TW201224679A - Exposure device, exposure method and manufacturing method of panel substrates for display - Google Patents

Exposure device, exposure method and manufacturing method of panel substrates for display Download PDF

Info

Publication number
TW201224679A
TW201224679A TW100141143A TW100141143A TW201224679A TW 201224679 A TW201224679 A TW 201224679A TW 100141143 A TW100141143 A TW 100141143A TW 100141143 A TW100141143 A TW 100141143A TW 201224679 A TW201224679 A TW 201224679A
Authority
TW
Taiwan
Prior art keywords
mirror
light
optical system
angle
light beam
Prior art date
Application number
TW100141143A
Other languages
Chinese (zh)
Inventor
Hidekazu Tezuka
Tomoaki Hayashi
Minoru Yoshida
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Publication of TW201224679A publication Critical patent/TW201224679A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • G03F7/2006Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light using coherent light; using polarised light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/7045Hybrid exposures, i.e. multiple exposures of the same area using different types of exposure apparatus, e.g. combining projection, proximity, direct write, interferometric, UV, x-ray or particle beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70466Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Liquid Crystal (AREA)

Abstract

A light beam irradiation device 20 includes a lighting optical system 20c for supplying light beams; a spatial light modulator 25, for changing the angles of several mirrors arranged at two directions to modulate light beams; a drive circuit 27, for driving the spatial light modulator based on plotted data; and an irradiation optical system 20b, for irradiating a light beam modulated by the spatial light modulator 25. A chuck and several light beam irradiation devices 20 are relatively moved, and substrates are scanned by several light beams from several light beam irradiation devices, then patterns are plotted on the substrates. According to the non-uniformity of operation angles of mirrors of a spatial light modulator of each light beam irradiation device, the incident angle of light beam supplied to the spatial light modulator of each light beam irradiation device is adjusted.

