TW201140859A - Coaxial nanowire solar cell structure - Google Patents

Coaxial nanowire solar cell structure Download PDF

Info

Publication number
TW201140859A
TW201140859A TW99114631A TW99114631A TW201140859A TW 201140859 A TW201140859 A TW 201140859A TW 99114631 A TW99114631 A TW 99114631A TW 99114631 A TW99114631 A TW 99114631A TW 201140859 A TW201140859 A TW 201140859A
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
coaxial
solar cell
dopant
nanowires
Prior art date
Application number
TW99114631A
Other languages
Chinese (zh)
Other versions
TWI409963B (en
Inventor
Huang-Chung Cheng
Hung-Hsien Li
Po-Yu Yang
Original Assignee
Huang-Chung Cheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huang-Chung Cheng filed Critical Huang-Chung Cheng
Priority to TW99114631A priority Critical patent/TWI409963B/en
Publication of TW201140859A publication Critical patent/TW201140859A/en
Application granted granted Critical
Publication of TWI409963B publication Critical patent/TWI409963B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

A coaxial nanowire solar cell structure is provided which including a bottom electrode, a plurality of photovoltaic coaxial structures, a transparent conductive thin film and a top electrode formed on a substrate in order. In the coaxial nanowire solar cell structure, the photovoltaic coaxial structures include a plurality of doped semiconductor nanowires, an intrinsic semiconductor layer and a doped semiconductor layer. The intrinsic semiconductor layer is deposited on the doped semiconductor nanowires so as to uniformly wrap surfaces of the doped semiconductor nanowires. The doped semiconductor layer is deposited on the intrinsic semiconductor layer to uniformly wrap a surface of the intrinsic semiconductor layer. The said transparent conductive thin film is further deposited in spaces among the photovoltaic coaxial structures.

Description

201140859 j*tui*tiwf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種太陽能電池,且特別是有關於一 種同軸奈米線(coaxial nanowires)結構的太陽能電池。 【先前技術】 太陽能電池是一種非常有希望的乾淨能源,其可直接 從陽光產生電。一般太陽電池分為三種:1.晶片型(wafer based) ; 2.薄膜型(thin film) ; 3.光電化學(phot〇electr〇_ chemistry)。其中以薄膜為基準的是第二代太陽能電池技 術,主要為非晶矽(a-Si)薄膜技術。 然而’非晶矽薄膜技術的重要障礙為光感應效率低(約 11%穩定),針對這個問題所發展出的解決方法包括:多接 面結構、堆疊式結構(tandem structure)等。其中,堆疊式結 構主要是結合不同能隙的異質材料,延伸太陽光源的吸收 光譜,進而提升太陽能電池的轉換效率,現今市場上非晶 矽太陽能電池能達到7%至9 %的轉換效率。 近年,由Gratzel提出一種所謂的染料敏化太陽能電池 (DSSC) ’可更有效地利用太陽能源,而成為繼薄膜型非晶 矽太陽能電池後被視為最有潛力的第三代太陽電池。而 且,新一代太陽能電池必需真正達到高效率、重量輕與低 成本的設計。因此,具有奈米結構的太陽能電池無疑是最 具有潛力的技術,如PCT公開號W02005/017957揭露一 種具有奈米線的染料敏化太陽能電池。不過,聚合物主要 oc/n 201140859 的缺點為電荷傳輸緩慢,造成轉換效率不高以及對於紫 光的穩定度不佳,因而染料敏化太陽能電池似.^至/ 需求的效能。 運小”所 【發明内容】 、本發明提供一種同軸奈米線結構的太陽能電池,能透 過奈米線結構增加吸收光的表面積,以提升太陽能BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell, and more particularly to a solar cell of a coaxial nanowires structure. [Prior Art] Solar cells are a very promising clean energy source that can generate electricity directly from sunlight. Generally, solar cells are classified into three types: 1. wafer based; 2. thin film; 3. photoelectrochemistry (phot〇electr〇_ chemistry). Among them, the second generation solar cell technology based on the film is mainly amorphous alum (a-Si) thin film technology. However, an important obstacle to the amorphous germanium film technology is that the light-sensing efficiency is low (about 11% stable), and solutions developed for this problem include a multi-join structure, a tandem structure, and the like. Among them, the stacked structure mainly combines different energy gap heterogeneous materials, extending the absorption spectrum of the solar light source, thereby improving the conversion efficiency of the solar cell, and the amorphous germanium solar cell can achieve a conversion efficiency of 7% to 9% on the market today. In recent years, a so-called dye-sensitized solar cell (DSSC) has been proposed by Gratzel to make more efficient use of solar energy sources, and has become the third-generation solar cell that is considered to be the most promising after film-type amorphous germanium solar cells. Moreover, the new generation of solar cells must truly achieve high efficiency, light weight and low cost design. Therefore, a solar cell having a nanostructure is undoubtedly the most promising technique, as disclosed in PCT Publication No. WO2005/017957, which discloses a dye-sensitized solar cell having a nanowire. However, the main disadvantage of the polymer oc/n 201140859 is that the charge transfer is slow, resulting in low conversion efficiency and poor stability to violet light, so the dye-sensitized solar cell seems to have a performance of . The invention provides a solar cell with a coaxial nanowire structure, which can increase the surface area of light absorption through the nanowire structure to enhance solar energy.

