準切換至L位準。因此,在第六層處所示之該邊緣脈波訊號EP2和在第七層處所示之該脈波訊號P10從H位準切換至L位準,並且在底層處所示之該輸出脈波訊號P12從L位準切換至H位準。 At time t4, the normal delayed data signal DD shown at the fifth level is switched from the H level to the L level. Therefore, the edge pulse signal EP2 shown at the sixth layer and the pulse signal P10 shown at the seventh layer are switched from the H level to the L level, and the output pulse is shown at the bottom layer. The wave signal P12 is switched from the L level to the H level.

<接收器電路RX1的特定電路結構> <Specific Circuit Structure of Receiver Circuit RX1>

接著,參照圖5,將說明接收器電路RX1的特定電路結構,下面所示的電路結構僅僅是例子。圖5為顯示依據第一實施例之接收器電路RX1的特定電路結構之實例的 電路圖。如圖5所示,接收器電路RX1包含脈波偵測電路PDC、兩個脈波加寬電路PWC1,PWC2、序向邏輯電路SLC、和或(OR)閘OR2。 Next, referring to Fig. 5, a specific circuit configuration of the receiver circuit RX1 will be explained, and the circuit configuration shown below is merely an example. FIG. 5 is a view showing an example of a specific circuit configuration of the receiver circuit RX1 according to the first embodiment. Circuit diagram. As shown in FIG. 5, the receiver circuit RX1 includes a pulse wave detecting circuit PDC, two pulse widthening circuits PWC1, PWC2, a sequential logic circuit SLC, and an OR gate OR2.

下面,將說明連接關係。 Next, the connection relationship will be explained.

回應自發射器電路TX1所輸出之輸出脈波訊號P11,P12,跨於次要線圈L12之相對端上所產生的接收訊號VR被輸入至脈波偵測電路PDC,該脈波偵測電路PDC當偵測到正脈波時即輸出正脈波偵測訊號PPD1,並且當偵測到負脈波時即輸出負脈波偵測訊號NPD1。明確地說,當自該發射器電路TX1輸出該等輸出脈波訊號P11,P12時,不管哪一個訊號被輸出,一對的正脈波偵測訊號PPD1和負脈波偵測訊號NPD1被輸出。然而,在輸出脈波訊號P11與輸出脈波訊號P12之間,正脈波偵測訊號PPD1和負脈波偵測訊號NPD1的輸出順序係相反的。在本實施例中,當輸出脈波訊號P11被輸出時,正脈波偵測訊號PPD1先被輸出;並且當輸出脈波訊號P12被輸出時,負脈波偵測訊號NPD1先被輸出。 In response to the output pulse signals P11, P12 outputted from the transmitter circuit TX1, the received signal VR generated across the opposite ends of the secondary coil L12 is input to the pulse detection circuit PDC, which is detected by the pulse detection circuit PDC. The positive pulse detection signal PPD1 is output when a positive pulse is detected, and the negative pulse detection signal NPD1 is output when a negative pulse is detected. Specifically, when the output pulse signals P11, P12 are output from the transmitter circuit TX1, a pair of positive pulse detection signals PPD1 and negative pulse detection signals NPD1 are output regardless of which signal is output. . However, between the output pulse signal P11 and the output pulse signal P12, the output order of the positive pulse detection signal PPD1 and the negative pulse detection signal NPD1 is reversed. In this embodiment, when the output pulse signal P11 is output, the positive pulse detection signal PPD1 is first output; and when the output pulse signal P12 is output, the negative pulse detection signal NPD1 is first output.

該正脈波偵測訊號PPD1被輸入至脈波加寬電路PWC1,並且負脈波偵測訊號NPD1被輸入至脈波加寬電路PWC2。該等脈波加寬電路PWC1,PWC2分別使所接收到之正脈波偵測訊號PPD1和負脈波偵測訊號NPD1被加寬,並且輸出正脈波偵測訊號PPD2和負脈波偵測訊號NPD2。在此,該等脈波加寬電路PWC1,PWC2僅使正脈波偵測訊號PPD1和負脈波偵測訊號NPD1各自的下降邊 緣延遲,而沒有改變上升邊緣。因而,正脈波偵測訊號PPD2的H位準期間和負脈波偵測訊號NPD2的H位準期間彼此部分重疊。 The positive pulse wave detection signal PPD1 is input to the pulse widthening circuit PWC1, and the negative pulse wave detection signal NPD1 is input to the pulse widthening circuit PWC2. The pulse widthening circuits PWC1 and PWC2 respectively widen the received positive pulse detection signal PPD1 and the negative pulse detection signal NPD1, and output positive pulse detection signal PPD2 and negative pulse detection. Signal NPD2. Here, the pulse widthening circuits PWC1 and PWC2 only cause the falling edges of the positive pulse wave detection signal PPD1 and the negative pulse wave detection signal NPD1. The edge is delayed without changing the rising edge. Therefore, the H-level period of the positive pulse wave detecting signal PPD2 and the H level period of the negative pulse wave detecting signal NPD2 partially overlap each other.

正脈波偵測訊號PPD2和負脈波偵測訊號NPD2被輸入至序向邏輯電路SLC,該序向邏輯電路SLC認出所接收到之正脈波偵測訊號PPD2和負脈波偵測訊號NPD2的順序,並且輸出該輸出資料訊號Dout1。明確地說,當正脈波偵測訊號PPD2先被接收到時,該序向邏輯電路SLC輸出H位準作為該輸出資料訊號Dout1。另一方面,當負脈波偵測訊號NPD2先被接收到時,該序向邏輯電路SLC輸出L位準作為該輸出資料訊號Dout1。 The positive pulse detection signal PPD2 and the negative pulse detection signal NPD2 are input to the sequence logic circuit SLC, and the sequence logic circuit SLC recognizes the received positive pulse detection signal PPD2 and the negative pulse detection signal. The order of NPD2, and the output data signal Dout1 is output. Specifically, when the positive pulse detection signal PPD2 is first received, the sequence logic circuit SLC outputs the H level as the output data signal Dout1. On the other hand, when the negative pulse detection signal NPD2 is first received, the sequence logic circuit SLC outputs the L level as the output data signal Dout1.

再者,正脈波偵測訊號PPD2和負脈波偵測訊號NPD2被輸入至或(OR)閘OR2,該或(OR)閘OR2輸出脈波偵測訊號PD1。如同稍後將被說明於第三實施例中者,該脈波偵測訊號PD1可以被使用,例如,作為用來測量從當該脈波偵測訊號PD1被輸出實開始的時間期間之計時器的重設訊號。注意,如同可從圖5中看出,該或(OR)閘OR2在產生該輸出資料訊號Dout1方面並非必要的。 Furthermore, the positive pulse detection signal PPD2 and the negative pulse detection signal NPD2 are input to the OR gate OR2, and the OR gate OR2 outputs the pulse detection signal PD1. As will be described later in the third embodiment, the pulse wave detecting signal PD1 can be used, for example, as a timer for measuring the time period from when the pulse wave detecting signal PD1 is outputted. Reset signal. Note that as can be seen from FIG. 5, the OR gate OR2 is not necessary to generate the output data signal Dout1.

<接收器電路RX1的操作> <Operation of Receiver Circuit RX1>

接著,參照圖6,將說明接收器電路RX1的操作。圖6為顯示依據第一實施例之接收器電路RX1之操作的一個實例的時序圖,圖6顯示,按照從上面開始的順序,該發 射器電路TX1之輸入資料訊號Din1、自該發射器電路TX1輸出之輸出脈波訊號P11,P12、次要線圈L12之接收訊號VR、正脈波偵測訊號PPD1、負脈波偵測訊號NPD1、正脈波偵測訊號PPD2、負脈波偵測訊號NPD2、輸出資料訊號Dout1、和脈波偵測訊號PD1。 Next, referring to Fig. 6, the operation of the receiver circuit RX1 will be explained. Figure 6 is a timing chart showing an example of the operation of the receiver circuit RX1 according to the first embodiment, and Figure 6 shows the same in the order from the above. The input data signal Din1 of the emitter circuit TX1, the output pulse signal P11, P12 outputted from the transmitter circuit TX1, the reception signal VR of the secondary coil L12, the positive pulse detection signal PPD1, the negative pulse detection signal NPD1 The positive pulse detection signal PPD2, the negative pulse detection signal NPD2, the output data signal Dout1, and the pulse detection signal PD1.

在第四層處所示之次要線圈L12的接收訊號VR中,依據在第二層處所示之輸出脈波訊號P11和在第三層處所示之輸出脈波訊號P12,在圖表中向上投射的正脈波或在圖表中向下投射的負脈波被產生。明確地說,在輸出脈波訊號P11的下降邊緣和輸出脈波訊號P12的上升邊緣處,正脈波被產生。另一方面,在輸出脈波訊號P11的上升邊緣和輸出脈波訊號P12的下降邊緣處,負脈波被產生。 In the received signal VR of the secondary coil L12 shown at the fourth layer, in accordance with the output pulse signal P11 shown at the second layer and the output pulse signal P12 shown at the third layer, in the graph A positive pulse that is projected upward or a negative pulse that is projected downward in the chart is generated. Specifically, at the falling edge of the output pulse signal P11 and the rising edge of the output pulse signal P12, a positive pulse is generated. On the other hand, at the rising edge of the output pulse signal P11 and the falling edge of the output pulse signal P12, a negative pulse is generated.

在第五層處所示之正脈波偵測訊號PPD1被輸出於接收訊號VR中之正脈波被產生於其中的時序處。 The positive pulse wave detecting signal PPD1 shown at the fifth layer is outputted at the timing at which the positive pulse wave in the received signal VR is generated.

在第六層處所示之負脈波偵測訊號NPD1被輸出於接收訊號VR中之負脈波被產生於其中的時序處。 The negative pulse wave detection signal NPD1 shown at the sixth layer is outputted at the timing at which the negative pulse wave in the reception signal VR is generated.

在第七層處所示之正脈波偵測訊號PPD2為藉由使在脈波加寬電路PWC1處之正脈波偵測訊號PPD1的下降邊緣延遲所加寬的訊號。 The positive pulse wave detection signal PPD2 shown at the seventh layer is a signal widened by delaying the falling edge of the positive pulse wave detection signal PPD1 at the pulse widthening circuit PWC1.

在第八層處所示之負脈波偵測訊號NPD2為藉由使在脈波加寬電路PWC2處之負脈波偵測訊號NPD1的下降邊緣延遲所加寬的訊號。 The negative pulse wave detection signal NPD2 shown at the eighth layer is a signal widened by delaying the falling edge of the negative pulse wave detection signal NPD1 at the pulse widthening circuit PWC2.

在底層處所示之脈波偵測訊號PD1為每一次當該輸出脈波訊號P11和該輸出脈波訊號P12的其中一者被輸出 時所輸出的訊號。如上所述,該脈波偵測訊號PD1係產生自該正脈波偵測訊號PPD2和該負脈波偵測訊號NPD2。 The pulse wave detecting signal PD1 shown at the bottom layer is outputted every time one of the output pulse signal P11 and the output pulse signal P12 is output. The signal output at the time. As described above, the pulse detection signal PD1 is generated from the positive pulse detection signal PPD2 and the negative pulse detection signal NPD2.

接著,將說明時間序列。 Next, the time series will be explained.

在時間點t1,因為該輸出脈波訊號P11從H位準切換至L位準,所以正脈波被產生於接收訊號VR中。因此,在時間點t1,正脈波偵測訊號PPD1,PPD2從L位準切換至H位準。由於該正脈波偵測訊號PPD2從L位準切換至H位準的結果,H位準被輸出作為該輸出資料訊號Dout1。 At the time point t1, since the output pulse signal P11 is switched from the H level to the L level, the positive pulse is generated in the received signal VR. Therefore, at time t1, the positive pulse detection signals PPD1, PPD2 are switched from the L level to the H level. Since the positive pulse wave detection signal PPD2 is switched from the L level to the H level, the H level is output as the output data signal Dout1.

在時間點t2,因為該輸出脈波訊號P11從L位準切換至H位準,所以負脈波被產生於該接收訊號VR中。因此,在時間點t2,該等負脈波偵測訊號NPD1,NPD2從L位準切換至H位準。也就是說,在時間點t2,在該負脈波偵測訊號NPD2從L位準切換至H位準的同時,該正脈波偵測訊號PPD2仍然在H位準。因此,L位準並未被輸出作為該輸出資料訊號Dout1,而且H位準被保持著。也就是說,當該負脈波偵測訊號NPD2從L位準轉變至H位準且該正脈波偵測訊號PPD2為H位準時,該輸出資料訊號Dout1並不改變。 At time t2, since the output pulse signal P11 is switched from the L level to the H level, a negative pulse is generated in the received signal VR. Therefore, at time t2, the negative pulse detection signals NPD1, NPD2 are switched from the L level to the H level. That is to say, at the time point t2, while the negative pulse wave detection signal NPD2 is switched from the L level to the H level, the positive pulse detection signal PPD2 is still at the H level. Therefore, the L level is not output as the output data signal Dout1, and the H level is maintained. That is to say, when the negative pulse detection signal NPD2 changes from the L level to the H level and the positive pulse detection signal PPD2 is the H level, the output data signal Dout1 does not change.