Description

201224679 39521pif 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種曝光裝置、曝光方法以及使用所 述曝光裝置及曝光方法的顯示用面板(panel)基板的製造 方法,所述曝光裝置在液晶顯示(display)裝置等的顯示 用面板基板的製造過程中’將光束(beam)照射至塗布有 光阻劑(photoresist)的基板’藉由光束來對基板進行掃描, 在基板上描繪出圖案(pattern),本發明特別涉及如下的 曝光裝置、曝光方法以及使用所述曝光裝置及曝光方法的 顯示用面板基板的製造方法,所述曝光裝置使用多個光束 照射裝置,藉由多條光束來對基板進行掃描。 【先前技術】 使用曝光裝置,藉由微影(photolithography)技術在 基板上形成圖案,從而製造出被用作顯示用面板的液晶顯 示裝置的薄膜電晶體(Thin Film Transistor,TFT )基板或 彩色滤光片(color filter)基板、電衆顯示(plasma display ) 面板用基板、以及有機電致發光(Electroluminescence,EL ) 顯示面板用基板等。作為曝光裝置,以往,已有投影 (projection)方式的曝光裝置與接近(proximity)方式的 曝光裝置,所述投影方式的曝光裝置是使用透鏡(lens) 或鏡子來將光罩(mask)的圖案投影至基板上,所述接近 方式的曝光裝置是在光罩與基板之間設置微小的間隙(接 近間隙(proximity gap)),將光罩的圖案轉印至基板。 近年來’已開發出如下的曝光裝置,該曝光裝置是將 201224679 39521pif 光束照射至塗布有光阻劑的基板,藉由光束來對基板進行 掃描,從而在基板上描繪出圖案。藉由光束來對基板進行 掃描,從而直接在基板上描繪出圖案,因此,無需昂貴的 光罩。另外,可藉由將描繪資料(data)以及掃描的程式 (program)予以變更來對應於各種類型的顯示用面板基 板。作為此種曝光裝置,例如已有專利文獻丨、專利文獻2、 以及專利文獻3所揭示的曝光裝置。 [先前技術文獻] [專利文獻] [專利文獻1]曰本專利特開2010-44318號公報 [專利文獻2]日本專利特開2〇1〇_6〇99〇號公報 [專利文獻3]曰本專利特開2〇1〇_1〇2〇84號公報 當藉由光束在基板上描繪出圖案時,使用數位微鏡元 件(Dlgltal Micromirror Device,DMD )等的空間光調制器 (spatial light modulator)來對光束進行調制。DMD 是^ 對光束進行㈣的多贿小的面鏡(mi贿)制於正交 的兩個方向轉成,_電路基於·資料來將各面鏡ς 角度予以變更,藉此’賴明光㈣統所供給的光束進 调制。經空間光湘n調制的光束從絲照射裝置的 投影透鏡的照射光學系統向基板照射。 在液晶顯示裝置等的顯示用面板基板的製造過程 ,於曝光區域廣闊’因此’若使用一個光束照射裝置,且 錯由-條光束來對整個基板進行掃描, 掃描會耗費時間,卫作時間(taettlme)變長。 201224679 3952 lpif 作時間縮短,必須使用多個光束照射裝置,且藉由多 束來並行地對基板進行掃描。 DMD的面鏡的動作角度存在由每個DMD的公差 起的不均。若DMD的面鏡的動作角度不同,則經〇助 的面鏡反射且透過投影透鏡等的照射光學系統的光束 路會偏移,光束的繞射光的強度分佈會發生變化。 ^個光束照射裝置’且藉由多條光束來對基板進行掃描 二’存在如下的問題,即,若從各光束照射裝置向基板昭 射的光束的繞射光㈣度分佈存在不均,贿析性能會= 均,無法均一地描繪出圖案,描繪品質會下降。 【發明内容】 =明的課題在於:當藉由來自多個光束照射裝置的 j光束來對基板進行掃描,在基板上描繪出圖案時 強度分佈的不均進行修正,從而使描綠品 質“’所述光束的繞射光的強度分佈的不均是由 角㈣不均引起。另外,本發明的課 通在於.品質的顯示用面板基板。 本發月的曝光裝置包括:夾具(chu 有光阻劑的基板;多個并又牙者㈣ 明光學系統、如光束·、请裝置’,、射、給光束的照 所述处μ f mu 1先調制态、驅動電路、及照射光學系統, 以變::從:對=排列於兩個方向的多個面鏡的角度予 料來將空間光調制,所述驅動電路基於描緣資 間先調制盗調制的光束;以及移動單元,使夾具與多 6 201224679 39521pif 束照射裝置相對地移動,藉*移動單元來使夾具與多 Z束照射I置相對地移動,藉由來自乡個光束照射裝置 二夕2光束來對基板進行掃描,在基板上描繪出圖案,各 $照^裝置包括調節單元’該調節單元根據各光束照射 置的空間光調制器的面鏡的動作角度的不均,對向各光 Ϊ照射裳置的空間光調制器供給的光束的人射角度進行調 郎0 另外,本發明的曝光方法利用夾具來支撐著塗布有光 =的基板,使夹具與多個光束照概置相對地移動所 二ί,光Ϊ照射裝置包括:供給光束的照明光學系統、空 二、驅動電路、以及照射光學系統,所述空間光 调制》。將则於兩個方向❹個面鏡的角舒以變更,從 進行調制,所述驅動電路基於描繪資料來將空間 予轉動,所述照射光學系統照射出經空間光調 ==掃描,在基板上描繪出圖索== 裝置的空間光調制器的面鏡的動作角度 ==;照射裝置的空間先調制器供給的光束 根據各域照縣置的㈣細· ,不均,對向各光束照射裝置的 ::二 的減备結力尤二 即使空間光調制器的面鏡 的動作角度存在不均,經空間光調制器 射光學系統供給的光束的光路也相同。因此,^間^ 201224679 3952lpif 制器的面鏡的動作角度的不均所弓丨 度分佈的不均被修正,描繪品質提高。 、心、光的強 而且,對於本發明的曝光襞置=言,各光束照 ^照明光㈣統包括面鏡,該面鏡使光束反射,將反身)光 ^給ίΐ光束照财置的空間光調制器,各光束照射裝置 :郎^7〇包括:第―單元’根據各光束照射|置的^ 光調制器的面鏡的動作魚产的石沾 上曰 二月先子系摘面鏡⑽度予以變更;以及第二單元 據所述面制角度來將所述面鏡的位置予以變更。 另外對於本發明的曝光方法*言,在各光 ;的照明光㈣統中,個面鏡使光束反射,將反射光^ :至各光束照㈣置的空間光_||,根據各光束照射裝 置的空間光調㈣的面鏡的動作角度的不均,將各光束照 射裝置的照明光n騎面鏡的肖度予以變更,且根據所 述面鏡的角度來將所述面鏡的位置予以變更,對向各光束 ,射裝置的空間光調制器供給的光束的人射角度進行調 節。 在各光束照射裝置的照明光學系統中,利用面鏡使光 ,反射,將反射光供給至各光束照射裝置的空間光調制 盗’根據各光束照射裝置的空間光調制器的面鏡的動作角 度的不均’將各光束照射裝置的照明光學系統的面鏡的角 度予以變更’且根據所述面鏡的角度來將所述面鏡的位置 =以變更’因此’無需使整個照明光學系統傾斜,利用簡 單的構成來將入射角度不同的光束供給至空間光調制器。 8 201224679 39521pif 而且,對於本發明的曝光裝置而言,各光 的,明光料、聽括光學零件’該光學零件使光束彙^, ^著^該枝供給至各光束照射裝置的照明光學系統的面 二單元根據各光束照射裝置的照明光學祕的面鏡 、、又,使各光束照射裝置的整個照明光學系統移動,將 所述面鏡的位置予以變更。 另外,對於本發明的曝光方法而言,在各 昭 二照明光學系統中,利用光學零件來使光束彙 、^光束供給至各光束照射裝置的照明光學系統的面鏡, 根據各光束照射裝置的照明光學系統的面鏡的角度,使各 光束…、射裝置的整個照a月光學系統移動,將所述面鏡的位 置予以變更。 在各光束照射裝置的照明光學系統中,當利用透鏡等 的光學零件綠光束綠,躲將就綠給至各光束昭 射裝置的照明光學系統的面鏡時,若單獨地將照明光學系 統的面鏡的位置扣變更,則在㈣光學系_,光束的 光路長度會發线化,因透鏡等的鮮零件騎聚的光束 的焦點會偏移。根據各光束照射裝置的照明光學系統的面 鏡的角度,使各光核縣置的整舰明光料統移動, 將所述面躺位置料變更,因此,因透麟的光學零件 而彙聚的光束的焦點不會偏移,可將入射角度不同的光束 供給至空間光調制器。 本發明的顯示用面板基板的製造方法使用所述任一個 曝絲置祕光方絲對基板進行曝光。藉錢用所述曝 201224679 3952 Ipif 光襄置或曝光方法,由空間光調彻鏡 的光束的繞射光的強度分佈的不均被;= —質提高,因此,可製造高品質_示用面板基板。 【發明的效果】 ,據本發日⑽曝絲置以鱗光方法,根據各光束照 二裝置的空間光調制器的面鏡的動作角度的不均,對向各 光士照射裝置的空間光調制器供給的光束的人射角度進行 =節,藉此,可對由空間光調制器的面鏡的動作角度的不 句所引起的光束的繞射光的強度分佈的不均進行修正,從 而可使描繪品質提高。 而且,根據本發明的曝光裝置以及曝光方法,在各光 束"’、身^裝置的知明光學系統中,利用面鏡使光束反射,將 反射光供給至各光束照射裝置的空間光調制器,根據各光 束照射襞置的空間光調制器的面鏡的動作角度的不均,將 各光束照射裝置的照明光學系統的面鏡的角度予以變更: 且根據所述面鏡的角度來將所述面鏡的位置予以變更,因 此可利用簡單的構成來將入射角度不同的光束供給至空 間光調制器。 而且’根據本發明的曝光裝置以及曝光方法,在各光 束照射裝置的照明光學系統中,利用光學零件來使光束彙 聚’接著將該光束供給至各光束照射裝置的照明光學系統 的面鏡,根據各光束照射裝置的照明光學系統的面鏡的角 度’使各光束照射裴置的整個照明光學系統移動,從而將 所述面鏡的位置予以變更,藉此,不會使因光學零件而彙 201224679 39521pif 聚的光束的焦點偏移,可將入射角度不同的光束供給至空 間光調制器。 根據本發明的顯示用面板基板的製造方法,可對由空 間光調制器的面鏡的動作角度的不均所引起的光束的繞射 光的強度分佈的不均進行修正,從而可使描繪品質提高, 因此,可製造高品質的顯示用面板基板。 【實施方式】 圖1是表示本發明的-個實施方式的曝絲置的概略 構成的圖。另外,圖2是本發明的一個實施方式的曝光裝 置的侧視圖,圖3是本發明的-個實施方式的曝光裝置的 正視圖。曝光裝置包括:基座(base) 3、χ引導件(細如) 4、X平臺(stage) 5、γ引導件6、γ平臺7、θ平臺8、 夾具10、門(gate) 11 '光束照射裝置2〇、線性標尺(iine^ scde) Μ、線性標尺33、編石馬器(enc〇de〇 32、編碼琴 34、雷射(laser)測長系統、雷射測長系統控制裝置^ 平臺驅動祕6G、以及綠織置7()。再者,圖2 3中,省略了雷射測長系統的雷射光源4卜雷射測= 控制裝置4G、平魏動電路6〇、以及主控㈣置川了虛 光f置除了包括所述構件之外,還包括基板搬送臂 (論t)、溫度控制單元(unit)等,所述基板搬 2 將基板1搬入至夾具10,且將基板1從夾具10中搬^ 所述溫度㈣單元對裝置_溫度進行管理。出’ 再者’以下所說明的實施方式中的χ _ 也可對X方向與γ方向進行調換。 ~為例^ 11 201224679 39521pif 圖1以及圖2中,夾具l〇位於對基板丨進行遞送的遞 送位置。在該遞送位置處,藉由未圖示的基板搬送機械臂 來將基板1搬入至夾具10,另外,藉由未圖示的基板搬送 機械臂來將基板1從央具10中搬出。夾具10對基板i的 背面進行真空吸附,從而支撐著該基板1的背面。基板1 的表面塗布有光阻劑。 在對基板1進行曝光的曝光位置的上方,跨越基座3 地設置有門(gate)ll。該門11搭載有多個光束照射裝置 20。再者’本實施方式表示了使用八個光束照射裝置2〇 的曝光裝置的例子’但光束照射裝置的數量不限於此,本 發明適用於使用兩個以上的光束照射裝置的曝光裝置。 圖4是表示本發明的一個實施方式的曝光裝置的光束 照射裝置的概略構成的圖。光束照射裝置20包括:照射光 學系統20b、照明光學系統20c、光纖(optical fiber ) 22、 數位微鏡裝置(Digital Micromirror Device,DMD) 25、 DMD驅動電路27、第一棱鏡(prism ) 51、第二棱鏡%、 面鏡固定架(mirror holder) 54、以及XY平臺55。照射 光學系統20b包括投影透鏡26。另外,照明光學系統2〇e 包括:準直透鏡(collimationlens) 23a、複眼透鏡(办eye lens) 23b、聚光透鏡(condenser lens) 23c、面鏡 24a、以 及面鏡24b。 光纖22將雷射光源單元21所產生的紫外光的光束導 入至照明光學系統20c内。從光纖22射出的光束向準直透 鏡23a入射,透過準直透鏡23a之後成為平行光束。透過 12 201224679 39521pif 準直透鏡23a的光向複眼透鏡23b入射。再者,也可使用 柱狀透鏡(rod lens)等來代替複眼透鏡23b。透過複眼透 鏡23b的光束因聚光透鏡23c而彙聚,接著被面鏡24a、 24b反射,從照明光學系統20c向第一棱鏡51入射。再者, 也可使用凹面鏡等的其他光學零件來代替聚光透鏡23c。 第一棱鏡51上設置有與第二棱鏡52的斜面呈平行的 斜面、及塗敷有反射膜的反射面51a。向第一棱鏡51入射 的光被弟一棱鏡51的斜面反射而向反射面5la照射,接著 被反射面51a反射,從第一棱鏡51的斜面向第二棱鏡52 的斜面入射。向第二棱鏡52的斜面入射的光透過第二棱鏡 52,向DMD25照射。 DMD25是空間光調制器,該空間光調制器是使光束 反射的多個微小的面鏡排列於正交的兩個方向而構成,該 DMD25將各面鏡的角度予以變更來對光束進行調制。 DMD驅動電路27基於主控制裝置70所供給的描繪資料, 將DMD25的各面鏡的角度予以變更。經DMD25調制的 光束再次向第二棱鏡52入射’接著被第二棱鏡52的斜面 反射,從第二棱鏡52向包括投影透鏡26的照射光學系統 20b入射。向照射光學系統20b入射的光束從照射光學系 統20b向基板1照射。 圖2以及圖3中’夾具10搭載於Θ平臺8,在Θ平臺8 的下方設置有Y平臺7以及X平臺5。該X平臺5搭載於 基座3上所設置的X引導件4’且沿著X引導件4向X方 向移動。Y平臺7搭載於X平臺5上所設置的γ引導件6, 13 201224679 3952lpif 且沿著Y 導件6向γ方 7,且向θ方向旋轉。在χ ^ 搭載於γ平臺 中,設置有滾珠螺杆(balf ; Υ平室7、以及θ平臺8 線性馬達(Hnearm_) 以及馬達(_)、或 機的平臺塊動驅的動堪動機構,各堪動 X方向以及8Y向藉此,以使正交的兩條邊朝向 轉。Χ平臺5向Χ方4動使10的基板1旋 =光位置之間移動。在曝光位置二 移動,驻m a, 于^至5向X方向 照射“光束裝置20的照射光學系統20b 7向γ方向移〗11、基板1進行掃福。另外,Y平臺 光學系tit利用從各光束照射裝置的照射 區域向γ方^,,束來縣板1進行掃描時的掃描 動電2ΙΛ 在圖1 + ’主控制裝置7㈣平臺驅201224679 39521pif 6. Technical Field of the Invention The present invention relates to an exposure apparatus, an exposure method, and a method of manufacturing a display panel using the exposure apparatus and the exposure method, the exposure apparatus In a manufacturing process of a display panel substrate such as a liquid crystal display device, a beam is irradiated onto a substrate coated with a photoresist, and the substrate is scanned by a light beam to be drawn on the substrate. In particular, the present invention relates to an exposure apparatus, an exposure method, and a method of manufacturing a display panel substrate using the exposure apparatus and the exposure method, wherein the exposure apparatus uses a plurality of light beam irradiation apparatuses by a plurality of light beams To scan the substrate. [Prior Art] A thin film transistor (TFT) substrate or color filter for a liquid crystal display device used as a display panel is manufactured by forming a pattern on a substrate by a photolithography technique using an exposure apparatus. A color filter substrate, a plasma display panel substrate, and an organic electroluminescence (EL) display panel substrate. As an exposure apparatus, conventionally, there has been a projection type exposure apparatus and a proximity type exposure apparatus. The projection type exposure apparatus uses a lens or a mirror to pattern a mask. Projected onto the substrate, the proximity type exposure device is provided with a slight gap (proximity gap) between the mask and the substrate, and the pattern of the mask is transferred to the substrate. In recent years, an exposure apparatus has been developed in which a 201224679 39521pif beam is irradiated onto a substrate coated with a photoresist, and a substrate is scanned by a light beam to draw a pattern on the substrate. The substrate is scanned by the light beam to directly pattern the substrate, so that no expensive mask is required. Further, it is possible to correspond to various types of display panel substrates by changing the data and the program to be scanned. As such an exposure apparatus, for example, an exposure apparatus disclosed in Patent Document No. 2, Patent Document 2, and Patent Document 3 is known. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Patent Laid-Open Publication No. 2010-44318 [Patent Document 2] Japanese Patent Laid-Open Publication No. Hei No. Hei. In the case of drawing a pattern on a substrate by a light beam, a spatial light modulator such as a digital micromirror device (DMD) is used in the patent publication No. 2〇1〇_1〇2〇84. ) to modulate the beam. DMD is ^ The small beam of the beam (mi) is converted into two orthogonal directions. The circuit is based on the data to change the angle of each mirror, so that Lai Mingguang (4) The beam supplied by the system is modulated. The light beam modulated by the spatial light is irradiated to the substrate from the illumination optical system of the projection lens of the wire irradiation device. In the manufacturing process of the display panel substrate such as a liquid crystal display device, the exposure area is wide. Therefore, if a light beam irradiation device is used and the entire substrate is scanned by a stray beam, the scanning takes time and the processing time ( Taettlme) becomes longer. 201224679 3952 lpif Time is shortened, multiple beam illumination devices must be used, and the substrate is scanned in parallel by multiple beams. The angle of action of the mirror of the DMD is uneven due to the tolerance of each DMD. When the operating angle of the mirror of the DMD is different, the beam path of the illumination optical system reflected by the assisted mirror and transmitted through the projection lens or the like is shifted, and the intensity distribution of the diffracted light of the light beam changes. ^The beam irradiation device 'and scanning the substrate by a plurality of light beams' has the problem that if the diffracted light (four) degree distribution of the light beam emitted from the respective beam irradiation devices to the substrate is uneven, the bribery The performance will be =, the pattern cannot be uniformly drawn, and the quality of the drawing will be degraded. SUMMARY OF THE INVENTION A problem is that when a substrate is scanned by a j-beam from a plurality of beam irradiation devices, unevenness in intensity distribution is corrected when a pattern is drawn on the substrate, thereby making the green quality "' The unevenness of the intensity distribution of the diffracted light of the light beam is caused by the unevenness of the angle (four). In addition, the subject of the present invention resides in a panel substrate for quality display. The exposure apparatus of the present month includes: a jig (the chu has a photoresist) The substrate of the agent; the plurality of teeth (4) the optical system, such as the beam, the device, the shot, the beam, the μ f mu 1 first modulation state, the driving circuit, and the illumination optical system, Change: from: the angle of the plurality of mirrors arranged in two directions to modulate the spatial light, the driving circuit is based on the ray-modulated ray-modulated beam; and the moving unit to make the fixture Multi 6 201224679 39521pif The beam irradiation device relatively moves, and the moving unit is used to move the jig relative to the multi-Z beam illumination I, and the substrate is scanned by the light beam from the home beam illumination device. A pattern is drawn on the board, and each of the devices includes an adjustment unit that adjusts the angle of motion of the mirrors of the spatial light modulators that are illuminated by the respective beams, and modulates the spatial light modulation of the apertures. The exposure angle of the light beam supplied by the device is adjusted to 0. In addition, the exposure method of the present invention supports the substrate coated with the light= by using a jig, and the jig and the plurality of light beams are relatively moved relative to each other. The apparatus includes: an illumination optical system for supplying a light beam, a space two, a driving circuit, and an illumination optical system, wherein the angle of the mirror is changed in two directions, and the modulation is performed. The driving circuit pre-rotates the space based on the drawing data, the illumination optical system illuminates the spatial light modulation == scanning, and depicts the action angle of the mirror of the spatial light modulator of the device on the substrate ===; The light beam supplied from the spatial modulator of the illuminating device is (4) thin and uneven according to each field, and the opposite side of the beam illuminating device is: 2, even if the surface of the spatial light modulator is The angle of action of the mirror is uneven, and the optical path of the beam supplied by the optical modulator of the spatial light modulator is also the same. Therefore, the unevenness of the distribution of the angle of the mirror of the mask of the 201224679 3952lpif controller is uneven. Corrected, the quality of the drawing is improved. The intensity of the heart and the light is strong. For the exposure device of the present invention, the illumination light (4) includes a mirror, which reflects the light beam and gives the light to the light.