轉換效率。. J * 本發明提出一種同軸奈米線結構的太陽能電池,包括 =序形成於-基板上的—τ電極、多個光伏打同轴結構、 处透明導電薄膜層與—上電極。在同軸奈米線結構的太陽 池中,光伏打同軸結構包括多個摻質半導體奈米線、 ^質半導體層與摻質半導體層。所述本質半導體層沈積並 •岣勻包覆在摻質半導體奈米線的表面,而摻質半導體層 並且均勻包覆於本質半導體層的表面,且上述透i 电薄膜層還包括沈積在這些光伏打同轴結構之間的空間 内。 在本發明之一實施例中,上述本質半導體層與摻質半 導體層的材料包括非晶矽(a_si)、微晶矽(μ_δί)、碳化矽 (SlQ、III-V摻質半導體材料或II-VI摻質半導體材料。 在本發明之一實施例中,上述摻質半導體奈米線包括 夕摻質奈米線、金屬氧化物摻質奈米線或是摻質半導體所 /成具結晶性的奈米線。 在本發明之一實施例中,上述摻質半導體奈米線相較 f.doc/n 201140859 於本質半導體層及摻質半導體層具有相異的能隙,可形成 異質接面。 在本發明之一實施例中,上述本質半導體層及摻質半 導體層的沈積方法包括電漿輔助化學氣相沈積法 (PECVD)、高密度電聚化學氣相沈積(HDP-CVD)或電子迴 旋共振化學氣相沈積(ECR-CVD)。 在本發明之一實施例中’上述摻質半導體奈米線的成 長方式包括氣液固法(vapor-liquid-solid,VLS)、電化學法. (Electrochemical Deposition)、水熱法(hydrothermal)、陽極 氧化鋁法(AAO)或溶膠凝膠法(sol-gel)。 在本發明之一實施例中,上述摻質半導體奈米線包括 均勻排列在基板上的下電極表面之奈米線陣列。 在本發明之一實施例中’上述基板包括矽基板、玻璃 基板或軟性基板。 在本發明之一實施例中,上述軟性基板包括超薄玻璃 (Ultra-thin Glass)、塑膠薄膜(Plastic)或金屬箔片㈤[etal Foil)。 在本發明之一實施例中,上述塑膠薄膜包括聚醯亞胺 (PI)、t對本一曱酸乙·一 ia (PET)'聚蔡二甲酸乙二脂(pen) 或聚醚颯(PES)。 在本發明之一實施例中’上述上電極與下電極包括導 電聚合物(Polymer)、金屬或其合金、透明導電氧化物(TC〇) 或奈米碳管(CNT)。 在本發明之一實施例中,上述透明導電薄膜層的材料 201140859 -oc/n 包括氧化銦錫(ITO)、氧化銘鋅 米碳管(CNT)。 ’、 基於上述’本發明應用全無機製程即可製作出由同軸 奈米線結構構成之太陽能電池’本發明的優點在於奈米線 收光的表面積’加上摻質半導體奈米線 與本質半導體層及摻質半導體層形成異f接面,可以延伸 太陽光的讀光譜,_能提升太陽能電池的轉換效率。 而且,本發明的奈米線為摻f半導體奈米線,所以其同時 具備吸收太陽光源的作用以及傳遞載子的伽,而達到結 合異質材料與奈米線所形成的太陽能電池。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 “ H是依照本發明之—實施例之—翻軸奈米線結構 勺太能電池的結構示意圖。請參照圖丨,本實施例的同 軸奈米線結構的太電池包括-基板⑽、依序形成於 基板100上的-下電極102、多個光伏打同轴結構刚、一 透明導電薄膜層106與-上電極。在本實施例中,光 伏打同軸結構1〇4包括自下電極1〇2形成的多條捧質半導 體奈米線11G、沈積並邱勻包覆在摻f半導體奈米線11〇 的表面n〇a的-本質半導體層112、與沈積並且均句包覆 在本貝半導體層112的表面i12a的一摻質半導體層ιι4。 而透明導電薄膜層1〇6還包括沈積在這些光伏打同轴結構 201140859 iHiwi.d〇c/n 104之間的空間内。上述摻質半導體奈米線110相較於本 質半導體層112及摻質半導體層114基本上具有相異的能 隙,可以延伸太陽光源的吸收光譜。至於本質半導體層112 及摻質半導體層114則可依所須選用具有相異或相同能隙 的材料。 在本實施例中,摻質半導體奈米線110例如;S夕換質奈 米線、金屬氧化物摻質奈米線或是摻質半導體所形成具結 晶性的奈米線,其中金屬氧化物摻質奈米線例如氧化鋅 β (ZnO)推質奈米線。而形成換質半導體奈米線11〇的成長方 式例如氣液固法(vapor-liquid-solid,VLS)、電化學法 (Electrochemical Deposition)、水熱法(hydrothermal)或陽極 氧化鋁法(AAO)或溶膠凝膠法(sol-gel)。此外,本實施例之 摻質半導體奈米線110還可運用上述製程作出均勻排列在 基板100上的下電極102表面之奈米線陣列。舉例來說, 所製作的摻質半導體奈米線110的高度約在〇5μηι〜2〇μηι 之間、直徑約在20ηιη〜200nm之間,每條摻質半導體奈米 φ 線11 〇的間距约在0.1 μιη〜1 μιη之間。 在本實施例中,上述本質半導體層112與摻質半導體 層114的材料例如非晶矽(a_Si)、微晶矽(μ_δί)、碳化矽 (sic)、iii-v摻質半導體材料或ΙΙΛα·質半導體材料,立 中m_v摻質半導體材料譬如石申化嫁(GaAs)、碟化師外 磷化鎵(InGaP)等;II-VI摻質半導體材料譬如碲化鎘 (CdTe)、硒化銅銦鎵(CuInGaSe2)等。本質半導體層112及 «半導體層114的沈積方法例如電漿輔助化學氣相沈積 201140859 法(PECVD)、南密度電漿化學氣相沈積(HDp_CVD)或電子 迴旋共振化學氣相沈積(ECR_CVD)。 在本實施例中,上述基板1〇〇例如矽基板、玻璃基板 或軟性基板,如超薄玻璃(ultra_thin Glass),金屬箔片(Metal Foil)或塑膠;4膜(plastic)(如:聚酿亞胺㈣、聚對苯二〒酸 乙二’ET)、聚萘二曱酸乙二g旨(pEN)或聚,風(pES))。 至於上電極108與下電極1〇2例如導電聚合物(p〇lymer)、 金屬或其合金、透明導電氧化物(TC〇)或奈米碳管(CNT), 其中金屬或其合金譬如鋁、金、銀、鉑或其合金。上述透 明導電薄膜層的材料例如氧化銦錫(ITO)、氧化鋁鋅 (AZO)、氧化銦鋅(IZ〇)或奈米碳管(CNT) 〇 以下舉一個實驗來說明圖1之同軸奈米線結構的太陽 能電池的製作流程,但其僅用以示例性地說明本發明的可 行性’而不侷限本發明之太陽能電池只能用下列方式製作。 實驗 首先’在石夕基板上利用藏鐘機(Sputtering)沈積摻紹氧 化鋅薄膜(AZO)作為下電極,薄膜厚度約1〇〇nm〜3〇〇nm, 且此 AZO同時也是種晶層。接著,利用水熱法 (Hydrothermal)成長摻質氧化辞奈米線(n_type Zn〇 nanowires) ’奈米線高度控制在1 “m〜3 μ·,直徑控制在 50nm〜150nm ’奈米線的間距則約100nm〜500mn。之後, 使用電漿輔助化學氣相沈積法(;pECVD)依序沈積本質非晶 矽層(i-type α-Si)和摻質非晶矽層(p_type α-Si),PECVD的 沈積速率控制在2A/s〜6A/s,完成的本質非晶矽層均勻包 201140859 ->*tu i *ti.wf.doc/n 覆在摻質氧化鋅奈米線的表面、完成的摻質非晶矽層則均 勻包覆在本質非晶矽層的表面。所沈積的摻質非晶矽層與 本質非aa石夕層之薄臈厚度約50^^20011111,因而構成多個 光伏打同軸結構。接著,利用濺鍍機(Sputtering)a積透明 V電/專膜層(ITO),其厚度約5〇nm〜25〇nm,且形成的ITO 不但沈積於光伏打同軸結構上方,還沈積在光伏打同軸結 構之間的空間。最後,利用濺鍍機(Sputtering)沈積鈦/金 (Ti/Au)金屬層’薄膜厚度約3〇〇nnv°800nm,並且使用光罩 定義金屬層,以形成手指狀(fmger)的上電極,便可完成同 軸奈米線結構的太陽能電池的製作。 综上所述,本發明的同軸奈米線結構太陽能電池因為 使用摻質半導體奈米線作為光伏打同軸結構之摻雜層,不 但能大幅增加吸收太陽光的表面積,還能夠縮短載子移動 的距離,有效提升太陽能電池的轉換效率。此外,本發明 利用摻質半導體奈米線與本質半導體層及摻質半導體層形 成異質接面,還具有延伸太陽光的吸收光譜的效果。 • 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,故本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1是依照本發明之一實施例之一種同軸奈米線結構 的太陽能電池的示意圖。 