在時間點t3,因為該輸出脈波訊號P12從H位準切換至L位準,所以負脈波被產生於該接收訊號VR中。因此,在時間點t3,該等負脈波偵測訊號NPD1,NPD2從L位準切換至H位準。由於該負脈波偵測訊號NPD2從L位 準轉變至H位準的結果,L位準被輸出作為該輸出資料訊號Dout1。 At time t3, since the output pulse signal P12 is switched from the H level to the L level, a negative pulse is generated in the received signal VR. Therefore, at time point t3, the negative pulse detection signals NPD1, NPD2 are switched from the L level to the H level. Since the negative pulse detection signal NPD2 is from the L position As a result of the quasi-transition to the H level, the L level is output as the output data signal Dout1.

在時間點t4,因為該輸出脈波訊號P12從L位準切換至H位準,所以正脈波被產生於該接收訊號VR中。因此,在時間點t4,該等正脈波偵測訊號PPD1,PPD2從L位準切換至H位準。也就是說,在時間點t4,在該正脈波偵測訊號PPD2從L位準切換至H位準的同時,該負脈波偵測訊號NPD2仍然在H位準。因此,H位準並未被輸出作為該輸出資料訊號Dout1,而且L位準被保持著。也就是說,當該正脈波偵測訊號PPD2從L位準轉變至H位準且該負脈波偵測訊號NPD2為H位準時,該輸出資料訊號Dout1並不改變。 At time t4, since the output pulse signal P12 is switched from the L level to the H level, a positive pulse is generated in the received signal VR. Therefore, at time t4, the positive pulse detection signals PPD1, PPD2 are switched from the L level to the H level. That is to say, at the time point t4, while the positive pulse wave detection signal PPD2 is switched from the L level to the H level, the negative pulse wave detection signal NPD2 is still at the H level. Therefore, the H level is not output as the output data signal Dout1, and the L level is maintained. That is to say, when the positive pulse detection signal PPD2 changes from the L level to the H level and the negative pulse detection signal NPD2 is the H level, the output data signal Dout1 does not change.

<依據比較實例之發射器電路TX10的電路結構> <Circuit Structure of Transmitter Circuit TX10 According to Comparative Example>

接著,參照圖7,將說明依據第一實施例之比較實例的發射器電路TX10。圖7為顯示依據第一實施例之比較實例之發射器電路TX10的特定電路結構的一個實例的電路圖。如圖7所示,該發射器電路TX10係不同於圖3中所示之依據第一實施例的發射器電路TX1(其中並不包含輸出停止電路10),其他結構係類似於圖3中所示之依據第一實施例的發射器電路TX1的結構。 Next, referring to Fig. 7, a transmitter circuit TX10 according to a comparative example of the first embodiment will be explained. Fig. 7 is a circuit diagram showing an example of a specific circuit configuration of the transmitter circuit TX10 according to the comparative example of the first embodiment. As shown in FIG. 7, the transmitter circuit TX10 is different from the transmitter circuit TX1 according to the first embodiment shown in FIG. 3 (which does not include the output stop circuit 10), and other structures are similar to those in FIG. The structure of the transmitter circuit TX1 according to the first embodiment is shown.

<依據比較實例之發射器電路TX10中之失效發生的機制> <Mechanism of failure occurrence in the transmitter circuit TX10 according to the comparative example>

接著,參照圖8,將說明在用依據比較實例的發射器 電路TX10之HBM測試時失效發生的機制。圖8為用來說明在用依據比較實例的發射器電路TX10之HBM測試時失效發生之機制的時序圖表,圖8顯示,按照從上面開始的順序,電源電壓VDD1、輸入資料訊號Din1、脈波訊號P10、輸出脈波訊號P1、和輸出脈波訊號P2。 Next, referring to FIG. 8, a transmitter according to a comparative example will be explained. The mechanism by which the failure occurs in the HBM test of circuit TX10. Fig. 8 is a timing chart for explaining the mechanism of failure occurrence when the HBM test is performed by the transmitter circuit TX10 according to the comparative example, and Fig. 8 shows that the power supply voltage VDD1, the input data signal Din1, and the pulse wave are in the order from the above. The signal P10, the output pulse signal P1, and the output pulse signal P2.

如同在頂層處所示,藉由施加浪湧電流,電源電壓VDD1持續地增加而超過指定電壓。在圖8所示的實例中,限幅器(未顯示出)被設置而使得電源電壓VDD1並未超過上限電壓。因此,在施加浪湧電流之後,過了一會兒,電源電壓VDD1變成固定在該上限電壓。 As shown at the top level, by applying a surge current, the power supply voltage VDD1 continuously increases beyond a specified voltage. In the example shown in FIG. 8, a limiter (not shown) is set such that the power supply voltage VDD1 does not exceed the upper limit voltage. Therefore, after the application of the inrush current, after a while, the power supply voltage VDD1 becomes fixed at the upper limit voltage.

如同在第二層處所示,輸入資料訊號Din1保持在L位準。 As shown at the second level, the input data signal Din1 remains at the L level.

如同在第三層處所示,依據電源電壓VDD1的增加,自脈波產生電路PGC輸出之脈波訊號P10中可能會產生錯誤的脈波。在圖8的實例中,產生兩個錯誤的脈波。類似於電源電壓VDD1的開啟模式,延遲電路DC1,DC2之輸出訊號和脈波產生電路PGC中之內部節點的訊號位準的不穩定狀態造成這樣錯誤的脈波。注意,圖8中所示之錯誤的脈波僅為一例,而且單一個錯誤的脈波會造成失效。 As shown at the third layer, depending on the increase of the power supply voltage VDD1, an erroneous pulse wave may be generated in the pulse signal P10 output from the pulse wave generating circuit PGC. In the example of Figure 8, two erroneous pulse waves are generated. Similar to the turn-on mode of the power supply voltage VDD1, the output signals of the delay circuits DC1, DC2 and the unstable state of the signal level of the internal nodes in the pulse wave generating circuit PGC cause such erroneous pulse waves. Note that the erroneous pulse wave shown in Figure 8 is only an example, and a single erroneous pulse wave will cause a failure.

結果是,在第五層處所示之輸出脈波訊號P2中產生錯誤的脈波。另一方面,在第四層處所示之輸出脈波訊號P1中沒有產生錯誤的脈波。也就是說,在該等輸出脈波訊號P1,P2之間發生可能的差異,而且大電流流經主要 線圈L11。結果是,諸如輸出驅動器OD1,OD2的擊穿或主要線圈L11的斷裂之失效可能會發生。 As a result, an erroneous pulse wave is generated in the output pulse signal P2 shown at the fifth layer. On the other hand, no erroneous pulse wave is generated in the output pulse signal P1 shown at the fourth layer. That is to say, a possible difference occurs between the output pulse signals P1, P2, and a large current flows through the main Coil L11. As a result, failure such as breakdown of the output drivers OD1, OD2 or breakage of the main coil L11 may occur.

<發射器電路TX1中之失效抑制的機制> <Mechanism of Failure Suppression in Transmitter Circuit TX1>

接著,參照圖9,將說明在圖3中所示之用依據本實施例的發射器電路TX1之HBM測試時抑制失效的機制。圖9為用來說明在用發射器電路TX1之HBM測試時抑制失效之機制的時序圖表。 Next, referring to Fig. 9, a mechanism for suppressing the failure in the HBM test using the transmitter circuit TX1 according to the present embodiment shown in Fig. 3 will be explained. Figure 9 is a timing chart for explaining the mechanism for suppressing failure when tested with the HBM of the transmitter circuit TX1.

圖9顯示,按照從上面開始的順序,電源電壓VDD1、輸入資料訊號Din1、脈波訊號P10、停止訊號STP、和輸出脈波訊號P11,P12。在頂層處所示之電源電壓VDD1、在第二層處所示之輸入資料訊號Din1、和在第三層處所示之脈波訊號P10與圖8中的那些元件相同。 9 shows that, in the order from the above, the power supply voltage VDD1, the input data signal Din1, the pulse signal P10, the stop signal STP, and the output pulse signals P11, P12. The power supply voltage VDD1 shown at the top layer, the input data signal Din1 shown at the second layer, and the pulse signal P10 shown at the third layer are the same as those of FIG.

如圖3所示,依據本實施例的發射器電路TX1包含輸出停止電路10,其使輸出脈波訊號P11,P12的輸出停止一段從當電源電壓VDD1被開啟時開始的預定周期。自輸出停止電路10輸出的停止訊號STP被輸入至輸出驅動器OD1,OD2的及(AND)閘AN1,AN2。因此,在停止訊號STP為L位準的周期期間,輸出脈波訊號P11,P12兩者被維持在H位準。換言之,在停止訊號STP為L位準的周期期間,輸出脈波訊號P11,P12的輸出被停止。 As shown in FIG. 3, the transmitter circuit TX1 according to the present embodiment includes an output stop circuit 10 that stops the output of the output pulse signals P11, P12 for a predetermined period from when the power supply voltage VDD1 is turned on. The stop signal STP outputted from the output stop circuit 10 is input to the AND gates AN1, AN2 of the output drivers OD1, OD2. Therefore, during the period in which the stop signal STP is at the L level, the output pulse signals P11, P12 are both maintained at the H level. In other words, during the period in which the stop signal STP is at the L level, the output of the pulse signal P11, P12 is stopped.

如在圖9中的第四層處所示,類似於電源電壓VDD1的開啟模式,停止訊號STP變成L位準一段從當電源電壓VDD1藉由HBM測試而開始增加時開始的預定周期。 As shown at the fourth layer in FIG. 9, similar to the turn-on mode of the power supply voltage VDD1, the stop signal STP becomes the L level for a predetermined period from when the power supply voltage VDD1 starts to increase by the HBM test.

因此,如在第五層處所示,輸出脈波訊號P11,P12的波型變成彼此相同,並且在輸出脈波訊號P11,P12中不會產生錯誤的脈波。也就是說,輸出脈波訊號P11,P12到達相同的電位,並且沒有電流流經主要線圈L11。結果是,諸如輸出驅動器OD1,OD2的擊穿或主要線圈L11的斷裂之失效可以被抑制。 Therefore, as shown at the fifth layer, the waveforms of the output pulse signals P11, P12 become identical to each other, and no erroneous pulse waves are generated in the output pulse signals P11, P12. That is, the output pulse signals P11, P12 reach the same potential, and no current flows through the main coil L11. As a result, failure such as breakdown of the output drivers OD1, OD2 or breakage of the main coil L11 can be suppressed.

如同已敘述於上,依據第一實施例的發射器電路TX1包含輸出停止電路10,其使輸出脈波訊號P11及輸出脈波訊號P12的輸出停止一段從當電源電壓VDD1被開啟時開始的預定周期。因此,與電源電壓VDD1之開啟相關聯的錯誤脈波可以被抑制而被被輸出。在靜電放電損壞測試時電源電壓VDD1的增加為一物理現象,其類似於電源電壓VDD1的開啟。因此,有了依據第一實施例的發射器電路TX1,在靜電放電損壞測試時也使,輸出停止電路10啟動,並且歸因於與電源電壓VDD1之增加相關聯的錯誤脈波之任何失效可以被抑制。 As described above, the transmitter circuit TX1 according to the first embodiment includes an output stop circuit 10 that stops the output of the output pulse signal P11 and the output pulse signal P12 from a predetermined time when the power supply voltage VDD1 is turned on. cycle. Therefore, an erroneous pulse wave associated with the turn-on of the power supply voltage VDD1 can be suppressed and output. The increase in the power supply voltage VDD1 during the electrostatic discharge damage test is a physical phenomenon similar to the turn-on of the power supply voltage VDD1. Therefore, with the transmitter circuit TX1 according to the first embodiment, the output stop circuit 10 is also activated at the time of the electrostatic discharge damage test, and any failure due to the erroneous pulse wave associated with the increase of the power supply voltage VDD1 may be suppressed.

<輸出停止電路10的特定電路結構> <Specific Circuit Structure of Output Stop Circuit 10>

接著,參照圖10,將說明依據第一實施例之輸出停止電路10的特定電路結構,下面所示之電路結構僅為實例。圖10為顯示依據第一實施例之輸出停止電路10之特定電路結構的一個實例之電路圖。如圖10所示,輸出停止電路10包含電阻器元件R1、電容器元件C1、及反相器IN21。 Next, referring to Fig. 10, a specific circuit configuration of the output stop circuit 10 according to the first embodiment will be explained, and the circuit configuration shown below is merely an example. Fig. 10 is a circuit diagram showing an example of a specific circuit configuration of the output stop circuit 10 according to the first embodiment. As shown in FIG. 10, the output stop circuit 10 includes a resistor element R1, a capacitor element C1, and an inverter IN21.

反相器IN21的輸入N1經由電容器元件C1而被連接至電源。此外,反相器IN21的輸入N1經由電阻器元件R1而被接地(連接至地)。也就是說,反相器IN21的輸入N1為介於電容器元件C1與電阻器元件R1之間的連接節點。然後,自反相器IN21輸出停止訊號STP。 The input N1 of the inverter IN21 is connected to the power source via the capacitor element C1. Further, the input N1 of the inverter IN21 is grounded (connected to ground) via the resistor element R1. That is, the input N1 of the inverter IN21 is a connection node between the capacitor element C1 and the resistor element R1. Then, the stop signal STP is output from the inverter IN21.

注意,停止訊號STP也可以藉由將電容器元件C1接地並且將電阻器元件R1連接至電源來予以產生。在此情況中,另一反相器IN21應該被添加至反相器IN21的輸出。 Note that the stop signal STP can also be generated by grounding the capacitor element C1 and connecting the resistor element R1 to the power source. In this case, another inverter IN21 should be added to the output of the inverter IN21.