空间 ΐ ΐ ΐ 置 空间 空间 空间 空间 空间 : : : : : : : : : 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 郎 ^ ^ ^ The monthly primordial mirror (10) is changed; and the second unit changes the position of the mirror according to the surface angle. Further, for the exposure method of the present invention, the illumination light in each light; (4) In the middle of the system, the mirror reflects the beam, and the reflected light ^: to the spatial light _|| of each beam (4), according to the spatial illumination of the beam irradiation device (4), the angle of action of the mirror will be uneven. Illumination light of each beam irradiation device Be changed, and said mirror to be changed according to the angle position of the mirror, the beam of each person, the spatial light modulator means emitting light beams supplied exit angle adjustment. In the illumination optical system of each beam irradiation device, the mirror is used to reflect light, and the reflected light is supplied to the spatial light modulation device of each beam irradiation device. The angle of operation of the mirror according to the spatial light modulator of each beam irradiation device The unevenness 'changes the angle of the mirror of the illumination optical system of each beam irradiation device' and changes the position of the mirror according to the angle of the mirror to change 'so' without tilting the entire illumination optical system A light beam having a different incident angle is supplied to the spatial light modulator with a simple configuration. 8 201224679 39521pif Furthermore, in the exposure apparatus of the present invention, the light, the light-emitting material, and the optical component of the light, the optical component, are supplied to the illumination optical system of each of the light beam irradiation devices. The surface unit 2 moves the entire illumination optical system of each light beam irradiation device according to the mirror of the illumination optical secret of each light beam irradiation device, and changes the position of the mirror. Further, in the exposure method of the present invention, in each of the two illumination optical systems, the light beam is supplied to the mirror of the illumination optical system of each of the light beam irradiation devices by the optical component, and the illumination is performed by each of the light beam irradiation devices. The angle of the mirror of the optical system shifts the entire optical system of each of the light beams and the radiation device to change the position of the mirror. In the illumination optical system of each beam irradiation device, when the green light of the optical component such as a lens is used, the green light is given to the mirror of the illumination optical system of each beam illuminating device, and if the illumination optical system is separately When the position of the mirror is changed, in the (4) optical system, the optical path length of the beam is emitted, and the focus of the beam that is concentrated by the fresh parts such as the lens is shifted. According to the angle of the mirror of the illumination optical system of each beam irradiation device, the entire ship light-lighting unit of each photonuclear county is moved, and the surface position material is changed. Therefore, the light beam concentrated by the optical components of the tunnel The focus is not offset, and a beam of different incident angles can be supplied to the spatial light modulator. In the method for producing a panel substrate for display of the present invention, the substrate is exposed by using any one of the above-mentioned wires. Borrowing money with the exposure 201224679 3952 Ipif optical placement or exposure method, the intensity distribution of the diffracted light of the beam of the spatial light-tuning mirror is uneven; = quality is improved, therefore, high quality _ display panel can be manufactured Substrate. [Effects of the Invention] According to the present day (10), the ray is placed in the scaly light method, and the spatial light of each of the illuminating devices is opposed to the unevenness of the operating angle of the mirror of the spatial light modulator of each of the two light beams. The angle of the beam of the light beam supplied from the modulator is changed to a section, whereby the unevenness of the intensity distribution of the diffracted light of the light beam caused by the angle of operation of the mirror of the spatial light modulator can be corrected, thereby Improve the quality of the drawing. Further, according to the exposure apparatus and the exposure method of the present invention, in the known optical system of each of the light beams, the light beam is reflected by the mirror and the reflected light is supplied to the spatial light modulator of each of the light beam irradiation devices. The angle of the mirror of the illumination optical system of each beam irradiation device is changed according to the unevenness of the operating angle of the mirror of the spatial light modulator of each of the light beam irradiation devices: and the angle is determined according to the angle of the mirror Since the position of the mirror is changed, it is possible to supply a light beam having a different incident angle to the spatial light modulator with a simple configuration. Further, according to the exposure apparatus and the exposure method of the present invention, in the illumination optical system of each of the light beam irradiation apparatuses, the optical components are used to converge the light beams, and then the light beams are supplied to the mirrors of the illumination optical systems of the respective light beam irradiation devices, according to The angle of the mirror of the illumination optical system of each beam irradiation device shifts the entire illumination optical system of each of the light beams, thereby changing the position of the mirror, thereby not meeting the optical components 201224679 39521pif The focus shift of the concentrated beam, which can supply beams with different incident angles to the spatial light modulator. According to the method for manufacturing a panel substrate for display of the present invention, it is possible to correct the unevenness of the intensity distribution of the diffracted light of the light beam caused by the unevenness of the operating angle of the mirror of the spatial light modulator, thereby improving the drawing quality. Therefore, a high-quality display panel substrate can be manufactured. [Embodiment] FIG. 1 is a view showing a schematic configuration of an exposure wire according to an embodiment of the present invention. 2 is a side view of an exposure apparatus according to an embodiment of the present invention, and FIG. 3 is a front view of an exposure apparatus according to an embodiment of the present invention. The exposure apparatus includes: a base 3, a cymbal guide (thin) 4, an X stage 5, a γ guide 6, a γ stage 7, a θ stage 8, a jig 10, a gate 11' beam Irradiation device 2〇, linear scale (iine^ scde) Μ, linear scale 33, stone cutter (enc〇de〇32, code piano 34, laser length measurement system, laser length measurement system control device ^ The platform drive secret 6G, and the green weave 7 (). In addition, in Fig. 23, the laser light source 4 of the laser length measuring system is omitted, the laser detecting device 4G, the flat motor circuit 6〇, and The main control (4) sets the virtual light f in addition to the member, and includes a substrate transfer arm (t), a temperature control unit (unit), etc., and the substrate transfer 2 carries the substrate 1 into the jig 10, and The substrate 1 is moved from the jig 10 to the temperature (4) unit to manage the temperature. The χ _ in the embodiment described below can also be exchanged between the X direction and the γ direction. ^ 11 201224679 39521pif In Figures 1 and 2, the clamp is located at a delivery location for delivery of the substrate 。. At the delivery location, The substrate 1 is carried into the jig 10 by a substrate transfer robot (not shown), and the substrate 1 is carried out from the center device 10 by a substrate transfer robot (not shown). The jig 10 vacuums the back surface of the substrate i. Adsorption is carried out to support the back surface of the substrate 1. The surface of the substrate 1 is coated with a photoresist. Above the exposure position for exposing the substrate 1, a gate 11 is provided across the susceptor 3. There are a plurality of light beam irradiation devices 20. Further, the present embodiment shows an example of an exposure device using eight light beam irradiation devices 2', but the number of light beam irradiation devices is not limited thereto, and the present invention is applicable to the use of two or more light beams. Fig. 4 is a view showing a schematic configuration of a light beam irradiation device of an exposure apparatus according to an embodiment of the present invention. The light beam irradiation device 20 includes an illumination optical system 20b, an illumination optical system 20c, and an optical fiber. 22, Digital Micromirror Device (DMD) 25, DMD drive circuit 27, first prism (prism) 51, second prism%, mirror holder (mir Ror holder 54. The XY stage 55. The illumination optical system 20b includes a projection lens 26. In addition, the illumination optical system 2〇e includes a collimation lens 23a, a fly-eye lens 23b, and a collecting lens ( A condenser lens 23c, a mirror 24a, and a mirror 24b. The optical fiber 22 introduces a light beam of ultraviolet light generated by the laser light source unit 21 into the illumination optical system 20c. The light beam emitted from the optical fiber 22 is incident on the collimator lens 23a, passes through the collimator lens 23a, and becomes a parallel beam. Light passing through the 12 201224679 39521pif collimator lens 23a is incident on the fly-eye lens 23b. Further, instead of the fly-eye lens 23b, a rod lens or the like may be used. The light beam that has passed through the compound eye lens 23b is concentrated by the collecting lens 23c, is then reflected by the mirrors 24a and 24b, and is incident on the first prism 51 from the illumination optical system 20c. Further, instead of the condensing lens 23c, other optical components such as a concave mirror may be used. The first prism 51 is provided with a slope parallel to the slope of the second prism 52 and a reflection surface 51a coated with a reflection film. The light incident on the first prism 51 is reflected by the slope of the prism 51 and is irradiated onto the reflecting surface 51a, and then reflected by the reflecting surface 51a, and is incident from the oblique surface of the first prism 51 toward the inclined surface of the second prism 52. Light incident on the slope of the second prism 52 passes through the second prism 52, and is irradiated to the DMD 25. The DMD 25 is a spatial light modulator which is configured by arranging a plurality of minute mirrors for reflecting a light beam in two orthogonal directions. The DMD 25 modulates the angle of each mirror to modulate the light beam. The DMD drive circuit 27 changes the angle of each face mirror of the DMD 25 based on the drawing data supplied from the main control device 70. The light beam modulated by the DMD 25 is again incident on the second prism 52. Then, it is reflected by the slope of the second prism 52, and is incident from the second prism 52 to the illumination optical system 20b including the projection lens 26. The light beam incident on the illumination optical system 20b is irradiated to the substrate 1 from the illumination optical system 20b. In FIG. 2 and FIG. 3, the jig 10 is mounted on the crucible platform 8, and the Y platform 7 and the X stage 5 are provided below the crucible platform 8. The X stage 5 is mounted on the X guide 4' provided on the base 3 and moves in the X direction along the X guide 4. The Y stage 7 is mounted on the gamma guides 6, 13 201224679 3952lpif provided on the X stage 5, and rotates along the Y guide 6 toward the γ side 7, and in the θ direction. The χ ^ is mounted on the γ platform, and is provided with a ball screw (balf; Υ flat chamber 7, and θ platform 8 linear motor (Hnearm_) and motor (_), or the platform block dynamic drive of the machine, each The X direction and the 8Y direction are moved so that the two orthogonal sides are turned toward each other. The Χ platform 5 moves to the substrate 1 of the 44 movement 10 = the position between the light positions. In the X direction, the illumination optical system 20b 7 of the beam device 20 is irradiated in the direction of γ, and the substrate 1 is swept. In addition, the Y-platform optical system uses the irradiation region from the respective beam irradiation devices to the γ-square. ^,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