9 201140859 / _ __________oc/n 【主要元件符號說明】 100 :基板 102 :下電極 104 :光伏打同軸結構 106 :透明導電薄膜層 108 :上電極 110 :摻質半導體奈米線 110a、112a :表面 112 :本質半導體層 114 :摻質半導體層Conversion efficiency. J* The invention provides a solar cell with a coaxial nanowire structure, comprising: a -τ electrode formed on the substrate, a plurality of photovoltaic coaxial structures, a transparent conductive film layer and an upper electrode. In the solar cell of the coaxial nanowire structure, the photovoltaic coaxial structure comprises a plurality of doped semiconductor nanowires, a semiconductor layer and a dopant semiconductor layer. The intrinsic semiconductor layer is deposited and uniformly coated on the surface of the dopant semiconductor nanowire, and the semiconductor layer is doped and uniformly coated on the surface of the intrinsic semiconductor layer, and the above-mentioned electroconductive thin film layer further includes deposits on these Photovoltaic is made within the space between the coaxial structures. In an embodiment of the invention, the material of the intrinsic semiconductor layer and the doped semiconductor layer comprises amorphous germanium (a_si), microcrystalline germanium (μ_δί), tantalum carbide (SlQ, III-V dopant semiconductor material or II- VI. A dopant semiconductor material. In one embodiment of the invention, the dopant semiconductor nanowire comprises a smectic nanowire, a metal oxide doped nanowire or a dopant semiconductor/crystallized In one embodiment of the present invention, the dopant semiconductor nanowire has a different energy gap than the intrinsic semiconductor layer and the dopant semiconductor layer compared to f.doc/n 201140859, and a heterojunction can be formed. In an embodiment of the invention, the method for depositing the intrinsic semiconductor layer and the doped semiconductor layer comprises plasma assisted chemical vapor deposition (PECVD), high density electropolymerization (HDP-CVD) or electron cyclotron Resonance chemical vapor deposition (ECR-CVD). In one embodiment of the invention, the growth mode of the above-mentioned dopant semiconductor nanowires includes vapor-liquid-solid (VLS), electrochemical methods. Electrochemical Deposition), hydrothermal method l) anodized aluminum oxide (AAO) or sol-gel. In one embodiment of the invention, the dopant semiconductor nanowire comprises a nanoparticle uniformly arranged on a surface of the lower electrode of the substrate. In one embodiment of the present invention, the substrate includes a germanium substrate, a glass substrate or a flexible substrate. In one embodiment of the invention, the flexible substrate comprises an ultra-thin glass and a plastic film ( Plastic) or metal foil (5) [etal Foil). In an embodiment of the present invention, the plastic film comprises polyimine (PI), t-p-butyl phthalate (PET), poly (ethylene) pentanate (pen) or polyether oxime (PES). ). In an embodiment of the invention, the upper and lower electrodes include a conductive polymer, a metal or alloy thereof, a transparent conductive oxide (TC〇) or a carbon nanotube (CNT). In an embodiment of the invention, the material of the transparent conductive film layer 201140859-oc/n comprises indium tin oxide (ITO) and oxidized zinc carbon nanotube (CNT). ', based on the above-mentioned application, the solar cell composed of the coaxial nanowire structure can be fabricated without any mechanism. The advantage of the present invention is that the surface area of the nanowire is harvested plus the doped semiconductor nanowire and the intrinsic semiconductor. The layer and the doped semiconductor layer form an iso-f junction, which can extend the reading spectrum of sunlight, and can improve the conversion efficiency of the solar cell. Further, since the nanowire of the present invention is a doped semiconductor nanowire, it has a function of