<輸出停止電路10的操作> <Operation of Output Stop Circuit 10>

接著,參照圖11,將說明當電源電壓被開啟時依據第一實施例之輸出停止電路10的操作。圖11為用來說明當電源電壓被開啟時依據第一實施例之輸出停止電路10之操作的時序圖表。圖11顯示,按照從上面開始的順序,電源電壓VDD1、反相器IN21之輸入N1的電壓、及停止訊號STP。 Next, referring to Fig. 11, the operation of the output stop circuit 10 according to the first embodiment when the power source voltage is turned on will be explained. Fig. 11 is a timing chart for explaining the operation of the output stop circuit 10 according to the first embodiment when the power supply voltage is turned on. Fig. 11 shows the power supply voltage VDD1, the voltage of the input N1 of the inverter IN21, and the stop signal STP in the order from the top.

如同在頂層處所示,當電源電壓VDD1藉由被開啟而從地電壓GND增加至指定電壓VDD,如同在第二層處所示,經由電容器元件C1而被連接至電源的反相器IN21之輸入N1的電壓也隨著該指定電壓VDD而增加。因此,如同在第三層處所示,在電源電壓VDD1的開啟之後,為反相器IN21之輸出的停止訊號STP就變成L位準。 As shown at the top layer, when the power supply voltage VDD1 is increased from the ground voltage GND to the specified voltage VDD by being turned on, as shown at the second layer, the inverter IN21 is connected to the power supply via the capacitor element C1. The voltage at input N1 also increases with the specified voltage VDD. Therefore, as shown at the third layer, after the power supply voltage VDD1 is turned on, the stop signal STP which is the output of the inverter IN21 becomes the L level.

如同在第二層處所示,反相器IN21之輸入N1的電 壓藉由經由電阻器元件R1而被放電而逐漸降低。當反相器IN21之輸入N1的電壓到達反相器IN21之邏輯臨界電壓Vth時,反相器IN21的輸出從L位準轉變至H位準。據此,如同在第三層處所示,停止訊號STP從L位準轉變至H位準。在停止訊號STP為L位準的周期期間,輸出脈波訊號P11,P12的輸出被停止。 As shown at the second layer, the input of the inverter IN21 is N1. The pressure is gradually lowered by being discharged through the resistor element R1. When the voltage of the input N1 of the inverter IN21 reaches the logic threshold voltage Vth of the inverter IN21, the output of the inverter IN21 changes from the L level to the H level. Accordingly, as shown at the third layer, the stop signal STP transitions from the L level to the H level. During the period in which the stop signal STP is at the L level, the output of the pulse signal P11, P12 is stopped.

藉由電阻器元件R1和電容器元件C1的時間常數來決定停止周期。 The stop period is determined by the time constant of the resistor element R1 and the capacitor element C1.

<發射器電路TX1的變型> <Modification of Transmitter Circuit TX1>

圖12及13為顯示依據第一實施例之發射器電路TX1的變型之電路圖。 12 and 13 are circuit diagrams showing a modification of the transmitter circuit TX1 according to the first embodiment.

在圖3中所示的發射器電路TX1中,停止訊號STP被輸入至分別建構輸出驅動器OD1,OD2的及(AND)閘AN1,AN2。 In the transmitter circuit TX1 shown in FIG. 3, the stop signal STP is input to the AND gates AN1, AN2 which respectively construct the output drivers OD1, OD2.

另一方面,在圖12中所示的發射器電路TX1中,及(AND)閘AN21,AN22分別建構輸出驅動器OD1,OD2之反相器IN1,IN2的前級,並且停止訊號STP被輸入至及(AND)閘AN21,AN22。 On the other hand, in the transmitter circuit TX1 shown in FIG. 12, the AND gates AN21, AN22 respectively construct the front stages of the inverters IN1, IN2 of the output drivers OD1, OD2, and the stop signal STP is input to AND (AND) gate AN21, AN22.

此外,在圖13中所示的發射器電路TX1中,停止訊號STP被輸入至分別建構上升邊緣偵測電路RED1,RED2的及(AND)閘AN11,AN12。 Further, in the transmitter circuit TX1 shown in FIG. 13, the stop signal STP is input to the AND gates AN11, AN12 which respectively construct the rising edge detection circuits RED1, RED2.

有了圖12及13所示的電路結構,類似於圖3所示的電路結構,輸出脈波訊號P11和輸出脈波訊號P12的輸 出也可被停止一段從當電源電壓VDD1被開啟時開始的預定周期。 With the circuit structure shown in FIGS. 12 and 13, similar to the circuit structure shown in FIG. 3, the output pulse signal P11 and the output pulse signal P12 are output. The output can also be stopped for a predetermined period from when the power supply voltage VDD1 is turned on.

注意,有了圖13所示的電路結構,在從脈波產生電路PGC中所輸出之脈波訊號P10其本身之任何錯誤脈波的產生被抑制。 Note that with the circuit configuration shown in Fig. 13, the generation of any erroneous pulse wave of the pulse signal P10 outputted from the pulse wave generating circuit PGC is suppressed.

<脈波產生電路PGC的變型> <Modification of Pulse Wave Generation Circuit PGC>

圖14為顯示依據第一實施例之脈波產生電路PGC的變型之電路圖。在圖14中所示的脈波產生電路PGC中,延遲電路DC1,DC2經由電容器元件C11,C21而分別被連接至電源。此外,反相器IN11,IN12的輸出分別經由電容器元件C12,C22而被連接至接地。 Fig. 14 is a circuit diagram showing a modification of the pulse wave generating circuit PGC according to the first embodiment. In the pulse wave generating circuit PGC shown in FIG. 14, the delay circuits DC1, DC2 are respectively connected to the power source via the capacitor elements C11, C21. Further, the outputs of the inverters IN11, IN12 are connected to the ground via capacitor elements C12, C22, respectively.

當在電源電壓被開啟時輸入資料訊號Din1為L位準時,及(AND)閘AN11的輸出變成L位準。 When the input signal signal Din1 is at the L level when the power supply voltage is turned on, the output of the AND gate AN11 becomes the L level.

在此情況中,及(AND)閘AN12的其中一個輸入為經反相的資料訊號DB,且因此H位準被取得。然而,延遲電路DC2的輸出經由電容器元件C21而被連接至電源,並且反相器IN12的輸出經由電容器元件C22而被接地。因此,為及(AND)閘AN12的另一個輸入之反相器IN12的輸出變成恆定為L位準。因而,及(AND)閘AN12的輸出也變成L位準。 In this case, one of the inputs of the AND gate AN12 is the inverted data signal DB, and thus the H level is acquired. However, the output of the delay circuit DC2 is connected to the power source via the capacitor element C21, and the output of the inverter IN12 is grounded via the capacitor element C22. Therefore, the output of the inverter IN12, which is the other input of the AND gate AN12, becomes constant at the L level. Therefore, the output of the AND gate AN12 also becomes the L level.

當在電源電壓被開啟時輸入資料訊號Din1為H位準時,及(AND)閘AN11的其中一個輸入變成H位準。然而,延遲電路DC1的輸出經由電容器元件C11而被連接 至電源,並且反相器IN11的輸出經由電容器元件C12而被接地。因此,為及(AND)閘AN11的另一個輸入之反相器IN11的輸出變成穩定為L位準。因而,及(AND)閘AN11的輸出也變成L位準。 When the input signal signal Din1 is H level when the power supply voltage is turned on, one of the inputs of the AND gate AN11 becomes the H level. However, the output of the delay circuit DC1 is connected via the capacitor element C11 To the power source, and the output of the inverter IN11 is grounded via the capacitor element C12. Therefore, the output of the inverter IN11 which is the other input of the AND gate AN11 becomes stable to the L level. Therefore, the output of the AND gate AN11 also becomes the L level.

在此情況中,及(AND)閘AN12的其中一個輸入為經反相的資料訊號DB,且因此為L位準,並且及(AND)閘AN12的輸出也變成L位準。 In this case, one of the inputs of the AND gate AN12 is the inverted data signal DB, and thus the L level, and the output of the AND gate AN12 also becomes the L level.

以此方式,有了圖14所示的脈波產生電路PGC,在脈波訊號P10其本身之任何錯誤脈波的產生被抑制。因此,藉由使用這樣的脈波產生電路PGC結合輸出停止電路10,歸因於在靜電放電損壞測試時所產生之錯誤脈波的失效能夠被更有效地抑制。 In this way, with the pulse wave generating circuit PGC shown in Fig. 14, the generation of any erroneous pulse wave itself in the pulse wave signal P10 is suppressed. Therefore, by using the pulse wave generating circuit PGC in combination with the output stop circuit 10, the failure of the erroneous pulse wave generated at the time of the electrostatic discharge damage test can be more effectively suppressed.

注意,在藉由多個反相器來建構延遲電路DC1,DC2的情況中,個別反相器的輸出經由電容器元件而被交替地連接至電源及接地係較佳的。 Note that in the case where the delay circuits DC1, DC2 are constructed by a plurality of inverters, it is preferable that the outputs of the individual inverters are alternately connected to the power source and the ground via the capacitor elements.

(第二實施例) (Second embodiment) <輸出停止電路20的結構> <Structure of Output Stop Circuit 20>

接著,參照圖15,將說明依據第二實施例之發射器電路TX1。圖15為顯示依據第二實施例之輸出停止電路20的特定電路結構的一個實例之電路圖。如圖15所示,輸出停止電路20包含NMOS電晶體NM1、PMOS電晶體PM1、電容器元件C1,C2、及反相器IN21。除了輸出停止電路20之外,發射器電路TX1的結構係類似於依據第 一實施例之發射器電路TX1的結構。 Next, referring to Fig. 15, a transmitter circuit TX1 according to the second embodiment will be explained. Fig. 15 is a circuit diagram showing an example of a specific circuit configuration of the output stop circuit 20 according to the second embodiment. As shown in FIG. 15, the output stop circuit 20 includes an NMOS transistor NM1, a PMOS transistor PM1, capacitor elements C1, C2, and an inverter IN21. In addition to the output stop circuit 20, the structure of the transmitter circuit TX1 is similar to the The structure of the transmitter circuit TX1 of an embodiment.

在輸出停止電路20中,使用NMOS電晶體NM1的關斷電阻來代替圖10所示之輸出停止電路10中的電阻器元件R1。其源極被接地之NMOS電晶體NM1的汲極經由電容器元件C1而被連接至電源,NMOS電晶體NM1的汲極被連接至反相器IN21的輸入N1。 In the output stop circuit 20, the turn-off resistance of the NMOS transistor NM1 is used instead of the resistor element R1 in the output stop circuit 10 shown in FIG. The drain of the NMOS transistor NM1 whose source is grounded is connected to the power supply via the capacitor element C1, and the drain of the NMOS transistor NM1 is connected to the input N1 of the inverter IN21.

另一方面,其源極被連接至電源之PMOS電晶體PM1的汲極經由電容器元件C2而被接地。也就是說,PMOS電晶體PM1與電容器元件C2之間的連接關係和NMOS電晶體NM1與電容器元件C1之間的連接關係在極性上倒反,NMOS電晶體NM1的閘極N2係連接至PMOS電晶體PM1的汲極。此外,PMOS電晶體PM1的閘極係連接至NMOS電晶體NM1的汲極(亦即,反相器IN21的輸入N1)。 On the other hand, the drain of the PMOS transistor PM1 whose source is connected to the power source is grounded via the capacitor element C2. That is, the connection relationship between the PMOS transistor PM1 and the capacitor element C2 and the connection relationship between the NMOS transistor NM1 and the capacitor element C1 are reversed in polarity, and the gate N2 of the NMOS transistor NM1 is connected to the PMOS battery. The drain of the crystal PM1. Further, the gate of the PMOS transistor PM1 is connected to the drain of the NMOS transistor NM1 (that is, the input N1 of the inverter IN21).

然後,從反相器IN21輸出停止訊號STP。 Then, the stop signal STP is output from the inverter IN21.

<輸出停止電路20的操作> <Operation of Output Stop Circuit 20>

接著,參照圖16,將說明當電源電壓被開啟時依據第二實施例之輸出停止電路20的操作。圖16為用來說明當電源電壓被開啟時依據第二實施例之輸出停止電路20之操作的時序圖表。圖16顯示,按照從上面開始的順序,電源電壓VDD1、反相器IN21之輸入N1(亦即,PMOS電晶體PM1的閘極)和NMOS電晶體NM1的閘極N2的電壓、及停止訊號STP。 Next, referring to Fig. 16, the operation of the output stop circuit 20 according to the second embodiment when the power source voltage is turned on will be explained. Fig. 16 is a timing chart for explaining the operation of the output stop circuit 20 according to the second embodiment when the power supply voltage is turned on. 16 shows that, in the order from the top, the power supply voltage VDD1, the input N1 of the inverter IN21 (that is, the gate of the PMOS transistor PM1), and the voltage of the gate N2 of the NMOS transistor NM1, and the stop signal STP are shown. .

如同在頂層處所示,當電源電壓VDD1依據被開啟的電源電壓VDD1而從地電壓GND增加至指定電壓VDD時,如同由在第二層處之實線所表示者,經由電容器元件C1而被連接至電源的反相器IN21之輸入N1的電壓也增加至該指定電壓VDD。因此,如同在第三層處所示,在電源電壓VDD1的開啟時,為反相器IN21之輸出的停止訊號STP變成L位準。 As shown at the top layer, when the power supply voltage VDD1 is increased from the ground voltage GND to the specified voltage VDD in accordance with the turned-on power supply voltage VDD1, as indicated by the solid line at the second layer, via the capacitor element C1 The voltage of the input N1 of the inverter IN21 connected to the power supply is also increased to the specified voltage VDD. Therefore, as shown at the third layer, when the power supply voltage VDD1 is turned on, the stop signal STP which is the output of the inverter IN21 becomes the L level.