㈣侧辦臺8術向旋轉,使X =向移動’以及使丫平臺7向¥方向移動。 置2(Γή6二7^ DMD的面鏡部的一例的圖。光束照射裝 Θ , |4r 7 D25疋配置成相對於Z方向傾斜規定的角度 i進^干播t向與利用來自光束照射裝置20的光束來對基板 垂直Λ田時的掃描方向(x方向(圖5的附圖縱深方向)) 正六若相對於z方向呈傾斜地配置DMD25,則排列於 與兩個方向的多個面鏡25a中的任一個面鏡“a,將 ,的面鏡25a之間的間隙相對應的部位予以覆蓋,因 此,可無間隙地描繪出圖案。 201224679 3952lpif 向X方向移^本’藉 1 方式中:利用x平臺1來使夹具10 ::來;光東照射裝置2。上=移;4 “方=本tt,_Y平臺7⑽二 是利用來自光束“裝該掃描區域 描區域予以變更裝置Μ移動’藉此,將掃 的光束來對級束闕裝置2〇 線性標==有:=伸長的 度用以對X平臺5⑻日A vil㈣如下的刻度’該刻 外’X平臺5上設置有向;方向;測在: ==方上Γ有如爛度,該刻度用“ γ平t 的朝向Y方向的移動量進行檢測。 室7 圖1以及圖3中,在X伞# 'PT} 刀〜 口1从及圖2中,在γ丰森, ==Γ安裝有編碼器34。蝙碼器:= 15 1 201224679 39521pif 測’且對編碼H 34的_信號進行計數,從而對真7 的朝向Y方向的移動量進行檢測。 主 圖6疋對田射測長系統的動作進行說明的圖 圖6中,省略了圖1所示的門1卜以及光束照射1=。 雷射測長祕是眾所周知的雷射干涉式的測長系統,該雷 射測長系統包括:雷射絲4卜雷射干涉計42、雷射干涉 計44、棒鏡(bar mirror) 43、以及棒鏡45。棒鏡43安裝 於夾具10的向Y方向伸長的一個側面。另外,棒鏡“安 裝於夾具10的向X方向伸長的一個侧面。 雷射干涉計42將來自雷射光源41的雷射光束照射至 棒鏡43,並接收棒鏡43所反射的雷射光束,從而對來自 雷射光源41的雷射光束與棒鏡μ所反㈣雷射光束之間 的干涉進行》収。在γ方向的兩個部位進行所述測定。雷 射測長系統控制裝置40藉由主控制裝置7〇的控制,根據 雷射干涉計42的敎絲來具1()的χ方向的位置以 及旋轉進行檢測。 一另一方面,雷射干涉計44將來自雷射光源41的雷射 ,光束照射至棒鏡45,並接收棒鏡45所反射的雷射光束, 從而對來自雷射光源41的雷射光束與棒鏡45所反射的雷 ,光束之間的干涉進行測定。雷射測長系統控制裝置4〇 藉由主控制裝置70的控制,根據雷射干涉計44的測定結 果來對夾具1〇的γ方向的位置進行檢測。 立圖4中,主控制裝置7〇包括描繪控制部,該描繪控制 4將插繪資料供給至光束照射裝置20的DMD驅動電路 201224679 3952lpif =7.疋表不描繪控制部的概略構成的圖。描繪控制部 ^ · 5己憶體(mem〇ry) 72、帶寬(bandwidth)設定 =3 2心點座標料部%、以及座標決 。記憶 資料的χγ座標存儲為位址㈤麵),該描 的二ϊ料r至各先束照射裝置20的麵驅動電路27 座才73決定從記憶體72讀出的描1 會資料的γ 座才示的乾圍,藉此,對從光支 -照射㈣光麵帶照射光學系統 雷射測長系統控制裝置40斜t 位置是開始對曝光位置的夷板^下:位置進行檢測,該 在xy方向上的位置。中心 ^订曝光之前的夾具 系統控制裝置40所檢測出的夹 置,決定開始對基板!進行 、在XY方向上的位 ΧΥ座標。圖!中,切的夾具W財心點的 對基板!進行W,;控來4光置束=2〇的光束來 進行控制,藉由X平臺5 十千室驅動電路60 在基板1的掃描區域中 向X方向移動。當 電路60進行控制,藉由^工制裝置70對平臺驅 動。圖7卜甲心點座標^夹具1〇向Y方向移 碼器34的脈衝信號進行計數,以=自編码H 32、編 的移動量以及Y平臺7的 室5的朝向X方向 從而決定夾具H)的中心點的χγ^的移動量進行檢挪, 座標決定部75基於中心 ^ 座^決定部74所決定的爽 201224679 39521pif XY^ * 該 27的描二至記:= 裝桿置;動電路 座,位址而予以輪入,將已二;5座所二= :二的描繪貧料輪出至各光束照射裝置20的DMD驅動 明圖U ㈣—個實施方式的曝光方法進行^ 圖中’ DMD25的各面鏡25a為正方形,使各面 25&以其—條對角線為軸而旋轉,藉此來將各面鏡25a红 SC變吏_的面鏡^的動作角娜 為」2度,也存在由每個DMD的公差所•的不均。^ DMD25的面鏡25a的動作角度不同,則圖4中如下的 束的光路會偏移’該光束是MDMD25的面鏡ha反射卫 透過包括投影透鏡26的照射光學系統2〇b的光束,光束_ 繞射光巧度分佈會魅變化。當使料個光束照射裝置 20,且藉由多條光束來對基板丨進行掃描時若從各光束 照射裝置20向基板1照射的光束的繞射光的強度分佈存在 不均,則無法均一地指繪出圖案,描繪品質會下降。 圖4中,照明光學系統2〇c的面鏡24b是由面鏡固定 架54來保持。另外,照明光學系統2〇c以及面鏡固定架 54搭載於XY平臺55。在本實施方式中,根據各光束照射 裝置20的DMD25的面鏡25a的動作角度的不均,藉由面 鏡固定架54以及XY平臺55來對光束的入射角度進行調 節,該光束被供給至各光束照射裴置2〇的DMD25。 ^ 18 201224679 39521pif 圖8 (a)是面鏡固定架的侧視圖,圖8 (b)是面鏡固 定架的背面圖。面鏡固定架54包括:支撐板54a、本體54b、 拉伸螺旋彈簧(coil spring) 54c、以及調節螺釘54d。如 圖8 (a)所示,照明光學系統2〇c的面鏡24b的背面安裝 於支撐板54a,且由支撐板54a支撐。支撐板54a藉由兩 根拉伸螺旋彈簧54c而向本體54b的方向施壓。如圖8(b) 所不’三個調節螺釘54d旋入至本體54b,如圖8 (a)所 不,各調節螺釘54d的前端與支撐板54a發生接觸,從而 保持著支撐板54a與本體54b的間隔。轉動三個調節螺訂 54(1中隔著圖8 (b)中的一點鎖線所示的軸而呈對稱地配 f的兩個調節螺釘54d中的任一個調節螺釘54d,改變調 即螺釘54d的旋入量’藉此,支撐板54a向與-點鎖線所 =的軸正交的方向傾斜,從而對面鏡24b的角度進行調 ^。再者,也可設為如下的構造,即,藉由馬達等來使調 節螺釘54d旋轉。 圖9是XY平臺的立體圖。χγ平臺%包括:平臺基 5a、X平臺55b、Υ平臺55。、調節旋紐55d、以及調 即紅紅55e。X平臺说搭载於平臺基座祝,且藉由螞輪 齒f he10以及小齒輪等的機構而連結 5亥調郎旋紐55d設置於平臺基座55a。轉 =郎旋㈣d,藉此,X平臺汾在平臺基座祝 平臺55e搭載於X平臺说,且藉由螞^ :條以及小齒輪等的機構而連結於 $ 旋鈕55e設置於X平: °哀满節 、十至55b。轉動調郎旋鈕5Se,藉此,γ 19 201224679 39521pif 平臺55c在X平臺55b上向Y方向移動。再者,也可設為 如下的構造’即,藉由馬達等來使調節旋鈕55d、5元 圖10〜圖12是對本發明的一個實施方式的曝光方法 進行說明的圖。圖1〇〜圖12表示光束照射裝置2〇内的光 束的光路,圖10是DMD25的面鏡25a的動作角度為12 度的情況’圖11是DMD25的面鏡25a的動作角度小二12 度的情況’圖12是DMD25的面鏡25a的動作角度大於12 度的情況。再者’圖〜圖12中’為了易於理解將dmd25 的面鏡25a予以放大’且僅表示了一個面鏡25a。 圖10〜圖12中,從光纖22射出的光束透過照明光學 系統20c的準直透鏡23a、複眼透鏡23b、以及聚光透鏡 23c,被面鏡24a、24b反射之後,從照明光學系統2〇c向 第一棱鏡51入射。向第一棱鏡51入射的光被第一棱鏡51 的斜面反射而向反射面51a照射,接著被反射面51a反射, 從第一棱鏡51的斜面向第二棱鏡52的斜面入射。向第二 棱鏡52的斜面入射的光透過第二棱鏡52,向DMD25的 面鏡25a照射。當DMD25的面鏡25a處於工作(on)狀 態時,面鏡25a所反射的光束再次向第二棱鏡52入射,接 著被第二棱鏡52的斜面反射,從第二棱鏡52向包括投影 透鏡26的照射光學系統20b入射。 圖10中,藉由面鏡固定架54來對面鏡24b的角度進 行調節,使得透過第二棱鏡52的光束以規定的角度向 DMD25的方向射出。另外,藉由χγ平臺55來使照明光 學系統20c以及面鏡固定架54向XY方向移動,對面鏡 20 201224679 39521pif 24b的位置進行調節,使得透過第二棱鏡52的光束向 DMD25照射。 圖11以及圖12中,當DMD25的面鏡25a的動作角 度小於12度時或大於12度時,根據DMD25的面鏡25a 的動作角度的不均,以使DMD25的工作狀態的面鏡25a 所反射的光束按照如下的角度向第二棱鏡52入射的方 式,藉由面鏡固定架54來將面鏡24b的角度予以變更,從 而將透過第二棱鏡52的光束向DMD25的方向射出時的角 度予以變更,所述角度是與DMD25的面鏡25a的動作角 度為12度時(圖1〇)相同的角度。接著,根據已變更的 面鏡24b的角度,以使透過第二棱鏡52的光束向DMD25 照射的方式,藉由XY平臺55來使照明光學系統2〇e以及 面鏡固定架54向XY方向移動,從而將面鏡24b的位置予 以變更。藉此,根據DMD25的面鏡25a的動作角度的不 對向DMD25力面鏡25a照射的光束的入射角度進行 调節。再者,圖U以及圖12中,DMD25的面鏡的動 作角度為12度時(圖1〇)的從照明光學系統2〇c至DMD25 的面鏡25a為止的光束的光路是由一點鎖線來表示。 根據各光束照射裝置20的DMD25的面鏡25a的動作 角度的不均’對向各光束照射裝置2〇的DMD25供給的光 束的入射肖歧行調節,目此,即使DMD25的面鏡25a ,動作角度存在不均’經DMD25的面鏡25a反射且向照 子光學系、統20b供給的光束的光路也相同。因此,由 DMD25的峨25a _作肖度的不均利起㈣束的繞 21 201224679 39521pif 射光的強度分佈的不均被修正,描緣品質提高。 利用束照射裝置2G的照明光學系統2〇C中, it使光歧射,將反射光供給至各光束照射 ^ : 25,根據各光束照射裝置2〇的顧D25的 兄a的動作角度的不均,將各光束照 ::ί==Γ角度予以變更,且根據二b 的位置予以變更,因此,無需使整個 …、月先子系統20C傾斜,利用簡單的構成來將入射角度不 同的光束供給至DMD25。 ^另外,在各光束照射裝置20的照明光學系統2〇c中, 广^用t光透鏡仏等的光學零件來使光束彙聚,接著將 該光束供給至各光束照射裝置2〇的照明光學系統2〇c的面 鏡24b時,若單獨地將照明光學系統2〇c的面鏡24b的位 置予以變更’則在照明光學純2()(:内,絲的光路長度 會發生變化,因聚光透鏡23e等的光學零件而彙聚的光束 的焦點會偏移。根據各光束照射裝置2〇的照明光學系統 2〇C的面鏡24b的角度’使各光束照射裝置20的整個照明 光學系統20c移動,從而將面鏡24b的位置予以變更,因 $ ’因聚光透鏡23c等的光學零件而彙聚的光束的焦點不 會偏移,入射角度不同的光束被供給至DMD25。 圖13〜圖16是說明利用光束來對基板進行的掃描的 圖。圖13〜圖16表示了如下的例子,即,藉由來自八個 光束照射裝置20的八條光束,沿著X方向對基板1進行 四次掃插’從而對整個基板1進行掃描。圖13〜圖16中’ 22 201224679 3952Ipif 各光束照射裝置20的包括照射光學 表示。從各光束照射裝置2G的Μ % 的先束在γ方向上具有帶寬w 。卩加,讀出 動,㈣向來對基板進=方向移 ^此,如; i:f4二中次的掃描’,X方向進“二::離:圖14 的掃插結束之1 色區:二:_案。在第二 ==動與帶寬W相同的距離第麵 幻財田’向又方向進 表不第三次 ^灰色所示的掃描區域中描输人圖田’糟此一’在圖15中 束之後,使γ平臺 曰圖案。在苐三次的掃如 帶寬〜相_距=藉此,基板1向; 向X方向進行第四次的掃插? 16工不第四次的掃福, π的掃描區域令騎出圖案^,在圖16令的灰色所 再者,圖13〜圖16中 土板1的掃描結束。 :方向對基板1進行四次掃描列子,即,沿著 ,,但掃_錢並賴=整佩板1進行掃 ‘也 根據以上已說明的實施方式,根據各光束照射裝置2〇 23 201224679 3952 lpif 的DMD25的面鏡25a的動作角度的不均對 IH\DmMD25赌的衫〜㈣度進行調^藉 的光束的二Γ25的面鏡25a的動作角度的不均所引起 := 強度分佈的不均進行修正,從而可使描 而且,在各光束照射裝置20的照明光學系統20c中, 利用面鏡24b來使光束反射,將反射光供給至各光束照射 裝置20的DMD25,根據各光束照射裝置2〇的DMD25的 面鏡25a的動作角度的不均,將各光束照射裝置2〇的照明 光學系統2〇c的面鏡2扑的角度予以變更,且根據面鏡祕 的角度來將面鏡24b的位置予以變更,藉此,可利用簡單 的構成來將入射角度不同的光束供給至DMD25。 而且’在各光束照射裝置2〇的照明光學系統2〇C中, 利用聚光透鏡23e等的光學零件來使光束彙聚,接著將該 光束供給至各光束照射裝置2〇的照明光學***2〇c的面鏡 2 4 b ’根據各光束照射裝置2 〇的照明光學系統2 〇 c的面鏡 24b的角度,使各光束照射裝置2〇的整個照明光學系統 移動,從而將面鏡24b的位置予以變更,藉此,不會使因 聚光透鏡23c等的光學零件而彙聚的光束的焦點偏移,可 將入射角度不同的光束供給至DMD25。 使用本發明的曝光裝置或曝光方法來對基板進行曝 光,藉此,可對由空間光調制器的面鏡的動作角度的不均 所引起的光束的繞射光的強度分伟的不均進行修正,從而 可使描、%品質提高,·,可製造高品f的顯和面板基 24 201224679 3952 lpif 板。 例如 固W疋衣不液日日顯示裝置的TFT基板的製造 步驟的一例的流程圖。在薄膜形成步驟(步驟(step)i〇i) 中:藉由麵(spmteO法或絲化學氣相成長(化學氣 相 /儿積(Chemical Vapor Deposition,CVD))法等,在基 ^形成作為液晶轉用的透明電極的導電體膜或絕緣體 ^專的薄膜。在光阻劑塗布步驟(步驟1()2) +,藉由輕 =布ί等來塗布姐劑,在由薄卿成步驟(步驟101) 薄膜上形成光阻膜。在曝光步驟(步驟103)中, 104)中,^置在光阻臈上形成圖案。在顯影步驟(步驟 光阻膜卜由嘴淋(Sh〇Wer)顯影法等來將顯影液供給至 步驟('步驟的二:二::除去。在_(etching) '步驟(步驟_中,藉由 _驟(步驟1〇5)==:膜是已完成了 各步驟之前或之德,:二罩的作用的光阻膜。在所述 驟。將所述步驟會需要來對基板實施清洗/乾燥步 (array) 〇 複夕次,在基板上形成TFT陣列 另外,圖18暑矣- V· 製造步驟的一例的、、::液晶顯示裝置的彩色濾光片基板的 成步驟(步驟2〇nL,圖。在黑色矩p車(blackmatrix)形 蝕刻、以及_等的處理藉= 且劑塗布、曝光、顯影、 里,在基板上形成黑色矩陣。在著 25 201224679 3952 lpif 色圖案形成步驟(步驟202)中,藉由染色法或顏料分散 法等’在基板上形成著色圖案。針對R、G、B的著色圖 案而重複地進行所述步驟。在保護膜形成步驟(步驟203 ) 中,在著色圖案上形成保護膜’在透明電極膜形成步驟(步 驟204)中,在保5蒦膜上形成透明電極膜。在所述各步驟 之前、中途或之後’根據需要來對基板實施清洗/乾燥步驟。 在圖17所示的TFT基板的製造步驟中,可將本發明 的曝光裝置或曝光方法應用於曝光步驟(步驟1〇3),在圖 18所不的彩色濾光片基板的製造步驟中,可將本發明的曝 光裝置或曝光方法應用于黑色矩陣形成步驟(步驟2〇1) 以及著色圖案形成步騾(步驟2〇2)的曝光處理。 【圖式簡單說明】 圖1是表示本發明的—個實施方式的曝光裝置的概略 構成的圖。 圖2是本發明的一個實施方式的曝光裝置的侧視圖。 圖3是本發明的一個實施方式的曝光裝置的正視圖。 ”圖4是表示本發明的一個實施方式的曝光裝置的光束 照射裝置的概略構成的圖。 圖5是表示DMD的面鏡部的一例的圖。 圖6是對雷射測H纟4的動作進行說明的圖。 圖7是表示描繪控制部的概略構成的圖。 —Λπ苎8 (a)疋面鏡固定架的側視圖,圖8 (b)是面鏡固 疋架的背面圖。 圖9是XY平臺的立體圖。 26 3952lpif(4) The side table 8 is rotated in the direction of X, and X is moved toward the direction and the platform 7 is moved in the direction of the ¥. A diagram of an example of a mirror portion of the MD6 2 7^ DMD. The beam illuminating device, |4r 7 D25 疋 is arranged to be tilted by a predetermined angle i with respect to the Z direction, and is used for the light beam irradiation device. The scanning direction of the light beam of 20 in the vertical direction of the substrate (x direction (depth direction in the drawing of FIG. 5)). If the DMD 25 is disposed obliquely with respect to the z direction, the plurality of mirrors 25a arranged in two directions are arranged. Any one of the mirrors "a" covers the portion corresponding to the gap between the mirrors 25a, so that the pattern can be drawn without a gap. 201224679 3952lpif Moving in the X direction ^ Borrowing 1 mode: Use the x platform 1 to make the jig 10 :: to; the light east illumination device 2. up = shift; 4 "square = tt, _Y platform 7 (10) 2 is to use the light beam "loading the scanning area to change the device to move" Thereby, the scanned beam is applied to the beam 阙 device 2 〇 linear mark == there is: = the degree of elongation is used to set the directional on the X platform 5 (8) day A vil (four) as follows: 'the outer 'X platform 5; Direction; measured in: == square Γ is like rottenness, the scale uses " γ flat t's movement toward the Y direction The amount is detected. Room 7 In Fig. 1 and Fig. 3, in X umbrella # 'PT} knife ~ mouth 1 from and in Fig. 2, in γ Fengsen, ==Γ is equipped with encoder 34. Bat code: = 15 1 201224679 39521pif Measured and counted the _ signal of code H 34 to detect the amount of movement of true 7 in the Y direction. Fig. 6 is a diagram illustrating the operation of the field length measurement system. The door 1 shown in Fig. 1 and the beam irradiation 1 = are omitted. The laser length measuring system is a well-known laser interferometric length measuring system including: a laser 4 laser scanning interferometer 42. A laser interferometer 44, a bar mirror 43, and a rod mirror 45. The rod mirror 43 is attached to one side of the jig 10 that is elongated in the Y direction. In addition, the rod mirror is mounted in the X direction of the jig 10. One side of the extension. The laser interferometer 42 illuminates the laser beam from the laser source 41 to the rod mirror 43 and receives the laser beam reflected by the rod mirror 43, thereby illuminating the laser beam from the laser source 41. The interference between the (four) laser beams is reversed by the rod mirror μ. The measurement is performed at two locations in the γ direction. The length measuring system control device 40 detects the position and rotation of the first direction of the laser interferometer 42 in accordance with the twist of the laser interferometer 42 by the control of the main control unit 7〇. On the other hand, the laser interferometer 44, the laser from the laser source 41 is irradiated to the rod mirror 45, and receives the laser beam reflected by the rod mirror 45, thereby reflecting the laser beam from the laser source 41 and the rod reflected by the rod mirror 45, The interference between the light beams is measured. The laser length measuring system control device 4 detects the position of the jig 1 in the γ direction based on the measurement result of the laser interferometer 44 under the control of the main control device 70. In Fig. 4, the main control unit 7A includes a drawing control unit that supplies the interpolated data to the DMD driving circuit of the beam irradiation device 20 201224679 3952lpif = 7. The figure shows a schematic configuration of the control unit. Drawing control unit ^ · 5 memory (mem〇ry) 72, bandwidth setting = 3 2 heart point coordinate material part %, and coordinate decision. The χ γ coordinate of the memory data is stored as the address (five) plane, and the two reticles r of the trace data to the surface drive circuit 27 of each of the pre-beam illumination devices 20 determine the gamma block of the data read from the memory 72. The dry circumference is shown, whereby the oblique t position of the laser length measuring system control device 40 from the optical branch-illumination (four) smooth surface illumination optical system is started to detect the position of the exposure position: The position in the xy direction. Center ^ Pre-exposure fixture The clamp detected by the system control unit 40 determines the start of the substrate! Perform the position coordinates in the XY direction. Figure! In the middle of the scanning area of the substrate 1, the cutting fixture W is used to control the substrate, and the light beam is controlled by 4 light beam = 2 , by the X platform 5 tens of thousands of chamber driving circuits 60 in the scanning area of the substrate 1 Move in the X direction. When the circuit 60 is controlled, the platform is driven by the fabrication unit 70. Figure 7 is a diagram of the pulse signal of the Y-direction frame shifter 34, and the pulse signal of the Y-direction frame shifter 34 is counted to = the self-coded H 32, the amount of movement of the code, and the direction of the chamber 5 of the Y stage 7 to determine the fixture H) The movement amount of χγ^ at the center point is detected, and the coordinate determination unit 75 is determined based on the center of the determination unit 74. 201224679 39521pif XY^ * The description of the 27 is as follows: = mounting rod; moving circuit holder , the address will be rounded, will be two; 5 seat two =: two depiction of the poor material to the DMD drive of each beam irradiation device 20 bright diagram U (four) - an exposure method of an embodiment ^ Each of the mirrors 25a of the DMD 25 has a square shape, and each of the faces 25 & rotates with the diagonal line of the DMD 25 as an axis, thereby changing the action angle of the face mirrors of the respective mirrors 25a to the red SC to "2". Degrees, there are also variations in the tolerances of each DMD. ^ The angle of action of the mirror 25a of the DMD 25 is different, and the optical path of the beam as follows in FIG. 4 is shifted. 