absorbing a solar light source and transmitting a carrier, thereby achieving a solar cell formed by combining a heterogeneous material with a nanowire. The above described features and advantages of the present invention will become more apparent from the description of the appended claims. [Embodiment] "H is a schematic diagram of a structure of a solar cell of a flip-flop nanowire structure in accordance with an embodiment of the present invention. Referring to the drawing, the solar cell of the coaxial nanowire structure of the present embodiment includes a substrate. (10), the lower electrode 102, the plurality of photovoltaic coaxial structures, the transparent conductive film layer 106 and the upper electrode are sequentially formed on the substrate 100. In the embodiment, the photovoltaic coaxial structure 1〇4 includes a plurality of holding semiconductor nanowires 11G formed by the lower electrode 1〇2, deposited and coated on the surface of the doped semiconductor nanowire 11〇-n-a-essential semiconductor layer 112, and deposited and uniformly packaged A doped semiconductor layer ι4 overlying the surface i12a of the Benbe semiconductor layer 112. The transparent conductive film layer 〇6 further includes a space deposited between the photovoltaic-on-coaxial structures 201140859 iHiwi.d〇c/n 104 The dopant semiconductor nanowire 110 has substantially different energy gaps than the intrinsic semiconductor layer 112 and the dopant semiconductor layer 114, and can extend the absorption spectrum of the solar source. As for the intrinsic semiconductor layer 112 and the dopant semiconductor layer 114. Can be selected as required A material having a different or the same energy gap. In this embodiment, the doped semiconductor nanowire 110 is, for example, a S-switched nanowire, a metal oxide doped nanowire, or a dopant semiconductor formed by crystallization. A nanowire, in which a metal oxide doped nanowire, such as zinc oxide beta (ZnO), is used to push a nanowire, and a growth mode of forming a metamorphic semiconductor nanowire 11 is, for example, a vapor-liquid method. -solid, VLS), Electrochemical Deposition, hydrothermal or anodized aluminum (AAO) or sol-gel. In addition, the doped semiconductor nano in this example The line 110 can also use the above process to make an array of nanowires uniformly arranged on the surface of the lower electrode 102 on the substrate 100. For example, the height of the fabricated semiconductor nanowire 110 is about 〇5μηι 2 2〇μηι The distance between each of the doped semiconductor nanometer φ wires 11 〇 is between about 0.1 μm and 1 μm. In the present embodiment, the intrinsic semiconductor layer 112 and the dopant semiconductor layer are 114 materials such as amorphous germanium (a_Si), micro矽(μ_δί), bismuth carbide (sic), iii-v dopant semiconductor material or ΙΙΛα· semiconductor material, Lizhong m_v dopant semiconductor material such as Shi Shenhua Marriage (GaAs), disc granitic phosphide (InGaP II-VI dopant semiconductor materials such as cadmium telluride (CdTe), copper indium gallium selenide (CuInGaSe2), etc. The intrinsic semiconductor layer 112 and the deposition method of the semiconductor layer 114 such as plasma-assisted chemical vapor deposition 201140859 (PECVD), Southern Density Plasma Chemical Vapor Deposition (HDp_CVD) or Electron Cyclotron Resonance Chemical Vapor Deposition (ECR_CVD). In this embodiment, the substrate 1 is, for example, a germanium substrate, a glass substrate or a flexible substrate, such as ultra-thin glass, metal foil or plastic; 4 plastic (eg: brewing) Imine (IV), polyethylene terephthalate (ET), polyethylene naphthalate (pEN) or poly, wind (pES)). As for the upper electrode 108 and the lower