當電源電壓VDD1被開啟時,因為反相器IN21之輸入N1(亦即,PMOS電晶體PM1的閘極)的電壓為H位準,所以PMOS電晶體PM1係處於關斷狀態。此外,因為NMOS電晶體NM1之閘極N2的電壓為L位準,所以NMOS電晶體NM1也處於關斷狀態。 When the power supply voltage VDD1 is turned on, since the voltage of the input N1 of the inverter IN21 (that is, the gate of the PMOS transistor PM1) is at the H level, the PMOS transistor PM1 is in an off state. Further, since the voltage of the gate N2 of the NMOS transistor NM1 is at the L level, the NMOS transistor NM1 is also in an off state.

如同由在第二層處之實線所表示者,反相器IN21之輸入N1的電壓藉由NMOS電晶體NM1的關斷狀態漏洩電流(off-leakage current)而逐漸降低。另一方面,如同由在第二層處之實虛線(dot-and-dash line)所表示者,NMOS電晶體NM1之閘極N2的電壓藉由PMOS電晶體PM1的關斷狀態漏洩電流而逐漸增加。 As indicated by the solid line at the second layer, the voltage of the input N1 of the inverter IN21 is gradually lowered by the off-leakage current of the NMOS transistor NM1. On the other hand, as indicated by the dot-and-dash line at the second layer, the voltage of the gate N2 of the NMOS transistor NM1 is gradually decreased by the off state of the PMOS transistor PM1. increase.

當反相器IN21之輸入N1(亦即,PMOS電晶體PM1的閘極)或NMOS電晶體NM1之閘極N2的電壓到達臨界電壓時,NMOS電晶體NM1及PMOS電晶體PM1進入開啟狀態。然後,反相器IN21之輸入N1電壓被鎖存於L位準,並且NMOS電晶體NM1之閘極N2的電壓被鎖存於H位準。 When the voltage of the input N1 of the inverter IN21 (that is, the gate of the PMOS transistor PM1) or the gate N2 of the NMOS transistor NM1 reaches the threshold voltage, the NMOS transistor NM1 and the PMOS transistor PM1 enter an on state. Then, the input N1 voltage of the inverter IN21 is latched at the L level, and the voltage of the gate N2 of the NMOS transistor NM1 is latched at the H level.

據此,如同在第三層處所示,停止訊號STP從L位準轉變至H位準。在停止訊號STP為L位準的周期期間,輸出脈波訊號P11,P12的輸出被停止。 Accordingly, as shown at the third layer, the stop signal STP transitions from the L level to the H level. During the period in which the stop signal STP is at the L level, the output of the pulse signal P11, P12 is stopped.

類似於依據第一實施例之發射器電路TX1,依據第二實施例之發射器電路TX1包含輸出停止電路20,其使輸出脈波訊號P11和輸出脈波訊號P12的輸出停止一段從當電源電壓VDD1被開啟時開始的預定周期。因此,與電源電壓VDD1相關聯之錯誤訊號的輸出可以被抑制。在靜電放電損壞測試時該電源電壓VDD1上的增加為類似於該電源電壓VDD1的開啟之物理現象。因而,在靜電放電損壞測試時也,該輸出停止電路20啟動,並且歸因於與該電源電壓VDD1上的增加相關聯之錯誤脈波的任何失效能夠被抑制。 Similar to the transmitter circuit TX1 according to the first embodiment, the transmitter circuit TX1 according to the second embodiment includes an output stop circuit 20 that stops the output of the output pulse signal P11 and the output pulse signal P12 from a power supply voltage. A predetermined period of time when VDD1 is turned on. Therefore, the output of the error signal associated with the power supply voltage VDD1 can be suppressed. The increase in the power supply voltage VDD1 at the electrostatic discharge damage test is a physical phenomenon similar to the turn-on of the power supply voltage VDD1. Thus, at the time of the electrostatic discharge damage test, the output stop circuit 20 is also activated, and any failure due to the erroneous pulse wave associated with the increase in the power supply voltage VDD1 can be suppressed.

在此同時,有了依據第一實施例之輸出停止電路10,藉由電阻器元件R1和電容器元件C1的時間常數來決定停止周期。因此,為了確保幾μs的停止周期,該電阻器元件R1和該電容器元件C1的尺寸必須大,並且要求晶片面積的增加。 At the same time, with the output stop circuit 10 according to the first embodiment, the stop period is determined by the time constant of the resistor element R1 and the capacitor element C1. Therefore, in order to secure a stop period of several μs, the size of the resistor element R1 and the capacitor element C1 must be large, and an increase in wafer area is required.

另一方面,有了依據第二實施例之輸出停止電路20,使用NMOS電晶體NM1來代替電阻器元件R1。因此,電阻值能夠隨著NMOS電晶體NM1的尺寸變小而增加,並且該電容器元件C1的尺寸也可被縮減。同樣地,PMOS電晶體PM1和電容器元件C2的尺寸也可被縮減。因而,相較於依據第一實施例之輸出停止電路10,在元 件的數目增加的同時,晶片面積整體上可被縮減。 On the other hand, with the output stop circuit 20 according to the second embodiment, the NMOS transistor NM1 is used instead of the resistor element R1. Therefore, the resistance value can be increased as the size of the NMOS transistor NM1 becomes smaller, and the size of the capacitor element C1 can also be reduced. Likewise, the sizes of the PMOS transistor PM1 and the capacitor element C2 can also be reduced. Thus, compared to the output stop circuit 10 according to the first embodiment, the element While the number of pieces is increased, the wafer area as a whole can be reduced.

此外,有了依據第二實施例之輸出停止電路20,在輸出停止被解除之後,可以使停止訊號STP藉由NMOS電晶體NM1和PMOS電晶體PM1的開啟電阻而保持在H位準。因而,正常操作時的抗噪性(noise immunity)改善。 Further, with the output stop circuit 20 according to the second embodiment, after the output stop is released, the stop signal STP can be maintained at the H level by the turn-on resistance of the NMOS transistor NM1 and the PMOS transistor PM1. Therefore, the noise immunity during normal operation is improved.

(第三實施例) (Third embodiment) <輸出停止電路30的結構> <Structure of Output Stop Circuit 30>

接著,參照圖17,將說明依據第三實施例之發射器電路TX1。圖17為顯示依據第三實施例之輸出停止電路30之特定電路結構的一個實例之電路圖。如圖17所示,輸出停止電路30包含非及(NAND)閘ND、電容器元件C1,C2、反相器IN21,IN22、及計數器CTR1。除了輸出停止電路30之外,發射器電路TX1的結構係類似於依據第一實施例之發射器電路TX1的結構。 Next, referring to Fig. 17, a transmitter circuit TX1 according to the third embodiment will be explained. Fig. 17 is a circuit diagram showing an example of a specific circuit configuration of the output stop circuit 30 according to the third embodiment. As shown in FIG. 17, the output stop circuit 30 includes a NAND gate ND, capacitor elements C1, C2, inverters IN21, IN22, and a counter CTR1. The structure of the transmitter circuit TX1 is similar to that of the transmitter circuit TX1 according to the first embodiment except for the output stop circuit 30.

反相器IN22的輸入N2經由電容器元件C2而被接地,反相器IN22的輸出經由電容器元件C1而被連接至電源,反相器IN22的輸出被連接至反相器IN21的輸入N1。 The input N2 of the inverter IN22 is grounded via the capacitor element C2, the output of the inverter IN22 is connected to the power supply via the capacitor element C1, and the output of the inverter IN22 is connected to the input N1 of the inverter IN21.

此外,反相器IN22的輸出(亦即,反相器IN21的輸入N1)被輸入至非及(NAND)閘ND,非及(NAND)閘ND的輸出係連接至反相器IN22的輸入N2。也就是說,藉由反相器IN22和非及(NAND)閘ND,鎖存器電 路被建構。 Further, the output of the inverter IN22 (that is, the input N1 of the inverter IN21) is input to the NAND gate ND, and the output of the NAND gate ND is connected to the input N2 of the inverter IN22. . That is, the latch is electrically powered by the inverter IN22 and the NAND gate ND. The road was constructed.

換句話說,鎖存器電路的儲存節點N1經由電容器元件C1而被連接至電源,並且儲存節點N2經由電容器元件C2而被接地,鎖存器電路的儲存節點N1,N2分別保持彼此為倒反的電壓。 In other words, the storage node N1 of the latch circuit is connected to the power supply via the capacitor element C1, and the storage node N2 is grounded via the capacitor element C2, and the storage nodes N1, N2 of the latch circuit respectively remain inverted Voltage.

輸出自計數器CTR1之規律的(regular)請求訊號RT12的反相訊號被輸入至非及(NAND)閘ND。 The inverted signal of the regular request signal RT12 output from the counter CTR1 is input to the NAND gate ND.

然後,從反相器IN21輸出停止訊號STP。 Then, the stop signal STP is output from the inverter IN21.

注意,規律的請求訊號RT12,舉例來說,為高位準有效的(H-active)脈波訊號,其不規律地被輸出於電源電壓VDD1被開啟之後。然而,輸出自計數器CTR1之訊號可為H-active脈波訊號,其在當電源電壓VDD1被開啟時開始的預定周期的流逝之後只被輸出一次,或者可以是從L位準轉變至H位準並且維持在H位準的致能(enable)訊號。此外,雖然致能訊號的邏輯係類似於停止訊號STP,但其可非有意地,舉例來說,藉由溫度的改變而改變至L位準。如同稍後所更詳細敘述者,在這樣的情況中也,停止訊號STP的值藉由鎖存器電路而被穩定地保持在H位準。 Note that the regular request signal RT12, for example, is a high-level (H-active) pulse wave signal that is irregularly output after the power supply voltage VDD1 is turned on. However, the signal output from the counter CTR1 may be an H-active pulse signal which is output only once after a predetermined period of time when the power supply voltage VDD1 is turned on, or may be changed from the L level to the H level. And maintain the enable signal at the H level. Moreover, although the logic of the enable signal is similar to the stop signal STP, it may be unintentionally, for example, changed to the L level by a change in temperature. As will be described in more detail later, in such a case, also the value of the stop signal STP is stably maintained at the H level by the latch circuit.

<輸出停止電路30的操作> <Operation of Output Stop Circuit 30>

接著,參照圖18,將說明當電源電壓被開啟時依據第三實施例之輸出停止電路30的操作。圖18為用來說明當電源電壓被開啟時依據第三實施例之輸出停止電路30 之操作的時序圖表。圖18顯示,按照從上面開始的順序,電源電壓VDD1、儲存節點N1,N2的電壓、規律的請求訊號RT12、及停止訊號STP。 Next, referring to Fig. 18, the operation of the output stop circuit 30 according to the third embodiment when the power source voltage is turned on will be explained. Figure 18 is a diagram for explaining the output stop circuit 30 according to the third embodiment when the power supply voltage is turned on. Timing chart of the operation. Fig. 18 shows the power supply voltage VDD1, the voltages of the storage nodes N1, N2, the regular request signal RT12, and the stop signal STP in the order from the above.

如同在頂層處所示,當電源電壓VDD1依據電源電壓VDD1的開啟而從地電壓GND增加至指定電壓VDD時,如同由在第二層處之實線所表示者,經由電容器元件C1而被連接至電源之儲存節點N1的電壓也增加至該指定電壓VDD。因此,如同在第三層處所示,當電源電壓VDD1的開啟時,為反相器IN21之輸出的停止訊號STP變成L位準。 As shown at the top layer, when the power supply voltage VDD1 is increased from the ground voltage GND to the specified voltage VDD in accordance with the turn-on of the power supply voltage VDD1, as indicated by the solid line at the second layer, is connected via the capacitor element C1. The voltage to the storage node N1 of the power supply also increases to the specified voltage VDD. Therefore, as shown at the third layer, when the power supply voltage VDD1 is turned on, the stop signal STP which is the output of the inverter IN21 becomes the L level.

在電源電壓VDD1被開啟之後,如同由在第二層處之實線所表示者;由反相器IN22和非及(NAND)閘ND所建構之鎖存器電路之儲存節點N1的電壓係保持在H位準。另一方面,如同由在第二層處之實虛線所表示者,鎖存器電路之儲存節點N2的電壓係保持在L位準。 After the power supply voltage VDD1 is turned on, as indicated by the solid line at the second layer; the voltage of the storage node N1 of the latch circuit constructed by the inverter IN22 and the NAND gate ND is maintained. At the H level. On the other hand, as indicated by the solid dotted line at the second layer, the voltage of the storage node N2 of the latch circuit is maintained at the L level.

如同在第三層處所示,在當電源電壓VDD1被開啟時開始的預定周期的流逝之後,當規律的請求訊號RT12暫時變成H位準時,儲存節點N2的電壓轉變至H位準。因此,儲存節點N1的電壓轉變至L位準。然後,藉由反相器IN22和非及(NAND)閘ND,儲存節點N1的電壓被鎖存在L位準且儲存節點N2的電壓被鎖存在H位準。不管規律的請求訊號RT12的訊號位準為何,此狀態被維持著。 As shown at the third layer, after the lapse of a predetermined period which starts when the power supply voltage VDD1 is turned on, when the regular request signal RT12 temporarily becomes the H level, the voltage of the storage node N2 shifts to the H level. Therefore, the voltage of the storage node N1 shifts to the L level. Then, by the inverter IN22 and the NAND gate ND, the voltage of the storage node N1 is latched at the L level and the voltage of the storage node N2 is latched at the H level. This state is maintained regardless of the signal level of the regular request signal RT12.

