TW201631298A - 使用滑移平面接近開關之慣性感測器 - Google Patents

使用滑移平面接近開關之慣性感測器 Download PDF

Info

Publication number
TW201631298A
TW201631298A TW105100962A TW105100962A TW201631298A TW 201631298 A TW201631298 A TW 201631298A TW 105100962 A TW105100962 A TW 105100962A TW 105100962 A TW105100962 A TW 105100962A TW 201631298 A TW201631298 A TW 201631298A
Authority
TW
Taiwan
Prior art keywords
time domain
support structure
inertial sensor
proximity switch
guaranteed
Prior art date
Application number
TW105100962A
Other languages
English (en)
Chinese (zh)
Inventor
保羅 史文森
理查 華特斯
查爾斯 泰利
安卓 王
Original Assignee
路梅戴尼科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/847,539 external-priority patent/US9103673B2/en
Application filed by 路梅戴尼科技公司 filed Critical 路梅戴尼科技公司
Publication of TW201631298A publication Critical patent/TW201631298A/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5642Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
    • G01C19/5656Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • G01C19/5621Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/135Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by making use of contacts which are actuated by a movable inertial mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0817Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for pivoting movement of the mass, e.g. in-plane pendulum

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Pressure Sensors (AREA)
  • Gyroscopes (AREA)
  • Micromachines (AREA)
TW105100962A 2013-03-20 2013-11-22 使用滑移平面接近開關之慣性感測器 TW201631298A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/847,539 US9103673B2 (en) 2011-06-24 2013-03-20 Inertial sensor using sliding plane proximity switches

Publications (1)

Publication Number Publication Date
TW201631298A true TW201631298A (zh) 2016-09-01

Family

ID=51580569

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105100962A TW201631298A (zh) 2013-03-20 2013-11-22 使用滑移平面接近開關之慣性感測器
TW102142691A TWI528020B (zh) 2013-03-20 2013-11-22 使用滑移平面接近開關之慣性感測器

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW102142691A TWI528020B (zh) 2013-03-20 2013-11-22 使用滑移平面接近開關之慣性感測器

Country Status (5)

Country Link
EP (1) EP2976597A4 (ja)
JP (1) JP2016520811A (ja)
CN (1) CN105723184A (ja)
TW (2) TW201631298A (ja)
WO (1) WO2014149085A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3161415A2 (en) 2014-06-26 2017-05-03 Lumedyne Technologies Incorporated System and methods for determining rotation from nonlinear periodic signals
CN107636473B (zh) 2015-05-20 2020-09-01 卢米达因科技公司 从非线性的周期性信号中提取惯性信息
US10234477B2 (en) * 2016-07-27 2019-03-19 Google Llc Composite vibratory in-plane accelerometer
CN110780088B (zh) * 2019-11-08 2021-08-03 中北大学 多桥路隧道磁阻双轴加速度计

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050092085A1 (en) * 2003-11-04 2005-05-05 Shyu-Mou Chen Solid-state gyroscopes and planar three-axis inertial measurement unit
US7612424B1 (en) * 2005-07-22 2009-11-03 Northwestern University Nanoelectromechanical bistable cantilever device
CN101360968B (zh) * 2006-01-24 2013-06-05 松下电器产业株式会社 惯性力传感器
JP5536994B2 (ja) * 2008-06-30 2014-07-02 株式会社東芝 慣性センサ及び慣性検出装置
US8347720B2 (en) * 2010-06-29 2013-01-08 Tialinx, Inc. MEMS tunneling accelerometer
JP5158160B2 (ja) * 2010-09-10 2013-03-06 横河電機株式会社 振動式トランスデューサ
US9705450B2 (en) * 2011-06-24 2017-07-11 The United States Of America As Represented By The Secretary Of The Navy Apparatus and methods for time domain measurement of oscillation perturbations

Also Published As

Publication number Publication date
EP2976597A1 (en) 2016-01-27
TWI528020B (zh) 2016-04-01
WO2014149085A1 (en) 2014-09-25
CN105723184A (zh) 2016-06-29
JP2016520811A (ja) 2016-07-14
TW201437607A (zh) 2014-10-01
EP2976597A4 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
US9103673B2 (en) Inertial sensor using sliding plane proximity switches
JP5960257B2 (ja) 振動摂動の時間領域測定のための装置および方法
US6497141B1 (en) Parametric resonance in microelectromechanical structures
TWI528020B (zh) 使用滑移平面接近開關之慣性感測器
Lv et al. A novel MEMS electromagnetic actuator with large displacement
TWI536622B (zh) 具有使用時域轉換器所降低的加速度靈敏度及相位雜訊之共振器
JPH06281658A (ja) 集積チップ歪センサ
TWI512268B (zh) 陀螺儀以及將時域音叉陀螺儀用於慣性感測的方法
Chekurov et al. Dry fabrication of microdevices by the combination of focused ion beam and cryogenic deep reactive ion etching
Kanda et al. Three-dimensional piezoelectric MEMS actuator by using sputtering deposition of Pb (Zr, Ti) O3 on microstructure sidewalls
Pyatishev et al. MEMS GYRO comb-shaped drive with enlarged capacity gradient
Forke et al. The BDRIE-HS* technology approach for tiny motion detection with improved sensitivity and noise performance
US9449891B1 (en) Proximity switch fabrication method using angled deposition
JP2986280B2 (ja) トンネル電流検知マイクロデバイス
JPH0852673A (ja) 探針付き超小型グリッパー
Yasunaga et al. Operation of Arrayed Logic Elements for MEMS Ising Machine
Ardito et al. On the numerical evaluation of capacitance and electrostatic forces in MEMS
JP2001108599A (ja) 電気力顕微鏡用標準試料
Vopilkin et al. MEMS tunneling sensor without the feedback loop
RU2644029C2 (ru) Способ изготовления чувствительного элемента микросистемы контроля параметров движения
Das et al. Development and post-dicing wet release of MEMS magnetometer: an approach
JP4562615B2 (ja) 微小試料把持装置
Zhao et al. Single-molecule Electrical Characterization On A Controllable-break-junction Chip through Electrostatic Microactuators
Ardito et al. An experimental assessment of Casimir force effect in micro-electromechanical systems
Hatipoğlu An experimental approach to nanomechanical buckling and snap-through phenomenon