electrode 1〇2 such as a conductive polymer (p〇lymer), a metal or alloy thereof, a transparent conductive oxide (TC〇) or a carbon nanotube (CNT), wherein the metal or its alloy such as aluminum, Gold, silver, platinum or alloys thereof. The material of the transparent conductive film layer such as indium tin oxide (ITO), aluminum zinc oxide (AZO), indium zinc oxide (IZ) or carbon nanotube (CNT) 〇 is an experiment to illustrate the coaxial nanometer of FIG. The manufacturing process of the solar cell of the line structure, but it is only for exemplifying the feasibility of the present invention', and the solar cell of the present invention can be produced only in the following manner. Experiment First, a doped zinc oxide film (AZO) was deposited as a lower electrode on a Shi Xi substrate by means of a sputtering machine. The film thickness was about 1 〇〇 nm to 3 〇〇 nm, and this AZO was also a seed layer. Next, the hydrothermal method (Hydrothermal) is used to grow the n-type Zn〇nanowires. The nanowire height is controlled at 1 "m~3 μ·, and the diameter is controlled at 50 nm to 150 nm. Then, about 100 nm to 500 nm. Thereafter, plasma-assisted chemical vapor deposition (pECVD) is used to sequentially deposit an intrinsic amorphous germanium layer (i-type α-Si) and a dopant amorphous germanium layer (p_type α-Si). The deposition rate of PECVD is controlled at 2A/s~6A/s, and the completed amorphous enamel layer is evenly packaged 201140859->*tu i *ti.wf.doc/n overlying the surface of the doped zinc oxide nanowire The completed doped amorphous germanium layer is evenly coated on the surface of the intrinsic amorphous germanium layer. The deposited amorphous amorphous germanium layer and the non-aa australis layer have a thickness of about 50^^20011111, thus forming A plurality of photovoltaics are coaxially fabricated. Next, a transparent V/electrode layer (ITO) is deposited by a sputtering machine, and the thickness thereof is about 5 〇 nm to 25 〇 nm, and the formed ITO is deposited not only on the photovoltaic coaxial Above the structure, it is also deposited in the space between the photovoltaic-coaxial structures. Finally, a titanium/gold (Ti/Au) metal layer is deposited by sputtering (Sputtering) The thickness of the film is about 3〇〇nnv°800nm, and the metal layer is defined by a photomask to form a finger-shaped upper electrode, thereby completing the fabrication of the solar cell of the coaxial nanowire structure. In summary, the present invention The coaxial nanowire structure solar cell uses the doped semiconductor nanowire as the doping layer of the photovoltaic coaxial structure, which not only can greatly increase the surface area for absorbing sunlight, but also can shorten the distance of the carrier to move, and effectively improve the solar cell. In addition, the present invention utilizes a dopant semiconductor nanowire to form a heterojunction with an intrinsic semiconductor layer and a dopant semiconductor layer, and also has the effect of extending the absorption spectrum of sunlight. • Although the invention has been disclosed above by way of example, However, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the patent application is defined as follows. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a coaxial diagram in accordance with an embodiment of the present invention. Schematic diagram of a solar cell with a nanowire structure. 9 201140859 / _ __________oc/n [Description of main component symbols] 100: Substrate 102: Lower electrode 104: Photovoltaic coaxial structure 106: Transparent conductive film layer 108: Upper electrode 110: Doping Semiconductor nanowires 110a, 112a: surface 112: intrinsic semiconductor layer 114: dopant semiconductor layer