據此,如同在第四層處所示,停止訊號STP從L位 準轉變至H位準。在停止訊號STP為L位準的周期期間,輸出脈波訊號P11,P12的輸出被停止。當停止訊號STP切換至H位準時,輸出脈波訊號P11,P12的輸出停止被解除。 Accordingly, as shown at the fourth layer, the stop signal STP is from the L position. Quasi-transition to H level. During the period in which the stop signal STP is at the L level, the output of the pulse signal P11, P12 is stopped. When the stop signal STP is switched to the H level, the output pulse signal P11, the output of P12 is stopped.

依此方式,由反相器IN22和非及(NAND)閘ND所建構之鎖存器電路感測電源電壓的啟動,並且使停止訊號STP維持在L位準。然後,鎖存器電路依據輸出自為計時器之計數器CTR1之規律的請求訊號RT12而使停止訊號STP切換至H位準。 In this manner, the latch circuit constructed by the inverter IN22 and the NAND gate ND senses the startup of the power supply voltage and maintains the stop signal STP at the L level. Then, the latch circuit switches the stop signal STP to the H level in accordance with the request signal RT12 outputted from the counter CTR1 which is the timer.

類似於依據第一實施例之發射器電路TX1,依據第三實施例之發射器電路TX1包含輸出停止電路30,其使輸出脈波訊號P11和輸出脈波訊號P12的輸出停止一段從當電源電壓VDD1被開啟時開始的預定周期。因此,與電源電壓VDD1相關聯之錯誤訊號的輸出可以被抑制。在靜電放電損壞測試時該電源電壓VDD1上的增加為類似於該電源電壓VDD1的開啟之物理現象。因而,在靜電放電損壞測試時也,該輸出停止電路30啟動,並且歸因於與該電源電壓VDD1上的增加相關聯之錯誤脈波的任何失效能夠被抑制。 Similar to the transmitter circuit TX1 according to the first embodiment, the transmitter circuit TX1 according to the third embodiment includes an output stop circuit 30 that stops the output of the output pulse signal P11 and the output pulse signal P12 from a power supply voltage. A predetermined period of time when VDD1 is turned on. Therefore, the output of the error signal associated with the power supply voltage VDD1 can be suppressed. The increase in the power supply voltage VDD1 at the electrostatic discharge damage test is a physical phenomenon similar to the turn-on of the power supply voltage VDD1. Thus, at the time of the electrostatic discharge damage test, the output stop circuit 30 is also activated, and any failure due to the erroneous pulse wave associated with the increase in the power supply voltage VDD1 can be suppressed.

有了依據第三實施例之輸出停止電路30,因為停止周期係由為計時器之計數器CTR1來予以決定,所以停止周期上的變動可以被減小。此外,因為電容器元件C1,C2並未有助於停止周期,所以可達成尺寸上的縮減。舉例來說,尺寸可藉由使用電晶體的閘極容量做為電容器元件 C1,C2而被進一步縮減。此外,並不需要重新設置計時器且既有的元件也可被使用。因而,晶片面積整體上可被縮減。 With the output stop circuit 30 according to the third embodiment, since the stop period is determined by the counter CTR1 which is the timer, the fluctuation in the stop period can be reduced. In addition, since the capacitor elements C1, C2 do not contribute to the stop period, dimensional reduction can be achieved. For example, the size can be used as a capacitor element by using the gate capacity of the transistor. C1, C2 is further reduced. In addition, there is no need to reset the timer and existing components can be used as well. Thus, the wafer area as a whole can be reduced.

此外,因為停止訊號STP在輸出停止解除之後藉由反相器IN22和非及(NAND)閘ND而被鎖存在H位準,所以在正常操作上展現出優異的抗噪性。 Further, since the stop signal STP is latched at the H level by the inverter IN22 and the NAND gate ND after the output stop is released, excellent noise resistance is exhibited in normal operation.

<半導體裝置系統2的結構> <Structure of Semiconductor Device System 2>

接著,參照圖19,將說明使用依據第三實施例之發射器電路TX1的半導體裝置系統2。圖19為用來顯示依據第三實施例之半導體裝置系統2的方塊圖。依據第三實施例之半導體裝置系統2包含兩個發射器電路TX1,TX2、主要線圈L11,L21、次要線圈L12,L22、兩個接收器電路RX1,RX2、兩個振盪器電路OSC1,OSC2、兩個計數器CTR1,CTR2、兩個計時器TM1,TM2、兩個欠電壓鎖定(UVLO)電路UVLO1,UVLO2、兩個及(AND)閘A1,A2、及六個或(OR)閘O1至O6。 Next, referring to Fig. 19, a semiconductor device system 2 using the transmitter circuit TX1 according to the third embodiment will be explained. Fig. 19 is a block diagram for showing the semiconductor device system 2 according to the third embodiment. The semiconductor device system 2 according to the third embodiment includes two transmitter circuits TX1, TX2, main coils L11, L21, secondary coils L12, L22, two receiver circuits RX1, RX2, two oscillator circuits OSC1, OSC2 Two counters CTR1, CTR2, two timers TM1, TM2, two undervoltage lockout (UVLO) circuits UVLO1, UVLO2, two AND gates A1, A2, and six or (OR) gates O1 to O6.

在此,發射器電路TX1,TX2和已參照圖3予以說明之依據第一實施例的發射器電路TX1被類似地建構。在此,發射器電路TX1,TX2各自包含圖17中所示之依據第三實施例的輸出停止電路30。此外,接收器電路RX1,RX2和已參照圖5予以說明之依據第一實施例的接收器電路RX1被類似地建構。依據第三實施例之半導體裝置系統2為應用於功率電晶體之控制系統之微隔離器的實例。 Here, the transmitter circuits TX1, TX2 and the transmitter circuit TX1 according to the first embodiment, which have been explained with reference to Fig. 3, are similarly constructed. Here, the transmitter circuits TX1, TX2 each include the output stop circuit 30 according to the third embodiment shown in FIG. Further, the receiver circuits RX1, RX2 and the receiver circuit RX1 according to the first embodiment which have been explained with reference to FIG. 5 are similarly constructed. The semiconductor device system 2 according to the third embodiment is an example of a micro isolator applied to a control system of a power transistor.

首先,將說明訊號的實質結構和流動。 First, the physical structure and flow of the signal will be explained.

輸出自微電腦MCU的控制訊號CNT1被輸入至發射器電路TX1作為輸入資料訊號Din1。此外,輸出自UVLO電路UVLO1之非規律的(irregular)請求訊號RT11和輸出自計數器CTR1之規律的請求訊號RT12也被輸入至該發射器電路TX1。 The control signal CNT1 outputted from the microcomputer MCU is input to the transmitter circuit TX1 as the input data signal Din1. Further, an irregular request signal RT11 output from the UVLO circuit UVLO1 and a request signal RT12 output from the counter CTR1 are also input to the transmitter circuit TX1.

輸出自發射器電路TX1之輸出脈波訊號P11,P12經由主要線圈L11和次要線圈L12而被發送至接收器電路RX1,該接收器電路RX1重新建構來自所接收到之訊號中的資料訊號,並且輸出作為輸出資料訊號Dout1,該輸出資料訊號Dout1被輸入至功率電晶體驅動器PTD作為控制訊號CNT2。 The output pulse signal P11, P12 outputted from the transmitter circuit TX1 is sent to the receiver circuit RX1 via the primary coil L11 and the secondary coil L12, and the receiver circuit RX1 reconstructs the data signal from the received signal. And output as the output data signal Dout1, the output data signal Dout1 is input to the power transistor driver PTD as the control signal CNT2.

也就是說,輸出自微電腦MCU的控制訊號CNT1經由發射器電路TX1和接收器電路RX1而被輸入至功率電晶體驅動器PTD作為控制訊號CNT2。 That is, the control signal CNT1 outputted from the microcomputer MCU is input to the power transistor driver PTD as the control signal CNT2 via the transmitter circuit TX1 and the receiver circuit RX1.

另一方面,輸出自錯誤偵測電路EDC之錯誤偵測訊號ED1被輸入至發射器電路TX2作為輸入資料訊號Din2。此外,輸出自UVLO電路UVLO2之非規律的請求訊號RT21和輸出自計數器CTR2之規律的請求訊號RT22也被輸入至該發射器電路TX2。 On the other hand, the error detection signal ED1 outputted from the error detection circuit EDC is input to the transmitter circuit TX2 as the input data signal Din2. Further, an irregular request signal RT21 output from the UVLO circuit UVLO2 and a request signal RT22 output from the counter CTR2 are also input to the transmitter circuit TX2.

輸出自發射器電路TX2之輸出脈波訊號P21,P22經由主要線圈L21和次要線圈L22而被發送至接收器電路RX2,該接收器電路RX2重新建構來自所接收到之訊號中的資料訊號,並且輸出作為輸出資料訊號Dout2,該輸出 資料訊號Dout2被輸入至微電腦MCU作為錯誤偵測訊號ED2。 The output pulse signal P21, P22 outputted from the transmitter circuit TX2 is sent to the receiver circuit RX2 via the primary coil L21 and the secondary coil L22, and the receiver circuit RX2 reconstructs the data signal from the received signal. And output as the output data signal Dout2, the output The data signal Dout2 is input to the microcomputer MCU as the error detection signal ED2.

也就是說,輸出自錯誤偵測電路EDC的錯誤偵測訊號ED1經由發射器電路TX2和接收器電路RX2而被輸入至微電腦MCU作為錯誤偵測訊號ED2。 That is to say, the error detection signal ED1 outputted from the error detection circuit EDC is input to the microcomputer MCU as the error detection signal ED2 via the transmitter circuit TX2 and the receiver circuit RX2.

<半導體裝置系統2的細節> <Details of Semiconductor Device System 2>

下面,將說明詳細的結構和訊號的流動。 In the following, the detailed structure and signal flow will be explained.

輸出自微電腦MCU的控制訊號CNT1經由及(AND)閘A1而被輸入至發射器電路TX1作為輸入資料訊號Din1。在此,輸出自UVLO電路UVLO1之非規律的請求訊號RT11的反相訊號也輸入至及(AND)閘A1。 The control signal CNT1 outputted from the microcomputer MCU is input to the transmitter circuit TX1 via the AND gate A1 as the input data signal Din1. Here, the inverted signal of the irregular request signal RT11 outputted from the UVLO circuit UVLO1 is also input to the AND gate A1.

在正常狀態中,非規律的請求訊號RT11為L位準,並且在電源電壓減小的不正常狀態中變成H位準。也就是說,在非規律的請求訊號RT11為L位準之正常狀態中,輸出自微電腦MCU的控制訊號CNT1被輸入至發射器電路TX1作為輸入資料訊號Din1。另一方面,在非規律的請求訊號RT11為H位準之不正常狀態中,藉由及(AND)閘A1,輸出自微電腦MCU之控制訊號CNT1的輸入至發射器電路TX1被阻斷。 In the normal state, the irregular request signal RT11 is at the L level, and becomes an H level in an abnormal state in which the power supply voltage is reduced. That is to say, in the normal state in which the irregular request signal RT11 is in the L level, the control signal CNT1 outputted from the microcomputer MCU is input to the transmitter circuit TX1 as the input data signal Din1. On the other hand, in the abnormal state in which the irregular request signal RT11 is in the H level, the input of the control signal CNT1 output from the microcomputer MCU to the transmitter circuit TX1 is blocked by the AND gate A1.

此外,非規律的請求訊號RT11也被輸入至發射器電路TX1。在其中之非規律的請求訊號RT11從L位準轉變至H位準或從H位準轉變至L位準的時序時,輸入資料訊號Din1(控制訊號CNT1)的值從發射器電路TX1被重 新發送至接收器電路RX1。也就是說,不僅當電源電壓減小時,而且也在其中之電源電壓藉由被開啟而增加並且轉變至正常值的時序時,發送側上之資料訊號的值及接收側上之資料訊號的值被同步化。 In addition, an irregular request signal RT11 is also input to the transmitter circuit TX1. When the irregular request signal RT11 transitions from the L level to the H level or from the H level to the L level, the value of the input data signal Din1 (control signal CNT1) is emphasized from the transmitter circuit TX1. Newly sent to the receiver circuit RX1. That is to say, the value of the data signal on the transmitting side and the value of the data signal on the receiving side are not only when the power supply voltage is reduced, but also when the power supply voltage is increased by turning on and transitioning to the normal value timing. Is synchronized.