'The beam is the mirror of the MDMD 25, and the beam is transmitted through the illumination optical system 2〇b including the projection lens 26, the beam. _ The diffracted light distribution will change charm. When the light beam is irradiated to the device 20 and the substrate 丨 is scanned by a plurality of light beams, if the intensity distribution of the diffracted light of the light beam irradiated from the respective beam irradiation devices 20 to the substrate 1 is uneven, the uniformity cannot be uniformly indicated. Draw a pattern and the quality of the depiction will drop. In Fig. 4, the mirror 24b of the illumination optical system 2A is held by the mirror mount 54. Further, the illumination optical system 2〇c and the mirror mount 54 are mounted on the XY stage 55. In the present embodiment, the angle of incidence of the light beam is adjusted by the mirror mount 54 and the XY stage 55 based on the unevenness of the operating angle of the mirror 25a of the DMD 25 of each beam irradiation device 20, and the light beam is supplied to Each beam illuminates the DMD 25 disposed 2 turns. ^ 18 201224679 39521pif Figure 8 (a) is a side view of the mirror holder, and Figure 8 (b) is a rear view of the mirror holder. The mirror mount 54 includes a support plate 54a, a body 54b, a coil spring 54c, and an adjustment screw 54d. As shown in Fig. 8(a), the back surface of the mirror 24b of the illumination optical system 2A is mounted on the support plate 54a and supported by the support plate 54a. The support plate 54a is pressed in the direction of the body 54b by the two tension coil springs 54c. As shown in Fig. 8(b), the three adjusting screws 54d are screwed into the body 54b. As shown in Fig. 8(a), the front end of each adjusting screw 54d comes into contact with the supporting plate 54a, thereby holding the supporting plate 54a and the body. The interval of 54b. Rotating one of the two adjustment screws 54 (one of the two adjustment screws 54d symmetrically fitted with f through the shaft shown by the one-point lock line in Fig. 8(b), and changing the adjustment screw 54d By the amount of screwing in, the support plate 54a is inclined in a direction orthogonal to the axis of the dot lock line, thereby adjusting the angle of the mirror 24b. Further, the following configuration may be employed, that is, The adjustment screw 54d is rotated by a motor, etc. Fig. 9 is a perspective view of the XY stage. The χγ platform % includes: a platform base 5a, an X platform 55b, a Υ platform 55, an adjustment knob 55d, and a red 55e. It is said that it is mounted on the platform base, and is connected to the platform base 55a by means of a mechanism such as a spur gear f he10 and a pinion gear. The rotation is lang (four) d, whereby the X platform 汾In the platform base, the platform 55e is mounted on the X platform, and is connected to the K-knock 55e by means of a mechanism such as a blade and a pinion, and is set at the X level: ° sorrow, ten to 55b. 5Se, whereby γ 19 201224679 39521pif platform 55c moves in the Y direction on the X platform 55b. Further, it can also be set In the following configuration, the adjustment knobs 55d and 5 are shown in Fig. 10 to Fig. 12, which are diagrams for explaining an exposure method according to an embodiment of the present invention. Fig. 1 to Fig. 12 show a beam irradiation device 2 FIG. 10 is a case where the operating angle of the mirror 25a of the DMD 25 is 12 degrees. FIG. 11 is a case where the operating angle of the mirror 25a of the DMD 25 is as small as 12 degrees. FIG. 12 is the mirror 25a of the DMD 25. The operation angle is greater than 12 degrees. In addition, in Fig. 12, the mask 25a of the dmd25 is enlarged for easy understanding, and only one mirror 25a is shown. In Fig. 10 to Fig. 12, the light is emitted from the optical fiber 22. The collimator lens 23a, the fly-eye lens 23b, and the collecting lens 23c, which are transmitted through the illumination optical system 20c, are reflected by the mirrors 24a and 24b, and then incident on the first prism 51 from the illumination optical system 2〇c. To the first prism 51 The incident light is reflected by the inclined surface of the first prism 51, is irradiated onto the reflecting surface 51a, is then reflected by the reflecting surface 51a, and is incident from the oblique surface of the first prism 51 toward the inclined surface of the second prism 52. The incident surface of the second prism 52 is incident on the inclined surface of the second prism 52. Light passes through the second prism 52 to the DMD 25 The mirror 25a is irradiated. When the mirror 25a of the DMD 25 is in the on state, the light beam reflected by the mirror 25a is incident on the second prism 52 again, and then reflected by the slope of the second prism 52, from the second prism 52. The illumination optical system 20b including the projection lens 26 is incident. In Fig. 10, the angle of the mirror 24b is adjusted by the mirror mount 54 so that the light beam transmitted through the second prism 52 is emitted toward the DMD 25 at a predetermined angle. Further, the illumination optical system 20c and the mirror holder 54 are moved in the XY direction by the χγ platform 55, and the position of the mirror 20 201224679 39521pif 24b is adjusted so that the light beam transmitted through the second prism 52 is irradiated to the DMD 25. In Fig. 11 and Fig. 12, when the operating angle of the mirror 25a of the DMD 25 is less than 12 degrees or greater than 12 degrees, the mirror 25a of the operating state of the DMD 25 is used according to the unevenness of the operating angle of the mirror 25a of the DMD 25. The angle of the mirror 24b is changed by the mirror holder 54 so that the reflected light beam enters the second prism 52 at an angle as follows, and the angle of the light beam transmitted through the second prism 52 in the direction of the DMD 25 is emitted. The angle is the same as the angle at which the operating angle of the mirror 25a of the DMD 25 is 12 degrees (Fig. 1A). Next, the illumination optical system 2〇e and the mirror holder 54 are moved in the XY direction by the XY stage 55 so that the light beam transmitted through the second prism 52 is irradiated to the DMD 25 according to the angle of the changed mirror 24b. Thus, the position of the mirror 24b is changed. Thereby, the incident angle of the light beam irradiated to the DMD 25 force mirror 25a is adjusted in accordance with the operating angle of the mirror 25a of the DMD 25. Further, in FIGS. U and 12, when the operating angle of the mirror of the DMD 25 is 12 degrees (FIG. 1A), the optical path of the light beam from the illumination optical system 2〇c to the mirror 25a of the DMD 25 is a little line-locked. Said. The incident angle difference of the light beams supplied to the DMDs 25 of the respective beam irradiation devices 2A is adjusted according to the unevenness of the operating angle of the mirror 25a of the DMD 25 of each of the light beam irradiation devices 20. Therefore, even if the mirror 25a of the DMD 25 has an operation angle The optical path of the light beam which is reflected by the mirror 25a of the DMD 25 and supplied to the photonic optical system 20b is also the same. Therefore, the 峨25a _ of the DMD25 is unevenly distributed (4). The winding of the beam is corrected. The unevenness of the intensity distribution of the light is corrected, and the quality of the stroke is improved. In the illumination optical system 2〇C of the beam irradiation device 2G, it disperses the light, and supplies the reflected light to each of the beam irradiations 25: 25, depending on the operation angle of the brother a of the D25 of each beam irradiation device 2〇 Each beam is changed according to the angle of: ί==Γ, and is changed according to the position of the second b. Therefore, it is not necessary to tilt the entire ..., the first subsystem 20C, and the beam having a different incident angle is used with a simple configuration. Supply to DMD25. In addition, in the illumination optical system 2〇c of each of the light beam irradiation devices 20, optical components such as t-light lenses are widely used to converge the light beams, and then the light beams are supplied to the illumination optical systems of the respective light beam irradiation devices 2〇. When the mirror 24b of 2〇c is used, if the position of the mirror 24b of the illumination optical system 2〇c is individually changed, the optical path length of the filament changes in the illumination optical purity 2 (). The focus of the light beam condensed by the optical components such as the optical lens 23e is shifted. The angle ′ of the mirror 24b of the illumination optical system 2〇C of each light beam irradiation device 2〇 causes the entire illumination optical system 20c of each light beam irradiation device 20. When the movement is performed, the position of the mirror 24b is changed, and the focus of the light beam condensed by the optical components such as the condensing lens 23c is not shifted, and the light beam having a different incident angle is supplied to the DMD 25. Fig. 13 to Fig. 16 A diagram for explaining scanning of a substrate by using a light beam. Fig. 13 to Fig. 16 show an example in which the substrate 1 is subjected to the substrate 1 four times in the X direction by eight light beams from the eight beam irradiation devices 20. Sweeping The whole substrate 1 is scanned. In Fig. 13 to Fig. 16, '22 201224679 3952Ipif each light beam irradiation device 20 includes an illumination optical representation. The first beam from 各% of each light beam irradiation device 2G has a bandwidth w in the γ direction. Read the movement, (4) to the substrate in the direction = direction shift, such as; i: f4 two times the scan ', X direction into the second:: away: the end of the sweep of Figure 14 color area: two: _ case In the second == movement and the same distance as the bandwidth W, the first face of the magic field, 'toward the direction of the table, not the third time ^ gray, the scanning area shown in the gray map, the picture of the person's picture is in the picture After that, the gamma-platform 曰 pattern is made. The sweep of the 苐 three times is like the bandwidth ~ phase _ distance = thereby, the substrate 1 is oriented; the fourth sweep is performed in the X direction? 16 is not the fourth blessing, π The scanning area is such that the pattern is pulled out. In the gray of Fig. 16, the scanning of the soil board 1 is completed in Fig. 13 to Fig. 16. The direction of the substrate 1 is scanned four times, that is, along, but _钱和赖=The whole board 1 is swept' also according to the embodiment described above, according to each beam irradiation device 2〇23 201224679 3952 lpif The unevenness of the operating angle of the mirror 25a of the DMD 25 is caused by the unevenness of the operating angle of the mirror 25a of the beam 25 of the beam of the IH\DmMD25 gambling to the (four) degree: = unevenness of the intensity distribution According to the correction, in the illumination optical system 20c of each of the light beam irradiation devices 20, the light beam is reflected by the mirror 24b, and the reflected light is supplied to the DMD 25 of each of the light beam irradiation devices 20, according to each light beam irradiation device 2 The unevenness of the operating angle of the mirror 25a of the DMD 25 changes the angle of the mirror 2 of the illumination optical system 2〇c of each of the light beam irradiation devices 2, and the mirror 24b is changed according to the angle of the mirror. The position is changed, whereby a light beam having a different incident angle can be supplied to the DMD 25 with a simple configuration. In the illumination optical system 2〇C of each of the light beam irradiation devices 2, the light beams are concentrated by optical components such as the condenser lens 23e, and then the light beams are supplied to the illumination optical system 2 of each of the light beam irradiation devices 2〇. The mirror 2 4 b ' of c is moved by the angle of the mirror 24b of the illumination optical system 2 〇c of each of the light beam irradiation devices 2 to move the entire illumination optical system of each of the light beam irradiation devices 2 to thereby position the mirror 24b. By changing the focus of the light beam that is concentrated by the optical components such as the condenser lens 23c, the light beams having different incident angles can be supplied to the DMD 25. By exposing the substrate by using the exposure apparatus or the exposure method of the present invention, it is possible to correct the unevenness of the intensity of the diffracted light of the light beam caused by the unevenness of the operating angle of the mirror of the spatial light modulator. In order to improve the quality of the drawing and the %, it is possible to manufacture a high-quality panel display 24 201224679 3952 lpif board. For example, a flowchart of an example of a manufacturing procedure of a TFT substrate of a solid-state liquid-and-liquid-day display device. In the film formation step (step i〇i): by the surface (spmteO method or chemical vapor phase epitaxy (CVD) method, etc. a conductive film of a transparent electrode for liquid crystal transfer or a film of an insulator. In the photoresist coating step (step 1 () 2) +, the coating is applied by light = cloth, etc. (Step 101) A photoresist film is formed on the film. In the exposure step (Step 103), 104), a pattern is formed on the photoresist. The developing solution is supplied to the step in the developing step (step photoresist film by the nozzle rinsing method, etc.) ('Step 2: 2:: Removal. In the _(etching)' step (Step _, By the step (step 1〇5) ==: the film is the photoresist film that has been completed before or after the various steps: the function of the double cover. In the step, the step will be required to implement the substrate Cleaning/drying step (array) forming a TFT array on a substrate, and an example of the manufacturing process of the liquid crystal display device of the liquid crystal display device (steps) 2〇nL, Fig. In the black matrix p (blackmatrix) etching, and the processing of the coating, exposure, development, in the formation of a black matrix on the substrate. In 25 201224679 3952 lpif color pattern formation In the step (step 202), a coloring pattern is formed on the substrate by a dyeing method, a pigment dispersion method, or the like. The step is repeatedly performed on the coloring patterns of R, G, and B. In the protective film forming step (step 203) Forming a protective film on the colored pattern' in the transparent electrode film forming step ( In step 204), a transparent electrode film is formed on the film, and the substrate is subjected to a cleaning/drying step as needed before, during or after the respective steps. In the manufacturing step of the TFT substrate shown in FIG. The exposure apparatus or the exposure method of the present invention can be applied to an exposure step (step 1〇3), and in the manufacturing step of the color filter substrate shown in FIG. 18, the exposure apparatus or the exposure method of the present invention can be applied. The black matrix forming step (step 2〇1) and the exposure process of the coloring pattern forming step (step 2〇2). BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the configuration of an exposure apparatus according to an embodiment of the present invention. Fig. 2 is a side elevational view of an exposure apparatus according to an embodiment of the present invention. Fig. 3 is a front elevational view of an exposure apparatus according to an embodiment of the present invention. Fig. 4 is a view showing a light beam of an exposure apparatus according to an embodiment of the present invention. Fig. 5 is a view showing an example of a mirror portion of the DMD. Fig. 6 is a view for explaining an operation of the laser beam H纟4. Fig. 7 is a view showing a schematic diagram of the drawing control unit. To FIG. -Λπ limonene 8 side (a) of the piece goods mirror holder, FIG. 8 (b) is a rear view mirror of a solid piece goods carrier. FIG. 9 is a perspective view of the XY stage. 26 3952lpif