Claims (1)

201140859H , v ··.«.!!.doo/n 七、申請專利範圍: ι·一種同轴奈米線結構的太陽能電池,包括:依序形 成於一基板上的一下電極、多個光伏打同軸結構、—透明 導電薄膜層與一上電極,其中該些光伏打同軸結構包括: 多個摻質半導體奈米線; —本質半導體層,沈積並且均勻包覆在該些摻質半導 體奈来線的表面;以及201140859H , v ··.«.!!.doo/n VII. Patent application scope: ι· A solar cell with a coaxial nanowire structure, including: a lower electrode sequentially formed on a substrate, and a plurality of photovoltaics a coaxial structure, a transparent conductive film layer and an upper electrode, wherein the photovoltaic coaxial structures comprise: a plurality of dopant semiconductor nanowires; an intrinsic semiconductor layer deposited and uniformly coated on the dopant semiconductor nematic wires Surface; 一摻質半導體層,沈積並且均勻包覆於該本質半導體 層的表面,且 該透明導電薄膜層更包括沈積在該些光伏打同軸結構 之間的空間内。 β Α 2·如申請專利範圍第1項所述之同軸奈米線結構的太 陽能電池’其中該本質半導體層與該摻質半導體層的材料 包=非晶矽(α-Si)、微晶矽(μ-Si)、碳化矽(Sic)、III-V摻質 半導體材料或II-VI摻質半導體材料。 貝 3心3.如申請專利範圍第1項所述之同軸奈米線結構的太 陽能電池,其中該些摻質半導體奈米線包括矽摻質奈米 線、金屬氧化物摻質奈米線或是摻質半導體所形成里H、 性的奈米線。 。日日 BAt4·如申請專利範圍第1項所述之同軸奈米線結構的太 陽月b電池,其中該些摻質半導體奈米線相較於該本質半導 體層及S亥摻質半導體層具有相異的能隙可形成異質接面。 5·如申請專利範圍第1項所述之同軸奈米線結構的太 犯電池,其中該本質半導體層及該摻質半導體層的沈積 201140859 / )c/n 方法包括電聚輔助化學氣相沈積法(PECVD)、高密产電將 化學氣相沈積_^戦電子迴旋聽化學^沈ς (ECR-CVD) 〇 、 6. 如申請專職圍第丨項所述之_奈轉結構的太 陽能電池’其中該些摻質半導體奈米線的成長方式包括氣 液固法(ν啊-Hquid-soHd,VLS)、電化學法㈤⑽〇chemicai Deposmon)、水熱法(hydrothenna丨)、陽極氧化姆 或溶膠凝膠法(sol-gel)。 7. 如申請專利範㈣6項所述之同軸奈米線結構的太 %能電池,其中該些摻質半導體奈米線包括均勻排列在該 基板上的該下電極表面之奈米線陣列。 陪二t申:7利範圍第1項所述之同軸奈米線結構的太 ^電池,其中該基板包括⑦基板、玻璃基板或軟性基板。 3 /.如”專利範圍第8項所述之_奈米線結構的太 此私池’,中该軟性基板包括超薄玻璃⑽以_她 G ass)、跡薄膜(plastic)或金屬箱片⑽如。 s 10·如中請專利範圍第9項所述之同軸奈米線結構的 太iw能電池’其中該塑膠薄膜包括聚醯亞胺(ρι)、聚對苯 二二,乙—_(PET)、聚萘二曱酸乙二脂(PEN)或聚越硬 (FblS) 〇 1項所述之同軸奈米線結構的 極與該下電極包括導電聚合物 、透明導電氧化物(TC0)或奈米 11·如申請專利範圍第 太陽能電池,其中該上電 (Polymer)、金屬或其合金 碳管(CNT)。 201140859idoc/n 12.如申請專利範圍第1項所述之同轴奈米線結構的 太陽能電池,其中該透明導電薄膜層的材料包括氧化銦錫 (ITO)、氧化IS J辛(AZO)、氧化ϋ辞(IZO)或奈米石炭管(CNT)。A dopant semiconductor layer is deposited and uniformly coated on the surface of the intrinsic semiconductor layer, and the transparent conductive film layer further includes a deposition in a space between the photovoltaic structures. β Α 2· The solar cell of the coaxial nanowire structure according to claim 1, wherein the material of the intrinsic semiconductor layer and the dopant semiconductor layer is amorphous 矽 (α-Si), microcrystalline 矽(μ-Si), strontium carbide (Sic), III-V dopant semiconductor material or II-VI dopant semiconductor material. The solar cell of the coaxial nanowire structure according to claim 1, wherein the dopant semiconductor nanowires comprise ruthenium-doped nanowires, metal oxide doped nanowires or It is a nanowire of H, which is formed by a dopant semiconductor. . The solar moon b battery of the coaxial nanowire structure according to claim 1, wherein the doped semiconductor nanowires have phases compared to the intrinsic semiconductor layer and the Shai dopant semiconductor layer. Different energy gaps can form a heterojunction. 