輸出自計數器CTR1之規律的請求訊號RT12被輸入至發射器電路TX1,該規律的請求訊號RT12為,舉例來說,在輸出自振盪器電路OSC1之時脈訊號的每10個計數時變成H位準的訊號。例如,當自振盪器電路OSC1輸出10MHz的時脈訊號時,計數器CTR1產生1μs-周期(1MHz)之規律的請求訊號RT12。藉由規律的請求訊號RT12,即使當資料值沒有任何改變時,該資料值被重新發送於每10個計數。因此,即使當由接收器電路RX1所重新建構的資料值藉由雜訊等等而被反轉時,正確的值可以被快速地重新獲得(recover)。 The request signal RT12 outputted from the counter CTR1 is input to the transmitter circuit TX1, and the regular request signal RT12 is, for example, changed to H bit every 10 counts of the pulse signal output from the oscillator circuit OSC1. Quasi-signal. For example, when a 10 MHz clock signal is output from the oscillator circuit OSC1, the counter CTR1 generates a regular request signal RT12 of 1 μs-cycle (1 MHz). With the regular request signal RT12, even if there is no change in the data value, the data value is resent every 10 counts. Therefore, even when the data value reconstructed by the receiver circuit RX1 is inverted by noise or the like, the correct value can be quickly recovered.

此外,如上所述,輸出自計數器CTR1之規律的請求訊號RT12依據圖17中所示的第三實施例而被輸入至輸出停止電路30的非及(NAND)閘ND。 Further, as described above, the request signal RT12 output from the counter CTR1 is input to the NAND gate ND of the output stop circuit 30 in accordance with the third embodiment shown in FIG.

計數器CTR1藉由脈波訊號P10或輸出自UVLO電路UVLO1之非規律的請求訊號RT11而被重設。也就是說,計數器CTR1藉由輸出自或(OR)閘O1的重設訊號RST1而被重設,而或(OR)閘O1的輸入為脈波訊號P10和非規律的請求訊號RT11。 The counter CTR1 is reset by the pulse signal P10 or the irregular request signal RT11 outputted from the UVLO circuit UVLO1. That is, the counter CTR1 is reset by outputting the reset signal RST1 from the OR gate O1, and the input of the OR gate O1 is the pulse signal P10 and the irregular request signal RT11.

發射器電路TX1根據輸入資料訊號Din1而輸出輸出脈波訊號P11,P12,輸出脈波訊號P11,P12經由主要線圈 L11和次要線圈L12而被輸入至接收器電路RX1,接收器電路RX1重新建構該資料訊號,並且輸出作為輸出資料訊號Dout1。注意,細節係如同在第一實施例所述者。 The transmitter circuit TX1 outputs an output pulse signal P11, P12 according to the input data signal Din1, and outputs a pulse signal P11, and the P12 passes through the main coil. The L11 and the secondary coil L12 are input to the receiver circuit RX1, and the receiver circuit RX1 reconstructs the data signal and outputs it as the output data signal Dout1. Note that the details are as described in the first embodiment.

輸出資料訊號Dout1經由及(AND)閘A2而被輸入至功率電晶體驅動器PTD。在此,輸出自UVLO電路UVLO2之非規律的請求訊號RT21的反相訊號被輸入至及(AND)閘A2。此外,輸出自計時器TM1之逾時(timeout)訊號TO1的反相訊號被輸入至及(AND)閘A2。 The output data signal Dout1 is input to the power transistor driver PTD via the AND gate A2. Here, the inverted signal of the irregular request signal RT21 outputted from the UVLO circuit UVLO2 is input to the AND gate A2. Further, the inverted signal of the timeout signal TO1 outputted from the timer TM1 is input to the AND gate A2.

非規律的請求訊號RT21在正常狀態中為L位準,並且當電源電壓減小時變成H位準。此外,逾時訊號TO1在正常狀態中亦為L位準,並且當在預定周期(例如,40個計數)的流逝之後並未偵測到脈波偵測位訊號PD1時變成H位準。也就是說,在非規律的請求訊號RT21和逾時訊號TO1為L位準的正常狀態中,輸出資料訊號Dout1被輸入至功率電晶體驅動器PTD。另一方面,當非規律的請求訊號RT21或逾時訊號TO1切換至H位準時,藉由及(AND)閘A2,輸入至功率電晶體驅動器PTD的輸出資料訊號Dout1的輸入被阻斷。此外,逾時訊號TO1重設該接收器電路RX1。注意,在正常操作模式中,在來自發射器電路TX1之每10個計數時,藉由規律的請求訊號RT12而重新發送該資料值,並且從該接收器電路RX1輸出脈波偵測位訊號PD1。因此,計時器TM1將不會到達40個計數。另一方面,在其中發射器電路TX1停止等的 情況中,逾時訊號TO1被輸出。藉由規律的請求訊號RT12,在該發射器電路TX1的操作中的異常能夠被偵測到。 The irregular request signal RT21 is in the L state in the normal state, and becomes the H level when the power supply voltage is decreased. Further, the time-out signal TO1 is also in the L-level in the normal state, and becomes the H-level when the pulse-detection bit signal PD1 is not detected after the elapse of a predetermined period (for example, 40 counts). That is to say, in the normal state in which the irregular request signal RT21 and the timeout signal TO1 are in the L level, the output data signal Dout1 is input to the power transistor driver PTD. On the other hand, when the irregular request signal RT21 or the timeout signal TO1 is switched to the H level, the input of the output data signal Dout1 input to the power transistor driver PTD is blocked by the AND gate A2. In addition, the timeout signal TO1 resets the receiver circuit RX1. Note that in the normal operation mode, the data value is retransmitted by the regular request signal RT12 every 10 counts from the transmitter circuit TX1, and the pulse detection bit signal PD1 is output from the receiver circuit RX1. . Therefore, the timer TM1 will not reach 40 counts. On the other hand, in which the transmitter circuit TX1 is stopped, etc. In the case, the timeout signal TO1 is output. An abnormality in the operation of the transmitter circuit TX1 can be detected by the regular request signal RT12.

在此,計時器TM1計算輸出自振盪器電路OSC2之時脈訊號的數目。此外,藉由輸出自該接收器電路RX1的脈波偵測位訊號PD1或輸出自UVLO電路UVLO2之非規律的請求訊號RT21來重設計時器TM1。也就是說,藉由輸出自輸出自或(OR)閘O2的重設訊號RST2來重設計時器TM1,而或(OR)閘O2的輸入為脈波偵測訊號PD1和非規律的請求訊號RT21。 Here, the timer TM1 counts the number of clock signals output from the oscillator circuit OSC2. In addition, the timer TM1 is reset by the pulse detection bit signal PD1 outputted from the receiver circuit RX1 or the irregular request signal RT21 outputted from the UVLO circuit UVLO2. That is to say, the timer TM1 is reset by outputting the reset signal RST2 output from the OR gate O2, and the input of the OR gate O2 is the pulse detection signal PD1 and the irregular request signal. RT21.

另一方面,輸出自錯誤偵測電路EDC之錯誤偵測訊號ED1經由或(OR)閘O5而被輸入至發射器電路TX2作為輸入資料訊號Din2。錯誤偵測訊號ED1在正常狀態中為L位準,並且在其中偵測到任何錯誤的異常狀態中變成H位準。在此,輸出自UVLO電路UVLO2之非規律的請求訊號RT21也被輸入至該或(OR)閘O5,該非規律的請求訊號RT21在正常狀態中為L位準,並且在其中電源電壓減小的異常狀態中變成H位準。也就是說,該非規律的請求訊號RT21也做為錯誤訊號而和該錯誤偵測訊號ED1一起被輸入至發射器電路TX2。 On the other hand, the error detection signal ED1 outputted from the error detection circuit EDC is input to the transmitter circuit TX2 via the OR gate O5 as the input data signal Din2. The error detection signal ED1 is in the L state in the normal state, and becomes the H level in the abnormal state in which any error is detected. Here, the irregular request signal RT21 outputted from the UVLO circuit UVLO2 is also input to the OR gate O5, which is the L level in the normal state, and in which the power supply voltage is reduced. In the abnormal state, it becomes the H level. That is to say, the irregular request signal RT21 is also input as an error signal to the transmitter circuit TX2 together with the error detection signal ED1.

此外,該非規律的請求訊號RT21也被輸入至發射器電路TX2。在其中之該非規律的請求訊號RT21從L位準轉變至H位準或從H位準轉變至L位準的時序時,輸入資料訊號Din2的值從發射器電路TX2被重新發送至接收 器電路RX2。也就是說,不僅當電源電壓減小時,而且也在其中之電源電壓藉由被開啟而增加並且轉變至正常值的時序時,發送側上之資料訊號的值及接收側上之資料訊號的值被同步化。 Furthermore, the irregular request signal RT21 is also input to the transmitter circuit TX2. When the irregular request signal RT21 transitions from the L level to the H level or from the H level to the L level, the value of the input data signal Din2 is retransmitted from the transmitter circuit TX2 to the reception. Circuit RX2. That is to say, the value of the data signal on the transmitting side and the value of the data signal on the receiving side are not only when the power supply voltage is reduced, but also when the power supply voltage is increased by turning on and transitioning to the normal value timing. Is synchronized.

此外,輸出自計數器CTR2之規律的請求訊號RT22被輸入至發射器電路TX2,該規律的請求訊號RT22為,舉例來說,在輸出自振盪器電路OSC2之時脈訊號的每10個計數時變成H位準的訊號。藉由規律的請求訊號RT22,即使當資料值沒有任何改變時,該資料值被重新發送於每10個計數。因此,即使當由接收器電路RX2所重新建構的資料值藉由雜訊等等而被反轉時,正確的值可以被快速地重新獲得。 Further, the request signal RT22 outputted from the counter CTR2 is input to the transmitter circuit TX2, and the regular request signal RT22 is, for example, changed every 10 counts of the pulse signal output from the oscillator circuit OSC2. H-level signal. With the regular request signal RT22, the data value is resent every 10 counts even when there is no change in the data value. Therefore, even when the data value reconstructed by the receiver circuit RX2 is inverted by noise or the like, the correct value can be quickly retrieved.

此外,計數器CTR2藉由脈波訊號P20或輸出自UVLO電路UVLO2之非規律的請求訊號RT21而被重設。也就是說,計數器CTR2藉由輸出自或(OR)閘O3的重設訊號RST3而被重設,而或(OR)閘O3的輸入為脈波訊號P20和非規律的請求訊號RT21。 In addition, the counter CTR2 is reset by the pulse signal P20 or the irregular request signal RT21 outputted from the UVLO circuit UVLO2. That is, the counter CTR2 is reset by outputting the reset signal RST3 from the OR gate O3, and the input of the OR gate O3 is the pulse signal P20 and the irregular request signal RT21.

發射器電路TX2根據輸入資料訊號Din2而輸出輸出脈波訊號P21,P22,該等輸出脈波訊號P21,P22經由主要線圈L21和次要線圈L22而被輸入至接收器電路RX2,接收器電路RX2重新建構該資料訊號,並且輸出作為該輸出資料訊號Dout2。 The transmitter circuit TX2 outputs the output pulse signals P21, P22 according to the input data signal Din2, and the output pulse signals P21, P22 are input to the receiver circuit RX2 via the primary coil L21 and the secondary coil L22, and the receiver circuit RX2 The data signal is reconstructed and output as the output data signal Dout2.

輸出資料訊號Dout2經由或(OR)閘O6而被輸入至微電腦MCU。在此,輸出自UVLO電路UVLO1之非規律 的請求訊號RT11被輸入至或(OR)閘O6。此外,輸出自計時器TM2之逾時訊號TO2被輸入至或(OR)閘O6。也就是說,該非規律的請求訊號RT11和逾時訊號TO2做為錯誤偵測訊號ED2而與該輸出資料訊號Dout2一起被輸入至該微電腦MCU。 The output data signal Dout2 is input to the microcomputer MCU via the OR gate O6. Here, the output is irregular from the UVLO circuit UVLO1 The request signal RT11 is input to the OR gate O6. Further, the timeout signal TO2 outputted from the timer TM2 is input to the OR gate O6. That is to say, the irregular request signal RT11 and the timeout signal TO2 are input to the microcomputer MCU together with the output data signal Dout2 as the error detection signal ED2.

在此,逾時訊號TO2在正常狀態中為L位準,並且當在預定周期(例如,40個計數)的流逝之後並未偵測到脈波偵測位訊號PD2時變成H位準。此外,逾時訊號TO2重設該接收器電路RX2。注意,在正常操作模式中,在來自發射器電路TX2之每10個計數時,藉由規律的請求訊號RT22而重新發送該資料值,並且從該接收器電路RX2輸出脈波偵測位訊號PD2。因此,計時器TM2將不會到達40個計數。另一方面,在其中發射器電路TX2停止等的情況中,逾時訊號TO2被輸出。藉由規律的請求訊號RT22,在該發射器電路TX2的操作中的異常能夠被偵測到。 Here, the time-out signal TO2 is the L level in the normal state, and becomes the H level when the pulse wave detection bit signal PD2 is not detected after the elapse of a predetermined period (for example, 40 counts). In addition, the timeout signal TO2 resets the receiver circuit RX2. Note that in the normal operation mode, the data value is retransmitted by the regular request signal RT22 every 10 counts from the transmitter circuit TX2, and the pulse wave detection bit signal PD2 is output from the receiver circuit RX2. . Therefore, the timer TM2 will not reach 40 counts. On the other hand, in the case where the transmitter circuit TX2 is stopped or the like, the time-out signal TO2 is output. By the regular request signal RT22, an abnormality in the operation of the transmitter circuit TX2 can be detected.

在此,計時器TM2計算輸出自振盪器電路OSC1之時脈訊號的數目。此外,藉由輸出自該接收器電路RX2的脈波偵測位訊號PD2或輸出自UVLO電路UVLO1之非規律的請求訊號RT11來重設計時器TM2。也就是說,藉由輸出自輸出自或(OR)閘O4的重設訊號RST4來重設計時器TM2,而或(OR)閘O4的輸入為脈波偵測訊號PD2和非規律的請求訊號RT11。 Here, the timer TM2 counts the number of clock signals output from the oscillator circuit OSC1. In addition, the timer TM2 is reset by the pulse detection bit signal PD2 outputted from the receiver circuit RX2 or the irregular request signal RT11 outputted from the UVLO circuit UVLO1. That is, the timer TM2 is reset by outputting the reset signal RST4 outputted from the OR gate O4, and the input of the OR gate O4 is the pulse wave detection signal PD2 and the irregular request signal. RT11.

<半導體裝置系統2的示範應用> <Model Application of Semiconductor Device System 2>

半導體裝置系統2的控制目標為,舉例來說,由絕緣閘雙載子電晶體(IGBT)所代表之功率電晶體。在此情況中,半導體裝置系統2依據由接收器電路RX1所再生之輸出資料訊號Dout1來控制功率電晶體的開啟/關斷(ON/OFF),以控制電源與負載之間的導通狀態。 The control target of the semiconductor device system 2 is, for example, a power transistor represented by an insulated gate bipolar transistor (IGBT). In this case, the semiconductor device system 2 controls the ON/OFF of the power transistor in accordance with the output data signal Dout1 reproduced by the receiver circuit RX1 to control the conduction state between the power source and the load.

明確地說,依據第三實施例之半導體裝置系統2被應用至,舉例來說,驅動如圖20所示之三相馬達(負載)的反相器裝置。圖20為顯示應用該半導體裝置系統2之反相器裝置的示圖。圖20中所示之反相器裝置在其高側和低側各自包含三個功率電晶體驅動器PTD及三個錯誤偵測電路EDC,其分別對應於u-相、v-相、及w-相(總共六個)。 Specifically, the semiconductor device system 2 according to the third embodiment is applied to, for example, an inverter device that drives a three-phase motor (load) as shown in FIG. Figure 20 is a diagram showing an inverter device to which the semiconductor device system 2 is applied. The inverter device shown in FIG. 20 includes three power transistor driver PTDs and three error detecting circuits EDC on its high side and low side, respectively corresponding to u-phase, v-phase, and w-, respectively. Phase (six in total).

輸出自微電腦MCU的控制訊號(例如,UH,UL)經由該等發射器電路TX1、線圈、及該等接收器電路RX1而被發送至該等功率電晶體驅動器PTD,並且為控制目標之IGBTs的開啟/關斷(ON/OFF)被控制。另一方面,由該等錯誤偵測電路EDC所偵測到之錯誤訊號經由該等發射器電路TX2、該等線圈、及該等接收器電路RX2而被發送至該微電腦MCU。 Control signals (eg, UH, UL) output from the microcomputer MCU are transmitted to the power transistor drivers PTD via the transmitter circuits TX1, coils, and the receiver circuits RX1, and are control target IGBTs On/off (ON/OFF) is controlled. On the other hand, the error signals detected by the error detection circuits EDC are transmitted to the microcomputer MCU via the transmitter circuits TX2, the coils, and the receiver circuits RX2.

在此,圖21為顯示應用該半導體裝置系統2之反相器裝置之操作的時序圖。如同圖21之圖表中所示,輸出自微電腦MCU的控制訊號(例如,UH,UL)為PWM控制訊號,並且以類比方式來控制流經馬達之電流(例如, IU)。在此,控制訊號(例如,UH,UL)對應於該輸入資料訊號Din1。 Here, FIG. 21 is a timing chart showing the operation of the inverter device to which the semiconductor device system 2 is applied. As shown in the graph of FIG. 21, the control signals (for example, UH, UL) output from the microcomputer MCU are PWM control signals, and the current flowing through the motor is controlled analogously (for example, IU). Here, the control signal (for example, UH, UL) corresponds to the input data signal Din1.

(其他實施例) (Other embodiments)

半導體裝置的安裝實例並不限於圖2中所示者。下面,參照圖22及23來說明半導體裝置的其他代表性安裝實例。圖22為在電容器被使用作為絕緣耦合元件的情況中之半導體裝置的安裝實例,圖23顯示其中GMR(巨磁阻)元件被使用作為絕緣耦合元件的情況中之半導體裝置的安裝實例。 The mounting example of the semiconductor device is not limited to that shown in FIG. 2. Next, another representative mounting example of the semiconductor device will be described with reference to Figs. 22 and 23. Fig. 22 is a mounting example of a semiconductor device in the case where a capacitor is used as an insulating coupling element, and Fig. 23 shows an example of mounting of a semiconductor device in a case where a GMR (Giant Magnetoresistive) element is used as an insulating coupling element.

在圖22中,用作為圖2中所示的安裝實例中之絕緣耦合元件的線圈被電容器所取代。更明確地說,主要線圈L11被電容器的其中一個電極PL1所取代,並且次要線圈L12被電容器的另一個電極PL2所取代。 In Fig. 22, a coil used as an insulating coupling element in the mounting example shown in Fig. 2 is replaced by a capacitor. More specifically, the primary coil L11 is replaced by one of the electrodes PL1 of the capacitor, and the secondary coil L12 is replaced by the other electrode PL2 of the capacitor.

在圖23中,用作為圖2中所示的安裝實例中之絕緣耦合元件的線圈被GMR(巨磁阻)元件所取代。更明確地說,在主要線圈L11保持不變的同時,次要線圈L12被GMR(巨磁阻)元件R12所取代。在此安裝實例中也,連接至該發射器電路TX1之該等輸出的墊塊(pad)被形成於半導體晶片CHP1處,並且分別連接至主要線圈L11之相反末端的墊塊被形成於半導體晶片CHP2處。然後,該發射器電路TX1經由該等墊塊和接合線BW而連接至形成在半導體晶片CHP2處的該主要線圈L11。 In Fig. 23, a coil used as an insulating coupling element in the mounting example shown in Fig. 2 is replaced by a GMR (Giant Magnetoresistive) element. More specifically, while the main coil L11 remains unchanged, the secondary coil L12 is replaced by the GMR (Giant Magnetoresistive) element R12. Also in this mounting example, pads of the outputs connected to the transmitter circuit TX1 are formed at the semiconductor wafer CHP1, and pads respectively connected to opposite ends of the main coil L11 are formed on the semiconductor wafer. CHP2. Then, the transmitter circuit TX1 is connected to the main coil L11 formed at the semiconductor wafer CHP2 via the pads and the bonding wires BW.

如上所述,該等絕緣耦合元件的類型和配置並不被特 別限定。注意,雖然已經說明該等絕緣耦合元件被形成於半導體晶片處,但是該等絕緣耦合元件也可以被形成為外部附接組件。 As mentioned above, the types and configurations of the insulating coupling elements are not specifically Do not limit. Note that although it has been explained that the insulating coupling elements are formed at the semiconductor wafer, the insulating coupling elements may also be formed as external attachment components.

上面,雖然由本案發明人所做成的發明已經根據該等實施例來加以明確地說明,但是本發明並不限定於上面所述的該等實施例,而且不用說,在不違離本發明之精神的範圍之內可做成各式各樣的改變。 In the above, although the invention made by the inventor of the present invention has been explicitly explained based on the embodiments, the present invention is not limited to the above-described embodiments, and needless to say, without departing from the invention. A wide variety of changes can be made within the scope of the spirit.

舉例來說,隨著依據該等實施例的半導體裝置,半導體基板、半導體層、擴散層(擴散區域)等等的導電類型(p-型或n-型)可以被反轉。因此,在n-型和p-型的其中一個導電類型為第一導電類型且另一個導電類型為第二導電類型的情況中,第一導電類型可為p-型,而且第二導電類型可為n-型。相反地,第一導電類型可為n-型,而且第二導電類型可為p-型。 For example, with the semiconductor device according to the embodiments, the conductivity type (p-type or n-type) of the semiconductor substrate, the semiconductor layer, the diffusion layer (diffusion region), and the like can be reversed. Therefore, in the case where one of the n-type and p-type conductivity types is the first conductivity type and the other conductivity type is the second conductivity type, the first conductivity type may be a p-type, and the second conductivity type may Is n-type. Conversely, the first conductivity type can be n-type and the second conductivity type can be p-type.

第一至第三和其他實施例可視習於此技藝者所想要的來予以組合。 The first through third and other embodiments can be combined as desired by those skilled in the art.

雖然本發明已經按照幾個實施例來加以說明,但是習於此技藝者可認知本發明在附加之申請專利範圍的精神和範疇之內用各式各樣的變型來予以施行,而且本發明並不限定於上面所述的該等實例。 While the present invention has been described in terms of several embodiments, it is understood that the invention may be practiced in various modifications and variations within the spirit and scope of the appended claims. These examples are not limited to those described above.

此外,申請專利範圍的範疇並不限定於上面所述的該等實施例。 Moreover, the scope of the patent application is not limited to the embodiments described above.

再者,注意到,申請人想要包含所有請求項元件的等同之物,甚至連稍後在審查過程期間所做之任何申請專利 範圍的修正亦被包含在內。 Furthermore, it is noted that the applicant wants to include equivalents of all the requested component elements, even any patents that were later made during the review process. Range corrections are also included.

TX1‧‧‧發射器電路 TX1‧‧‧transmitter circuit

L11‧‧‧主要線圈 L11‧‧‧ main coil

L12‧‧‧次要線圈 L12‧‧‧ secondary coil

RX1‧‧‧接收器電路 RX1‧‧‧ Receiver Circuit

CHP1、CHP2‧‧‧半導體晶片 CHP1, CHP2‧‧‧ semiconductor wafer

VDD1、VDD2‧‧‧電源電壓 VDD1, VDD2‧‧‧ power supply voltage

GND1、GND2‧‧‧接地電壓 GND1, GND2‧‧‧ Grounding voltage

1‧‧‧半導體裝置 1‧‧‧Semiconductor device

PGC‧‧‧脈波產生電路 PGC‧‧‧ pulse wave generating circuit

OD1、OD2‧‧‧輸出驅動器 OD1, OD2‧‧‧ output driver

10‧‧‧輸出停止電路 10‧‧‧Output stop circuit

P10‧‧‧脈波訊號 P10‧‧‧ pulse wave signal

P11、P12‧‧‧輸出脈波訊號 P11, P12‧‧‧ output pulse wave signal

Din1‧‧‧輸入資料訊號 Din1‧‧‧ input data signal

VR‧‧‧接收訊號 VR‧‧‧ receiving signal

STP‧‧‧停止訊號 STP‧‧‧ stop signal

Dout1‧‧‧輸出資料訊號 Dout1‧‧‧ output data signal

Claims (15)