圖l〇 H 明的圖。 本發明的一個實施方式的曝光方法進行說 圖11 θ 明的圖。疋對本發明的一個實施方式的曝光方法進行說 圖12 θ 明的圖。疋對本發明的一個實施方式的曝光方法進行說 q 1 j是謂^明 圖14是說a利用光束來對基板進行的掃描的圖 圖15 明利用光束來對基板進行的掃描的圖 i 17^明_光束來對基板進行的掃描的〜 例的流程疋表不液晶顯示裴置的TFT基板的製造步驟的 -兒明利用光束來對基板進行的掃描的圖 圖 圖 18 日中一、 步驟认 疋表不液晶顯示襄置的彩色滤光片基板的製造 驟的-例的流程圖。 【主要元件符號說明】 1:基板 3 ·基座 4:X引導件 5 : X平臺 6 : Y W導件 7 : Y平臺 8 : Θ平臺 10 =夾美 11 :門 27 201224679 39521pif 20 :光束照射裝置 20a :頭部 20b :照射光學系統 20c :照明光學系統 21 :雷射光源單元 22 :光纖 23a :準直透鏡 23b :複眼透鏡 23c :聚光透鏡 24a、24b :面鏡 25 :數位微鏡裝置(DMD) 25a :面鏡 26 :投影透鏡 27 : DMD驅動電珞 31、 33 :線性標尺 32、 34 :編碼器 40 :雷射測長系統控制裝置 41 :雷射光源 42、 44 :雷射干涉計 43、 45 :棒鏡 51 :第一棱鏡 51 a :反射面 52 :第二棱鏡 54 :面鏡固定架 28 201224679 39521pif 54a :支撐板 54b :本體 54c :拉伸螺旋彈簧 54d :調節螺釘 55 : XY平臺 55a :平臺基座 55b : X平臺 55c : Y平臺 55d、55e :調節旋鈕 60 :平臺驅動電路 70 :主控制裝置 71 :描繪控制部 72 :記憶體 73 :帶寬設定部 74 :中心點座標決定部 75 :座標決定部 101 〜106、201 〜204 :步驟 W :帶寬 X、Y、Z、Θ :方向 29Figure l 〇 H diagram. The exposure method of one embodiment of the present invention is shown in Fig. 11 as a diagram of θ. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 12 is a view showing an exposure method according to an embodiment of the present invention.疋In the exposure method of one embodiment of the present invention, it is said that FIG. 14 is a view showing a scanning of a substrate by using a light beam. FIG. 15 is a view showing scanning of a substrate by using a light beam. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A flowchart showing an example of manufacturing a color filter substrate without a liquid crystal display device. [Main component symbol description] 1: Substrate 3 · Base 4: X guide 5: X platform 6 : YW guide 7 : Y platform 8 : Θ platform 10 = clip beauty 11 : door 27 201224679 39521pif 20 : beam irradiation device 20a: head 20b: illumination optical system 20c: illumination optical system 21: laser light source unit 22: optical fiber 23a: collimator lens 23b: fly-eye lens 23c: condensing lens 24a, 24b: mirror 25: digital micromirror device ( DMD) 25a: mirror 26: projection lens 27: DMD drive motor 31, 33: linear scale 32, 34: encoder 40: laser length measuring system control device 41: laser light source 42, 44: laser interferometer 43, 45: rod mirror 51: first prism 51 a: reflecting surface 52: second prism 54: mirror holder 28 201224679 39521pif 54a: support plate 54b: body 54c: tension coil spring 54d: adjusting screw 55: XY Platform 55a: platform base 55b: X platform 55c: Y platform 55d, 55e: adjustment knob 60: platform drive circuit 70: main control device 71: drawing control unit 72: memory 73: bandwidth setting unit 74: center point coordinate decision Part 75: coordinate determining sections 101 to 106, 201 to 204: Step W: Bandwidth X, Y, Z, Θ: direction 29

Claims (1)

201224679 39521pif 七、申請專利範圍·· L 一種曝光裝置,包括: 夾具,支撐著塗布有光阻劑的基板; 多個光束照射裝置,具有供給光束的照明光學系統、 空間光調制器、驅動電路、及照射光學系統,所述空間光 调制器將排列於兩個方向的多個面鏡的角度予以變更從 而對光束進行調制,所述驅動電路基於描繪資料來將所述 空間光調制器予以驅動,所述照射光學系統照射出經所述 空間光調制器調制的光束;以及 移動單元,使所述夾具與所述多個光束照射裝置相 地移動, 藉由所述移動單元來使所述夾具與所述多個光束照射 裝置相對地移動,藉由來自所述多個光束照射裴置的多條 光束來對基板進行掃描,在所述基板上描繪出圖案,所^ 曝光裝置的特徵在於: ' α 各光束照射裝置包括調節單元,該調節單元根據所述 各光束照射裝置的所述空間光調制器的面鏡的動作角度的 不均,對向所述各光束照射裝置的所述空間光調制器供給 的光束的入射角度進行調節。 2·如申請專利範圍第1項所述的曝光裝置,其中 所述各光束照射裝置的所述照明光學系統包括面鏡, 該面鏡使光束反射,將反射光供給至所述各光束照射裝 的所述空間光調制器, ^ 所述各光束照射裝置的所述調節單元包括:第一單 30 201224679 39521pif 元’根據所述各光束照射裝置的所述空間光調制器的所述 面鏡的動作角度的不均,將所述各光束照射裝置的所述照 明光學系統的所述面鏡的角度予以變更;以及第二單元, 根據所述面鏡的角度來將所述面鏡的位置予以變更。 3.如申請專利範圍第2項所述的曝光裝置,其中 所述各光束照射裝置的所述照明光學系統包括光學零 件,該光學零件使光束彙聚,接著將該光束供給至所述各 光束照射襄置的所述照明光學系統的所述面鏡, 所述第二單元根據所述各光束照射裝置的所述照明光 學系統的所述面鏡的角度,使所述各光束照射裝置的整個 所述照明光學系統移動,將所述面鏡的位置予以變更。 4· 一種黎光方法, 利用夾具來支撐著塗布有光阻劍的基板, 使夾具與多個光束照射裝置相對^動,所述多個光 束照射裝置包括:供給絲㈣日聽學系統、空間光調制 動電路、以及照射光學系統,所述空間光調制器將 排列於兩個方向的多個面鏡的角度予以變更,從而對光 =制,所述驅動電路基於描繪資料來將所述空 :;器束所述照射光學系統照射出經所述空間光調 的多條光束來對基板 ’所述曝光方法的特 藉由來自所述多個光束照射農置 進行掃描,在所述基板上描繪出圖牵 徵在於: ~ 根據各光束照射裝置的所述空間光的面鏡的動 31 201224679 3952lpif 裝置的所述空間光調 =請專利範圍第4項所述的曝光方法,其中 所、各光束照射裝置的所述照明光學系統中,利用 裝^的所述空間光調制器 > 〇 ' 、 面铲各光束照射裝置的所述空間光調制器的所述 明^ ^角度的不均,將所述各光束照射裝置的所述照 的===鏡的角度予以變更’且根據所述面鏡 紛ϋ 34面鏡的位置料變更,_所述各光束照 的所述空間光糊器供給的光束的人度進行調 卽0 6·如申請專利範圍第5項所述的曝光方法,其中 、 在所述各光束照射裝置的所述照明光學***中,利用 光學零件來使光束彙聚’接著將該光束供2 =各^束 照射裝置的所述照明光學系統的所述面鏡, 根據所述各光束照射裝置的所述照明光學系統的所述 面鏡的角度,使所述各光束照射裝置的整個所述照明光學 系統移動,將所述面鏡的位置予以變更。 7. —種顯示用面板基板的製造方法,其特徵在於: 使用根據申請專利範圍第1至3項中任一項所述的曝 光裝置來對基板進行曝光。 8. —種顯示用面板基板的製造方法,其特徵在於: 使用根據申請專利範圍第4至6項中任一項所述的曝 光方法來對基板進行曝光。 ' 32201224679 39521pif VII. Patent Application Range·· L An exposure apparatus comprising: a fixture supporting a substrate coated with a photoresist; a plurality of beam irradiation devices having an illumination optical system for supplying a light beam, a spatial light modulator, a drive circuit, And an illumination optical system that modulates an angle of a plurality of mirrors arranged in two directions to modulate a light beam, the drive circuit driving the spatial light modulator based on the drawing data, The illumination optical system illuminates a light beam modulated by the spatial light modulator; and a moving unit that moves the clamp relative to the plurality of light beam illumination devices, the clamp unit being The plurality of beam irradiation devices are relatively moved, and the substrate is scanned by a plurality of light beams from the plurality of light beams, and a pattern is drawn on the substrate. The exposure device is characterized by:各 each beam irradiation device includes an adjustment unit that adjusts the spatial light according to the respective beam irradiation devices The unevenness of the operating angle of the mirror of the maker adjusts the incident angle of the light beam supplied to the spatial light modulator of each of the beam irradiating devices. 2. The exposure apparatus according to claim 1, wherein the illumination optical system of each of the light beam illumination devices includes a mirror that reflects the light beam and supplies the reflected light to the light beam illumination device The spatial light modulator, the adjusting unit of each beam illuminating device comprises: a first single 30 201224679 39521 pif element 'according to the mirror of the spatial light modulator of each beam illuminating device The angle of the movement angle is changed, the angle of the mirror of the illumination optical system of each beam irradiation device is changed; and the second unit is configured to position the mirror according to the angle of the mirror change. 3. The exposure apparatus according to claim 2, wherein the illumination optical system of each of the light beam illumination devices includes an optical component that converges a light beam, and then supplies the light beam to the respective light beams The mirror of the illumination optical system disposed on the second unit, wherein the second unit makes the entire light beam irradiation device according to an angle of the mirror of the illumination optical system of each beam irradiation device The illumination optical system moves to change the position of the mirror. 4) A method of using a fixture to support a substrate coated with a photoresist sword, and to move the fixture relative to the plurality of beam irradiation devices, the plurality of beam irradiation devices comprising: a supply wire (4) a day listening system, a space a light modulating circuit and an illuminating optical system, wherein the spatial light modulator changes an angle of a plurality of mirrors arranged in two directions to control light, and the driving circuit converts the space based on the drawing data The illuminating optical system illuminates a plurality of light beams that are tuned by the spatial light to the substrate. The exposure method is scanned by the plurality of light beams, and the substrate is scanned on the substrate. The drawing is characterized by: ~ the movement of the mirror according to the spatial light of each beam irradiation device. 201224679 3952lpif The spatial light modulation of the device = the exposure method described in the fourth item of the patent scope, wherein each In the illumination optical system of the beam irradiation device, the spatial light modulator of the device is used, and the spatial light modulator of each beam irradiation device of the surface shovel is used ^^The angle of the angle is changed, the angle of the mirror of the light beam irradiation device is changed, and the angle of the mirror is changed according to the mirror. The exposure method of the light beam supplied by the spatial light paste device, wherein the exposure method according to the fifth aspect of the invention is used in the illumination optical system of each of the light beam illumination devices An optical component to converge the beam 'and then supply the beam to the face mirror of the illumination optical system of the illumination device, according to the mask of the illumination optical system of each beam illumination device The angle is such that the entire illumination optical system of each of the beam irradiation devices is moved to change the position of the mirror. A method of manufacturing a panel substrate for display, comprising: exposing a substrate by using the exposure device according to any one of claims 1 to 3. A method of manufacturing a panel substrate for display, which comprises: exposing a substrate by using the exposure method according to any one of claims 4 to 6. ' 32
TW100141143A 2010-12-07 2011-11-11 Exposure device, exposure method and manufacturing method of panel substrates for display TW201224679A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010273043A JP5611016B2 (en) 2010-12-07 2010-12-07 Exposure apparatus, exposure method, and manufacturing method of display panel substrate

Publications (1)

Publication Number Publication Date
TW201224679A true TW201224679A (en) 2012-06-16

Family

ID=46347924

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100141143A TW201224679A (en) 2010-12-07 2011-11-11 Exposure device, exposure method and manufacturing method of panel substrates for display

Country Status (4)

Country Link
JP (1) JP5611016B2 (en)
KR (1) KR101375886B1 (en)
CN (1) CN102540755A (en)
TW (1) TW201224679A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146012A (en) * 2013-01-30 2014-08-14 Hitachi High-Technologies Corp Pattern formation method and device
CN105739184B (en) * 2014-12-07 2019-01-29 上海微电子装备(集团)股份有限公司 Alignment apparatus, alignment system and alignment method
JP7281021B2 (en) * 2020-04-23 2023-05-24 ドルビー ラボラトリーズ ライセンシング コーポレイション Projection system and method with adjustable angle illumination
KR20230091134A (en) * 2020-10-23 2023-06-22 돌비 레버러토리즈 라이쎈싱 코오포레이션 Projection system and method using fold mirror and integral rod adjustment

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184098A (en) * 1997-07-11 1999-03-26 Canon Inc X-ray-lighting device and method, x-ray projection aligner, and device-manufacturing method
SE519397C2 (en) * 1998-12-16 2003-02-25 Micronic Laser Systems Ab Systems and method for microlithographic drawing of high-precision patterns
JP2003262781A (en) * 2002-03-08 2003-09-19 Konica Corp Mirror angle adjustment mechanism for image recorder
JP3837356B2 (en) * 2002-04-01 2006-10-25 株式会社小松製作所 Narrow band laser equipment
JP2005183736A (en) * 2003-12-19 2005-07-07 Nikon Corp Exposure method and apparatus, and device manufacturing method
JP2005266779A (en) * 2004-02-18 2005-09-29 Fuji Photo Film Co Ltd Exposure apparatus and method
JP2008233112A (en) * 2005-06-22 2008-10-02 Fujifilm Holdings Corp Production method of color filter, and color filter and display unit
JP2007199532A (en) * 2006-01-27 2007-08-09 Fujifilm Corp Pattern forming method
JP4863948B2 (en) * 2007-07-30 2012-01-25 株式会社日立ハイテクノロジーズ Exposure apparatus, exposure method, and manufacturing method of display panel substrate
US7999939B2 (en) * 2007-08-17 2011-08-16 Asml Holding N.V. Real time telecentricity measurement
JPWO2009078223A1 (en) * 2007-12-17 2011-04-28 株式会社ニコン Spatial light modulation unit, illumination optical system, exposure apparatus, and device manufacturing method
JP5376494B2 (en) * 2008-10-08 2013-12-25 大日本スクリーン製造株式会社 Drawing apparatus and drawing method
JP2010182933A (en) * 2009-02-06 2010-08-19 Dainippon Screen Mfg Co Ltd Drawing apparatus and drawing method
JP2010191127A (en) * 2009-02-18 2010-09-02 Hitachi High-Technologies Corp Exposure apparatus, exposure method, and method for manufacturing panel substrate for display
JP2012118375A (en) * 2010-12-02 2012-06-21 Olympus Corp Pattern projection device and laser processing device

Also Published As

Publication number Publication date
KR20120063427A (en) 2012-06-15
JP5611016B2 (en) 2014-10-22
CN102540755A (en) 2012-07-04
JP2012123128A (en) 2012-06-28
KR101375886B1 (en) 2014-03-18

Similar Documents

Publication Publication Date Title
TWI269944B (en) Lithographic apparatus and device manufacturing method
TWI381253B (en) Exposure device, exposure method and production method for a display panel substrate
KR20110087401A (en) Auto focusing device and method of maskless exposure apparatus
TW201224679A (en) Exposure device, exposure method and manufacturing method of panel substrates for display
TW201335722A (en) Exposure apparatus, exposure method, and fabricating method of display panel substrate
TW201032004A (en) Exposure device, exposure method, and production method of displaying panel substrates
US20100060878A1 (en) Exposure appartus, exposure method and method of manufacturing display panel substrate
TWI354348B (en) Substrate moving apparatus
TW201248338A (en) Exposure apparatus, exposure method, inspecting method of exposure apparatus and manufacturing method of display panel substrate
JP3025545B2 (en) X-ray lithography mask and X-ray lithography exposure apparatus
JP5473880B2 (en) Exposure apparatus, exposure method, and manufacturing method of display panel substrate
JP4235972B2 (en) Pattern drawing apparatus and pattern drawing method
TW200523673A (en) Maskless optical writer
JP4214547B2 (en) Beam shaping optical element and pattern writing apparatus having the same
KR20100042864A (en) Exposure apparatus and method to measure straitness thereof
KR100799500B1 (en) Dry eaching device with polygonal scanner and galvanometer scanner
JP2644741B2 (en) Proximity exposure method and apparatus
JP2011007974A (en) Exposure device, exposure method, and method of manufacturing display panel substrate
JP7427352B2 (en) exposure equipment
JP2011237596A (en) Exposure apparatus, exposure method, and manufacturing method of display panel substrate
TW201234136A (en) Exposure apparatus and exposure method
JP2012088464A (en) Exposure device, exposure method, and method for manufacturing display panel substrate
JP5467975B2 (en) Exposure apparatus, exposure method, and manufacturing method of display panel substrate
JP2011237684A (en) Exposure device, exposing method, and method of manufacturing display panel substrate
JP2010276901A (en) Exposure device, chuck position detection method of exposure device, and manufacturing method of panel substrate for display