5. The solar cell of the coaxial nanowire structure according to claim 1, wherein the intrinsic semiconductor layer and the deposition of the dopant semiconductor layer 201140859 / )c/n method comprise electropolymerization assisted chemical vapor deposition Method (PECVD), high-density electricity generation, chemical vapor deposition _^戦Electronic cyclotron chemistry ς EC (ECR-CVD) 〇, 6. If you apply for a full-time 丨 转 所述 结构 结构 结构 结构 结构The growth modes of the doped semiconductor nanowires include gas-liquid-solid method (ν ah-Hquid-soHd, VLS), electrochemical method (5) (10) 〇chemicai Deposmon), hydrothermal method (hydrothenna 丨), anodized oxidized or sol Gel method (sol-gel). 7. The solar cell of the coaxial nanowire structure according to claim 4, wherein the dopant semiconductor nanowires comprise an array of nanowires of the lower electrode surface uniformly arranged on the substrate. The battery of the coaxial nanowire structure described in Item 1 of the above paragraph, wherein the substrate comprises a 7 substrate, a glass substrate or a flexible substrate. 3 /. As in "Patent scope item 8 of the _ nanowire structure of this private pool", the soft substrate comprises ultra-thin glass (10) with _ her G ass), trace film (plastic) or metal box (10) 。 10····················································· The pole of the coaxial nanowire structure described in (PET), polyethylene naphthalate (PEN) or polyhard (FblS) 〇1, and the lower electrode comprises a conductive polymer, a transparent conductive oxide (TC0) Or nanometer 11. The solar cell of the patent application scope, wherein the polymer, the metal or its alloy carbon tube (CNT). 201140859idoc/n 12. The coaxial naphthalene as described in claim 1 A solar cell of a rice noodle structure, wherein the material of the transparent conductive film layer comprises indium tin oxide (ITO), oxidized IS J Xin (AZO), oxidized yttrium (IZO) or a carboniferous tube (CNT).
TW99114631A 2010-05-07 2010-05-07 Coaxial nanowire solar cell structure TWI409963B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99114631A TWI409963B (en) 2010-05-07 2010-05-07 Coaxial nanowire solar cell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99114631A TWI409963B (en) 2010-05-07 2010-05-07 Coaxial nanowire solar cell structure