一種發射器電路,包括:脈波產生電路,根據輸入資料的邊緣而產生脈波訊號;第一輸出驅動器,根據該脈波訊號,依據該等邊緣的其中一個邊緣而將第一輸出脈波訊號輸出至外部絕緣耦合元件之第一端;第二輸出驅動器,根據該脈波訊號,依據該等邊緣的另一個邊緣而將第二輸出脈波訊號輸出至該絕緣耦合元件之第二端;以及輸出停止電路,使該第一及第二輸出脈波訊號停止被輸出於一段從當電源電壓被開啟時開始的預定期間。 A transmitter circuit includes: a pulse wave generating circuit that generates a pulse wave signal according to an edge of the input data; and a first output driver that, according to the pulse wave signal, the first output pulse wave signal according to one edge of the edge signals Outputting to the first end of the external insulating coupling element; the second output driver, according to the pulse signal, outputting the second output pulse signal to the second end of the insulating coupling element according to the other edge of the edges; The output stop circuit is configured to stop the first and second output pulse signals from being outputted for a predetermined period from when the power supply voltage is turned on. 如申請專利範圍第1項之發射器電路,其中該輸出停止電路包含:鎖存器電路,感測該電源電壓的該開啟並且維持該第一及第二輸出脈波訊號之該輸出的該停止;以及計時器,其中回應於輸出自該計時器的訊號,該鎖存器電路解除該第一及第二輸出脈波訊號之該輸出的該停止。 The transmitter circuit of claim 1, wherein the output stop circuit comprises: a latch circuit that senses the turn-on of the power supply voltage and maintains the stop of the output of the first and second output pulse signals And a timer, wherein the latch circuit cancels the stop of the output of the first and second output pulse signals in response to a signal output from the timer. 如申請專利範圍第2項之發射器電路,其中該輸出停止電路另包含第一及第二電容器元件,該鎖存器電路具有經由該第一電容器元件而被連接至電源的第一儲存節點,並且具有經由該第二電容器元件而被接地的第二儲存節點, 該鎖存器電路分別在該第一及第二儲存節點保持彼此倒反的電壓,以及回應於輸出自該計時器的該訊號,該鎖存器電路藉由在該第一及第二儲存節點轉變時所保持的該等電壓而解除該第一及第二輸出脈波訊號之該輸出的該停止。 The transmitter circuit of claim 2, wherein the output stop circuit further comprises first and second capacitor elements, the latch circuit having a first storage node connected to a power source via the first capacitor element, And having a second storage node that is grounded via the second capacitor element, The latch circuit maintains mutually inverted voltages at the first and second storage nodes, and in response to the signal output from the timer, the latch circuit is at the first and second storage nodes The stop of the output of the first and second output pulse signals is released by the voltages held during the transition. 如申請專利範圍第1項之發射器電路,其中該輸出停止電路包含:第一及第二電容器元件;N-型電晶體,具有其源極連接至地,並且具有其汲極經由該第一電容器元件而被連接至電源;以及P-型電晶體,具有其源極連接至該電源,並且具有其汲極經由該第二電容器元件而被連接至該地,其中該N-型電晶體具有其閘極連接至該P-型電晶體的該汲極,並且該P-型電晶體具有其閘極連接至該N-型電晶體的該汲極,並且該第一及第二輸出脈波訊號之該輸出的該停止依據該N-型電晶體的閘極電壓和該P-型電晶體的閘極電壓而被解除。 The transmitter circuit of claim 1, wherein the output stop circuit comprises: first and second capacitor elements; an N-type transistor having a source connected to the ground and having its drain connected via the first a capacitor element is coupled to the power source; and a P-type transistor having its source coupled to the power source and having its drain connected to the ground via the second capacitor element, wherein the N-type transistor has a gate connected to the drain of the P-type transistor, and the P-type transistor has the gate connected to the N-type transistor, and the first and second output pulses The stop of the output of the signal is released in accordance with the gate voltage of the N-type transistor and the gate voltage of the P-type transistor. 如申請專利範圍第1項之發射器電路,其中該輸出停止電路包含:電容器元件,係連接至電源和地的其中一者;以及電阻器元件,係連接至電源和地的另一者,其中該第一及第二輸出脈波訊號之該輸出的該停止依據介於該電容器元件與該電阻器元件間之連接節點的電壓而被 解除。 The transmitter circuit of claim 1, wherein the output stop circuit comprises: a capacitor element connected to one of a power source and a ground; and a resistor element connected to the other of the power source and the ground, wherein The stopping of the output of the first and second output pulse signals is based on the voltage of the connection node between the capacitor element and the resistor element. Lifted. 如申請專利範圍第1項之發射器電路,其中該輸出停止電路藉由使該脈波產生電路停止產生該脈波訊號於一段從當該電源電壓被開啟時開始的預定期間,以使該第一及第二輸出脈波訊號停止被輸出。 The transmitter circuit of claim 1, wherein the output stop circuit stops generating the pulse wave signal by causing the pulse wave generating circuit to generate the pulse wave signal for a predetermined period from when the power source voltage is turned on, so that the first The first and second output pulse signals stop being output. 一種半導體裝置,包括:發射器電路,根據輸入資料而發送第一及第二輸出脈波訊號;接收器電路,接收該第一及第二輸出脈波訊號,並且重新建構該輸入資料;以及主要絕緣耦合元件及次要絕緣耦合元件,使該發射器電路和該接收器電路互相電磁性地耦合,其中該發射器電路包含:脈波產生電路,根據該輸入資料的邊緣而產生脈波訊號;第一輸出驅動器,根據該脈波訊號,依據該等邊緣的其中一個邊緣而將該第一輸出脈波訊號輸出至該主要絕緣耦合元件之第一端;第二輸出驅動器,根據該脈波訊號,依據該等邊緣的另一個邊緣而將該第二輸出脈波訊號輸出至該主要絕緣耦合元件之第二端;以及輸出停止電路,使該第一及第二輸出脈波訊號停止被輸出於一段從當電源電壓被開啟時開始的預定期間。 A semiconductor device comprising: a transmitter circuit for transmitting first and second output pulse signals according to input data; a receiver circuit for receiving the first and second output pulse signals, and reconstructing the input data; and An insulating coupling element and a secondary insulating coupling element, the transmitter circuit and the receiver circuit are electromagnetically coupled to each other, wherein the transmitter circuit comprises: a pulse wave generating circuit for generating a pulse wave signal according to an edge of the input data; a first output driver, according to the pulse signal, outputting the first output pulse signal to the first end of the main insulating coupling element according to one edge of the edges; and the second output driver according to the pulse signal Outputting the second output pulse signal to the second end of the main insulating coupling element according to the other edge of the edge; and outputting the stop circuit to stop outputting the first and second output pulse signals A predetermined period from when the power supply voltage is turned on. 如申請專利範圍第7項之半導體裝置,其中 該輸出停止電路包含:鎖存器電路,感測該電源電壓的該開啟並且維持該第一及第二輸出脈波訊號之該輸出的該停止;以及計時器,其中回應於輸出自該計時器的訊號,該鎖存器電路解除該第一及第二輸出脈波訊號之該輸出的該停止。 A semiconductor device as claimed in claim 7 wherein The output stop circuit includes: a latch circuit that senses the turn-on of the power supply voltage and maintains the stop of the output of the first and second output pulse signals; and a timer, wherein the output is from the timer The latch circuit cancels the stop of the output of the first and second output pulse signals. 如申請專利範圍第8項之半導體裝置,其中該輸出停止電路另包含第一及第二電容器元件,該鎖存器電路具有經由該第一電容器元件而被連接至電源的第一儲存節點,並且具有經由該第二電容器元件而被接地的第二儲存節點,該鎖存器電路分別在該第一及第二儲存節點保持彼此倒反的電壓,以及回應於輸出自該計時器的該訊號,該鎖存器電路藉由在該第一及第二儲存節點轉變時所保持的該等電壓而解除該第一及第二輸出脈波訊號之該輸出的該停止。 The semiconductor device of claim 8, wherein the output stop circuit further comprises first and second capacitor elements, the latch circuit having a first storage node connected to a power source via the first capacitor element, and Having a second storage node that is grounded via the second capacitor element, the latch circuit maintaining a reversed voltage at the first and second storage nodes, respectively, and in response to the signal output from the timer, The latch circuit releases the stop of the output of the first and second output pulse signals by the voltages held during the transition of the first and second storage nodes. 如申請專利範圍第7項之半導體裝置,其中該輸出停止電路包含:第一及第二電容器元件;N-型電晶體,具有其源極連接至地,並且具有其汲極經由該第一電容器元件而被連接至電源;以及P-型電晶體,具有其源極連接至該電源,並且具有其汲極經由該第二電容器元件而被連接至該地,其中該N-型電晶體具有其閘極連接至該P-型電晶體的該 汲極,並且該P-型電晶體具有其閘極連接至該N-型電晶體的該汲極,並且該第一及第二輸出脈波訊號之該輸出的該停止依據該N-型電晶體的閘極電壓和該P-型電晶體的閘極電壓而被解除。 The semiconductor device of claim 7, wherein the output stop circuit comprises: first and second capacitor elements; an N-type transistor having a source connected to the ground and having a drain thereof via the first capacitor An element is connected to the power source; and a P-type transistor having its source connected to the power source and having its drain connected to the ground via the second capacitor element, wherein the N-type transistor has a gate connected to the P-type transistor a drain, and the P-type transistor has the gate connected to the drain of the N-type transistor, and the stop of the output of the first and second output pulse signals is based on the N-type The gate voltage of the crystal and the gate voltage of the P-type transistor are released. 如申請專利範圍第7項之半導體裝置,其中該輸出停止電路包含:電容器元件,係連接至電源和地的其中一者;以及電阻器元件,係連接至電源和地的另一者,其中該第一及第二輸出脈波訊號之該輸出的該停止依據介於該電容器元件與該電阻器元件間之連接節點的電壓而被解除。 The semiconductor device of claim 7, wherein the output stop circuit comprises: a capacitor element connected to one of a power source and a ground; and a resistor element connected to the other of the power source and the ground, wherein the The stop of the output of the first and second output pulse signals is released in accordance with the voltage at the connection node between the capacitor element and the resistor element. 如申請專利範圍第7項之半導體裝置,其中該輸出停止電路藉由使該脈波產生電路停止產生該脈波訊號於一段從當該電源電壓被開啟時開始的預定期間,以使該第一及第二輸出脈波訊號停止被輸出。 The semiconductor device of claim 7, wherein the output stop circuit stops generating the pulse wave signal by causing the pulse wave generating circuit to generate the pulse wave signal for a predetermined period from when the power source voltage is turned on, so that the first And the second output pulse signal stops being output. 如申請專利範圍第7項之半導體裝置,其中該主要絕緣耦合元件和該次要絕緣耦合元件為在半導體晶片中分別被形成在堆疊於頂部-至-底部方向上的兩個互連層中之線圈。 The semiconductor device of claim 7, wherein the main insulating coupling element and the secondary insulating coupling element are respectively formed in a semiconductor wafer in two interconnect layers stacked in a top-to-bottom direction. Coil. 一種資料傳輸方法,包括:根據輸入資料的邊緣而產生脈波訊號;根據該脈波訊號,依據該邊緣而將第一輸出脈波訊號輸出至絕緣耦合元件之第一端,並且依據該等邊緣的另一 個邊緣而將第二輸出脈波訊號輸出至該絕緣耦合元件之第二端;以及使該第一及第二輸出脈波訊號停止被輸出於一段從當電源電壓被開啟時開始的預定期間。 A data transmission method includes: generating a pulse wave signal according to an edge of the input data; and outputting, according to the pulse wave signal, the first output pulse wave signal to the first end of the insulated coupling component according to the edge, and according to the edge Another Outputting a second output pulse signal to the second end of the insulating coupling element; and causing the first and second output pulse signals to stop being outputted for a predetermined period from when the power supply voltage is turned on. 如申請專利範圍第14項之資料傳輸方法,其中使該第一及第二輸出脈波訊號停止被輸出,感測該電源電壓的該開啟並且維持該第一及第二輸出脈波訊號之該輸出的該停止,並且回應於輸出自計時器的訊號,解除該第一及第二輸出脈波訊號之該輸出的該停止。 The data transmission method of claim 14, wherein the first and second output pulse signals are stopped to be output, the opening of the power supply voltage is sensed, and the first and second output pulse signals are maintained. The stop of the output, and in response to the signal output from the timer, cancels the stop of the output of the first and second output pulse signals.
TW105105641A 2015-03-17 2016-02-25 Transmitter circuit, semiconductor apparatus and data transmission method TWI692226B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015053444 2015-03-17
JP2015-053444 2015-03-17
JP2015180395A JP6557562B2 (en) 2015-03-17 2015-09-14 Transmission circuit and semiconductor device
JP2015-180395 2015-09-14

Publications (2)

Publication Number Publication Date
TW201705730A true TW201705730A (en) 2017-02-01
TWI692226B TWI692226B (en) 2020-04-21

Family

ID=57009127

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105105641A TWI692226B (en) 2015-03-17 2016-02-25 Transmitter circuit, semiconductor apparatus and data transmission method

Country Status (4)

Country Link
JP (1) JP6557562B2 (en)
KR (1) KR20160111863A (en)
CN (1) CN105991115B (en)
TW (1) TWI692226B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020010085A (en) * 2018-07-03 2020-01-16 ローム株式会社 Signal transmission device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637550U (en) * 1979-08-30 1981-04-09
JP3110653B2 (en) * 1995-06-15 2000-11-20 シャープ株式会社 Signal transmission device
JP2004260648A (en) * 2003-02-27 2004-09-16 Nec Corp Power-on reset circuit
US7580233B2 (en) * 2005-10-21 2009-08-25 Via Technologies, Inc. Protecting circuits from electrostatic discharge
KR20090049290A (en) * 2007-11-13 2009-05-18 삼성전자주식회사 Multi-level pulse amplitude modulation transceiver and method for transmitting and receiving data
US8238067B2 (en) * 2008-12-11 2012-08-07 Ati Technologies Ulc Electrostatic discharge circuit and method
CN102315757B (en) * 2010-07-07 2014-07-09 台达能源技术(上海)有限公司 Driver for driving power switching element
JP2012108087A (en) * 2010-10-28 2012-06-07 Seiko Instruments Inc Temperature detector
TWI506952B (en) * 2011-11-23 2015-11-01 System General Corp Isolation interface circuit for power management
JP5891100B2 (en) * 2012-04-26 2016-03-22 ルネサスエレクトロニクス株式会社 Semiconductor device and data transmission method
JP5752659B2 (en) * 2012-09-20 2015-07-22 株式会社東芝 Semiconductor circuit
US9356442B2 (en) * 2014-07-08 2016-05-31 Hong Kong Applied Science and Technology Research Institute Company, Limited Area-efficient clamp for power ring ESD protection using a transmission gate

Also Published As

Publication number Publication date
CN105991115A (en) 2016-10-05
JP6557562B2 (en) 2019-08-07
JP2016174346A (en) 2016-09-29
CN105991115B (en) 2021-01-22
KR20160111863A (en) 2016-09-27
TWI692226B (en) 2020-04-21

Similar Documents

Publication Publication Date Title
US9166738B2 (en) Semiconductor device and data transmission method
TWI821970B (en) Bootstrap power supply circuit
JP5303167B2 (en) Switch control device and motor drive device using the same
JP6384201B2 (en) Integrated circuit device and electronic apparatus
US9831867B1 (en) Half bridge driver circuits
US10224969B2 (en) Transmitter circuit, semiconductor apparatus and data transmission method
JP2015149731A (en) semiconductor device
US20130285465A1 (en) Transmitter circuit and semiconductor integrated circuit having the same
US9001901B2 (en) Receiver and semiconductor integrated circuit having the same
TW201924224A (en) Capacitively coupled level shifter
TWI520458B (en) Circuit and method for electrostatic discharge clamping
CN107636969B (en) Signal transmission circuit and power conversion device
TWI692226B (en) Transmitter circuit, semiconductor apparatus and data transmission method
JPWO2010109758A1 (en) Communication control method and communication system
JP6772810B2 (en) Power converter control system
US20140306738A1 (en) Input/output line driver circuit
JP2009095074A (en) Semiconductor switching circuit
TW201244376A (en) On-chip power input output interface
TW201328184A (en) Electronic device