Publications (2)

Publication Number Publication Date
TW201140859A true TW201140859A (en) 2011-11-16
TWI409963B TWI409963B (en) 2013-09-21

Family

ID=46760400

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99114631A TWI409963B (en) 2010-05-07 2010-05-07 Coaxial nanowire solar cell structure

Country Status (1)

Country Link
TW (1) TWI409963B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9177985B2 (en) 2009-06-04 2015-11-03 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US9263613B2 (en) 2009-12-08 2016-02-16 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US9299866B2 (en) 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
US9304035B2 (en) 2008-09-04 2016-04-05 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US9337220B2 (en) 2008-09-04 2016-05-10 Zena Technologies, Inc. Solar blind ultra violet (UV) detector and fabrication methods of the same
US9343490B2 (en) 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
US9406709B2 (en) 2010-06-22 2016-08-02 President And Fellows Of Harvard College Methods for fabricating and using nanowires
US9410843B2 (en) 2008-09-04 2016-08-09 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires and substrate
US9429723B2 (en) 2008-09-04 2016-08-30 Zena Technologies, Inc. Optical waveguides in image sensors
US9478685B2 (en) 2014-06-23 2016-10-25 Zena Technologies, Inc. Vertical pillar structured infrared detector and fabrication method for the same
US9490283B2 (en) 2009-11-19 2016-11-08 Zena Technologies, Inc. Active pixel sensor with nanowire structured photodetectors
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US9543458B2 (en) 2010-12-14 2017-01-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet Si nanowires for image sensors
TWI595679B (en) * 2012-06-21 2017-08-11 挪威科技大學 Solar cells
US10510924B2 (en) 2013-03-15 2019-12-17 The Board Of Trustees Of The University Of Illinois Multi-heterojunction nanoparticles, methods of manufacture thereof and articles comprising the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662706B2 (en) * 2003-11-26 2010-02-16 Qunano Ab Nanostructures formed of branched nanowhiskers and methods of producing the same
US7589880B2 (en) * 2005-08-24 2009-09-15 The Trustees Of Boston College Apparatus and methods for manipulating light using nanoscale cometal structures
EP2168170A2 (en) * 2007-07-03 2010-03-31 Solasta, Inc. Distributed coax photovoltaic device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9429723B2 (en) 2008-09-04 2016-08-30 Zena Technologies, Inc. Optical waveguides in image sensors
US9337220B2 (en) 2008-09-04 2016-05-10 Zena Technologies, Inc. Solar blind ultra violet (UV) detector and fabrication methods of the same
US9601529B2 (en) 2008-09-04 2017-03-21 Zena Technologies, Inc. Light absorption and filtering properties of vertically oriented semiconductor nano wires
US9304035B2 (en) 2008-09-04 2016-04-05 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US9410843B2 (en) 2008-09-04 2016-08-09 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires and substrate
US9177985B2 (en) 2009-06-04 2015-11-03 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US9490283B2 (en) 2009-11-19 2016-11-08 Zena Technologies, Inc. Active pixel sensor with nanowire structured photodetectors
US9263613B2 (en) 2009-12-08 2016-02-16 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US9406709B2 (en) 2010-06-22 2016-08-02 President And Fellows Of Harvard College Methods for fabricating and using nanowires
US9543458B2 (en) 2010-12-14 2017-01-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet Si nanowires for image sensors
US9299866B2 (en) 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
TWI595679B (en) * 2012-06-21 2017-08-11 挪威科技大學 Solar cells
US10510924B2 (en) 2013-03-15 2019-12-17 The Board Of Trustees Of The University Of Illinois Multi-heterojunction nanoparticles, methods of manufacture thereof and articles comprising the same
US9343490B2 (en) 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
US9478685B2 (en) 2014-06-23 2016-10-25 Zena Technologies, Inc. Vertical pillar structured infrared detector and fabrication method for the same

Also Published As

Publication number Publication date
TWI409963B (en) 2013-09-21

Similar Documents

Publication Publication Date Title
TWI409963B (en) Coaxial nanowire solar cell structure
Wang et al. Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions
US7893348B2 (en) Nanowires in thin-film silicon solar cells
O'Donnell et al. Silicon nanowire solar cells grown by PECVD
US20100078055A1 (en) Nanostructure and photovoltaic cell implementing same
US9647163B2 (en) Solar cell having a double-sided structure, and method for manufacturing same
CN102751371A (en) Solar thin film battery and manufacturing method thereof
US20110155204A1 (en) Wire type thin film solar cell and method of manufacturing the same
CN104851935B (en) A kind of Graphene/indium phosphide solar cell of electric field regulation and control and preparation method thereof
CN103219413A (en) Grapheme radial heterojunction solar cell and preparation method thereof
CN103000709B (en) Back electrode, back electrode absorbing layer composite structure and solar cell
TW201308635A (en) Tandem solar cell with improved tunnel junction
TW201212248A (en) A structure of photovoltaic cell
CN106784113A (en) A kind of silicon based hetero-junction solar cell and preparation method thereof
US20150325712A1 (en) Nanostructured Thin-Film Solar Cell
CN102544184B (en) Personal identification number (PIN) solar battery with transverse structure and preparation method thereof
CN104576787A (en) Electric field controlled graphene/gallium arsenide solar cell and preparation method thereof
CN107230733A (en) A kind of nanowire heterojunction solar cell and preparation method thereof
CN103594552B (en) A kind of manufacture method of photovoltaic cell
CN102185037A (en) Silicon nanocolumn solar cell capable of improving photoelectric conversion efficiency and manufacturing method thereof
CN105845829A (en) Perovskite solar cell
CN107910393A (en) A kind of nanowire heterojunction solar cell and preparation method thereof
CN208256704U (en) A kind of solar battery
TW201228000A (en) Device structure for high efficiency CdTe thin-film solar cell
KR101116857B1 (en) Solar cell and method of fabricating the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees