TW201111430A - Vulcanized rubber and process for manufaturing same - Google Patents

Vulcanized rubber and process for manufaturing same Download PDF

Info

Publication number
TW201111430A
TW201111430A TW099120822A TW99120822A TW201111430A TW 201111430 A TW201111430 A TW 201111430A TW 099120822 A TW099120822 A TW 099120822A TW 99120822 A TW99120822 A TW 99120822A TW 201111430 A TW201111430 A TW 201111430A
Authority
TW
Taiwan
Prior art keywords
weight
rubber
vulcanized rubber
parts
aminopropyl
Prior art date
Application number
TW099120822A
Other languages
Chinese (zh)
Other versions
TWI483979B (en
Inventor
Orhan Ozturk
Yasuo Uekita
Kenichi Takeuchi
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43411062&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201111430(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW201111430A publication Critical patent/TW201111430A/en
Application granted granted Critical
Publication of TWI483979B publication Critical patent/TWI483979B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof

Abstract

A process for manufacturing a vulcanized rubber, which comprises the first step of kneading together S-(3-aminopropyl) thiosulfate and/or a metal salt thereof, a rubber component, a filler, and a sulfur component to prepare a kneaded rubber compound, and the second step of subjecting the kneaded rubber compound obtained in the first step to heat treatment.

Description

201111430 六、發明說明: 【發明所屬之技術領域】 本發明係有關硫化橡膠及其製造方法。 【先前技術】 近年來隨著環境保護需求,而要求提升汽車之燃料消 耗率(即低燃料消耗率化)。已知汽車用輪胎之領域中,係 藉由改善黏彈性特性以提升汽車之燃料消耗率(參考曰本 橡膠協會編「橡膠技術入門」九善股份公司,丨24頁)。 【發明內容】 本發明係提供 &lt;1&gt;一種硫化橡膠之製造方法,其爲備有混練S-(3-胺基丙 基)硫代硫酸及/或其金屬鹽及橡膠成份及塡充劑及硫成 份,而得混練物之第1步驟,及熱處理第1步驟所得的混 練物之第2步驟; &lt;2&gt;如&lt;1&gt;所記載之製造方法,其中第2步驟之熱處理中的 溫度條件爲120至180°C ; &lt;3&gt;—種硫化橡膠,其爲藉由&lt;1&gt;或&lt;2&gt;所記載之製造方法 而得。 實施發明之最佳形態 本發明之硫化橡膠的製造方法爲,備有混練S-(3·胺 基丙基)硫代硫酸及/或其金屬鹽及橡jp成份及塡充劑及硫 -5- 201111430 成份之第1步驟,及熱處理前步驟所得的混練物之第2步 驟。 首先將說明第1步驟。 所使用的S-(3-胺基丙基)硫代硫酸爲,式(1) H2N-(CH2)3-SS03H (1) 所表示的化合物,其金屬鹽爲,式(2) (H2N-(CH2)3-SS03-)n . Mn+ (2) (式中,Mn +爲金屬離子,η爲其價數)。 所表示的3 -胺基丙基硫代硫酸鹽。 S-(3-胺基丙基)硫代硫酸之金屬鹽可藉由任意的已知 方法製造。具體例如,使3 -鹵丙基胺基與硫代硫酸鈉反應 之方法;使酞醯亞胺之鉀鹽與1,3-二鹵丙烷反應後,使所 得的化合物與硫代硫酸鈉反應,再將所得的化合物加水分 解之方法。S-(3-胺基丙基)硫代硫酸可藉由S-(3-胺基丙基) 硫代硫酸之金屬鹽與質子酸反應而得。 本發明之製造方法中,可使用S-(3-胺基丙基)硫代硫 酸及其金屬鹽之混合物。該混合物可藉由,混合S-(3-胺 基丙基)硫代硫酸及其金屬鹽之方法、使用金屬鹼(含有上 述Μ所表示之金屬的氫氧化物、碳酸鹽及碳酸氫鹽等)使 部分S-(3·胺基丙基)硫代硫酸金屬鹽化之方法、使用質子 201111430 酸使部分S-(3-胺基丙基)硫代硫酸之金屬鹽中和的方法而 得。由此製得之S-(3-胺基丙基)硫代硫酸或其金屬鹽可藉 由濃縮、晶析等操作,自反應混合物取出,取出之S-(3-胺基丙基)硫代硫酸或其金屬鹽一般爲,含有0.1 %至5 %之 水分。本發明之製造方法中,可僅使用S-(3-胺基丙基)硫 代硫酸,又可僅使用S-(3-胺基丙基)硫代硫酸之金屬鹽。 又可倂用複數種S-(3-胺基丙基)硫代硫酸之金屬鹽。又可 倂用S-(3-胺基丙基)硫代硫酸及其金屬鹽。201111430 VI. Description of the Invention: [Technical Field to Which the Invention Is Ascribed] The present invention relates to a vulcanized rubber and a method of manufacturing the same. [Prior Art] In recent years, with the demand for environmental protection, it is required to increase the fuel consumption rate of automobiles (i.e., low fuel consumption rate). In the field of automotive tires, it is known that the fuel consumption rate of automobiles is improved by improving the viscoelastic properties (refer to the "Introduction to Rubber Technology" by Nakamoto Rubber Association, Jiuzhan Co., Ltd., pp. 24). SUMMARY OF THE INVENTION The present invention provides a method for producing a vulcanized rubber, which comprises kneading S-(3-aminopropyl)thiosulfuric acid and/or a metal salt thereof, a rubber component and a chelating agent, and The second step of obtaining the kneaded material and the second step of the kneaded material obtained by the first step of the heat treatment; and the manufacturing method according to the above <1>, wherein the temperature in the heat treatment of the second step The condition is 120 to 180 ° C; &lt;3&gt; - a vulcanized rubber obtained by the production method described in &lt;1&gt; or &lt;2&gt;. BEST MODE FOR CARRYING OUT THE INVENTION The vulcanized rubber of the present invention is prepared by kneading S-(3.aminopropyl)thiosulfuric acid and/or its metal salt and rubber component and chelating agent and sulfur-5- The first step of the 201111430 component and the second step of the kneaded material obtained from the pre-heat treatment step. First, the first step will be explained. The S-(3-aminopropyl)thiosulfuric acid used is a compound represented by the formula (1) H2N-(CH2)3-SS03H (1), the metal salt of which is, the formula (2) (H2N- (CH2)3-SS03-)n . Mn+ (2) (wherein Mn + is a metal ion and η is a valence thereof). 3-Aminopropyl thiosulfate represented. The metal salt of S-(3-aminopropyl)thiosulfate can be produced by any known method. Specifically, for example, a method of reacting a 3-halopropylamino group with sodium thiosulfate; reacting a potassium salt of quinone with a 1,3-dihalopropane, and reacting the obtained compound with sodium thiosulfate, The resulting compound is then hydrolyzed. S-(3-Aminopropyl)thiosulfuric acid can be obtained by reacting a metal salt of S-(3-aminopropyl)thiosulfate with a protonic acid. In the production method of the present invention, a mixture of S-(3-aminopropyl)thiosulfuric acid and a metal salt thereof can be used. The mixture can be obtained by mixing S-(3-aminopropyl)thiosulfuric acid and a metal salt thereof, and using a metal base (a hydroxide, a carbonate, a hydrogencarbonate or the like containing the metal represented by the above hydrazine). a method of salting a portion of S-(3.aminopropyl)thiosulfate metal, using a proton 201111430 acid to neutralize a portion of the S-(3-aminopropyl)thiosulfuric acid metal salt . The thus obtained S-(3-aminopropyl)thiosulfuric acid or a metal salt thereof can be taken out from the reaction mixture by concentration, crystallization, etc., and the S-(3-aminopropyl)sulfuric acid is taken out. The sulfuric acid or its metal salt is generally present in an amount of from 0.1% to 5% by weight. In the production method of the present invention, only S-(3-aminopropyl)thiosulfuric acid may be used, or only a metal salt of S-(3-aminopropyl)thiosulfuric acid may be used. Further, a plurality of metal salts of S-(3-aminopropyl)thiosulfuric acid can be used. Further, S-(3-aminopropyl)thiosulfuric acid and a metal salt thereof can be used.

Mn +所表示的金屬離子較佳爲鋰離子、鈉離子、鉀離 子、鉋離子、鈷離子、銅離子及鋅離子,更佳爲鋰離子、 鈉離子及鉀離子。η爲金屬離子之價數,其於該金屬可能 之範圍內無限定。金屬離子爲鋰離子、鈉離子、鉀離子、 絶離子般鹼金屬離子時,η —般爲丨,金屬離子爲鈷離子 時,η —般爲2或3。金屬離子爲銅離子時,η —般爲1至 3之整數,金屬離子爲鋅離子時,η —般爲2。上述製法一 般係得到S-(3-胺基丙基)硫代硫酸之鈉鹽,又可藉由進行 陽離子交換反應,轉變爲鈉鹽以外之金屬鹽。 S - (3 -胺基丙基)硫代硫酸及其金屬鹽之等量徑較佳爲 0.05至1 00 μιη ’更佳爲1至1 〇〇 μη\。該等量徑可利用雷射 衍射法測定。 橡膠成份如,天然橡膠、環氧化天然橡膠 '脫蛋白天 然橡膠及其他改性天然橡膠’又如聚異戊二稀橡膠(IR)、 苯乙烯-丁二烯共聚合橡膠(SBR)、聚丁二烯橡膠(BR)、丙 烯腈-丁二烯共聚合橡膠(NBR)、異戊二烯-異丁烯共聚合 201111430 橡膠(IIR)、乙烯-丙烯-二烯共聚合橡膠(EPDM)、鹵化丁酯 橡膠(HR)等各種合成橡膠。其中較佳爲使用天然橡膠、苯 乙烯-丁二烯共聚合橡膠、聚丁二烯橡膠等高不飽和性橡 膠,特佳爲天然橡膠。倂用天然橡膠及苯乙烯-丁二烯共 聚合橡膠、倂用天然橡膠及聚丁二烯橡膠等組合數種橡膠 成份也有效果。 天然橡膠如,RSS#1' RSS#3、 TSR20、 SIR20等級數 之天然橡膠。環氧化天然橡膠較佳爲環氧化度10至60莫 耳%之物,具體例如,昆普爾公司製ENR25及EN50。脫 蛋白天然橡膠較佳爲,總氮含有率爲0.3重量%以下之脫 蛋白天然橡膠。改性天然橡膠較佳爲,天然橡膠預先與 N,N-二乙基胺基乙基丙烯酸酯等ν,Ν-二烷基胺基乙基丙烯 酸酯、4 -乙烯基吡啶、2 -羥基丙烯酸酯等反應而得的含有 極性基之改性天然橡膠。 SBR如,日本橡膠協會編「橡膠工業便覽&lt;第四版 &gt;」 第210至211頁所記載的乳化聚合SBR及溶液聚合SBR。 胎面用橡膠組成物較佳爲溶液聚合S B R,特佳爲使用日本 傑翁公司製「尼波爾(登記商標)NS116」等之4,4,-雙-(二 烷基胺基)二苯甲酮使分子末端改性之溶液聚合SBR、使 用JSR公司製「SL5 74」等之鹵化錫化合物使分子末端改 性之溶液聚合S B R、旭化成公司製「Ε 1 0」、「Ε 1 5」等矽 烷改性溶液聚合SBR之市售品,或使用內醯胺化合物、醯 胺化合物、尿素化合物、Ν,Ν-二烷基丙烯醯胺化合物、異 氰酸酯化合物、醯亞胺化合物、具有烷氧基之矽烷化合物 201111430 (三烷氧基矽烷化合物等)或胺基矽烷化合物,或倂用錫化 合物及具有烷氧基之矽烷化合物、倂用烷基丙烯醯胺化合 物及具有烷氧基之矽烷化合物等不同之複數化合物使分子 末端改性而得的,分子末端具有氮、錫、矽中任何一種, 或此等複數元素之溶液聚合SBR。又,乳化聚合SBR或溶 液聚合SBR中添加操作油或芳香油等油劑而得之油展SB R 適用爲胎面用橡膠組成物等。 BR如,順-1,4-鍵爲90%以上之高順式BR或順鍵鏈爲 3 5 %前後之低順式BR等溶液聚合BR,較佳爲高乙烯基含 fi之低順式 BR。特佳爲日本傑翁製「Nipol(登記商 標)BR 1 2 5 0H」等錫改性BR,及使用4,4’-雙(二烷基胺基) 二苯甲酮、鹵化錫化合物、內醯胺化合物、醯胺化合物、 尿素化合物、N,N-二烷基丙烯醯胺化合物、異氰酸酯化合 物、醯亞胺化合物、具有烷氧基之矽烷化合物(三烷氧基 矽烷化合物等)或胺基矽烷化合物,或倂用錫化合物及具 有烷氧基之矽烷化合物、倂用烷基丙烯醯胺化合物及具有 烷氧基之矽烷化合物等不同的複數化合物,將分子末端改 性而得的分子末端具有氮、錫、砂中,任何一種或此等之複 數元素的溶液聚合BR。此等BR適用爲胎面用橡膠組成物 或胎側用橡膠組成物,一般係使用摻混S B R及/或天然橡 膠之物。摻混比率爲,胎面用橡膠組成物中相對於總橡膠 重量,SBR及/或天然橡膠較佳爲60茧100重量%,br較 佳爲0至40重量%,胎側用橡膠組成物中相對於總橡膠重 量’ SBR及/或天然橡膠較佳爲丨〇至70重量%,BR較佳 -9 - 201111430 爲90至30重量%,特佳爲相對於總橡膠重量之天然橡膠 爲4 0至6 0重量%、B R爲6 0至4 0重量%之摻混物。此時 又以改性SBR及非改性SBR之摻混物、改性BR及非改性 B R之摻混物。 塡充劑如,橡膠領域所使用的碳黑、二氧化矽、滑 石、黏土、氫氧化鋁及氧化鈦’較佳爲碳黑及二氧化矽, 特佳爲碳黑。碳黑如’日本橡膠協會編「橡膠工業便覽&lt; 第四版 &gt;」494頁所記載之物,較佳爲HAF(High Abrasion Furnace)、SAF(Super Abrasion Furnace)、ISAF(Intermediate SAF)、FEF(Fast Extrusion Furnace)、MAF ' GPF(General P u r p o s e F u r n a c e )、S R F ( S e m i - R e i n f o r c i n g F u r n a c e )等之碳 黑。胎面用橡膠組成物較佳爲使用CTAB(Cetyl Trimethyl Ammonium Bromide)表面積爲 40至 250 m2/g、氮吸附比 表面積爲20至200 m2/g,且粒徑10至50 nm之碳黑,更 佳爲CTAB表面積爲70至180 m2/g之碳黑。其具體例 如,ASTM 規格下 N110、 N220、 N234、 N299、 N326、 N330、N330T、N339、N343 及 N351。又較佳如,碳黑表 面附著0.1至50重量%之表面處理碳黑。組合倂用碳黑及 二氧化矽等數種塡充劑也具有效果。胎面用橡膠組成物較 佳爲單獨使用碳黑或碳黑及二氧化矽雙方。胎體、胎側用 橡膠組成物較佳爲使用CTAB表面積爲20至60 m2/g,且 粒子爲40至lOOnm之碳黑,其具體例如,ASTM規格下 N330、 N339、 N343、 N351 、 N550、 N568、 N582、 N630、 N642、N660、N662、N754及N762。塡充齊U之使用量無限 -10- 201111430 定,但相對於橡膠成份1 00重量份較佳爲5至100重量 份。僅以碳黑作爲塡充劑用時,碳黑之使用量更佳爲3 0 至8 0重量份,胎面構件用途中倂用碳黑及二氧化矽時, 碳黑之使用量較佳爲5至50重量份。 二氧化矽如,CTAB比表面積50至180 m2/g之二氧 化矽及氮吸附比表面積50至200 m2/g之二氧化矽,較佳 爲使用東聚二氧化矽(股)公司製「AQ」、「AQ-N」、丹 古薩公司製「烏爾特(登記商標)VN3」、「烏爾特(登記商 標)3 60」、「烏爾特(登記商標)7000」、洛提艾公司製 「傑歐西(登記商標)1 1 5GR」、「傑歐西(登記商 標)1115MP」、「傑歐西(登記商標)1205MP」、「傑歐西 (登記商標)Z85MP」、日本二氧化矽公司製「尼普西(登記 商標)AQ」等市售品。又較佳爲添加PH6至8之二氧化 矽、鈉含有0.2至1.5重量%之二氧化矽、真圓度1至1.3 之真球狀二氧化矽、二甲基聚矽氧烷油等聚矽氧烷、含有 乙氧基矽烷基之有機矽化合物、被乙醇或聚乙二醇等醇表 面處理後之二氧化矽、具有2種以上不同之氮吸附比表面 積之二氧化砂。 塡充劑之使用量無限定。客車用胎面用橡膠組成物較 佳爲使用二氧化矽,相對於橡膠成份1 00重量份二氧化矽 之使用量較佳爲10至120重量份。添加二氧化矽時,相 對於橡膠成份100重量份較佳爲添加5至50重量份之碳 黑,相對於碳黑之二氧化矽的添加比(二氧化矽/碳黑)特佳 爲 0.7/1 至 1/0.1 。 -11 - 201111430 所使用的塡充劑爲二氧化矽時較佳爲,倂用雙(3-三乙 氧基矽烷基丙基)四硫化物(丹庫薩公司製「SN69」)' 雙 (3-三乙氧基矽烷基丙基)二硫化物(丹庫薩公司製「Si-75」 )、 雙 (3-二乙氧 基甲基 矽烷基 丙基) 四 硫化物 、雙 (3-二乙氧基甲基矽烷基丙基)二硫化物、辛烷硫羥酸S-[ 3-(三 乙氧基矽烷基)丙基]酯(通用電子公司製「NXT矽烷」)、 辛烷硫羥酸S-[3-{(2-甲基-1,3-丙烷二烷氧基)乙氧基矽烷 基}丙基]酯及辛烷硫羥酸S-[3-{(2-甲基-1,3-丙烷二烷氧基) 甲基矽烷基}丙基]酯苯基三乙氧基矽烷、甲基三甲氧基矽 烷、甲基三乙氧基矽烷、甲基三乙醯氧基矽烷、甲基三丁 氧基矽烷、乙基三甲氧基矽烷、乙基三乙氧基矽烷、異丁 基三甲氧基矽烷、異丁基三乙氧基矽烷、η-辛基三甲氧基 矽烷、η-辛基三乙氧基矽烷、乙烯基三甲氧基矽烷、乙烯 基三乙氧基矽烷、乙烯基三(甲氧基乙氧基)矽烷、苯基三 甲氧基矽烷、苯基三乙氧基矽烷、苯基三乙醯氧基矽烷、 3-甲基丙烯氧基丙基三甲氧基矽烷、3-甲基丙烯氧基丙基 三乙氧基矽烷、3-胺基丙基三甲氧基矽烷、3-胺基丙基三 乙氧基矽烷、Ν-(2-胺基乙基)-3-胺基丙基三甲氧基矽烷、 Ν-(2-胺基乙基)-3-胺基丙基三乙氧基矽烷、(3-環氧丙氧基 丙基)三甲氧基矽烷、(3-環氧丙氧基丙基)三乙氧基矽烷、 2-(3,4-環氧環己基)乙基三甲氧基矽烷、2-(3,4-環氧環己 基)乙基三乙氧基矽烷、3 -異氰酸酯丙基三甲氧基矽烷及 3 -異氰酸酯丙基三乙氧基矽烷所成群中選出之1種以上矽 烷偶合劑等具有可與二氧化矽鍵結之矽等元素或烷氧基矽 -12- 201111430 烷等官能基之化合物,特佳爲雙(3-三乙氧基矽烷基丙基) 四硫化物(丹庫薩公司製「Si-69j )、雙(3-三乙氧基矽烷 基丙基)二硫化物(丹庫薩公司製「Si-75」)、3-辛醯基硫 基丙基三乙氧基矽烷(通用電子公司製「NXT矽烷」)。此 等化合物之添加階段無限定,較佳轉同二氧化矽之階段加 入橡膠中,添加量相對於二氧化矽較佳爲2至1 0重量%, 更佳爲7至9重量%。添加時之溫度較佳爲80至200 °C , 更佳爲1 1 〇至1 8 0 °C。所使用的塡充劑爲二氧化矽時較佳 爲,除了具有可與二氧化矽鍵結之矽等元素或烷氧基矽院 等官能基之化合物及二氧化矽外另添加乙醇、丁醇、辛醇 等單價醇或乙二醇、二乙二醇、三乙二醇、聚乙二醇、聚 丙二醇、季戊四醇、聚醱聚醇等2價以上之醇、N-烷基 胺、胺基酸、分子末端被羧基改性或胺改性之液狀聚丁二 烯等。 氫氧化鋁如,氮吸附比表面積5至2 5 0 m2 / g之氫氧化 鋁及DOP給油量50至100ml/100g之氫氧化鋁。 硫成份如,粉末硫、沈澱硫、膠態硫、不溶性硫及高 分散性硫。較佳爲粉末硫,但傳送帶用構件等硫量較多之 輪胎構件時較佳爲不溶性硫。該硫成份不包含S-(3-胺基 丙基)硫代硫酸、其金屬鹽及後述之硫化促進劑。硫成份 之使用量相對於橡膠成份100重量份較佳爲0.3至5重量 份,更佳爲0.5至3重量份。 除了 S-(3-胺基丙基)硫代硫酸及/或其金屬鹽及橡膠成 份及塡充劑及硫成份外,較佳爲另使用氧化鋅或硫化促進 -13- 201111430 劑。 氧化鋅之使用量相對於橡膠成份1 〇 〇重量份較佳爲1 至1 5重量份,更佳爲3至8重量份。 硫化促進劑如,橡膠工業便覽 &lt;第四版 &gt;(平成6年1 月20日社團法人日本橡膠協會發行)第412至413頁所 記載之噻唑系硫化促進劑、次磺醯胺系硫化促進劑及脈系 硫化促進劑。 具體例如,Ν-環己基-2-苯并噻唑基次磺醯胺(CBS)、 N-tert-丁基-2-苯并噻唑基次磺醯胺(BBS)、N,N-二環己基· 2 -苯并噻唑基次磺醯胺(DCBS)、2 -毓基苯并噻唑(MBT)、 二苯并噻唑基二硫化物(MBTS)及二苯基脈(DPG)。又,可 使用已知硫化劑之嗎啉二硫化物。所使用的塡充劑爲碳黑 時較佳爲倂用N-環己基-2-苯并噻唑基次磺醯胺(CBS)、N-tert-丁基-2-苯并噻唑基次磺醯胺(BBS)、Ν,Ν-二環己基- 2-苯并噻唑基次磺醯胺(DCBS)及二苯并噻唑基二硫化物 (MBTS)中任何一種與二苯基脈(DPG),所使用的塡充劑爲 倂用二氧化矽及碳黑時,較佳爲倂用Ν-環己基-2-苯并噻 唑基次磺醯胺(CBS)、N-tert-丁基·2-苯并噻唑基次磺醯胺 (BBS) ' Ν,Ν-二環己基_2_苯并噻唑基次磺醯胺(DCBS)及二 苯并噻唑基二硫化物(MBTS)中任何一種與二苯基脈 (DPG)。該硫化促進劑不包含S-(3-胺基丙基)硫代硫酸及 其金屬鹽》 硫及硫化促進劑之比率無限制,相對於硫化促進劑之 硫的重量比(硫/加硫促進劑)較佳爲2/1至1/2。又,就特 -14- 201111430 別需求提升耐熱性之用途’本發明較佳爲,使用含有主成 份爲天然橡膠之橡膠構件的提升耐熱性之方法,使硫/硫 化促進劑之重量比爲1以下的EV硫化。 混練各成份之方法如,混練橡嘐成份及塡充劑,得組 成物al (以下簡稱爲「步驟a」)後,混練步驟a所得之組 成物al及硫成份(以下簡稱爲「步驟b」)的方法。 S-(3-胺基丙基)硫代硫酸及/或其金屬鹽可使用於步驟 b,但以使用於步驟a爲佳。S-(3-胺基丙基)硫代硫酸及/ 或其金屬鹽之使用量相對於橡膠成份1 〇〇重量份較佳爲 0.1至10重量份,更佳爲0.3至3簞量份。步驟a使用S-(3-胺基丙基)硫代硫酸及/或其金屬鹽時,步驟a較佳以80 至200°C實施,更佳以1 1〇至180°C實施。步驟b使用S-(3-胺基丙基)硫代硫酸及/或其金屬鹽時,步驟b較佳以50 至l〇〇°C實施。 S ·( 3 -胺基丙基)硫代硫酸及/或其金屬鹽可預先添加附 載劑。該附載劑如先前所列舉之塡充劑及日本橡膠協會編 「橡膠工業便覽&lt; 第四版 &gt;」第510至513頁所記載之「無 機塡充劑、補強劑」,其中較佳爲碳黑、二氧化矽、焙燒 黏土及氫氧化鋁。該附載劑之使用量無限定’但相對於S _ (3-胺基丙基)硫代硫酸及/或其金屬鹽1〇〇重量份較佳爲1〇 至1 0 0 0重量份。 又可混練橡膠領域中先前所使用的黏彈性特性改善 劑。該劑如’ N , N,-雙(2 -甲基-2 -硝基丙基)-1,6 -己院二胺 (住友化學公司製「史密范(登記商標)1 1 62」)、特開昭63 _ -15- 201111430 2 3 942號公報記載之二硫尿嘧啶化合物、特開昭60-82406 號公報記載之5-亞硝基-8-羥基喹啉(NQ-5 8)等亞硝基喹啉 化合物、田岡化學製「達吉洛(登記商標)AP、V-200」、 潘渥特公司製「巴爾達 2、3、4、5、7、710」等特開 2 0 0 9 - 1 3 8 1 4 8號公報所記載之烷基苯酚-氯化硫縮合物、雙 (3 -三乙氧基矽烷基丙基)四硫化物(丹庫薩公司製「Si-69」 )、 雙 (3-三乙氧 基矽烷 基丙基 ) 二 硫化物 (丹庫 薩公司 製「Si-75」)、雙(3 -二乙氧基甲基矽烷基丙基)四硫化 物、雙(3-二乙氧基甲基矽烷基丙基)二硫化物、辛烷硫羥 酸S-[3-(三乙氧基矽烷基)丙基]酯、辛烷硫羥酸S-[3-{(2-甲基-1,3 -丙烷二烷氧基)乙氧基矽烷基}丙基]酯及辛烷硫 羥酸S-[3-{(2-甲基-1,3-丙烷二烷氧基)甲基矽烷基}丙基] 酯苯基三乙氧基矽烷、甲基三甲氧基矽烷、甲基三乙氧基 矽烷、甲基三乙醯氧基矽烷、甲基三丁氧基矽烷、乙基三 甲氧基矽烷、乙基三乙氧基矽烷、異丁基三甲氧基矽烷、 異丁基三乙氧基矽烷、η-辛基三甲氧基矽烷、η-辛基三乙 氧基矽烷、乙烯基三甲氧基矽烷、乙烯基三乙氧基矽烷、 乙烯基三(甲氧基乙氧基)矽烷、苯基三甲氧基矽烷、苯基 三乙氧基矽烷、苯基三乙醯氧基矽烷、3 -甲基丙烯氧基丙 基三甲氧基矽烷、3-甲基丙烯氧基丙基三乙氧基矽烷、3-胺基丙基三甲氧基矽烷、3-胺基丙基三乙氧基矽烷、Ν-(2-胺基乙基)-3-胺基丙基三甲氧基矽烷、Ν-(2-胺基乙基)-3-胺基丙基三乙氧基矽烷、(3_環氧丙氧基丙基)三甲氧基矽 烷、(3-環氧丙氧基丙基)三乙氧基矽烷、2-(3,4-環氧基環 -16- 201111430 己基)乙基三甲氧基矽烷、2-(3,4-環氧基環己基)乙基三乙 氧基矽烷、3-異氰酸酯丙基三甲氧碁矽烷、3-異氰酸酯丙 基三乙氧基矽烷等之矽烷偶合劑、1,6-雙(N,N’-二苄基硫 基胺基甲醯二硫基)己烷(拜耶爾公司.製「KA91 88」)、1,6-六伸甲基二硫代硫酸酯二鈉鹽二水合物、1,3-雙檸康醯亞 胺甲基苯(佛雷吉公司製「帕卡林900」)、1-苯醯-2-苯基 醯肼、1-或3-羥基-N’-(l-甲基亞乙棊)-2-萘甲酸醯肼、特 開2004-9 1 505號公報記載之1-或3-羥基-N’-(l-甲基亞丙 基)-2-萘甲酸醯肼、1-或3-羥基-NH3-二甲基亞丁基)-2-萘甲酸醯肼及1-或3-羥基-N’-(2-呋嘀基伸甲基)-2-萘甲酸 醯肼等羧酸醯肼衍生物、特開2000-190704號公報記載之 3-羥基-N'-(l,3-二甲基亞丁基)-2·萘甲酸醯肼、3-羥基-N’-(1,3-二苯基亞乙基)-2-萘甲酸醯肼及3-羥基-N’-(l-甲基亞 乙基)_2_萘甲酸醯肼 '特開2006-32δ310號公報記載之雙 锍基噁二唑化合物、特開2009-408 98號公報記載之羥基 吡啶硫酮鹽化合物 '特開2 0 0 6 - 2 4 9 3 6 1號公報記載之氫氧 化鈷化合物。 其中較佳爲Ν,Ν1-雙(2-甲基-2-硝基丙基)-1,6-己烷二 胺(住友化學公司製「史密范(登記商標)1 1 6 2」)、5 -亞硝 基-8-羥基唾啉(NQ-58)、雙(3-三乙氧基矽烷基丙基)四硫 化物(丹庫薩公司製「Si-69」)、雙(3-三乙氧基矽烷基丙 基)二硫化物(丹庫薩公司製「Si-75」)、1,6-雙(N,N,-二苄 基硫基胺基甲醯二硫基)-己烷(拜耶爾公司製「KA9188」)、 六伸甲基雙硫代硫酸酯二鈉鹽二水合物、1,3 -雙檸康醯亞 -17- 201111430 胺甲基苯(佛雷吉公司製「帕卡林900」)、田岡化學製 「達吉洛(登記商標)AP、V-200」等之烷基苯酚-氯化硫縮 合物。此等黏彈性特性改善劑之使用量相對於橡膠成份 100重量份較佳爲0.1至10重量份。 氧化鋅較佳使用於步驟a,硫化促進劑較佳使用於步 驟b。 又可添加混練橡膠領域中先前所使用的各種添加劑。 該添加劑如,防老化劑;油;硬脂酸等脂肪酸類;日鐵化 學(股)之香豆酮樹脂NG4(軟化點81至100°C ) '神戶油化 學工業(股)之操作械脂AC5(軟化點75。(:)等香豆酮-茚樹 脂;萜烯樹脂、萜烯-苯酚樹脂、芳香族改性萜烯樹脂等 萜烯系樹脂;三菱瓦斯化學(股)「尼卡諾(登記商標)A70」 (軟化點70至90°C)等之松香衍生物;氫化松香衍生物; 酚醛清漆型烷基苯酚系樹脂;可溶酚醛型烷基苯酚系樹 脂:C5系石油樹脂;液狀聚丁二烯。此等添加劑可使用 於步驟a,也可使用於步驟b。 上述油如,操作油、植物油脂。操作油如,石蠟系操 作油、環烷系操作油、芳香族系操作油。 上述防老化劑如,日本橡膠協會編「橡膠工業便覽&lt; 第四版〉」第436至443頁記載之物。其中N -苯基·ν,-1,3-二甲基丁基-P-伸苯基二胺(6PPD)、苯胺及丙酮之反應生成 物(TMDQ)、聚(2,2,4-三甲基-1,2-)二氫化喹啉)(松原產業 公司製「安吉旦FR」)、合成蠟(石蠟等)、植物性蠘。 又可添加混練橡膠領域中先前所使用的嗎啉二硫化物 -18- 201111430 等硫化劑。此等較佳使用於步驟b。 又可添加混練試劑解劑及阻滯劑,另外必要時可添加 混練一般各種橡膠藥品及軟化劑等。 阻滯劑如,酞酸酐、安息香酸、水楊酸、N-亞硝基二 苯基胺、N-環己基硫基)-酞醯亞胺(CTP)、磺胺衍生物、 二苯基脲、雙(十三烷基)季戊四醇-二磷酸酯,較佳爲N-(環己基硫基)-酞醯亞胺(CTP)。 阻滯劑可使用於步驟a,但以使用於步驟b爲佳。阻 滯劑之使用量無限定,相對於橡膠成份1 00重量份較佳爲 0.01至1重量份,更佳爲0.05至0.5重量份。 步驟a較佳以2 0 0 °C以下實施,更佳以1 2 0至1 8 0 °C 苡施,步驟b較佳以60至l2〇°C實旆。 其次將說明熱處理第1步驟所得的混練物之第2步 驟。 熱處理較佳以120至180°C進行。熱處理一般係於常 壓或加壓下進行。 本發明之製造方法一般係包含,將第1步驟所得的混 練物供給第2步驟之熱處理前,將該混練物加工爲特定狀 態之步驟。本發明之硫化橡膠係包含,將加工爲該特定狀 態之該混練物供給第2步驟之熱處理而得的硫化橡膠。 此時將混練物「加工爲特定狀態之步驟」係指,輪胎 領域中對混練物「被覆鋼套之步驟」、「被覆胎體纖維之 步驟」、「加工爲胎面用構件之形狀的步驟」等。又,此 等步驟各自而得的傳送帶、胎體、內胎襯、胎側 '胎面 -19- 201111430 (胎面帽或胎面底層)等各構件一般係同其他構件,以橡膠 領域一般實施的方法再成型爲輪胎形狀,即經由將該混練 物組裝爲輪胎之步驟,再以含有該混練物之生胎狀態供給 第2步驟之熱處理。該熱處理一般係於加壓下進行。本發 明之硫化橡膠係包含構成所得輪胎之上述各構件的硫化橡 膠。 適用於貨車、大客車、小貨車、建設用車輛等之大型 輪胎的胎面構件中,適合橡膠添加之橡膠成份較佳爲,單 獨的天然橡膠或主成份爲天然橡膠之SBR及/或SBR與天 然橡膠之摻混物。又,塡充劑較佳爲,單獨使用碳黑或使 用主成份爲二氧化矽之二氧化矽與碳黑的摻混物。又較佳 爲併用N,N|-雙(2-甲基-2-硝基丙基)-1,6-己烷二胺(住友化 學公司製「史密范(登記商標)1 162」)、5-亞硝基-8-羥基 喹啉(NQ-58)、雙(3-三乙氧基矽烷基丙基)四硫化物(Si-69)、 雙 (3-三乙氧 基矽烷 基丙基 ) 二 硫化物 (Si-75)、 1,6-雙 (N,N’_二苄基硫基胺基甲醯二硫基)己烷(拜耶爾公司製 「KA9 188」)、六伸甲基雙硫代硫酸鹽二鈉鹽二水合物、 1,3-雙檸康醯亞胺甲基苯(佛雷吉公司製「帕卡林900」)、 田岡化學製「達吉洛(登記商標)AP、V-200」等之烷基苯 酚-氯化硫縮合物等黏彈性改良劑。 適用於客車用輪胎之胎面構件中,適合橡膠添加之橡 膠成份較佳爲,單獨的以矽化合物將分子末端改性之溶液 聚合SBR,或主成份爲前述末端改性之溶液聚合SBR的非 改性溶液聚合SBR、乳化聚合SBR、天然橡膠及SBR所 -20- 201111430 成群中選出之至少1種橡膠與前述末端改性之溶液聚合 SBR的摻混物。又,塡充劑較佳爲使用主成份爲二氧化矽 之二氧化矽與碳黑的摻混物。另外較佳爲倂用N,N-雙(2-甲基-2-硝基丙基)_1,6-己烷二胺(住太化學公司製「史密范 (登記商標)1162」)、5-亞硝基-8-羥華喹啉(NQ-58)、雙(3-三乙氧基矽烷基丙基)四硫化物(Si-69)、雙(3-三乙氧基矽 烷基丙基)二硫化物(Si-75)、1,6-雙(N,N'_二苄基硫基胺基 甲醯二硫基)-己烷(拜耶爾公司製「KA9188」)、六伸甲基 雙硫代硫酸鹽二鈉鹽二7jc合物、1,3_-雙檸康醯亞胺甲基苯 (佛雷吉公司製「帕卡林900」)、田岡化學製「達吉洛(登 記商標)AP、V-200」、等之烷基苯酚-氯化硫縮合物等黏 彈性改良劑。 胎側構件中適合橡膠添加之橡膠成份較佳爲,主成份 爲BR之非改性溶液聚合SBR、乳化聚合SBR及天然橡膠 所成群中選出之至少1種橡膠與B R的摻混物。又,塡充 劑較佳爲,單獨使用碳黑或使用主成份爲碳黑之二氧化矽 與碳黑的摻混物。另外較佳爲倂用N,N’-雙(2-甲基-2-硝基The metal ion represented by Mn + is preferably lithium ion, sodium ion, potassium ion, planing ion, cobalt ion, copper ion or zinc ion, more preferably lithium ion, sodium ion or potassium ion. η is the valence of the metal ion, which is not limited to the extent possible for the metal. When the metal ion is a lithium ion, a sodium ion, a potassium ion or an ion-like alkali metal ion, η is generally 丨, and when the metal ion is a cobalt ion, η is generally 2 or 3. When the metal ion is a copper ion, η is generally an integer of 1 to 3. When the metal ion is a zinc ion, η is generally 2. The above process generally produces a sodium salt of S-(3-aminopropyl)thiosulfate, which can be converted into a metal salt other than the sodium salt by performing a cation exchange reaction. The equal diameter of the S-(3-aminopropyl)thiosulfuric acid and the metal salt thereof is preferably from 0.05 to 100 μmη', more preferably from 1 to 1 〇〇 μη\. The equal diameters can be measured by laser diffraction. Rubber components such as natural rubber, epoxidized natural rubber 'deproteinized natural rubber and other modified natural rubber' and such as polyisoprene rubber (IR), styrene-butadiene copolymerized rubber (SBR), polybutylene Diene rubber (BR), acrylonitrile-butadiene copolymerized rubber (NBR), isoprene-isobutylene copolymerization 201111430 Rubber (IIR), ethylene-propylene-diene copolymerized rubber (EPDM), butyl halide Various synthetic rubbers such as rubber (HR). Among them, high-unsaturated rubbers such as natural rubber, styrene-butadiene copolymer rubber, and polybutadiene rubber are preferably used, and natural rubber is particularly preferred. It is also effective to use several kinds of rubber components such as natural rubber and styrene-butadiene copolymer rubber, natural rubber and polybutadiene rubber. Natural rubber such as RSS#1' RSS#3, TSR20, SIR20 grade natural rubber. The epoxidized natural rubber is preferably an epoxidized degree of 10 to 60 mol%, specifically, for example, ENR25 and EN50 manufactured by Kunpur. The deproteinized natural rubber is preferably a deproteinized natural rubber having a total nitrogen content of 0.3% by weight or less. The modified natural rubber is preferably a natural rubber previously mixed with N,N-diethylaminoethyl acrylate, etc., Ν, dialkylaminoethyl acrylate, 4-vinyl pyridine, 2-hydroxy acrylate A modified natural rubber containing a polar group obtained by reacting an ester or the like. SBR, for example, Epoxy Polymerization SBR and Solution Polymerization SBR described in "Rubber Industry Fact Sheets &lt; Fourth Edition &gt;", pages 210 to 211. The rubber composition for the tread is preferably a solution polymerization SBR, and particularly preferably a 4,4,-bis-(dialkylamino)diphenyl group such as "Nippol (registered trademark) NS116" manufactured by Japan Geon Co., Ltd. A solution polymerization SBR in which a molecular end is modified by a ketone, a solution polymerization SBR which is modified at a molecular end by using a tin halide compound such as "SL5 74" manufactured by JSR Corporation, "Ε 1 0", "Ε 1 5" manufactured by Asahi Kasei Co., Ltd., and the like. A commercially available product of a decane-modified solution polymerization SBR, or an intrinsic amine compound, a guanamine compound, a urea compound, an anthracene, a fluorene-dialkyl acrylamide compound, an isocyanate compound, a quinone compound, or an alkoxy group. a decane compound 201111430 (a trialkoxy decane compound or the like) or an amino decane compound, or a bismuth compound and a decane compound having an alkoxy group, an alkyl acrylamide compound and a decane compound having an alkoxy group, etc. The plural compound is obtained by modifying the terminal of the molecule, and the molecular terminal has any one of nitrogen, tin, and antimony, or a solution polymerization SBR of the plurality of elements. Further, an oil spread SB R obtained by adding an oil agent such as a working oil or an aromatic oil to the emulsion polymerization SBR or the solution polymerization SBR is preferably used as a rubber composition for a tread. BR, for example, a cis-1,4-bond having a high cis BR of 90% or more or a solution polymerization BR such as a low cis BR before and after a 5% bond, preferably a high vinyl-containing low cis of fi BR. It is a tin-modified BR such as "Nipol (registered trademark) BR 1 2 5 0H" manufactured by Japan's Jay, and uses 4,4'-bis(dialkylamino)benzophenone, tin halide compound, and a guanamine compound, a guanamine compound, a urea compound, an N,N-dialkyl acrylamide compound, an isocyanate compound, a quinone compound, a decane compound having an alkoxy group (a trialkoxy decane compound, etc.) or an amine group a decane compound, or a ruthenium compound having a ruthenium compound, a decane compound having an alkoxy group, an alkyl acrylamide compound and a decane compound having an alkoxy group, and a molecular terminal having a molecular terminal modified Solution polymerization of any one or a plurality of elements of nitrogen, tin, sand. These BRs are suitable for use as a rubber composition for a tread or a rubber composition for a side wall, and generally, a substance blended with S B R and/or a natural rubber is used. The blending ratio is such that the SBR and/or natural rubber is preferably 60 to 100% by weight, preferably br. 0 to 40% by weight, based on the total rubber weight of the rubber composition for the tread, in the rubber composition for the side wall. The SBR and/or natural rubber is preferably 丨〇 to 70% by weight with respect to the total rubber weight, BR is preferably -9 - 201111430 is 90 to 30% by weight, and particularly preferably is 0 0 relative to the total rubber weight of the natural rubber. A blend of up to 60% by weight and BR of 60 to 40% by weight. At this time, a blend of modified SBR and non-modified SBR, a blend of modified BR and non-modified B R is used. For example, carbon black, cerium oxide, talc, clay, aluminum hydroxide and titanium oxide used in the rubber field are preferably carbon black and cerium oxide, and particularly preferably carbon black. Carbon black, such as the one described on page 494 of the "Rubber Industry Handbook &lt; Fourth Edition&gt;" by the Japan Rubber Association, is preferably HAF (High Abrasion Furnace), SAF (Super Abrasion Furnace), ISAF (Intermediate SAF), Carbon black such as FEF (Fast Extrusion Furnace), MAF 'GPF (General P urpose F urnace ), SRF (S emi - R einforcing F urnace ). The rubber composition for the tread is preferably a carbon black having a CTAB (Cetyl Trimethyl Ammonium Bromide) surface area of 40 to 250 m 2 /g, a nitrogen adsorption specific surface area of 20 to 200 m 2 /g, and a particle diameter of 10 to 50 nm. Preferably, the CTAB has a surface area of 70 to 180 m2/g of carbon black. Specific examples thereof are N110, N220, N234, N299, N326, N330, N330T, N339, N343 and N351 under ASTM specifications. Further preferably, the carbon black surface is adhered with 0.1 to 50% by weight of the surface-treated carbon black. It is also effective to combine several kinds of chelating agents such as carbon black and cerium oxide. The rubber composition for the tread is preferably either carbon black or carbon black or cerium oxide alone. The rubber composition for the carcass and the side wall is preferably a carbon black having a CTAB surface area of 20 to 60 m 2 /g and particles of 40 to 100 nm, which is specifically, for example, N330, N339, N343, N351, N550 under the ASTM specification. N568, N582, N630, N642, N660, N662, N754 and N762. The amount of use of the U U U is infinitely -10- 201111430, but it is preferably 5 to 100 parts by weight with respect to 100 parts by weight of the rubber component. When carbon black is used as the chelating agent, the amount of carbon black used is preferably from 30 to 80 parts by weight, and when carbon black and cerium oxide are used in the tread member, the amount of carbon black is preferably used. 5 to 50 parts by weight. Cerium dioxide, for example, cerium oxide having a CTAB specific surface area of 50 to 180 m 2 /g and cerium oxide having a specific surface area of 50 to 200 m 2 /g, preferably using "AQ" manufactured by Tosoh Co., Ltd. "AQ-N", "Ult (registered trademark) VN3", "Ult (registered trademark) 3 60", "Ult (registered trademark) 7000", Lothi Ai Company-made "Jie Osi (registered trademark) 1 1 5GR", "Jeoxi (registered trademark) 1115MP", "Jeoxi (registered trademark) 1205MP", "Jeoxi (registered trademark) Z85MP", manufactured by Japan's ruthenium dioxide company Commercial products such as "Nipsey (registered trademark) AQ". Further, it is preferably a ruthenium dioxide having a pH of from 6 to 8, a sodium containing 0.2 to 1.5% by weight of cerium oxide, a true spherical cerium oxide having a roundness of from 1 to 1.3, and a polyfluorene oil such as dimethyl polyoxyalkylene oil. An oxane, an organic ruthenium compound containing an ethoxylated decyl group, a cerium oxide surface-treated with an alcohol such as ethanol or polyethylene glycol, or a cerium oxide having two or more different nitrogen adsorption specific surface areas. The amount of the chelating agent used is not limited. The rubber composition for a tread for passenger cars is preferably cerium oxide, and the amount of the cerium oxide used is preferably 10 to 120 parts by weight based on 100 parts by weight of the rubber component. When cerium oxide is added, it is preferable to add 5 to 50 parts by weight of carbon black to 100 parts by weight of the rubber component, and the addition ratio (cerium oxide/carbon black) to carbon black is particularly preferably 0.7/ 1 to 1/0.1. -11 - 201111430 When the chelating agent used is cerium oxide, it is preferred to use bis(3-triethoxydecylpropyl) tetrasulfide ("SN69" manufactured by Dankusa)" double ( 3-triethoxydecylpropyl)disulfide ("Si-75" manufactured by Dankusa), bis(3-diethoxymethyldecylpropyl) tetrasulfide, double (3- Diethoxymethyl decyl propyl) disulfide, octane thiol S-[3-(triethoxydecyl)propyl] ester ("NXT decane" manufactured by General Electric Co., Ltd.), octane S-[3-{(2-methyl-1,3-propane dialkoxy)ethoxy decyl]propyl] thiol and octane thiol S-[3-{(2- Methyl-1,3-propane dialkoxy)methyl decyl}propyl] phenyl triethoxy decane, methyl trimethoxy decane, methyl triethoxy decane, methyl triethyl hydrazine Oxydecane, methyl tributoxydecane, ethyl trimethoxy decane, ethyl triethoxy decane, isobutyl trimethoxy decane, isobutyl triethoxy decane, η-octyl trimethoxy Base decane, η-octyltriethoxy decane, vinyl trimethoxy decane, Vinyl triethoxydecane, vinyl tris(methoxyethoxy)decane, phenyltrimethoxydecane, phenyltriethoxydecane, phenyltriethoxydecane, 3-methylpropene Oxypropyltrimethoxydecane, 3-methacryloxypropyltriethoxydecane, 3-aminopropyltrimethoxydecane, 3-aminopropyltriethoxydecane, Ν-( 2-Aminoethyl)-3-aminopropyltrimethoxydecane, Ν-(2-aminoethyl)-3-aminopropyltriethoxydecane, (3-epoxypropoxy) Propyl)trimethoxydecane, (3-glycidoxypropyl)triethoxydecane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxydecane, 2-(3,4 One or more kinds of decane coupling agents selected from the group consisting of epoxycyclohexyl)ethyltriethoxydecane, 3-isocyanatepropyltrimethoxydecane, and 3-isocyanatepropyltriethoxydecane a compound such as ruthenium dioxide-bonded ruthenium or an alkoxy oxime-12-201111430 alkane or the like, particularly preferably bis(3-triethoxydecylpropyl) tetrasulfide (manufactured by Dankusa Corporation) "Si-69j", double (3-triethoxy) Alkyl propyl propyl disulfide ("Si-75" manufactured by Dankusa Co., Ltd.), 3-octyl thiopropyltriethoxy decane ("NXT decane" manufactured by General Electric Co., Ltd.). The addition stage of these compounds is not limited, and it is preferably added to the rubber in the same stage as the cerium oxide. The amount of addition is preferably from 2 to 10% by weight, more preferably from 7 to 9% by weight, based on the cerium oxide. The temperature at the time of addition is preferably from 80 to 200 ° C, more preferably from 1 1 1 to 180 ° C. When the chelating agent to be used is cerium oxide, it is preferred to add ethanol, butanol in addition to a compound having a functional group such as ruthenium which is bonded to ruthenium dioxide or a functional group such as an alkoxy oxime. a monovalent alcohol such as octanol or a divalent or higher alcohol such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, pentaerythritol or polydecyl alcohol, an N-alkylamine or an amine group A liquid polybutadiene having an acid or a molecular terminal modified by a carboxyl group or an amine. The aluminum hydroxide is, for example, aluminum hydroxide having a specific surface area of 5 to 2500 m2 / g of aluminum hydroxide and a DOP oil having an oil content of 50 to 100 ml/100 g. Sulfur components such as powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur and highly dispersible sulfur. It is preferably powdered sulfur, but in the case of a tire member having a large amount of sulfur such as a member for a conveyor belt, it is preferably insoluble sulfur. The sulfur component does not contain S-(3-aminopropyl)thiosulfuric acid, a metal salt thereof, and a vulcanization accelerator described later. The sulfur component is preferably used in an amount of from 0.3 to 5 parts by weight, more preferably from 0.5 to 3 parts by weight, per 100 parts by weight of the rubber component. In addition to S-(3-aminopropyl)thiosulfuric acid and/or its metal salt and rubber component and the chelating agent and sulfur component, it is preferred to additionally use zinc oxide or vulcanization to promote the -13-201111430 agent. The amount of zinc oxide used is preferably from 1 to 15 parts by weight, more preferably from 3 to 8 parts by weight, per part by weight of the rubber component. A vulcanization accelerator, for example, a thiazole-based vulcanization accelerator or a sulfoximine-based vulcanization agent described in pages 412 to 413 of the rubber industry, "The fourth edition" (issued by the Japan Rubber Association, January 20, 2005) Promoter and pulse vulcanization accelerator. Specifically, for example, Ν-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N,N-dicyclohexyl · 2-Benzothiazolylsulfenamide (DCBS), 2-mercaptobenzothiazole (MBT), dibenzothiazolyl disulfide (MBTS) and diphenyl vein (DPG). Further, a morpholine disulfide of a known vulcanizing agent can be used. When the chelating agent used is carbon black, it is preferably N-cyclohexyl-2-benzothiazolylsulfenylamine (CBS), N-tert-butyl-2-benzothiazolylsulfenyl sulfonate. Any of amine (BBS), hydrazine, hydrazine-dicyclohexyl-2-benzothiazolylsulfenamide (DCBS) and dibenzothiazolyl disulfide (MBTS) with diphenyl vein (DPG), When the chelating agent used is ceria and carbon black, it is preferably Ν-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl·2- Benzothiazolylsulfenamide (BBS) 'Ν,Ν-dicyclohexyl_2_benzothiazolylsulfenamide (DCBS) and dibenzothiazolyl disulfide (MBTS) Phenyl vein (DPG). The vulcanization accelerator does not contain S-(3-aminopropyl)thiosulfuric acid and its metal salt. The ratio of sulfur and vulcanization accelerator is not limited, and the weight ratio of sulfur to vulcanization accelerator (sulfur/sulfurization promotion) The agent) is preferably from 2/1 to 1/2. Further, in the case of the use of the heat-resistant property of the special--14-201111430, the present invention preferably uses a method of improving the heat resistance of a rubber member having a main component of natural rubber so that the weight ratio of the sulfur/vulcanization accelerator is 1 The following EV vulcanization. For the method of mixing the components, for example, mixing the rubber component and the chelating agent to obtain the composition a (hereinafter referred to as "step a"), and mixing the composition a and the sulfur component obtained in the step a (hereinafter referred to as "step b") )Methods. S-(3-Aminopropyl)thiosulfuric acid and/or its metal salt can be used in step b, but it is preferably used in step a. The amount of S-(3-aminopropyl)thiosulfuric acid and/or its metal salt used is preferably from 0.1 to 10 parts by weight, more preferably from 0.3 to 3 parts by weight, per part by weight of the rubber component. When step a uses S-(3-aminopropyl)thiosulfuric acid and/or a metal salt thereof, step a is preferably carried out at 80 to 200 ° C, more preferably at 1 1 to 180 ° C. When step b uses S-(3-aminopropyl)thiosulfuric acid and/or a metal salt thereof, step b is preferably carried out at 50 to 10 °C. The S·(3-aminopropyl)thiosulfuric acid and/or its metal salt may be preliminarily added with a carrier. The carrier is preferably an inorganic filler or a reinforcing agent as described in the "Rubber Industry Handbook &lt; Fourth Edition&gt;" pages 510 to 513 of the Japan Rubber Association. Carbon black, cerium oxide, calcined clay and aluminum hydroxide. The amount of the carrier to be used is not limited, but is preferably from 1 Torr to 1,000,000 parts by weight based on 1 part by weight of the S _(3-aminopropyl) thiosulfuric acid and/or its metal salt. Further, the viscoelastic property improving agent previously used in the rubber field can be kneaded. The agent is, for example, 'N, N,-bis(2-methyl-2-nitropropyl)-1,6-hexanamine diamine ("Smith Van (registered trademark) 1 1 62" by Sumitomo Chemical Co., Ltd.) The dithiouracil compound described in Japanese Unexamined Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. Other nitrosoquinoline compounds, "Dajilo (registered trademark) AP, V-200" manufactured by Tadaoka Chemical Co., Ltd., "Balda 2, 3, 4, 5, 7, 710" manufactured by Pantech Co., Ltd. Alkylphenol-sulfur chloride condensate and bis(3-triethoxydecylpropyl) tetrasulfide described in the publication No. 0 9 - 1 3 8 1 4 ("Si-69" manufactured by Dankusa Co., Ltd. "), bis(3-triethoxydecylpropyl) disulfide ("Si-75" manufactured by Dankusa), bis(3-diethoxymethyldecylpropyl) tetrasulfide , bis(3-diethoxymethyldecylpropyl) disulfide, octane thiol S-[3-(triethoxydecyl)propyl] octane thiol S- [3-{(2-Methyl-1,3-propane dialkoxy)ethoxy decyl] propyl] octane and octane sulphide Acid S-[3-{(2-methyl-1,3-propane dialkoxy)methyl decyl} propyl] phenyl phenyl triethoxy decane, methyl trimethoxy decane, methyl three Ethoxy decane, methyltriethoxy decane, methyl tributoxy decane, ethyl trimethoxy decane, ethyl triethoxy decane, isobutyl trimethoxy decane, isobutyl triethyl Oxydecane, η-octyltrimethoxydecane, η-octyltriethoxydecane, vinyltrimethoxydecane, vinyltriethoxydecane, vinyltris(methoxyethoxy)decane Phenyltrimethoxydecane, phenyltriethoxydecane, phenyltriethoxydecane, 3-methylpropoxypropyltrimethoxydecane, 3-methylpropoxypropyltriethyl Oxydecane, 3-aminopropyltrimethoxydecane, 3-aminopropyltriethoxydecane, Ν-(2-aminoethyl)-3-aminopropyltrimethoxydecane, hydrazine -(2-Aminoethyl)-3-aminopropyltriethoxydecane, (3-glycidoxypropyl)trimethoxynonane, (3-glycidoxypropyl)tri Ethoxy decane, 2-(3,4-epoxy ring-16- 201111430 Ethyltrimethoxydecane, 2-(3,4-epoxycyclohexyl)ethyltriethoxydecane, 3-isocyanatepropyltrimethoxydecane, 3-isocyanatepropyltriethoxydecane, etc. Decane coupling agent, 1,6-bis(N,N'-dibenzylthioaminocarbazinodithio)hexane ("Kay 91 88" manufactured by Bayer Corporation), 1,6-six extension Methyl dithiosulfate disodium salt dihydrate, 1,3-bis citrate, imine methyl benzene ("Pakalin 900" manufactured by Frege, Inc.), 1-phenylhydrazine-2-phenyl醯肼, 1- or 3-hydroxy-N'-(l-methyl-acetamidine)-2-naphthoic acid hydrazine, 1- or 3-hydroxy-N' described in JP-A-2004-9 1 505 -(l-Methylpropylene)-2-naphthoic acid hydrazine, 1- or 3-hydroxy-NH3-dimethylbutylene)-2-naphthoic acid hydrazine and 1- or 3-hydroxy-N' a carboxylic acid hydrazine derivative such as -(2-furazylmethyl)-2-naphthoic acid hydrazine, and 3-hydroxy-N'-(l,3-dimethyl arylene) described in JP-A-2000-190704 Base)-2·naphthoic acid hydrazine, 3-hydroxy-N'-(1,3-diphenylethylene)-2-naphthoic acid hydrazine and 3-hydroxy-N'-(l-methyl amide Ethyl)_2_naphthoic acid 醯肼' special opening 2006- The bis-indolyl oxadiazole compound described in the publication No. 32-310, and the hydroxypyridine thione salt compound described in JP-A-2009-40898, the cobalt hydroxide described in JP-A-2000- 2 4 9 3 6 1 Compound. Among them, Ν, Ν1-bis(2-methyl-2-nitropropyl)-1,6-hexanediamine ("Smith Van (registered trademark) 1 1 6 2" by Sumitomo Chemical Co., Ltd.) is preferred. , 5-nitroso-8-hydroxysalvin (NQ-58), bis(3-triethoxydecylpropyl) tetrasulfide ("Si-69" manufactured by Dankusa), double (3) -triethoxydecylpropyl)disulfide ("Si-75" manufactured by Dankusa Co., Ltd.), 1,6-bis(N,N,-dibenzylthioaminocarboxamethylenedithio) - hexane ("KA9188" manufactured by Bayer), hexamethylenedithiosulfate disodium salt dihydrate, 1,3 - bis citrate -17- 201111430 amine methylbenzene (Fray An alkylphenol-sulfur chloride condensate such as "Pakalin 900" manufactured by Kyrgyzstan Co., Ltd., and "Dajilo (registered trademark) AP, V-200" manufactured by Takooka Chemical Co., Ltd. The amount of the viscoelastic property improving agent to be used is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the rubber component. Zinc oxide is preferably used in step a, and a vulcanization accelerator is preferably used in step b. Further, various additives previously used in the field of kneading rubber can be added. Such additives as anti-aging agents; oils; fatty acids such as stearic acid; Coca- ketone resin NG4 (softening point 81 to 100 ° C) of Nippon Steel Chemical Co., Ltd. 'Operational grease of Kobe Oil Chemical Industry Co., Ltd. AC5 (softening point 75. (:) and other coumarone-indene resins; terpene resin such as terpene resin, terpene-phenol resin, aromatic modified terpene resin; Mitsubishi Gas Chemical Co., Ltd. (registered trademark) A70" (softening point 70 to 90 ° C) and other rosin derivatives; hydrogenated rosin derivatives; novolac type alkyl phenol resin; resol phenolic alkyl phenol resin: C5 petroleum resin; Liquid polybutadiene. These additives can be used in step a or in step b. The above oils are, for example, process oils, vegetable oils and fats, process oils such as paraffinic process oils, naphthenic process oils, aromatics. The above-mentioned anti-aging agent is, for example, the article described on pages 436 to 443 of the "Rubber Industry Handbook & Fourth Edition" edited by the Japan Rubber Association. Among them, N-phenyl·ν,-1,3-dimethyl Reaction product of butyl-P-phenylenediamine (6PPD), aniline and acetone (TMDQ), poly( 2,2,4-Trimethyl-1,2-)dihydroquinoline ("Anjidan FR" manufactured by Matsubara Industries Co., Ltd.), synthetic wax (paraffin, etc.), plant mites. Further, a vulcanizing agent such as morpholine disulfide -18-201111430 previously used in the field of kneading rubber can be added. These are preferably used in step b. Further, a kneading reagent dissolving agent and a retarding agent may be added, and if necessary, various rubber chemicals and softening agents may be added and kneaded. Blockers such as phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N-cyclohexylthio)-indenylene (CTP), sulfonamide derivatives, diphenylurea, Bis(tridecyl)pentaerythritol-diphosphate, preferably N-(cyclohexylthio)-indenimide (CTP). Blockers can be used in step a, but are preferably used in step b. The amount of the retarder used is not particularly limited, and is preferably 0.01 to 1 part by weight, more preferably 0.05 to 0.5 part by weight, per 100 parts by weight of the rubber component. Step a is preferably carried out at a temperature below 200 ° C, more preferably at a temperature of from 120 to 180 ° C, and step b is preferably carried out at a temperature of from 60 to 12 ° C. Next, the second step of heat-treating the kneaded material obtained in the first step will be explained. The heat treatment is preferably carried out at 120 to 180 °C. The heat treatment is generally carried out under normal pressure or under pressure. The production method of the present invention generally comprises the step of supplying the kneaded product obtained in the first step to a specific state before the heat treatment in the second step. The vulcanized rubber of the present invention comprises a vulcanized rubber obtained by supplying the kneaded material processed in the specific state to the heat treatment in the second step. In this case, the step of "processing the concrete into a specific state" in the tire field refers to the step of "coating the steel sleeve", "the step of coating the carcass fiber", and "the step of processing the shape of the member for the tread" for the kneaded material in the tire field. "Wait. Moreover, the components such as the conveyor belt, the carcass, the inner tube lining, the sidewall tread -19-201111430 (tread cap or tread bottom layer) obtained in each of these steps are generally the same as other members, and are generally implemented in the rubber field. The method is further molded into a tire shape, that is, a step of assembling the kneaded material into a tire, and then supplying the heat treatment in the second step in a green tire state containing the kneaded product. This heat treatment is generally carried out under pressure. The vulcanized rubber of the present invention contains a vulcanized rubber constituting each of the above members of the obtained tire. Applicable to the tread components of large tires such as trucks, buses, minivans, construction vehicles, etc. The rubber component suitable for rubber addition is preferably a single natural rubber or SBR and/or SBR whose main component is natural rubber. a blend of natural rubber. Further, the chelating agent is preferably a carbon black alone or a blend of cerium oxide and carbon black whose main component is cerium oxide. Further, N,N|-bis(2-methyl-2-nitropropyl)-1,6-hexanediamine ("Smith Van (registered trademark) 1 162" by Sumitomo Chemical Co., Ltd.) is preferably used in combination. , 5-nitroso-8-hydroxyquinoline (NQ-58), bis(3-triethoxydecylpropyl)tetrasulfide (Si-69), bis(3-triethoxydecyl) Propyl) disulfide (Si-75), 1,6-bis(N,N'-dibenzylthiocarbamoyldithio)hexane ("KA9 188" manufactured by Bayer), Hexamethyl bis-dithiosulfate disodium salt dihydrate, 1,3-bis citrate quinone imine methyl benzene ("Pakalin 900" manufactured by Freyci), and "Dajilo" A viscoelastic modifier such as an alkylphenol-sulfur chloride condensate such as AP or V-200" is registered. In the tread member suitable for the tire for passenger cars, the rubber component suitable for rubber addition is preferably a solution polymerization SBR which is modified by a ruthenium compound alone, or a solution polymerization SBR whose main component is the terminal modification described above. Modified solution polymerization SBR, emulsion polymerization SBR, natural rubber and SBR -20- 201111430 A blend of at least one rubber selected from the group and the above-mentioned terminally modified solution polymerization SBR. Further, it is preferable to use a blend of cerium oxide and carbon black whose main component is cerium oxide. Further, N,N-bis(2-methyl-2-nitropropyl)_1,6-hexanediamine ("Smith (registered trademark) 1162" manufactured by Taiko Chemical Co., Ltd.) is preferably used. 5-nitroso-8-hydroxy huaquinoline (NQ-58), bis(3-triethoxydecylpropyl)tetrasulfide (Si-69), bis(3-triethoxydecyl) Propyl)disulfide (Si-75), 1,6-bis(N,N'-dibenzylthiocarbamoyldithio)-hexane ("KA9188" manufactured by Bayer), Hexamethyl bis-dithiosulfate disodium salt II 7jc compound, 1,3_- bis citrate quinone imine methyl benzene ("Pakalin 900" made by Freyci), "Dajilo" (registered trademark) A viscoelastic modifier such as an alkylphenol-sulfur chloride condensate such as AP or V-200". The rubber component suitable for rubber addition in the side member is preferably a blend of at least one rubber selected from the group consisting of non-modified solution polymerization SBR, emulsion polymerization SBR and natural rubber of BR. Further, the oxime agent is preferably a carbon black alone or a blend of cerium oxide and carbon black whose main component is carbon black. Further preferred is N,N'-bis(2-methyl-2-nitro)

I 丙基)-1,6-己烷二胺(住太化學公司製「史密范(登記商 標)1162」)、5-亞硝基-8-羥基喹啉(NQ-58)、雙(3-三乙氧 基矽烷基丙基)四硫化物(Si-69)、雙(3-三乙氧基矽烷基丙 基)二硫化物(Si-75)、1,6 -雙(NW-二苄基硫基胺基甲醯二 硫基)-己烷(拜耶爾公司製「KA9188」)、六伸甲基雙硫代 硫酸鹽二鈉鹽二水合物、1,3-雙檸康醯亞胺甲基苯(佛雷吉 公司製「帕卡林900」)、田岡化學製「達吉洛(登記商 -21 - 201111430 標)AP、V-200」等之烷基苯酚-氯化硫縮合物等黏彈性改 良劑。 胎體、傳送帶構件中適合橡膠添加之橡膠成份較佳 爲’單獨的天然橡膠或主成份爲天然橡膠之BR與天然橡 膠的摻混物》又,塡充劑較佳爲,單獨使用碳黑或使用主 成份爲碳黑之二氧化矽與碳黑的摻混物。另外較佳爲併用 N,N’-雙(2-甲基-2-硝基丙基)-1,6-己烷二胺(住太化學公司 製「史密范(登記商標)1162」)、5-亞硝基-8-羥基唾啉 (NQ-58)、雙(3-三乙氧基矽烷基丙基)四硫化物(Si-69)、雙 (3 -三乙氧基矽烷基丙基)二硫化物(Si-75)、1,6 -雙(Ν,Ν' -二 苄基硫基胺基甲醯二硫基)-己烷(拜耶爾公司製 「Κ Α9 1 8 8」)、六伸甲基雙硫代硫酸鹽二鈉鹽二水合物、 1,3-雙檸康醯亞胺甲基苯(佛雷吉公司製「帕卡林900」)、 田岡化學製「達吉洛(登記商標)ΑΡ、V-200」等之烷基苯 酚-氯化硫縮合物等黏彈性改良劑。 由此可得本發明之硫化橡膠。安裝含有該硫化橡膠之 輪胎可提升汽車之燃料消耗率,而達成低燃料消耗率化。 又該硫化橡膠非僅限於上述的輪胎用途上,也可作爲引擎 框、支架、軸襯、排氣吊架等汽車用防震橡膠用。該汽車 用防震橡膠一般爲,將第1步驟所得的混練物加工爲前述 各汽車用防震橡膠之形狀後,再供給第2步驟之熱處理而 得。 【實施方式】 -22- 201111430 下面將舉實施例更詳說明本發明,但本發明非限於此 等實施例。 製造例1&lt;製造S-(3-胺基丙基)硫代硫酸之鈉鹽&gt; 以氮氣取代反應容器內之氣體後,將3 -溴丙基胺溴酸 鹽25g(0.11莫耳)、硫代硫酸鈉-五水合物28.42g(0.11莫 耳)、甲醇125ml及水125ml放入該反應容器內,70°C下 回流所得的混合物4.5小時。將反庳混合物放冷後,減壓 下去除甲醇。將氫氧化鈉4.5 6g加入所得殘渣中,室溫下 搅拌所得的混合物3 0分鐘。減壓下完全去除溶劑後,將 乙醇200ml加入殘渣中回流1小時。熱過濾去除副產物之 溴化鈉後,減壓下濃縮濾液至析出結晶再靜置。過濾取出 結晶後依序以乙醇、己烷洗淨。真空乾燥所得的結晶後, 得S-(3-胺基丙基)硫代硫酸之鈉鹽。 *H-NMR(270.05MHz , CD3OD) δ ppm : 3.1(2Η , t , J = 6.3Hz),2.8(2H,t,J = 6.2Hz),1 ·9-2·0(2Η,m) 使用島津製作所製SALD-2000J型以雷射衍射法(測定 操作如下所述)測定所得S-(3-胺基丙基)硫代硫酸之鈉鹽的 等量徑(5〇%D),結果等量徑(50%D);$ 66·7μπι。將所得的 S-(3·胺基丙基)硫代硫酸之鈉鹽粉碎’調製等量徑(5〇%D) 爲Ι4·6μιη的S-(3-胺基丙基)硫代硫酸之鈉鹽使用於實施 例。 &lt;測定操作&gt; -23- 201111430 室溫下將所得的S-(3-胺基丙基)硫代硫酸之鈉鹽分散 於下述分散溶劑(甲苯)及分散劑(1 〇重量%磺基琥珀酸二-2-乙基己基鈉/甲苯溶液)之混合溶液中,將超音波照射於 所得的分散液’同時攪拌該分散液5分鐘得試驗液。將該 試驗液移入分批單元中,1分鐘後測定(折射率:1 . 7 0至 0.20i)。 將S-(3-胺基丙基)硫代硫酸之鈉鹽10.0g溶解於水 3 0ml後,所選得水溶液之pH爲1 1至1 2。 實施例1 &lt;第1步驟&gt; (步驟a) 使用班伯里混練機(東洋精機製600ml拉姆普)添加混 練天然橡膠(RSS#1)100重量份、HAF(旭碳公司製,商品 名「旭#70」)45重量份、硬脂酸3重量份、氧化鋅5重量 份及上述製造例1所得的S-(3j$基丙基)硫代硫酸之鈉鹽 1重量份後,得橡膠組成物。該步驟係以,投入各種試劑 及塡充劑後以5分鐘' 50rpm混練回轉數混練之方式實 施,此時橡膠溫度爲180至200 °C。 (步驟b) 使用開放式輥機以60至80°C之溫度添加混練步驟a 所得的橡膠組成物、硫化促進劑(N -環己基-2 -苯并噻唑次 磺醯胺)1重量份、硫2重量份及防老化劑(N-苯基-N’-I,3· -24 - 201111430 二甲基丁基-p -伸苯基二胺’商品名「安吉肯(登記商 標)6 C」住友化學股份公司製)1重量份’得混練物。 &lt;第2步驟&gt; 以1 4 5 °C熱處理第1步驟之步驟b所得的混練物,得 硫化橡膠。 參考例1 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽外,同實 施例1得硫化橡膠。 試驗例1 以下述方法測定所得硫化橡膠之回彈性率(彈性)、拉 伸特性及黏彈性特性。 (1) 回彈性率(彈性) 使用盧普(LUPKE)式試驗機測定所得硫化橡膠之彈 性。 (2) 拉伸特性 依據JIS-K625 1測定所得硫化橡膠之拉伸特性。 拉伸應力(M2。。)係使用啞鈴3號孽測定》 (3) 黏彈性特性 -25- 201111430 使用上島製作所股份公司製之黏彈性分析器測定所得 硫化橡膠之黏彈性特性。 條件:溫度-5t至8(TC (升溫速度:2°C /分) 初期偏差1 0 %、動態偏差2.5 %、周波數1 0 Η z 對照參考例1所得的硫化橡膠,結果實施例1所得的 硫化橡膠可提升彈性1 1 %、提升拉伸應力(Μ 2 〇 〇) 2 1 %、降 低黏彈性特性(6 0 °C下之t a n ¢5 ) 1 3 %,故確認任何試驗均 可改善各種物性。 實施例2 &lt;第1 '步驟&gt; (步驟a) 使用班伯里混練機(東洋精機製600ml拉姆普)添加混 練天然橡膠(RSS#1)100重量份、HAF(旭碳公司製,商品 名「旭#7 0」)45重量份、硬脂酸3重量份、氧化鋅5重量 份及S-(3-胺基丙基)硫代硫酸之鈉鹽1重量份,得橡膠組 成物。該步驟係以,投入各種試劑及塡充劑後以5分鐘、 5 Orpm之混練回轉數混練的方式實施,此時之橡膠溫度爲 1 6 0 至 1 7 5 〇C。 (步驟b) 使用開放式輥機以60至80°C之溫度添加混練步驟a 所得的橡膠組成物、硫化促進劑(N-環己基-2-苯并噻唑次 磺醯胺(CBS))1重量份、硫2重量份及防老化劑(N-苯基- -26- 201111430 N'-l,3-二甲基丁基-P-伸苯基二胺(6PPD) ’商品名「安吉 肯(登記商標)6C」住友化學股份公司製)1重量份’得混練 物。 &lt;第2步驟&gt; 以1 4 5 °C熱處理第1步驟之步驟b所得的混練物,得 硫化橡膠。 參考例2 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽外,同實 施例2之得硫化橡膠。 試驗例2 同試驗例1測定回彈性率、拉伸特性及黏彈性特性 後’對照參考例2所得的硫化橡膠,結果實施例2所得的 硫化橡膠可提升彈性15%、提升拉伸應力(M2QQ)15%、降 低黏彈性特性(60°C下之tan (5 )32%,故確認任何試驗均可 改善各種物性。 實施例3 除了使用天然橡膠(RSS#1)50重量份及聚丁二烯橡膠 BR-01(JSR公司製)50重量份取代實施例2之天然橡膠 (R S S # 1) 1 0 0重量份外,同實施例2得硫化橡膠。 -27- 201111430 參考例3 除了未使用s_(3-胺基丙基)硫代硫酸之鈉鹽外,同實 施例3之得硫化橡膠。 試驗例3 同試驗例1測定回彈性率及黏彈性特性後,對照參考 例3所得的硫化橡膠’結果實施例3所得的硫化橡膠可提 升彈性8 %、降低黏彈性特性(6 0 °C下之t an 5 ) 2 0 %,故確 認任何試驗均可改善各種物性。 實施例4 除了以苯乙烯·丁二烯共聚合橡膠SBR#1 500(JSR公司 製)取代實施例2之天然橡膠(RSS#1)外,同實施例2得硫 化橡膠。 參考例4 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽外’同實 施例4得硫化橡膠。 試驗例4 同試驗例1測定回彈性率及黏彈性特性後’對照參考 例I 4所得的硫化橡膠,結果實施例4所得的硫化橡膠可提 升彈性2%、降低黏彈性特性(60°C下之tan 5 )8% ’故確認 任何試驗均可改善各種物性° -28- 201111430 實施例5 除了以苯乙烯-丁二烯共聚合橡p SBR# 1 723 (JSR公司 製)取代實施例2之天然橡膠(RSS#1)外,同實施例2得硫 化橡膠。 參考例5 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽外,同實 施例5得硫化橡膠。 試驗例5 同試驗例1測定回彈性率及黏齊性特性後,對照參考 例5所得的硫化橡膠’結果實施例5所得的硫化橡膠可提 升彈性9%、降低黏彈性特性(60°C下之tan (5 )14%,故確 認任何試驗均可改善各種物性。 實施例6 除了使實施例2之S-(3-胺基丙碁)硫代硫酸之鈉鹽使 用量爲0.5重量份外,同實施例2得硫化橡膠。 試驗例6 同試驗例1測定回彈性率、拉伸特性及黏彈性特性 後,對照參考例2所得的硫化橡膠,結果實施例6所得的 硫化橡膠可提升彈性9%、提升拉伸應力(M2G())8%、降低 • 29 - 201111430 黏彈性特性(60°C下之tan (5 )3 1 %,故確認任何試驗均可改 善各種物性。 實施例7 除了使實施例2之S - ( 3 -胺基丙基)硫代硫酸之鈉鹽使 用量爲0.4重量份外,及以n,N-二環己基-2-苯并噻唑基 次磺醯胺(DCBS)取代N_環己基-2 -苯并噻唑基次磺醯胺 (CBS)作爲硫化促進劑用外,同實施例2得硫化橡膠。 參考例7 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽外,同實 施例7得硫化橡膠。 試驗例7 同試驗例1測定回彈性率及黏彈性特性後,對照參考 例7所得的硫化橡膠,結果實施例7所得的硫化橡膠可提 升彈性8%、降低黏彈性特性(60°C下之tan (5 )2〇%,故確 認任何試驗均可改善各種物性。 實施例8 除了使實施例2之S-(3-胺基丙基)硫代硫酸之鈉鹽使 用量爲0.4重量份外’同實施例2得硫化橡膠。 試驗例8 -30- 201111430 同試驗例1測定回彈性率'拉伸特性及黏彈性特性 後’對照參考例2所得的硫化橡膠,結果實施例8所得的 硫化橡膠可提升彈性7 %、提升拉伸應力(Μ 2 〇 〇)2 %、降低 黏彈性特性(60°C下之tan (5 )2 1 %,故確認任何試驗均可改 善各種物性。 實施例9 除了使實施例2之S-(3-胺基丙基)硫代硫酸之鈉鹽使 用量爲0.7重量份外,同實施例2得硫化橡膠。 試驗例9 同試驗例1測定回彈性率、拉伸特性及黏彈性特性 後,對照參考例2所得的硫化橡膠’結果實施例9所得的 硫化橡膠可提升彈性1 〇%、提升拉伸應力(m2〇〇)5%、降低 黏彈性特性(6 0。(:下之tan 5 )2 9 % ’故確認任何試驗均可改 善各種物性。 實施例10 除了使實施例2之S - ( 3 -胺基丙碁)硫代硫酸之鈉鹽使 用量爲1 .2重量份外,同實施例2得硫化橡膠。 試驗例10 同試驗例丨測定回彈性率 '拉伸特性及黏彈性特性 後,對照參考例2所得的硫化橡膠’結果實施例1 〇所得 -31 - 201111430 的硫化橡膠可提升彈性10%、提升拉伸應力(M2QQ)8%、降 低黏彈性特性(60°C下之tan 5 )32%,故確認任何試驗均可 改善各種物性。 實施例1 1 除了使實施例2之S-(3-胺基丙基)硫代硫酸之鈉鹽使 用量爲2重量份外,同實施例2得硫化橡膠。 試驗例11 同試驗例1測定回彈性率、拉伸特性及黏彈性特性 後,對照參考例2所得的硫化橡膠,結果實施例1 1所得 的硫化橡膠可提升彈性11%、提升拉伸應力(M2()())13%、 降低黏彈性特性(60°C下之tan &lt;5 )27%,故確認任何試驗均 可改善各種物性。 實施例1 2 除了使實施例2之S-(3-胺基丙基)硫代硫酸之鈉鹽使 用量爲4重量份外,同實施例2得硫化橡膠。 試驗例12 同試驗例1測定回彈性率、拉伸特性及黏彈性特性 後,對照參考例2所得的硫化橡膠,結果實施例1 2所得 的硫化橡膠可提升彈性8%、提升拉伸應力(M2G())6%、降 低黏彈性特性(60°C下之tan (5 )21%,故確認任何試驗均可 -32- 201111430 改善各種物性。 實施例1 3 除了以SAF(旭碳公司製,商品名「旭#90」)取代實施 例2之HAF(旭碳公司製,商品名「旭#7〇J )外,同實施 例2得硫化橡膠。 參考例1 3 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽外,同實 施例1 3得硫化橡膠。 試驗例1 3 同試驗例1測定回彈性率、拉伸特性及黏彈性特性 後,對照參考例1 3所得的硫化橡膠,結果實施例1 3所得 的硫化橡膠可提升彈性8%、提升拉伸應力(M2QQ) 12%、降 低黏彈性特性(60°C下之tan δ )20%,故確認任何試驗均可 改善各種物性。 實施例1 4 除了以ISAF-HM(旭碳公司製,商品名「旭#80」)取 代實施例2之HAF (旭碳公司製,商品名「旭#70」)外, 同實施例2得硫化橡膠。 參考例1 4 -33- 201111430 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽外,同實 施例1 4得硫化橡膠。 試驗例1 4 同試驗例1測定回彈性率、拉伸特性及黏彈性特性 後,對照參考例1 4所得的硫化橡膠,結果實施例1 4所得 的硫化橡膠可提升彈性 8%、提升拉伸應力(M2C())6%、降 低黏彈性特性(60。(:下之tan &lt;5 )21%,故確認任何試驗均可 改善各種物性。 實施例1 5 除了以ISAF-LS(旭碳公司製’商品名「SUNBLACK710j ) 取代實施例2之HAF(旭碳公司製’商品名「旭#70」) 外,同實施例2得硫化橡膠。 參考例1 5 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽外’同實 施例1 5得硫化橡膠。 試驗例1 5 同試驗例1測定回彈性率 '拉伸特性及黏彈性特性 後,對照參考例1 5所得的硫化橡膠’結果實施例1 5所得 的硫化橡膠可提升彈性9 %、提升拉伸應力(M 2 G G)2 6 %、降 低黏彈性特性(6 0 °C下之ta n 5 )2 0 % ’故確認任何試驗均可 -34- 201111430 改善各種物性。 實施例1 6 除了以HAF-LS(旭碳公司製,商品名「旭#70L」)取 代實施例2之HAF(旭碳公司製’商品名广旭#70」)外’ 同實施例2得硫化橡膠。 參考例1 6 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽外’同實 施例1 6得硫化橡膠。 試驗例16 同試驗例1測定回彈性率、拉伸特性及黏彈性特性 後,對照參考例1 6所得的硫化橡膠’結果實施例1 6所得 的硫化橡膠可提升彈性7%、提升拉伸應力(M2Q〇)4%、降 低黏彈性特性(60°C下之tan &lt;5 ) 1 9%,故確認任何試驗均可 改善各種物性。 實施例1 7 除了以FEF(旭碳公司製,商品名「旭#6〇」)取代實施 例2之HAF(旭碳公司製,商品名「旭#70」)外,同實施 例2得硫化橡膠。 參考例1 7 -35- 201111430 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽外,同實 施例1 7得硫化橡膠。 試驗例1 7 同試驗例1測定回彈性率、拉伸特性及黏彈性特性 後,對照參考例1 7所得的硫化橡膠,結果實施例1 7所得 的硫化橡膠可提升彈性9%、提升拉伸應力(M2Qa)3%、降 低黏彈性特性(60°C下之tan &lt;5 )22%,故確認任何試驗均可 改善各種物性。 實施例1 8 &lt;第1步驟&gt; (步驟a) 使用班伯里混練機(東洋精機製6 0 0 m 1拉姆普)添加混 練天然橡膠(RSS#1)100重量份、HAF(旭碳公司製,商品 名「旭#70」)45重量份 '硬脂酸3重量份、氧化鋅5重量 份及S-(3-胺基丙基)硫代硫酸之鈉鹽〇.4重量份後,得橡 膠組成物。該步驟係以,投入各種試劑及塡充劑後以5分 鐘、50rpm之混練回轉數混練之方式實施,此時之橡膠溫 度爲1 6 0至1 7 5 °C。 (步驟b) 使用開放式輥機以6 0至8 0 °C之溫度添加混練步驟a 所得的橡膠組成物、硫化促進劑(N -環己基-2 -苯并噻唑次 -36- 201111430 磺醯胺(CBS))1重量份、硫2重量份及防老化劑(N-苯基-N’-l,3-二甲基丁基-P-伸苯基二胺,商品名「安吉肯(登記 商標)6C」住友化學股份公司製)1蓽量份及N-(環己基硫 基)-酞醯亞胺〇 . 1重量份,得混練物。 &lt;第2步驟&gt; 以1451熱處理第1步驟之步驟b所得的混練物,得 硫化橡膠。 參考例1 8 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽及N-(環 己基硫基)-酞醯亞胺外,同實施例1 8得硫化橡膠。 參考例1 9 除了未使用N-(環己基硫基)-酞醯亞胺外,同實施例 1 8得硫化橡膠。 試驗例18 同試驗例1測定回彈性率、拉伸特性及黏彈性特性 後,對照參考例1 8所得的硫化橡膠,結果實施例1 8所得 的硫化橡膠可提升彈性7%、提升拉伸應力(M2QQ)1%、降 低黏彈性特性(60°C下之tan 5 )23%,故確認任何試驗均可 改善各種物性。 又,使用東洋精機製作所股份公司製之門尼黏度計依 -37- 201111430 JIS - Κ 6 2 0 0 -1測定硫化橡膠之焦化時間。對照參考例1 9所 得的硫化橡膠,結果實施例1 8所得的硫化橡膠可提升焦 化時間(t5) 1 3 %,故確認可改善物性。 實施例1 9 除了使實施例18之N-(環己基硫基)-酞醯亞胺使用量 爲〇. 2重量份外,同實施例1 8得硫化橡膠。 試驗例19 同試驗例1測定回彈性率、拉伸特性及黏彈性特性 後,對照參考例1 8所得的硫化橡膠,結果實施例1 9所得 的硫化橡膠可提升彈性6%、提升拉伸應力(M2CG)2%、降 低黏彈性特性(60°C下之tan (5 )28%,故確認任何試驗均可 改善各種物性。 又,使用東洋精機製作所股份公司製之門尼黏度計依 JIS-K6200-1測定硫化橡膠之焦化時間。對照參考例19所 得的硫化橡膠,結果實施例1 9所得的硫化橡膠可提升焦 化時間(t5)38%,故確認可改善物性。 實施例20 &lt;第1步驟&gt; (步驟a) 使用班伯里混練機(東洋精機製600ml拉姆普)添加混 練天然橡膠(RSS#l)l〇〇重量份、HAF(旭碳公司製,商品 -38- 201111430 名「旭#7 0」)45重量份、硬脂酸3輋量份、氧化鋅5重量 份、防老化劑(N-苯基-N’-l,3-二甲基丁基-P-伸苯基二胺’ 商品名「安吉肯(登記商標)6C」住友化學股份公司製)1重 量份及S-(3-胺基丙基)硫代硫酸之_鹽0.4重量份’得橡 膠組成物。該步驟係以,投入各種試劑及塡充劑後以5分 鐘、5 Orpm混練回轉數混練之方式實施,此時之橡膠溫度 爲 1 6 0 至 1 7 5 °C。 (步驟b) 使用開放式輥機以60至80°C之溫度添加混練步驟a 所得的橡膠組成物、加硫促進劑(N-障己基-2-苯并噻唑次 磺醯胺(C B S )) 1重量份及硫2重量份’得混練物。 &lt;第2步驟&gt; 以1 45 °C熱處理第1步驟之步驟b所得的混練物,得 硫化橡膠。 參考例2 0 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽外,同實 施例20得硫化橡膠。 試驗例20 同試驗例1測定回彈性率、拉伸特性及黏彈性特性 後,對照參考例20所得的硫化橡膠’結果實施例20所得 -39 - 201111430 的硫化橡膠可提升彈性6 %、提升拉伸應力(Μ2 ο ο) 3 %、降 低黏彈性特性(6(TC下之tan (5 )23% ’故確認任何試驗均可 改善各種物性。 實施例2 1 除了使實施例2之S - (3 -胺基丙基)硫代硫酸之鈉鹽使 用量爲0.4重量份,及以N-t-丁基-2-苯并噻唑次磺醯胺 (BBS)取代N-環己基-2-苯并噻唑次磺醯胺(CBS)作爲硫化 促進劑用外,同實施例2得硫化橡膠。 參考例2 1 除了未使用S - ( 3 -胺基丙基)硫代硫酸之鈉鹽外’同實 施例21得硫化橡膠。 試驗例21 同試驗例1測定回彈性率及黏彈性特性後,對照參考 例21所得的硫化橡膠,結果實施例2 1所得的硫化橡膠可 提升彈性7 %、降低黏彈性特性(6 0 °C下之t an (5 ) 1 6 %,故 確認任何試驗均可改善各種物性。 實施例2 2 &lt;第1步驟&gt; (步驟a) 使用班伯里混練機(東洋精機製6 0 0 m 1拉姆普)添加混 -40- 201111430 練天然橡膠(RSS#1)100重量份、HAF(旭碳公司製’商品 名「旭#70」)45重量份、硬脂酸3韋量份、氧化鋅5重量 份、芳香族操作油(戴安那操作油AH-12 ’出光興產股份 公司製)5重量份及S-(3-胺基丙基)硫代硫酸之鈉鹽〇.4重 量份,得橡膠組成物。該步驟係以’投入各種試劑及塡充 劑後以5分鐘、50rpm混練回轉數混練之方式實施’此時 之橡膠溫度爲160至175°C。 (步驟b) 使用開放式輥機以60至80°C之溫度添加混練步驟a 所得的橡膠組成物、硫化促進劑(N-環己基-2-苯并噻唑次 磺醯胺(CBS))1重量份、硫2重量份及防老化劑(N-苯基· N’-l,3-二甲基丁基-P-伸苯基二胺,商品名「安吉肯(登記 商標)6C」住友化學股份公司製)1重掌份,得混練物。 &lt;第2步驟&gt; 以145 °C熱處理第1步驟之步驟b所得的混練物,得 硫化橡膠。 參考例2 2 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽外,同實 施例22得硫化橡膠。 試驗例2 2 • 41 - 201111430 同試驗例1測定回彈性率、拉伸特性及黏彈性特性 後’對照參考例22所得的硫化橡膠,結果實施例22所得 的硫化橡膠可提升彈性8%、提升拉伸應力(M2QQ) 6%、降 低黏彈性特性(60°C下之tan ά )19%,故確認任何試驗均可 改善各種物性。 實施例2 3 除了以環烷系操作油(戴安那操作油ΝΜ-280,出光興 產股份公司製)取代實施例22之芳香族系操作油外,同實 施例2 2得硫化橡膠。 參考例2 3 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽外,同實 施例23得硫化橡膠。 試驗例2 3 同試驗例1測定回彈性率、拉伸特性及黏彈性特性 後,對照參考例23所得的硫化橡膠,結果實施例23所得 的硫化橡膠可提升彈性4%、提升拉伸應力(M2GQ)5%、降 低黏彈性特性(60°C下之tan 5 ) 1 6%,故確認任何試驗均可 改善各種物性。 實施例24 除了以石蠟系操作油(戴安那操作油PW-90,出光興 -42- 201111430 產股份公司製)取代實施例22之芳香族系操作油外,同實 施例2 2得硫化橡膠。 參考例2 4 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽外,同實 施例2 4得硫化橡膠。 試驗例2 4 同試驗例1測定回彈性率、拉伸特性及黏彈性特性 後,對照參考例24所得的硫化橡膠,結果實施例24所得 的硫化橡膠可提升彈性6 %、提升拉伸應力(Μ 2 Q Q ) 3 %、降 低黏彈性特性(60°C下之tan 5 )19%,故確認任何試驗均可 改善各種物性。 實施例2 5 &lt;第1步驟&gt; (步驟a) 使用班伯里混練機(東洋精機製000ml拉姆普)添加混 練天然橡膠(RSS#l)l〇〇重量份、HAF(旭碳公司製,商品 名「旭#70」)45重量份、硬脂酸3重量份、氧化鋅5重量 份及S-(3-胺基丙基)硫代硫酸之鈉鹽0.4重量份,得橡膠 組成物。該步驟係以,投入各種試劑及塡充劑後以5分 鐘、50rpm之混練回轉數混練的方式實施,此時之橡膠溫 度爲1 6 0至1 7 5 °C。 -43- 201111430 (步驟b) 使用開放式輥機以60至80°C之溫 所得的橡膠組成物、硫化促進劑(N-環£ 磺醯胺(CBS))1重量份、硫2重量份及 Ν·-1,3-二甲基丁基-P-伸苯基二胺’商品 商標)6C」住友化學股份公司製)1重量份 &lt;第2步驟&gt; 以1 4 5 °C熱處理第1步驟之步驟b 硫化橡膠。 參考例2 5 除了未使用S-(3-胺基丙基)硫代硫 施例25之得硫化橡膠。 試驗例2 5 同試驗例1測定回彈性率、拉伸 後,對照參考例25所得的硫化橡膠,箱 的硫化橡膠可提升彈性6%、提升拉伸 低黏彈性特性(60°C下之tan (5) 19%,故 改善各種物性。 實施例2 6 度添加混練步驟a i基-2-苯并噻唑次 防老化劑(N-苯基-!名「安吉肯(登記 ,得混練物。 所得的混練物,得 之鈉鹽外,同實 f性及黏彈性特性 果實施例25所得 應力(M2〇〇)3%、降 確認任何試驗均可 -44- 201111430 除了使用實施例2 5之第1步驟的步驟a中混練時之 橡膠溫度爲1 4 〇至1 6 0 °C外,同實施例2 5得硫化橡膠。 參考例26 除了未使用S - (3 ·胺基丙基)硫代硫酸之鈉鹽外,同實 施例26得硫化橡膠。 試驗例26 同試驗例1測定回彈性率及黏彈性特性後,對照參考 例26所得的硫化橡膠,結果實施例26所得的硫化橡膠可 提升彈性7%、降低黏彈性特性(60°C下之tan 5 )14%,故 確認任何試驗均可改善各種物性。 實施例2 7 除了使用實施例25之第1步驟的步驟a中混練時之 橡膠溫度爲1 2 0至1 4 0 °C外’同實施例2 5得硫化橡膠。 參考例27 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽外,同實 施例27得硫化橡膠。 試驗例27 同試驗例1測定回彈性率、拉伸特性及黏彈性特性 後,對照參考例27所得的硫化橡膠,結果實施例27所得 -45- 201111430 的硫化橡膠可提升彈性6%、提升拉伸應力(m2Q())6%、降 低黏彈性特性(6 0 °C下之t a η (5 ) 2 3 %,故確認任何試驗均可 改善各種物性。 實施例2 8 &lt;第1步驟&gt; (步驟a) 使用取樣混合機(協立理工股份公司製SK-M3型)以重 量比4〇/60(S-(3-胺基丙基)硫代硫酸之鈉鹽/碳黑)混合攪 拌S-(3-胺基丙基)硫代硫酸之鈉鹽及碳黑(東海碳公司 製),得混合物。 使用班伯里混練機(東洋精機製600ml拉姆普)添加混 練上述所得的混合物1重量份、天然橡膠(RSS#1) 100重量 份、HAF(旭碳公司製,商品名「旭#70」)45重量份、硬 脂酸3重量份及氧化鋅5重量份,得橡膠組成物。該步驟 係以,投入各種試劑及塡充劑後以5分鐘、5 0 r p m之混練 回轉數混練之方式實施。此時之橡膠溫度爲160至175 °C。 (步驟b) 使用開放式輥機以60至80°C之溫度添加混練步驟a 所得的橡膠組成物、硫化促進劑(N-環己基-2-苯并噻唑次 磺醯胺(CBS))1重量份、硫2重量份及防老化劑(N-苯基-Ν·-1,3-二甲基丁基-P-伸苯基二胺,商品名「安吉肯(登記 -46- 201111430 商標)6 C」住友化學股份公司製)1重量份’得混練物。 &lt;第2步驟&gt; 以1 45 T:熱處理第1步驟之步驟b所得的混練物’得 硫化橡膠。 參考例2 8 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽外,同實 施例2 8之得硫化橡膠。 試驗例28 同試驗例1測定黏彈性特性後,對照參考例28所得 的硫化橡膠,結果實施例28所得的硫化橡膠可降低黏彈 性特性(60°C下之tan 5 )18%,故確認可改善物性。 製造例2&lt;製造S-(3-胺基丙基)硫代硫酸&gt; 以氮氣取代反應容器內之氣體後,將S-(3-胺基丙基) 硫代硫酸之鈉鹽26.0g及水45ml放入該反應容器內,再 加入5mol/l鹽酸將溶液之pH調整爲5至6。減壓下濃縮 溶液至析出結晶爲止,再靜置,過濾取出結晶後真空乾 燥,得S-(3-胺基丙基)硫代硫酸》 'H-NMR(270.05MHz * D2〇) (5 ppm : 3.0-3.1(4H &gt; m) &gt; 2.0-2.1(2H,m) -47- 201111430 實施例2 9 除了以上述製造例2所得的S-(3-胺基丙基)硫代硫酸 0.4重量份取代實施例1中上述製造例1所得的S-(3-胺基 丙基)硫代硫酸之鈉鹽1重量份,及使第1步驟之步驟a 中混練時之橡膠溫度爲16〇至180°cn,同實施例i得硫 化橡膠。 參考例29 除了未使用S-(3-胺基丙基)硫代硫酸之鈉鹽外,同實 施例2 9之得硫化橡膠。 試驗例29 同試驗例1測定黏彈性特性後,對照參考例29所得 的硫化橡膠,結果實施例29所得的硫化橡膠可提升彈性 3%、降低黏彈性特性(60°C下之tan &lt;5 )23%,故確認可改善 物性。 製造例3&lt;製造S-(3-胺基丙基)硫代硫酸及其鈉鹽的混合物&gt; 以氮氣取代反應容器內之氣體後,將S-(3-胺基丙基) 硫代硫酸1 〇.〇g及水30ml加入該反應容器內,再加入 lm〇l/l氫氧化鈉溶液〇.6ml將溶液之pH調整爲7至8。減 壓下濃縮溶液,再真空乾燥,得S-(3-胺基丙基)硫代硫酸 及其鈉鹽之混合物。 -48- 201111430 製造例4&lt;製造S-(3-胺基丙基)硫代硫酸及其鈉鹽之混合物&gt; 除了使製造例3中lmol/1氫氧化鈉溶液之使用量爲 2.9ml,及將所得溶液之pH調整爲.8至9外,同製造例3 得S-(3-胺基丙基)硫代硫酸及其鈉鹽,之混合物。 製造例5&lt;製造S-(3-胺基丙基)硫代硫酸及其鈉鹽之混合物&gt; 除了使製造例3中lmol/1氫氧化鈉溶液之使用量爲 14.6ml,及將所得溶液之pH調整爲9至10外,同製造例 3得S-(3-胺基丙基)硫代硫酸及其鈉輯之混合物。 製造例6&lt;製造S-(3-胺基丙基)硫代硫酸及其鈉鹽之混合物&gt; 除了使製造例3中1 mol/1氫氧化鈉溶液之使用量爲 43.8ml,及將所得溶液之PH調整爲10至1 1外,同製造 例3得S-(3-胺基丙基)硫代硫酸及其鈉鹽之混合物。 實施例3 0至3 3 除了以製造例3至6各自所得的S-(3-胺基丙基)硫代 硫酸及其鈉鹽之混合物取代實施例2 9中S - (3 -胺基丙基) 硫代硫酸外,同實施例2 9得硫化橡膳。 試驗例3 0至3 3 同試驗例1測定彈性及黏彈性特性後,對照參考例2 9 所得的硫化橡膠’結果彈性及黏彈性特性下之tan &lt;5 ) 之各自變化率如表1所示。 -49- 201111430 [表i] 試驗例30 試驗例31 試驗例32 試驗例33 所使用的混合物 製造例3所得 的混合物 製造例4所得 的混合物 製造例5所得 的混合物 製造例6所得 的混合物 混合物調製時之PH 7〜8 8〜9 9〜10 10 〜11 彈性 Δ 1% Δ 4% Δ 4% Δ 4% 黏彈性特性 ▲ 12% ▲ 15% ▲ 18% ▲23% 表1中,△爲比較參考例29所得的硫化橡膠時可提 升彈性,▲爲比較參考例29所得的硫化橡膠時可降低60 °C下之tan (5,故確認任何試驗均可改善各種物性。 實施例3 4至3 8 藉由粉碎等將實施例8中S-(3-胺基丙基)硫代硫酸之 鈉的等量徑(5 0%D)各自調製爲表2所記載之物,同實施例 8得硫化橡膠。 試驗例3 4至3 8 同試驗例1測定彈性及黏彈性特性後,對照參考例2 所得的硫化橡膠,結果彈性及黏彈性特性(6〇。(:下之tan &lt;5 ) 的各自變化率如表2所示。 [表2] 試驗例34 試驗例35 試驗例36 試驗例37 試驗例38 等量徑 1 0 um 1 9 μηι 3 4 μ m 3 6 um 6 7 μηι 彈性 Δ 9% Δ 7% Δ 6% Δ 7% Δ 6% 墊彈性特性 ▲24% ▲23% ▲23% ▲21% ▲20% -50- 201111430 表2中,△爲比較參考例2所得的硫化橡膠時可提升 彈性,▲爲比較參考例2所得的硫化橡膠時可降低6 〇 °C下 之tan &lt;5,故確認任何試驗均可改善各種物性。 實施例3 9 將實施黃銅電鍍處理之鋼套被覆於實施例1至3 8之 各自第1步驟之歩驟b所得的混練物,得傳送帶。使用所 得的傳送帶,以一般的製造方法成型爲生輪胎後’於加硫 機中加熱加壓所得的生輪胎,得硫化輪胎。 實施例4 0 擠壓加工實施例1至3 8之各自第1步驟之步驟b所 得的混練物,得胎面用構件。使用所得的胎面用構件,以 —般的方法成型爲生輪胎後,於加硫機中加熱加壓所得的 生輪胎,得硫化輪胎。 實施例4 1 擠壓加工實施例1至3 8之各自第1步驟之步驟b所 得的混練物’調製爲因應胎體形狀之形狀的混練物後,再 貼合於聚酯製胎體纖維套之上下方,得胎體。使用所得的 胎體,以一般的製造方法成型爲生輪胎後,於加硫機中加 熱加壓所得的生輪胎,得硫化輪胎。 -51 - 201111430 實施例42 除了使實施例2之第2步驟中另外添加混練N-(環己 基硫基)-酞醯亞胺(CTP)0.2重量份外,同實施例2得硫化 橡膠。 實施例43 下述第1步驟及第2步驟所得的硫化橡膠適用爲胎面 帽。 &lt;第1步驟&gt; (步驟a) 使用班伯里混練機(東洋精機製600ml拉姆普)添加混 練苯乙烯-丁二烯共聚合橡膠 SBR# 1 502(住友化學公司 製)100重量份、ISAF-HM(旭碳公司製,商品名「旭 #80」)45重量份、硬脂酸2重量份、氧化鋅3重量份、S-(3-胺基丙基)硫代硫酸之鈉鹽1重量份、防老化劑(N-苯 基-Ν·-1,3-二甲基丁基-P-伸苯基二胺(6PPD),商品名「安 吉肯(登記商標)6C」住友化學股份公司製)1重量份及蠟 (日本精蠟製「〇ZOACE_03 5 5」)2重量份’得橡膠組成 物。該步驟係以’投入各種試劑及塡充劑後以5分鐘、 50rpm混練回轉數混練之方式實施,此時之橡膠溫度爲 1 6 0 至 1 7 5 t 。 (步驟b) -52- 201111430 使用開放式輥機以60至80°C之溫度添加混練步驟a 所得的橡膠組成物、硫化促進劑(N —環己基-2-苯并噻唑次 磺醯胺(CBS))3重量份及硫2重量份’得混練物。 &lt;第2步驟&gt; 以1 4 5 °C熱處理第1步驟之步驟b所得的混練物,得 硫化橡膠。 贲施例44 下述第1步驟及第2步驟所得的硫化橡膠適用爲胎面 底層。 &lt;第1步驟&gt; (步驟a) 使用班伯里混練機(東洋精機製600ml拉姆普)添加混 練苯乙烯-丁二烯共聚合橡膠SB R# 1502(住友化學公司 製)100重量份、ISAF-HM(旭碳公司製,商品名「旭 #8 0」)35重量份、硬脂酸2重量份 '氧化鋅3重量份、S-(3-胺基丙基)硫代硫酸之鈉鹽1重童份、防老化劑(N-苯 基-N’-l,3-二甲基丁基-P-伸苯基二胺(6PPD),商品名「安 吉肯(登記商標)6C」住友化學股份公司製)1重量份及蠟 (日本精蠟製「OZOACE-03 5 5」)2熏量份,得橡膠組成 物。該步驟係以,投入各種試劑及塡充劑後以5分鐘、 50rpm混練回轉數混練之方式實施 &gt; 此時之橡膠溫度爲 -53- 201111430 1 6 0 至 1 7 5 °c。 (步驟b) 使用開放式輥機以60至80°C之溫度添加混練步驟a 所得的橡膠組成物、硫化促進劑(N -環己基-2 -苯并噻唑次 磺醯胺(CBS))2重量份、硫化促進劑二苯脈(DPG)0.5重 份、硫化促進劑二苯并噻唑基二硫化物(MB TS)0.8重量份 及硫1重量份,得混練物。 &lt;第2步驟&gt; 以1 4 5 °C熱處理第1步驟之步驟b所得的混練物,得 硫化橡膠。 實施例4 5 下述第1步驟及第2步驟所得的硫化橡膠適用爲傳送 帶。 &lt;第1步驟&gt; &lt;步驟a&gt; 使用班伯里混練機(東洋精機製600ml拉姆普)添加混 練天然橡膠(RSS#1)100重量份、HAF(旭碳公司製,商品 名「旭#70」)45重量份、硬脂酸3重量份、氧化鋅5重量 份、S-(3-胺基丙基)硫代硫酸之鈉鹽1重量份、含水二氧 化矽(東索二氧化矽(股)公司製「Nipsil(登記商標)AQ」10 -54- 201111430 重量份、防老化劑FR(松原產業公司製「安吉歐FR」)2 重量份、間苯二酚2重量份及環烷酸鈷2重量份,得橡膠 組成物。該步驟係以,投入各種試劑及塡充劑後以5分 鐘、5〇rpm混練回轉數混練之方式實施,此時之橡膠溫度 爲 1 6 0 至 1 7 5 °C。 (步驟b) 使用開放式輥機以6 0至8 0 °C t溫度添加混練步驟3 所得的橡膠組成物、硫化促進劑(N,N-二環己基-2-苯并噻 唑次磺醯胺(D CBS ))1重量份、硫6重量份及甲氧基化羥 甲基三聚氰胺樹脂(住友化學公司製「史密卡507AP」)3 重量份,得混練物。 &lt;第2步驟&gt; 以1 45 °C熱處理第1步驟之步驟b所得的混練物,得 硫化橡膠。 實施例46 下述第1步驟及第2步驟所得的:加硫橡膠適用爲內胎 襯。 &lt;第1步驟&gt; &lt;步驟a&gt; 使用班伯里混練機(東洋精機製6〇〇ml拉姆普)添加混 -55- 201111430 練鹵化丁酯橡膠(耶庫索公司製「Br-IIR22 5 5」)100重量 份、GPF60重量份、硬脂酸1重量份、氧化鋅3重量份、 S-(3-胺基丙基)硫代硫酸之鈉鹽1重量份及石蠟油(出光興 產公司製「戴安那操作油」)1 〇重量份,得橡膠組成物。 該步驟係以,投入各種試劑及塡充劑後以5分鐘、50rpm 混練回轉數混練之方式實施,此時之橡膠溫度爲1 60至 1 7 5。(:。 (步驟b) 使用開放式輥機以60至80t之溫度添加混練步驟b 所得的橡膠組成物、防老化劑(苯胺及丙酮之縮合物 (TMDQ)l重量份 '硫化促進劑二苯并噻唑基二硫化物 (MBTS)l重量份及硫2重量份,得混練物。 &lt;第2步驟&gt; 以1 4 5 °C熱處理第1步驟之步驟b所得的混練物,得 硫化橡膠。 實施例4 7 下述第1步驟及第2步驟所得的硫化橡膠適用爲胎 側。 &lt;第1步驟&gt; &lt;步驟a&gt; -56- 201111430 使用班伯里混練機(東洋精機製600ml拉姆普)添加混 練天然橡膠(RSS #3)40重量份、聚丁二烯橡膠(宇部興產公 司製「BR150B」)60重量份、FEF50重量份、硬脂酸2.5 重量份、氧化鋅3重量份、S-(3-胺,基丙基)硫代硫酸之鈉 鹽1重量份、防老化劑(N-苯基-N'-l,3-二甲基丁基-P-伸苯 基二胺(6PPD),商品名「安吉肯(登記商標)6C」住友化學 公司製)2重量份、芳羥油(可斯莫石油公司製「NC-140」)10重量份及蠟(大內新興化學工業公司製「山那庫 (登記商標)蠟」)2重量份,得橡膠織成物。該步驟係以, 投入各種試劑及塡充劑後以5分鐘、50rpm混練回轉數混 練之方式實施,此時之橡膠溫度爲160至175 °C。 (步驟b) 使用開放式輥機以60至80°C之溫度添加混練步驟a 所得的橡膠組成物、硫化促進劑N-tert-丁基-2-苯并噻唑 基次磺醯胺(BBS)0.75重量份及硫1.5重量份’得混練 物。 &lt;第2步驟&gt; 以1 4 5 °C熱處理第1步驟之步驟b所得的混練物’得 硫化橡膠。 實施例48 下述第1步驟及第2步驟所得的加硫橡膠適用爲胎 -57- 201111430I propyl)-1,6-hexanediamine ("Smith (registered trademark) 1162" manufactured by Taiko Chemical Co., Ltd.), 5-nitroso-8-hydroxyquinoline (NQ-58), double ( 3-triethoxydecylpropyl)tetrasulfide (Si-69), bis(3-triethoxydecylpropyl)disulfide (Si-75), 1,6-double (NW- Dibenzylthioaminocarbamidinedithio)-hexane ("KA9188" manufactured by Bayer), hexamethyldithiosulfate disodium salt dihydrate, 1,3-double citrate Alkyl phenol-sulfur chloride such as yttrium imine methyl benzene ("Pakalin 900" manufactured by Freyci Co., Ltd.) and "Dajilo (registered business-21 - 201111430) AP, V-200" manufactured by Takaoka Chemical Co., Ltd. Viscoelastic modifier such as condensate. The rubber component suitable for rubber addition in the carcass and the belt member is preferably 'individual natural rubber or a blend of BR and natural rubber whose main component is natural rubber. Further, the filler is preferably carbon black alone or A blend of cerium oxide and carbon black whose main component is carbon black is used. Further, it is preferred to use N,N'-bis(2-methyl-2-nitropropyl)-1,6-hexanediamine in combination ("Smith Van (registered trademark) 1162" manufactured by Taiko Chemical Co., Ltd.) , 5-nitroso-8-hydroxyparaphylline (NQ-58), bis(3-triethoxydecylpropyl)tetrasulfide (Si-69), bis(3-triethoxydecanealkyl) Propyl)disulfide (Si-75), 1,6-bis(indole, Ν'-dibenzylthiocarbamoyldithio)-hexane ("Bayer 9 1 8" 8"), hexamethyl thiosulfate disodium salt dihydrate, 1,3-bis citrate quinone imine methyl benzene ("Pakalin 900" manufactured by Freyci), manufactured by Takooka Chemical Co., Ltd. A viscoelastic modifier such as an alkylphenol-sulfur chloride condensate such as Dagelo (registered trademark) ΑΡ or V-200. Thus, the vulcanized rubber of the present invention can be obtained. The installation of a tire containing the vulcanized rubber can increase the fuel consumption rate of the automobile and achieve a low fuel consumption rate. Further, the vulcanized rubber is not limited to the above-mentioned tire use, and can also be used as an anti-vibration rubber for automobiles such as an engine frame, a bracket, a bushing, and an exhaust hanger. The anti-vibration rubber for automobiles is generally obtained by processing the kneaded material obtained in the first step into the shape of each of the anti-vibration rubbers for automobiles described above, and then supplying the heat treatment in the second step. [Embodiment] -22- 201111430 Hereinafter, the present invention will be described in more detail by way of examples, but the invention is not limited to the examples. Manufacturing example 1 &lt;Production of S-(3-Aminopropyl)thiosulfate sodium salt&gt; After replacing the gas in the reaction vessel with nitrogen, 3 -bromopropylamine bromate 25 g (0.11 mol), thio Sodium sulfate-pentahydrate 28.42 g (0.11 mol), methanol 125 ml and water 125 ml were placed in the reaction vessel, and the resulting mixture was refluxed at 70 ° C for 4.5 hours. After the ruthenium mixture was allowed to cool, the methanol was removed under reduced pressure. 4.56 g of sodium hydroxide was added to the obtained residue, and the resulting mixture was stirred at room temperature for 30 minutes. After completely removing the solvent under reduced pressure, 200 ml of ethanol was added to the residue and refluxed for 1 hour. After removing sodium bromide as a by-product by hot filtration, the filtrate was concentrated under reduced pressure to precipitate crystals and then allowed to stand. The crystals were removed by filtration, and washed with ethanol and hexane in that order. After the obtained crystals were dried under vacuum, sodium salt of S-(3-aminopropyl)thiosulfate was obtained. *H-NMR (270.05MHz, CD3OD) δ ppm : 3.1(2Η , t , J = 6.3Hz), 2.8(2H,t,J = 6.2Hz),1 ·9-2·0(2Η,m) The SALD-2000J model manufactured by Shimadzu Corporation measures the equivalent diameter (5〇%D) of the sodium salt of S-(3-aminopropyl)thiosulfate obtained by laser diffraction (measurement operation as described below). Measuring range (50% D); $ 66·7 μπι. The obtained sodium salt of S-(3.aminopropyl)thiosulfuric acid was pulverized to prepare an S-(3-aminopropyl)thiosulfate having an equal diameter (5〇% D) of Ι4·6 μιη. The sodium salt was used in the examples. &lt;Measurement Operation&gt; -23- 201111430 The obtained sodium salt of S-(3-aminopropyl)thiosulfate was dispersed in the following dispersion solvent (toluene) and dispersant (1% by weight of sulfonate) at room temperature. In the mixed solution of the sodium di-2-ethylhexyl succinate/toluene solution, ultrasonic waves were irradiated onto the obtained dispersion liquid while stirring the dispersion liquid for 5 minutes to obtain a test liquid. The test solution was transferred to a batch unit and measured after 1 minute (refractive index: 1.7 to 0.20i). After dissolving 10.0 g of sodium salt of S-(3-aminopropyl)thiosulfate in 30 ml of water, the pH of the selected aqueous solution was from 1 1 to 12. Example 1 &lt;Step 1&gt; (Step a) 100 parts by weight of a blended natural rubber (RSS #1) and HAF (manufactured by Asahi Carbon Co., Ltd., trade name "旭" were added using a Banbury kneading machine (Toyo Seiki 600 ml Rampu). #70") 45 parts by weight, 3 parts by weight of stearic acid, 5 parts by weight of zinc oxide, and 1 part by weight of the sodium salt of S-(3j$ propyl) thiosulfate obtained in the above Production Example 1 Things. This step was carried out by putting various reagents and chelating agents into a kneading revolution of 5 minutes '50 rpm, and the rubber temperature was 180 to 200 °C. (Step b) 1 part by weight of a rubber composition obtained by kneading step a and a vulcanization accelerator (N-cyclohexyl-2-benzothiazole sulfoximine) is added at a temperature of 60 to 80 ° C using an open roll machine. 2 parts by weight of sulfur and an anti-aging agent (N-phenyl-N'-I,3·-24 - 201111430 dimethylbutyl-p-phenylenediamine) trade name "Anjiken (registered trademark) 6 C 1 part by weight of Sumitomo Chemical Co., Ltd. &lt;Second Step&gt; The kneaded product obtained in the step b of the first step was heat-treated at 145 ° C to obtain a vulcanized rubber. Reference Example 1 A vulcanized rubber was obtained in the same manner as in Example 1 except that the sodium salt of S-(3-aminopropyl)thiosulfate was not used. Test Example 1 The rebound rate (elasticity), tensile properties and viscoelastic properties of the obtained vulcanized rubber were measured by the following methods. (1) Resilience (elasticity) The elasticity of the obtained vulcanized rubber was measured using a LUPKE type tester. (2) Tensile properties The tensile properties of the obtained vulcanized rubber were measured in accordance with JIS-K625 1. Tensile stress (M2.) was measured using dumbbell No. 3 (3) Viscoelastic properties -25- 201111430 The viscoelastic properties of the obtained vulcanized rubber were measured using a viscoelastic analyzer manufactured by Ueshima Seisakusho Co., Ltd. Conditions: Temperature -5t to 8 (TC (temperature rising rate: 2 ° C / min) Initial deviation 10%, dynamic deviation 2.5%, cycle number 10 Η z The vulcanized rubber obtained in Reference Example 1 was obtained as a result of Example 1. Vulcanized rubber can increase elasticity by 11%, increase tensile stress (Μ 2 〇〇) 2 1 %, and reduce viscoelastic properties (tan ¢5 at 60 °C) 13%, so it is confirmed that any test can improve various physical properties. Example 2 &lt;1st 'Step&gt; (Step a) 100 parts by weight of mixed natural rubber (RSS#1) and HAF (made by Asahi Carbon Co., Ltd., product name) were added using a Banbury kneading machine (Toyo Seiki 600 ml Rampu). Asahi #7 0") 45 parts by weight, 3 parts by weight of stearic acid, 5 parts by weight of zinc oxide and 1 part by weight of sodium salt of S-(3-aminopropyl)thiosulfuric acid, a rubber composition was obtained. This step is carried out by putting various reagents and sputum agents into a kneaded mixture of 5 minutes and 5 Orpm, and the rubber temperature at this time is 160 to 175 〇C. (Step b) The rubber composition obtained by the kneading step a and the vulcanization accelerator (N-cyclohexyl-2-benzothiazole sulfenamide (CBS)) 1 are added at a temperature of 60 to 80 ° C using an open roll machine. Parts by weight, sulfur 2 parts by weight and anti-aging agent (N-phenyl--26- 201111430 N'-l,3-dimethylbutyl-P-phenylenediamine (6PPD) 'trade name "Anjiken (registered trademark) 6C" Sumitomo Chemical Co., Ltd.) 1 part by weight of 'kneaded product. &lt;Second Step&gt; The kneaded product obtained in the step b of the first step was heat-treated at 145 ° C to obtain a vulcanized rubber. Reference Example 2 A vulcanized rubber of the same manner as in Example 2 was used except that the sodium salt of S-(3-aminopropyl)thiosulfate was not used. Test Example 2 The vulcanized rubber obtained in Comparative Example 2 was measured in the same manner as in Test Example 1, and the vulcanized rubber obtained in Example 2 was improved in elasticity by 15% and tensile stress (M2QQ). %, reduced viscoelastic properties (tan (5) 32% at 60 ° C, so it is confirmed that any test can improve various physical properties. Example 3 In addition to using natural rubber (RSS #1) 50 parts by weight and polybutadiene rubber BR-01 (manufactured by JSR Co., Ltd.) 50 parts by weight of the natural rubber (RSS #1) of Example 2 was replaced by the sulfurized rubber of Example 2. -27- 201111430 Reference Example 3 except that s_(3) was not used. The vulcanized rubber obtained in the same manner as in Example 3 except for the sodium salt of -aminopropyl) thiosulfate. Test Example 3 After the test of the rebound rate and the viscoelastic property of Test Example 1, the vulcanized rubber obtained in Reference Example 3 was used as a result example. 3 The obtained vulcanized rubber can improve the elasticity by 8% and reduce the viscoelastic property (t an 5 at 60 ° C) by 20%, so it is confirmed that any test can improve various physical properties. Example 4 In addition to styrene-butadiene Copolymerized rubber SBR #1 500 (manufactured by JSR) In addition to the natural rubber of Example 2 (RSS #1), a vulcanized rubber was obtained in the same manner as in Example 2. Reference Example 4 A vulcanized rubber obtained in the same manner as in Example 4 except that the sodium salt of S-(3-aminopropyl)thiosulfate was not used. Test Example 4 After the test of the rebound rate and the viscoelastic property of Test Example 1, the vulcanized rubber obtained in Reference Example I 4 was obtained. As a result, the vulcanized rubber obtained in Example 4 was improved in elasticity by 2% and reduced in viscoelastic properties (at 60 ° C). Tan 5 ) 8% 'It is confirmed that any test can improve various physical properties ° -28- 201111430 Example 5 In place of styrene-butadiene copolymerized rubber p SBR # 1 723 (manufactured by JSR), the natural state of Example 2 was replaced. A vulcanized rubber was obtained in the same manner as in Example 2 except for the rubber (RSS #1). Reference Example 5 A vulcanized rubber was obtained in the same manner as in Example 5 except that the sodium salt of S-(3-aminopropyl)thiosulfate was not used. In Test Example 1, after measuring the rebound rate and the adhesion property, the vulcanized rubber obtained in the same manner as in Reference Example 5 was found to have a 9% increase in elasticity and a decrease in viscoelastic properties (tan (5) at 60 ° C. %, so it is confirmed that any test can improve various physical properties. The vulcanized rubber was obtained in the same manner as in Example 2 except that the sodium salt of S-(3-aminopropionamidine) thiosulfuric acid of Example 2 was used in an amount of 0.5 part by weight. Test Example 6 The same as Test Example 1 was used to measure the rebound rate and pull. After the properties and viscoelastic properties, the vulcanized rubber obtained in Reference Example 2 was used, and the vulcanized rubber obtained in Example 6 was able to increase the elasticity by 9%, increase the tensile stress (M2G()) by 8%, and reduce the viscoelastic properties of (29 - 201111430). Tan (5) 3 1 % at 60 ° C, so it is confirmed that any test can improve various physical properties. Example 7 except that the sodium salt of S-(3-aminopropyl)thiosulfuric acid of Example 2 was used in an amount of 0.4 part by weight, and n, N-dicyclohexyl-2-benzothiazolyl was used. A vulcanized rubber was obtained in the same manner as in Example 2 except that sulfonamide (DCBS) was used instead of N-cyclohexyl-2-benzothiazolylsulfenamide (CBS) as a vulcanization accelerator. Reference Example 7 A vulcanized rubber was obtained in the same manner as in Example 7 except that the sodium salt of S-(3-aminopropyl)thiosulfate was not used. Test Example 7 After the rebound rate and the viscoelastic property were measured in the same manner as in Test Example 1, the vulcanized rubber obtained in Reference Example 7 was used. As a result, the vulcanized rubber obtained in Example 7 was able to increase the elasticity by 8% and lower the viscoelastic property (tan at 60 ° C ( 5) 2%, it was confirmed that any test can improve various physical properties. Example 8 except that the sodium salt of S-(3-aminopropyl)thiosulfuric acid of Example 2 was used in an amount of 0.4 part by weight. In Example 2, a vulcanized rubber was obtained. Test Example 8 -30-201111430 The test piece 1 was tested for the resilience ratio 'tensile property and viscoelastic property' and the vulcanized rubber obtained in Reference Example 2 was used. As a result, the vulcanized rubber obtained in Example 8 was able to improve the elasticity 7 %, increased tensile stress (Μ 2 〇〇) 2%, and reduced viscoelastic properties (tan (5) 2 1% at 60 ° C, so it was confirmed that any test can improve various physical properties. Example 9 except that the examples were made The vulcanized rubber obtained in the same manner as in Example 2 except that the sodium salt of S-(3-aminopropyl)thiosulfuric acid was used in an amount of 0.7 part by weight. Test Example 9 The same as Test Example 1, the rebound rate, the tensile property and the viscosity were measured. After the elastic properties, the vulcanized rubber obtained by reference to Reference Example 2 The vulcanized rubber obtained in Example 9 can increase the elasticity by 1%, increase the tensile stress (m2〇〇) by 5%, and lower the viscoelastic property (6 0. (under the tan 5) 2 9 %', so confirm any test. Various physical properties were improved.Example 10 A vulcanized rubber was obtained in the same manner as in Example 2 except that the sodium salt of S-(3-aminopropionamidine) thiosulfuric acid of Example 2 was used in an amount of 1.2 parts by weight. In the same test example, after measuring the rebound rate 'tensile property and viscoelastic property, the vulcanized rubber obtained in Reference Example 2' was obtained as the result of Example-1, and the vulcanized rubber obtained in -31 - 201111430 can increase the elasticity by 10% and increase the tensile stress (M2QQ). 8%, reducing viscoelastic properties (tan 5 at 60 ° C) 32%, so it was confirmed that any test can improve various physical properties. Example 1 1 In addition to the S-(3-aminopropyl) of Example 2 The vulcanized rubber was obtained in the same manner as in Example 2 except that the sodium salt of thiosulfuric acid was used in an amount of 2 parts by weight. Test Example 11 After the elastic modulus, tensile properties and viscoelastic properties were measured in the same manner as in Test Example 1, the vulcanized rubber obtained in Reference Example 2 was used. Results The vulcanized rubber obtained in Example 1 1 can increase the elasticity by 11%. L tensile stress (M2 () ()) 13%, reducing the visco-elastic properties (tan under the 60 ° C &lt;5) 27%, so it was confirmed that any test can improve various physical properties. Example 1 2 A vulcanized rubber was obtained in the same manner as in Example 2 except that the sodium salt of S-(3-aminopropyl)thiosulfuric acid of Example 2 was used in an amount of 4 parts by weight. Test Example 12 After the resilience, tensile properties and viscoelastic properties were measured in the same manner as in Test Example 1, the vulcanized rubber obtained in Reference Example 2 was used. As a result, the vulcanized rubber obtained in Example 12 was able to increase the elastic 8% and increase the tensile stress (M2G ( )) 6%, reduced viscoelastic properties (tan (5) 21% at 60 ° C, so it is confirmed that any test can be -32- 201111430 to improve various physical properties. Example 1 3 In addition to SAF (Asahi carbon company, goods The name "Xu #90") was replaced with the HAF of the second embodiment (product name "Xu #7〇J" manufactured by Asahi Carbon Co., Ltd.), and the vulcanized rubber was obtained in the same manner as in Example 2. Reference Example 1 3 Except that S-(3-amine was not used The vulcanized rubber was obtained in the same manner as in Example 13 except for the sodium salt of propyl thiosulfate. Test Example 1 3 After the test of the rebound rate, the tensile property and the viscoelastic property of Test Example 1, the vulcanized rubber obtained in Reference Example 13 was obtained. As a result, the vulcanized rubber obtained in Example 1 can increase the elasticity by 8%, the tensile stress (M2QQ) by 12%, and the viscoelastic property (tan δ at 60 ° C) by 20%, so that any test can be confirmed to improve various physical properties. Example 1 4 Except for ISAF-HM (made by Asahi Carbon Co., Ltd., the trade name "旭#80" In addition to the HAF of Example 2 (manufactured by Asahi Carbon Co., Ltd., trade name "Sun #70"), a vulcanized rubber was obtained in the same manner as in Example 2. Reference Example 1 4 -33- 201111430 Except that S-(3-aminopropyl group was not used) The vulcanized rubber was obtained in the same manner as in Example 14 except for the sodium salt of thiosulfate. Test Example 1 4 After the elastic modulus, tensile properties and viscoelastic properties of the test example 1 were measured, the vulcanized rubber obtained in the reference example 14 was subjected to the test. The vulcanized rubber obtained in Example 1 can increase the elasticity by 8%, increase the tensile stress (M2C()) by 6%, and lower the viscoelastic properties (60. &lt;5) 21%, so it was confirmed that any test can improve various physical properties. [Example 1] A vulcanized rubber was obtained in the same manner as in Example 2, except that HAF-LS (product name "SUNBLACK 710j" manufactured by Asahi Carbon Co., Ltd.) was used instead of HAF (product name "Xu #70" manufactured by Asahi Carbon Co., Ltd.) of Example 2. Reference Example 1 5 A vulcanized rubber was obtained in the same manner as in Example 15 except that the sodium salt of S-(3-aminopropyl)thiosulfate was not used. Test Example 1 5 After the test piece 1 was measured for the rebound rate 'tensile property and viscoelastic property, the vulcanized rubber obtained in the same manner as in Reference Example 15' was obtained. The vulcanized rubber obtained in Example 15 was able to increase the elasticity by 9% and increase the tensile stress ( M 2 GG) 2 6 %, reduced viscoelastic properties (ta n 5 at 60 °C) 20% 'so it is confirmed that any test can be -34- 201111430 to improve various physical properties. Example 1 6 The same as Example 2 except that HAF-LS (product name "Asahi #70L" manufactured by Asahi Carbon Co., Ltd.) was used instead of HAF of the second embodiment (product name: Hirohiko #70, manufactured by Asahi Carbon Co., Ltd.) Vulcanized rubber. Reference Example 1 6 A vulcanized rubber was obtained in the same manner as in Example 16 except that the sodium salt of S-(3-aminopropyl)thiosulfate was not used. Test Example 16 After the rebound rate, tensile properties, and viscoelastic properties were measured in the same manner as in Test Example 1, the vulcanized rubber obtained in the same manner as in Reference Example 16 was obtained. The vulcanized rubber obtained in Example 16 was able to increase the elasticity by 7% and increase the tensile stress (M2Q). 〇) 4%, reduced viscoelastic properties (tan at 60 ° C &lt;5) 1 9%, so it is confirmed that any test can improve various physical properties. Example 1 7 A vulcanized rubber obtained in the same manner as in Example 2 except that HAF (manufactured by Asahi Carbon Co., Ltd., trade name "Asahi #70") of Example 2 was replaced by FEF (product name "Asahi #6〇" manufactured by Asahi Carbon Co., Ltd.) . Reference Example 1 7 - 35 - 201111430 A vulcanized rubber was obtained in the same manner as in Example 17 except that the sodium salt of S-(3-aminopropyl)thiosulfate was not used. Test Example 1 7 After measuring the rebound rate, tensile properties and viscoelastic properties of Test Example 1, the vulcanized rubber obtained in Reference Example 17 was used, and as a result, the vulcanized rubber obtained in Example 17 was able to increase the elasticity by 9% and increase the tensile stress ( M2Qa) 3%, reduced viscoelastic properties (tan at 60 ° C &lt;5) 22%, so it was confirmed that any test can improve various physical properties. Example 1 8 &lt;Step 1&gt; (Step a) 100 parts by weight of a blended natural rubber (RSS #1) and HAF (manufactured by Asahi Carbon Co., Ltd.) were added using a Banbury kneading machine (Toyo Seiki Co., Ltd.). Product name "旭#70") 45 parts by weight of 'stearic acid 3 parts by weight, zinc oxide 5 parts by weight and S-(3-aminopropyl) thiosulfate sodium salt 〇. 4 parts by weight, obtained rubber Composition. This step is carried out by putting various reagents and chelating agents into a kneading of 5 minutes and 50 rpm, and the rubber temperature is 160 to 175 °C. (Step b) The rubber composition obtained by the kneading step a and the vulcanization accelerator (N-cyclohexyl-2-benzothiazole-36-201111430 sulfonate) are added at a temperature of 60 to 80 ° C using an open roll machine. Amine (CBS)) 1 part by weight, sulfur 2 parts by weight and anti-aging agent (N-phenyl-N'-l,3-dimethylbutyl-P-phenylenediamine, trade name "Anjiken ( Registered trademark) 6C", manufactured by Sumitomo Chemical Co., Ltd.) 1 part by weight and N-(cyclohexylthio)-indenine oxime. 1 part by weight, obtained as a kneaded material. &lt;Second Step&gt; The kneaded material obtained in the step b of the first step was heat-treated at 1451 to obtain a vulcanized rubber. Reference Example 1 8 A vulcanized rubber was obtained in the same manner as in Example 18 except that the sodium salt of S-(3-aminopropyl)thiosulfate and N-(cyclohexylthio)-indenimide were not used. Reference Example 1 9 A vulcanized rubber was obtained in the same manner as in Example 18 except that N-(cyclohexylthio)-indenimide was not used. Test Example 18 After the rebound rate, tensile properties and viscoelastic properties were measured in the same manner as in Test Example 1, the vulcanized rubber obtained in Reference Example 18 was used. As a result, the vulcanized rubber obtained in Example 18 was able to increase the elasticity by 7% and increase the tensile stress (M2QQ). ) 1%, reduced viscoelastic properties (tan 5 at 60 ° C) 23%, so it is confirmed that any test can improve various physical properties. Further, the Mooney viscometer manufactured by Toyo Seiki Co., Ltd. was used to measure the coking time of the vulcanized rubber according to -37-201111430 JIS - Κ 6 2 0 0 -1. According to the vulcanized rubber obtained in Reference Example 1, the vulcanized rubber obtained in Example 18 was able to increase the coking time (t5) by 13%, so that it was confirmed that the physical properties were improved. Example 1 9 A vulcanized rubber was obtained in the same manner as in Example 18 except that the N-(cyclohexylthio)-indenimide of Example 18 was used in an amount of 0.2 part by weight. Test Example 19 After the resilience, tensile properties and viscoelastic properties of Test Example 1 were measured, the vulcanized rubber obtained in Reference Example 18 was used. As a result, the vulcanized rubber obtained in Example 19 was able to increase the elasticity by 6% and increase the tensile stress (M2CG). ) 2%, reduced viscoelastic properties (tan (5) 28% at 60 ° C, so it is confirmed that any test can improve various physical properties. Also, use the Mooney viscometer manufactured by Toyo Seiki Co., Ltd. according to JIS-K6200- (1) The coking time of the vulcanized rubber was measured. According to the vulcanized rubber obtained in Reference Example 19, the vulcanized rubber obtained in Example 19 was able to increase the coking time (t5) by 38%, so that physical properties were confirmed to be improved. &lt;Step 1&gt; (Step a) Adding a blended natural rubber (RSS#1) by weight using a Banbury kneading machine (Toyo Seiki 600 ml Rampu), HAF (made by Asahi Carbon Co., Ltd., - 38- 201111430 "Xu #7 0") 45 parts by weight, 3 parts by weight of stearic acid, 5 parts by weight of zinc oxide, anti-aging agent (N-phenyl-N'-l, 3-dimethylbutyl -P-phenylenediamine's trade name "Anjiken (registered trademark) 6C", manufactured by Sumitomo Chemical Co., Ltd.) 1 part by weight and 0.4 parts by weight of S-(3-aminopropyl) thiosulfate Get a rubber composition. This step is carried out by putting various reagents and chelating agents into a kneading mixture at 5 minutes and 5 O rpm, and the rubber temperature is 160 to 175 °C. (Step b) The rubber composition obtained by the kneading step a and the vulcanization accelerator (N-methylhexyl-2-benzothiazole sulfoximine (CBS)) are added at a temperature of 60 to 80 ° C using an open roll machine. 1 part by weight and 2 parts by weight of sulfur 'obtained. &lt;Second Step&gt; The kneaded material obtained in the step b of the first step was heat-treated at 1 45 ° C to obtain a vulcanized rubber. Reference Example 2 0 A vulcanized rubber was obtained in the same manner as in Example 20 except that the sodium salt of S-(3-aminopropyl)thiosulfate was not used. Test Example 20 After the resilience, tensile properties and viscoelastic properties of Test Example 1 were measured, the vulcanized rubber obtained in the same manner as in Reference Example 20 was obtained. The vulcanized rubber obtained in Example 20 - 39 - 201111430 can increase the elasticity by 6% and increase the tensile stress. (Μ2 ο ο) 3 %, reduced viscoelastic properties (6 (tan (5) 23% under TC'), confirming that any test can improve various physical properties. Example 2 1 In addition to the S of Example 2 - (3 - The sodium salt of aminopropyl)thiosulfate is used in an amount of 0.4 parts by weight, and N-cyclohexyl-2-benzothiazole sulfene is substituted with Nt-butyl-2-benzothiazole sulfoximine (BBS). The acetamide (CBS) was used as a vulcanization accelerator, and the vulcanized rubber was obtained in the same manner as in Example 2. Reference Example 2 1 Vulcanized rubber obtained in the same manner as in Example 21 except that the sodium salt of S-(3-aminopropyl)thiosulfate was not used. Test Example 21 After the rebound rate and viscoelastic properties were measured in the same manner as in Test Example 1, the vulcanized rubber obtained in Reference Example 21 was used. As a result, the vulcanized rubber obtained in Example 21 was able to increase the elasticity by 7% and lower the viscoelastic property (at 60 ° C). t an (5 ) 1 6 %, so it is confirmed that any test can improve various physical properties. Example 22 &lt;Step 1&gt; (Step a) Adding a blend of -40-201111430 Practicing Natural Rubber (RSS#1) using a Banbury kneading machine (Toyo Seiki 600 Km 1 Ramp), HAF ( 45 parts by weight of Asahi Carbon Co., Ltd., "3", 3 parts by weight of stearic acid, 5 parts by weight of zinc oxide, and aromatic operating oil (Dai'an operating oil AH-12' Idemitsu Co., Ltd. 5 parts by weight and sodium salt of S-(3-aminopropyl) thiosulfate 〇. 4 parts by weight to obtain a rubber composition. This step was carried out by adding various reagents and hydrazines and kneading the number of revolutions at 5 rpm and 50 rpm. The rubber temperature at this time was 160 to 175 °C. (Step b) The rubber composition obtained by the kneading step a and the vulcanization accelerator (N-cyclohexyl-2-benzothiazole sulfenamide (CBS)) 1 are added at a temperature of 60 to 80 ° C using an open roll machine. Parts by weight, sulfur 2 parts by weight and anti-aging agent (N-phenyl N'-l,3-dimethylbutyl-P-phenylenediamine, trade name "Anjiken (registered trademark) 6C" Sumitomo Chemical company company)) 1 heavy palm, get mixed materials. &lt;Second Step&gt; The kneaded material obtained in the step b of the first step was heat-treated at 145 ° C to obtain a vulcanized rubber. Reference Example 2 2 A vulcanized rubber was obtained in the same manner as in Example 22 except that the sodium salt of S-(3-aminopropyl)thiosulfate was not used. Test Example 2 2 • 41 - 201111430 After the test piece 1 was measured for the rebound rate, the tensile property and the viscoelastic property, the vulcanized rubber obtained in Reference Example 22 was used. As a result, the vulcanized rubber obtained in Example 22 was able to increase the elasticity by 8% and to enhance the elongation. The stress (M2QQ) is 6%, and the viscoelastic property (tan ά at 60 ° C) is reduced by 19%, so it is confirmed that any test can improve various physical properties. Example 2 3 A vulcanized rubber was obtained in the same manner as in Example 2 except that the naphthenic process oil (Diana Oil Operation Oil-280, manufactured by Idemitsu Kogyo Co., Ltd.) was used instead of the aromatic-based process oil of Example 22. Reference Example 2 3 A vulcanized rubber was obtained in the same manner as in Example 23 except that the sodium salt of S-(3-aminopropyl)thiosulfate was not used. Test Example 2 3 After measuring the rebound rate, tensile properties and viscoelastic properties of Test Example 1, the vulcanized rubber obtained in Reference Example 23 was used. As a result, the vulcanized rubber obtained in Example 23 was able to increase the elasticity by 4% and the tensile stress (M2GQ). 5%, reduced viscoelastic properties (tan 5 at 60 ° C) 1 6%, so it is confirmed that any test can improve various physical properties. (Example 24) A vulcanized rubber was obtained in the same manner as in Example 2 except that the paraffin-based process oil (Diana Oil PW-90, manufactured by Ignaku Corporation - 42-201111430 KK) was used instead of the aromatic-based process oil of Example 22. Reference Example 2 4 A vulcanized rubber was obtained in the same manner as in Example 24 except that the sodium salt of S-(3-aminopropyl)thiosulfate was not used. Test Example 2 4 After measuring the rebound rate, tensile properties and viscoelastic properties of Test Example 1, the vulcanized rubber obtained in Reference Example 24 was used, and the vulcanized rubber obtained in Example 24 was able to increase the elasticity by 6% and increase the tensile stress (Μ 2). QQ) 3 %, reduced viscoelastic properties (tan 5 at 60 ° C) 19%, so it is confirmed that any test can improve various physical properties. Example 2 5 &lt;Step 1&gt; (Step a) Add a blended natural rubber (RSS#1), a weight fraction, and a HAF (made by Asahi Carbon Co., Ltd.) using a Banbury kneading machine (Toyo Seiki mechanism 000 ml Rampu) "Xu #70") 45 parts by weight, 3 parts by weight of stearic acid, 5 parts by weight of zinc oxide, and 0.4 parts by weight of sodium salt of S-(3-aminopropyl) thiosulfuric acid, to obtain a rubber composition. This step was carried out by putting various reagents and chelating agents into a kneaded mixture of 5 minutes and 50 rpm, and the rubber temperature was 160 to 175 °C. -43- 201111430 (Step b) 1 part by weight of a rubber composition, a vulcanization accelerator (N-ring sulfonamide (CBS)), and 2 parts by weight of sulfur obtained by using an open roll at a temperature of 60 to 80 °C And Ν·-1,3-dimethylbutyl-P-phenylene diamine 'commercial trademark) 6C" Sumitomo Chemical Co., Ltd.) 1 part by weight &lt;Step 2&gt; The step b of the first step is heat-treated at 145 ° C to vulcanize the rubber. Reference Example 2 5 A vulcanized rubber obtained in Example 25 except that S-(3-aminopropyl)thiosulfuric acid was not used. Test Example 2 5 The test piece 1 was measured for the resilience ratio, and after the stretching, the vulcanized rubber obtained in the same manner as in Reference Example 25, the vulcanized rubber of the box was improved in elasticity by 6%, and the tensile low viscoelastic property was improved (tan at 60 ° C (5) 19%, so improve various physical properties. Example 2 6 degree addition mixing step ai-based 2-benzothiazole sub-aging agent (N-phenyl-! name "Anjiken (registered, obtained kneaded. The resulting kneading In addition to the sodium salt, the same as the true and the viscoelastic properties of the fruit obtained in Example 25, the stress (M2 〇〇) 3%, the drop confirmed that any test can be -44- 201111430 except the use of the first step of Example 2 5 In the step a, the rubber temperature at the time of mixing was from 1 4 Torr to 160 ° C, and the vulcanized rubber was obtained in the same manner as in Example 25. Reference Example 26 except that sodium S-(3 ·aminopropyl)thiosulfate was not used. The vulcanized rubber was obtained in the same manner as in Example 26. Test Example 26 After the resilience and viscoelastic properties were measured in the same manner as in Test Example 1, the vulcanized rubber obtained in Reference Example 26 was used, and the vulcanized rubber obtained in Example 26 was improved in elasticity by 7% and reduced in viscosity. Elastic properties (tan 5 at 60 ° C) 14%, so confirm any test Various physical properties can be improved.Example 2 7 A vulcanized rubber obtained in the same manner as in Example 2 except that the rubber temperature at the time of kneading in the step a of the first step of Example 25 was from 1 2 0 to 1 40 ° C. Reference Example 27 The vulcanized rubber was obtained in the same manner as in Example 27 except that the sodium salt of S-(3-aminopropyl)thiosulfuric acid was not used. Test Example 27 After the elastic modulus, tensile properties and viscoelastic properties of Test Example 1 were measured, Referring to the vulcanized rubber obtained in Example 27, the vulcanized rubber of -45-201111430 obtained in Example 27 was able to increase the elasticity by 6%, increase the tensile stress (m2Q()) by 6%, and lower the viscoelastic property (ta η at 60 ° C ( 5) 2 3 %, so it is confirmed that any test can improve various physical properties. Example 2 8 &lt;Step 1&gt; (Step a) Using a sampling mixer (SK-M3 type manufactured by Kyoritsu Co., Ltd.) in a weight ratio of 4〇/60 (S-(3-aminopropyl)thiosulfate sodium Salt/carbon black) The sodium salt of S-(3-aminopropyl)thiosulfate and carbon black (manufactured by Tokai Carbon Co., Ltd.) were mixed and stirred to obtain a mixture. 1 part by weight of the mixture obtained above, 100 parts by weight of natural rubber (RSS #1), and HAF (manufactured by Asahi Carbon Co., Ltd., trade name "旭#70") were added by using a Banbury kneading machine (Toyo Seiki 600 ml Rampu). 45 parts by weight, 3 parts by weight of stearic acid and 5 parts by weight of zinc oxide give a rubber composition. This step is carried out by mixing various reagents and chelating agents and mixing them in a number of kneading revolutions of 5 minutes and 50 rpm. The rubber temperature at this time is 160 to 175 °C. (Step b) The rubber composition obtained by the kneading step a and the vulcanization accelerator (N-cyclohexyl-2-benzothiazole sulfenamide (CBS)) 1 are added at a temperature of 60 to 80 ° C using an open roll machine. Parts by weight, sulfur 2 parts by weight and anti-aging agent (N-phenyl-indole-1,3-1,3-butylbutyl-P-phenylenediamine, trade name "Anjiken (registered -46- 201111430 trademark) ) 6 C" Sumitomo Chemical Co., Ltd.) 1 part by weight of 'mixed material. &lt;Second Step&gt; A vulcanized rubber was obtained by heat-treating the kneaded product obtained in the step b of the first step at 1 45 T: heat treatment. Reference Example 2 8 A vulcanized rubber obtained in the same manner as in Example 28 except that the sodium salt of S-(3-aminopropyl)thiosulfate was not used. Test Example 28 After the viscoelastic property was measured in the same manner as in Test Example 1, the vulcanized rubber obtained in Reference Example 28 was used. As a result, the vulcanized rubber obtained in Example 28 was able to reduce the viscoelastic property (tan 5 at 60 ° C) by 18%, so that it was confirmed that the physical properties were improved. . Manufacturing Example 2 &lt;Production of S-(3-aminopropyl)thiosulfuric acid&gt; After replacing the gas in the reaction vessel with nitrogen, 26.0 g of sodium salt of S-(3-aminopropyl)thiosulfate and 45 ml of water The reaction vessel was placed in the reaction vessel, and the pH of the solution was adjusted to 5 to 6 by adding 5 mol/l hydrochloric acid. The solution was concentrated under reduced pressure until crystals were precipitated, and then allowed to stand. The crystals were removed by filtration and dried in vacuo to give S-(3-aminopropyl)thiosulfuric acid. 'H-NMR (270.05 MHz * D2 〇) (5 ppm : 3.0-3.1 (4H &gt; m) &gt; 2.0-2.1 (2H, m) -47 - 201111430 Example 2 9 In addition to the S-(3-aminopropyl)thiosulfate 0.4 obtained in the above Production Example 2 1 part by weight of the sodium salt of S-(3-aminopropyl) thiosulfate obtained in the above Production Example 1 in Example 1, and the rubber temperature at the time of kneading in the step a of the first step was 16 Torr. The vulcanized rubber was obtained in the same manner as in Example I. Reference Example 29 A vulcanized rubber obtained in the same manner as in Example 29 except that the sodium salt of S-(3-aminopropyl)thiosulfate was not used. After the viscoelastic property was measured in Example 1, the vulcanized rubber obtained in Reference Example 29 was tested. As a result, the vulcanized rubber obtained in Example 29 was able to increase the elasticity by 3% and lower the viscoelastic property (tan at 60 ° C). &lt;5) 23%, so it was confirmed that the physical properties were improved. Manufacturing Example 3 &lt;Production of a mixture of S-(3-aminopropyl)thiosulfuric acid and its sodium salt&gt; After replacing the gas in the reaction vessel with nitrogen, S-(3-aminopropyl)thiosulfuric acid 1 〇 30 ml of water and 30 ml of water were added to the reaction vessel, and then the pH of the solution was adjusted to 7 to 8 by adding lm〇l/l sodium hydroxide solution 66 ml. The solution was concentrated under reduced pressure and dried in vacuo to give a mixture of S-(3-aminopropyl)thiosulfuric acid and sodium salt. -48- 201111430 Manufacturing Example 4 &lt;Production of a mixture of S-(3-aminopropyl)thiosulfuric acid and its sodium salt&gt; The use amount of the 1 mol/1 sodium hydroxide solution in Production Example 3 was 2.9 ml, and the pH of the obtained solution was obtained. The mixture was adjusted to .8 to 9, and a mixture of S-(3-aminopropyl)thiosulfuric acid and its sodium salt was obtained in the same manner as in Production Example 3. Manufacturing Example 5 &lt;Production of a mixture of S-(3-aminopropyl)thiosulfuric acid and its sodium salt&gt; The use amount of the 1 mol/1 sodium hydroxide solution in Production Example 3 was 14.6 ml, and the pH of the obtained solution was obtained. The mixture was adjusted to 9 to 10, and a mixture of S-(3-aminopropyl)thiosulfuric acid and its sodium was obtained in the same manner as in Production Example 3. Manufacturing Example 6 &lt;Production of a mixture of S-(3-aminopropyl)thiosulfuric acid and its sodium salt&gt; except that the amount of the 1 mol/1 sodium hydroxide solution used in Production Example 3 was 43.8 ml, and the resulting solution was A mixture of S-(3-aminopropyl)thiosulfuric acid and its sodium salt was obtained in the same manner as in Production Example 3 except that the pH was adjusted to 10 to 11. Example 3 0 to 3 3 In place of the mixture of S-(3-aminopropyl)thiosulfuric acid and its sodium salt obtained in each of Production Examples 3 to 6, the S - (3-aminopropyl group) in Example 29 was replaced. In addition to the thiosulfuric acid, the vulcanized rubber was obtained in the same manner as in Example 29. Test Example 3 0 to 3 3 After the elastic and viscoelastic properties were measured in the same manner as in Test Example 1, the vulcanized rubber obtained in Reference Example 29 was judged to be tantalum under elastic and viscoelastic properties. The respective rate of change of &lt;5) is shown in Table 1. -49-201111430 [Table i] Test Example 30 Test Example 31 Test Example 32 Test Example 33 Mixture used Production Example 3 Mixture obtained in Production Example 4 Mixture obtained in Production Example 5 Mixture of the mixture obtained in Production Example 6 PH 7~8 8~9 9~10 10 〜11 Elasticity Δ 1% Δ 4% Δ 4% Δ 4% Viscoelasticity ▲ 12% ▲ 15% ▲ 18% ▲23% In Table 1, △ is a comparison When the vulcanized rubber obtained in Reference Example 29 was used, the elasticity was improved. ▲ When the vulcanized rubber obtained in Reference Example 29 was compared, the tan at 60 ° C was lowered (5, and it was confirmed that any test can improve various physical properties. Example 3 4 to 3 8 Each of the equal diameters (50% D) of sodium S-(3-aminopropyl)thiosulfuric acid in Example 8 was prepared into the materials shown in Table 2 by pulverization or the like, and a vulcanized rubber was obtained in the same manner as in Example 8. Test Example 3 4 to 3 8 After the elastic and viscoelastic properties were measured in the same manner as in Test Example 1, the vulcanized rubber obtained in Reference Example 2 was subjected to the elastic and viscoelastic properties (6 〇. The respective rate of change of &lt;5) is shown in Table 2. [Table 2] Test Example 34 Test Example 35 Test Example 36 Test Example 37 Test Example 38 Equal diameter 1 0 um 1 9 μηι 3 4 μ m 3 6 um 6 7 μηι Elastic Δ 9% Δ 7% Δ 6% Δ 7 % Δ 6% Pad elastic property ▲24% ▲23% ▲23% ▲21% ▲20% -50- 201111430 In Table 2, △ is the elasticity of the vulcanized rubber obtained in Comparative Reference Example 2, ▲ is Comparative Reference Example 2 The obtained vulcanized rubber can be reduced by tan at 6 〇 ° C &lt;5, so it is confirmed that any test can improve various physical properties. [Example 3] A steel sleeve subjected to brass plating treatment was applied to the kneaded material obtained in the step b of each of the first steps of Examples 1 to 8 to obtain a conveyor belt. Using the obtained conveyor belt, the raw tire obtained by heating and pressurizing in a vulcanizer after being molded into a green tire by a general manufacturing method, a vulcanized tire is obtained. [Example 4] The kneaded material obtained in the step b of each of the first steps of Examples 1 to 8 was subjected to extrusion processing to obtain a member for a tread. After the obtained tread member was molded into a green tire by a general method, the obtained raw tire was heated and pressurized in a vulcanizer to obtain a vulcanized tire. Example 4 1 Extrusion processing The kneaded material obtained in the step b of each of the first steps of Examples 1 to 8 was prepared into a kneaded material in a shape corresponding to the shape of the carcass, and then bonded to a carcass fiber cover made of polyester. Above and below, the carcass is obtained. After the obtained carcass is molded into a green tire by a general production method, the resulting green tire is heated and pressurized in a vulcanizer to obtain a vulcanized tire. -51 - 201111430 Example 42 A vulcanized rubber was obtained in the same manner as in Example 2 except that 0.2 part by weight of N-(cyclohexylthio)-indenine (CTP) was separately kneaded in the second step of Example 2. Example 43 The vulcanized rubber obtained in the first step and the second step described below was used as a tread cap. &lt;Step 1&gt; (Step a) 100 parts by weight of a styrene-butadiene copolymerized rubber SBR# 1 502 (manufactured by Sumitomo Chemical Co., Ltd.) was added using a Banbury kneading machine (Toyo Seiki 600 ml Rampu) , ISAF-HM (made by Asahi Carbon Co., Ltd., trade name "旭#80") 45 parts by weight, 2 parts by weight of stearic acid, 3 parts by weight of zinc oxide, sodium S-(3-aminopropyl) thiosulfate 1 part by weight of salt, anti-aging agent (N-phenyl-indole-1,3-1,3-dimethylbutyl-P-phenylenediamine (6PPD), trade name "Anjiken (registered trademark) 6C" Sumitomo 1 part by weight and wax ("Zhu ZOACE_03 5 5" made by Nippon Seiko Co., Ltd.) 2 parts by weight of a rubber composition. This step was carried out by mixing various reagents and sputum agents and mixing them by mixing the number of revolutions at 5 rpm and 50 rpm. The rubber temperature at this time was 160 to 17 5 t. (Step b) -52- 201111430 The rubber composition obtained by the kneading step a and the vulcanization accelerator (N-cyclohexyl-2-benzothiazole sulfenamide) are added using an open roll machine at a temperature of 60 to 80 °C. CBS)) 3 parts by weight and 2 parts by weight of sulfur 'obtained. &lt;Second Step&gt; The kneaded product obtained in the step b of the first step was heat-treated at 145 ° C to obtain a vulcanized rubber. Example 44 The vulcanized rubber obtained in the first step and the second step described below is applied as a tread underlayer. &lt;Step 1&gt; (Step a) 100 parts by weight of a blended styrene-butadiene copolymer rubber SB R# 1502 (manufactured by Sumitomo Chemical Co., Ltd.) was added using a Banbury kneading machine (Toyo Seiki 600 ml Rampu) , ISAF-HM (manufactured by Asahi Carbon Co., Ltd., trade name "Asa #8 0") 35 parts by weight, 2 parts by weight of stearic acid '3 parts by weight of zinc oxide, S-(3-aminopropyl) thiosulfuric acid Sodium salt 1 child, anti-aging agent (N-phenyl-N'-l,3-dimethylbutyl-P-phenylenediamine (6PPD), trade name "Anjiken (registered trademark) 6C 1 part by weight and wax ("OZOACE-03 5 5" made by Nippon Seiko Co., Ltd.) 2 parts of the smoked product, and a rubber composition was obtained. This step is carried out by adding various reagents and chelating agents and mixing them by mixing the number of revolutions at 5 minutes and 50 rpm. &gt; The rubber temperature at this time is -53 - 201111430 1 6 0 to 1 7 5 °c. (Step b) The rubber composition obtained by the kneading step a and the vulcanization accelerator (N-cyclohexyl-2-benzothiazole sulfenamide (CBS)) 2 are added at a temperature of 60 to 80 ° C using an open roll machine. Parts by weight, 0.5 parts by weight of a vulcanization accelerator diphenyl hydride (DPG), 0.8 parts by weight of a vulcanization accelerator dibenzothiazolyl disulfide (MB TS), and 1 part by weight of sulfur were obtained as a kneaded product. &lt;Second Step&gt; The kneaded product obtained in the step b of the first step was heat-treated at 145 ° C to obtain a vulcanized rubber. Example 4 5 The vulcanized rubber obtained in the first step and the second step described below is suitably used as a conveyor belt. &lt;Step 1&gt;&lt;Stepa&gt; 100 parts by weight of a blended natural rubber (RSS #1) and HAF (manufactured by Asahi Carbon Co., Ltd., "Shin #70") 45 weights were added using a Banbury kneading machine (Toyo Seiki 600 ml Rampu). a portion, 3 parts by weight of stearic acid, 5 parts by weight of zinc oxide, 1 part by weight of sodium salt of S-(3-aminopropyl) thiosulfuric acid, and aqueous cerium oxide (manufactured by Tosoh Sesame Oxide Co., Ltd.) "Nipsil (registered trademark) AQ" 10 -54- 201111430 parts by weight, anti-aging agent FR ("Anjou FR" manufactured by Matsubara Sangyo Co., Ltd.) 2 parts by weight, resorcin 2 parts by weight, and 2 parts by weight of cobalt naphthenate A rubber composition is obtained. This step is carried out by adding various reagents and a chelating agent, and kneading the number of revolutions at 5 rpm and 5 rpm, and the rubber temperature at this time is 160 to 175 °C. (Step b) Adding the rubber composition and vulcanization accelerator (N,N-dicyclohexyl-2-benzothiazole sulfoximine) obtained by mixing step 3 at a temperature of 60 to 80 ° C t using an open roll machine (D CBS )) 1 part by weight, 6 parts by weight of sulfur, and methoxylated methylol melamine resin ("Smith 507AP" by Sumitomo Chemical Co., Ltd.) 3 Parts amount to obtain the kneaded material. &lt;Second Step&gt; The kneaded material obtained in the step b of the first step was heat-treated at 1 45 ° C to obtain a vulcanized rubber. Example 46 The following steps 1 and 2 were obtained: a vulcanized rubber was used as a inner tube liner. &lt;Step 1&gt;&lt;Stepa&gt; Adding a blend using a Banbury blender (Toyo Seiki 6 〇〇ml Rampu) -55- 201111430 Blending butyl butyl rubber ("Br-IIR22 5 5" manufactured by Yakusso) 100 weight a portion, GPF 60 parts by weight, 1 part by weight of stearic acid, 3 parts by weight of zinc oxide, 1 part by weight of sodium salt of S-(3-aminopropyl) thiosulfate, and paraffin oil ("Dai'an" That operation oil") 1 〇 by weight, a rubber composition. This step is carried out by putting various reagents and chelating agents into a kneading mixture at 5 minutes and 50 rpm, and the rubber temperature is 1 60 to 175. (:) (Step b) Adding the rubber composition obtained by the mixing step b and the anti-aging agent (the aniline and acetone condensate (TMDQ) 1 part by weight of the vulcanization accelerator diphenyl using an open roll machine at a temperature of 60 to 80 t 1 part by weight of thiazolyl disulfide (MBTS) and 2 parts by weight of sulfur were obtained as a kneaded product. &lt;Second Step&gt; The kneaded product obtained in the step b of the first step was heat-treated at 145 ° C to obtain a vulcanized rubber. Example 4 7 The vulcanized rubber obtained in the first step and the second step described below was applied to the sidewall. &lt;Step 1&gt;&lt;Stepa&gt; -56- 201111430 40 parts by weight of a blended natural rubber (RSS #3) and polybutadiene rubber (BR150B manufactured by Ube Industries, Ltd.) using a Banbury blender (Toyo Seiki 600 ml Rampu) ” 60 parts by weight, 50 parts by weight of FEF, 2.5 parts by weight of stearic acid, 3 parts by weight of zinc oxide, 1 part by weight of sodium salt of S-(3-amine-propyl)thiosulfuric acid, and an anti-aging agent (N- Phenyl-N'-l,3-dimethylbutyl-P-phenylenediamine (6PPD), trade name "Anjiken (registered trademark) 6C" Sumitomo Chemical Co., Ltd.) 2 parts by weight, aromatic hydroxyl oil (2) parts by weight of "Nan-Nan Chemical Industry Co., Ltd. "Shannaku (registered trademark) wax") was obtained in an amount of 10 parts by weight ("NC-140" manufactured by Cosmo Petroleum Co., Ltd.) to obtain a rubber woven product. This step is carried out by adding various reagents and chelating agents and mixing them in a 5 minute, 50 rpm kneading revolution number, at which time the rubber temperature is 160 to 175 °C. (Step b) The rubber composition obtained by the kneading step a and the vulcanization accelerator N-tert-butyl-2-benzothiazolylsulfenamide (BBS) are added at a temperature of 60 to 80 ° C using an open roll machine. 0.75 parts by weight and 1.5 parts by weight of sulfur were obtained as a kneaded material. &lt;Second Step&gt; The kneaded rubber obtained by heat-treating the step b of the first step at 145 ° C was obtained. Example 48 The vulcanized rubber obtained in the following first step and the second step is suitable for use as a tire -57- 201111430

&lt;第1步驟&gt; &lt;步驟a&gt; 使用班伯里混練機(東洋精機製600ml拉姆普)添加混 練天然橡膠(TSR2 0) 70重量份、苯乙烯-丁二烯共聚合橡膠 SBR# 1 5 02(住友化學公司製)30重量份、N3 3 9 (三菱化學公 司製)60重量份、硬脂酸2重量份、氧化鋅5重量份、操 作油(出光興產公司製「戴安那操作油PS32」)7重量份及 S-(3·胺基丙基)硫代硫酸之鈉鹽1重量份,得橡膠組成 物。該步驟係以,投入各種試劑及塡充劑後以5分鐘、 5 Orpm混練回轉數混練之方式實施,此時之橡膠溫度爲 1 6 0 至 1 7 5。(:。 (步驟b) 使用開放式輥機以6 0至8 0 °C之溫度添加混練步驟a 所得的橡膠組成物、硫化促進劑(N-tert-丁基-2-苯并噻唑 基次磺醯胺(BBS ))1重量份、硫3重量份、防老化劑(N-苯 基-N’-l,3-二甲基丁基-P-伸苯基二胺(6PPD),商品名「安 吉肯(登記商標)6C」住友化學公司製)1重量份及防老化劑 (苯胺及丙酮之縮合物(TMDQ)l重量份,得混練物。 &lt;第2步驟&gt; 以14 5 °C熱處理第1步驟之步驟b所得的混練物,得 -58- 201111430 硫化橡膠。 實施例49 下述第1歩驟及第2步驟所得的硫化橡膠適用爲胎面 帽。 &lt;第1步驟&gt; &lt;步驟a&gt; 使用班伯里混練機(東洋精機製600ml拉姆普)添加混 練苯乙烯-丁二烯共聚合橡膠SBR# 1500(JSR公司製)100重 量份、二氧化矽(商品名「烏爾特(登記商標)VN3-G」丹庫 薩公司製)78.4重量份’碳黑(商品名「N-339」三菱化學 公司製)6.4重量份、矽烷偶合劑(雙(3-三乙氧基矽烷基丙 基)四硫化物,商品名^si-69」丹庫薩公司製)6.4重量 份、操作油(商品名「NC-140」可史莫石油公司製)47.6重 量份、防老化劑(N-苯基-N'-l,3-二甲基丁基-P-伸苯基二胺 (6PPD),商品名「安吉肯(登記商標)6C」住友化學公司 製)1.5重量份、氧化鋅2重量份、硬脂酸2重量份及S-(3-胺基丙基)硫代硫酸之鈉鹽3重量份,得橡膠組成物。 該步驟係於°C至120 °C之溫度下操作,以投入各種試劑 及塡充劑後以5分鐘、8 Orpm混練回轉數混練後,再以5 分鐘、1 OOrpm混練回轉數混練之方式實施。 (步驟b) -59- 201111430 使用開放式輥機以60至80。(:之溫度添加混練步驟a 所得的橡膠組成物、硫化促進劑(N-環己基·2-苯并噻哩基 次磺醯胺(C B S )) 1重量份、硫化促進劑(二苯基脈(D p G ) ) i 重量份、蠟(商品名「山那庫(登記商標)N」大內新興化學 工業公司製)1 . 5重量份及硫1 _ 4重量份,得混練物。 &lt;第2步驟&gt; 以1 6 0 °C熱處理第1步驟之步驟b所得的混練物,得 硫化橡膠。 實施例5 0 除了以溶液聚合SBR(「阿薩普(登記商標)」旭化成化 學股份公司製)取代實施例49中苯乙烯-丁二烯共聚合橡膠 SBR# 1 500(JSR公司製)外’同實施例49得硫化橡膠。該 硫化橡膠適用爲胎面帽。 實施例5 1 除了以SBR#1712(JSR公司製)取代實施例49中苯乙 烯-丁二烯共聚合橡膠SBR# 1 500(JSR公司製),及使操作油 之使用量變更爲21重量份,及第2步驟添加氧化鋅外,同 實施例4 9得硫化橡膠。該硫化橡膠適用爲胎面帽。 產業上利用可能性 本發明可提供改善黏彈性特性之輪胎。 -60-&lt;Step 1&gt;&lt;Stepa&gt; Using a Banbury kneading machine (Toyo Seiki 600 ml Rampu), kneading natural rubber (TSR20) 70 parts by weight, styrene-butadiene copolymerized rubber SBR# 1 5 02 (manufactured by Sumitomo Chemical Co., Ltd.) 30 parts by weight, N3 3 9 (manufactured by Mitsubishi Chemical Corporation), 60 parts by weight, 2 parts by weight of stearic acid, 5 parts by weight of zinc oxide, and operating oil (Dai An, manufactured by Idemitsu Kosan Co., Ltd.) 7 parts by weight of the operating oil PS32") and 1 part by weight of the sodium salt of S-(3.aminopropyl)thiosulfuric acid gave a rubber composition. This step is carried out by putting various reagents and chelating agents into a kneading process at 5 minutes and 5 Orpm, and the rubber temperature is 160 to 175. (: (Step b) The rubber composition obtained by the kneading step a and the vulcanization accelerator (N-tert-butyl-2-benzothiazolyl) are added at a temperature of 60 to 80 ° C using an open roll machine. Sulfonamide (BBS)) 1 part by weight, sulfur 3 parts by weight, anti-aging agent (N-phenyl-N'-l,3-dimethylbutyl-P-phenylenediamine (6PPD), commercial product 1 part by weight of Anjiken (registered trademark) 6C (manufactured by Sumitomo Chemical Co., Ltd.) and an anti-aging agent (1 part by weight of aniline and acetone condensate (TMDQ) to obtain a kneaded product. &lt;Step 2&gt; The kneaded material obtained in the step b of the first step is heat-treated at ° C to obtain a vulcanized rubber of -58 to 201111430. Example 49 The vulcanized rubber obtained in the following first and second steps is suitably used as a tread cap. &lt;Step 1&gt;&lt;Stepa&gt; 100 parts by weight of styrene-butadiene copolymerized rubber SBR# 1500 (manufactured by JSR Corporation) and cerium oxide (product name) were added by using a Banbury kneading machine (Toyo Seiki 600 ml Rampu). Ult (registered trademark) VN3-G", manufactured by Dankusa Co., Ltd.) 78.4 parts by weight of "carbon black (trade name "N-339" manufactured by Mitsubishi Chemical Corporation) 6.4 parts by weight A decane coupling agent (bis(3-triethoxydecylpropyl) tetrasulfide, trade name: ^si-69" manufactured by Dankusa Co., Ltd.) 6.4 parts by weight, operating oil (trade name "NC-140" history 47.6 parts by weight of an anti-aging agent (N-phenyl-N'-l,3-dimethylbutyl-P-phenylenediamine (6PPD), trade name "Anjiken (registered trademark) 6C"Sumitomo Chemical Co., Ltd.) 1.5 parts by weight, 2 parts by weight of zinc oxide, 2 parts by weight of stearic acid, and 3 parts by weight of sodium salt of S-(3-aminopropyl) thiosulfate, to obtain a rubber composition. This step is carried out at a temperature of °C to 120 °C, and after various reagents and sputum agents are put into the mixture, the mixing number is mixed at 5 minutes and 8 Orpm, and then the mixing number is mixed at 5 minutes and 100 rpm. (Step b) -59- 201111430 Add the rubber composition and vulcanization accelerator (N-cyclohexyl·2-benzothiazepine) obtained by mixing step a using an open roll machine at 60 to 80. Sulfonamide (CBS)) 1 part by weight, vulcanization accelerator (diphenyl vein (D p G )) i parts by weight, wax (trade name "Shanakaku (registered trademark) N" Ouchi 1.5 parts by weight and sulfur 1 to 4 parts by weight to obtain a kneaded material. &lt;2nd step&gt; The kneaded material obtained in the step b of the first step is heat-treated at 160 ° C to obtain a vulcanized rubber. Example 5 0 In place of the solution-polymerized SBR ("Asap (registered trademark)" Asahi Kasei Chemicals Co., Ltd.), in place of the styrene-butadiene copolymer rubber SBR #1 500 (manufactured by JSR) in Example 49, 'The same as Example 49 gave a vulcanized rubber. The vulcanized rubber is suitable for use as a tread cap. Example 5 1 The styrene-butadiene copolymerized rubber SBR #1 500 (manufactured by JSR Corporation) of Example 49 was replaced by SBR #1712 (manufactured by JSR Corporation), and the amount of the operating oil was changed to 21 parts by weight. And the addition of zinc oxide in the second step, the vulcanized rubber was obtained in the same manner as in Example 49. The vulcanized rubber is suitable for use as a tread cap. Industrial Applicability The present invention can provide a tire having improved viscoelastic properties. -60-

Claims (1)

201111430 七、申請專利範圍: 1 ·—種硫化橡膠之製造方法’其爲備有混練s_(3_胺基 丙基)硫代硫酸及/或其金屬鹽及橡膠成份及塡充劑及硫成 份’得混練物之第1步驟,及熱處璀第1步驟所得的混練 物之第2步驟。 2.如申請專利範圍第1項之製瑋方法,其中第2步驟 之熱處理中的溫度條件爲120至180 °C之範圍。 3·—種硫化橡膠,其爲藉由如申請專利範圍第1或2 項之製造方法而得。 -61 - 201111430 四 指定代表圖: (一) 本案指定代表圖為:無 (二) 本代表圖之元件符號簡單說明:無 201111430 五、本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無201111430 VII. Patent application scope: 1 · Manufacturing method of vulcanized rubber 'It is prepared with mixed s_(3_aminopropyl) thiosulfuric acid and/or its metal salt and rubber component and sputum and sulfur component' The first step of the kneaded material and the second step of the kneaded material obtained in the first step are obtained. 2. The method according to claim 1, wherein the temperature condition in the heat treatment of the second step is in the range of 120 to 180 °C. 3. A vulcanized rubber obtained by the production method of the first or second aspect of the patent application. -61 - 201111430 Four designated representatives: (1) The representative representative of the case is: None (2) The symbol of the representative figure is a simple description: No 201111430 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention. :no
TW099120822A 2009-06-30 2010-06-25 Vulcanized rubber and method for producing the same TWI483979B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009154750 2009-06-30
JP2009174091 2009-07-27
JP2009212921 2009-09-15
JP2009248798 2009-10-29
JP2009287738 2009-12-18
JP2010048795 2010-03-05

Publications (2)

Publication Number Publication Date
TW201111430A true TW201111430A (en) 2011-04-01
TWI483979B TWI483979B (en) 2015-05-11

Family

ID=43411062

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099120822A TWI483979B (en) 2009-06-30 2010-06-25 Vulcanized rubber and method for producing the same

Country Status (9)

Country Link
US (1) US20120101219A1 (en)
EP (1) EP2450402B1 (en)
JP (1) JP5589564B2 (en)
KR (1) KR20120058507A (en)
CN (1) CN102459450A (en)
BR (1) BRPI1014764A2 (en)
RU (1) RU2542271C2 (en)
TW (1) TWI483979B (en)
WO (1) WO2011001990A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI625353B (en) * 2012-10-26 2018-06-01 住友化學股份有限公司 Carbon black

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589564B2 (en) * 2009-06-30 2014-09-17 住友化学株式会社 Vulcanized rubber and method for producing the same
JP2012012456A (en) * 2010-06-30 2012-01-19 Sumitomo Chemical Co Ltd Method for using s-(3-aminopropyl)thiosulfuric acid and/or metal salt thereof
JP5652045B2 (en) 2010-08-10 2015-01-14 住友化学株式会社 Modified conjugated diene polymer, polymer composition, and method for producing modified conjugated diene polymer
DE102010060355B4 (en) 2010-11-04 2022-01-13 Continental Reifen Deutschland Gmbh Rubber mixture and its use for the manufacture of a tyre, belt, strap or tube
RU2587174C2 (en) * 2011-05-12 2016-06-20 Сумитомо Кемикал Компани, Лимитед Method of producing particles
JP2012251134A (en) * 2011-05-12 2012-12-20 Sumitomo Chemical Co Ltd Composition
EP2740756A4 (en) * 2011-08-01 2015-03-11 Sumitomo Chemical Co Method for lowering dynamic-to-static modulus ratio of vulcanized rubber
JP5731322B2 (en) * 2011-08-23 2015-06-10 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP5912345B2 (en) * 2011-08-31 2016-04-27 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP2013060549A (en) * 2011-09-14 2013-04-04 Sumitomo Rubber Ind Ltd Rubber composition for tire, and pneumatic tire
JP2013107990A (en) * 2011-11-21 2013-06-06 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2013107991A (en) * 2011-11-21 2013-06-06 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2013155305A (en) * 2012-01-30 2013-08-15 Sumitomo Rubber Ind Ltd Rubber composition for tire, production method thereof, and pneumatic tire
JP5964606B2 (en) * 2012-02-14 2016-08-03 住友ゴム工業株式会社 Rubber composition and pneumatic tire
JP5964605B2 (en) * 2012-02-14 2016-08-03 住友ゴム工業株式会社 Rubber composition and pneumatic tire
JP5869376B2 (en) * 2012-03-05 2016-02-24 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP5977079B2 (en) * 2012-05-17 2016-08-24 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP5864358B2 (en) * 2012-05-17 2016-02-17 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP2013241480A (en) * 2012-05-17 2013-12-05 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP5977078B2 (en) * 2012-05-17 2016-08-24 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP5996961B2 (en) * 2012-08-03 2016-09-21 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP6029940B2 (en) * 2012-11-07 2016-11-24 東洋ゴム工業株式会社 Tire member and tire manufacturing method
JP5973325B2 (en) 2012-11-07 2016-08-23 東洋ゴム工業株式会社 Tire member and manufacturing method thereof
CN103627042A (en) * 2013-11-19 2014-03-12 宁波拓普集团股份有限公司 High temperature resistant material for engine suspension
JP6152058B2 (en) * 2014-01-29 2017-06-21 住友ゴム工業株式会社 Rubber composition for covering fiber ply cord, pneumatic tire, and method for producing rubber composition for covering fiber ply cord
DE102015210424A1 (en) 2015-06-08 2016-12-08 Continental Reifen Deutschland Gmbh Rubber compound and vehicle tires
DE102015210423A1 (en) 2015-06-08 2016-12-08 Continental Reifen Deutschland Gmbh Rubber compound and vehicle tires
DE102015210421A1 (en) 2015-06-08 2016-12-08 Continental Reifen Deutschland Gmbh Rubber compound and vehicle tires
JP2017014334A (en) * 2015-06-29 2017-01-19 住友ゴム工業株式会社 Manufacturing method of rubber composition
DE102016211368A1 (en) * 2016-06-24 2017-12-28 Continental Reifen Deutschland Gmbh Sulfur crosslinkable rubber compound and vehicle tires
CN110591177A (en) * 2019-09-21 2019-12-20 赛轮集团股份有限公司 Formula and preparation process of all-steel tread with high wear resistance and long mileage
KR102316521B1 (en) * 2019-11-29 2021-10-22 한국타이어앤테크놀로지 주식회사 Rubber composition for tire tread and tire manufacutred by using the same
JP7396948B2 (en) 2020-03-30 2023-12-12 住友化学株式会社 Sulfanyl sulfonic acid compound, viscoelasticity modifier, rubber composition, and method for producing vulcanized rubber

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732192A (en) * 1971-05-24 1973-05-08 Universal Oil Prod Co Rubber formulations containing thiosulfonate esters
SU973563A1 (en) * 1981-05-08 1982-11-15 Ярославский политехнический институт Vulcanizable rubber stock based on isoprene rubber
JPS5817132A (en) * 1981-07-08 1983-02-01 モンサント・ヨ−ロツプ・ソシエテ・アノニム Organic thiosulfates and thiosulfonates
US4417012A (en) * 1981-07-08 1983-11-22 Monsanto Europe S.A. Organic thiosulphates and thiosulphonates useful as stabilising agents for rubber vulcanisates
US4532080A (en) * 1982-10-21 1985-07-30 Monsanto Europe, S.A. Adhesion promoters
GB8401508D0 (en) * 1984-01-20 1984-02-22 Monsanto Europe Sa Compounds useful as rubber/metal bonding promoters
IL116377A (en) * 1994-12-15 2003-05-29 Cabot Corp Reaction of carbon black with diazonium salts, resultant carbon black products and their uses
IL116379A (en) * 1994-12-15 2003-12-10 Cabot Corp Aqueous inks and coatings containing modified carbon products
US5594052A (en) * 1995-09-11 1997-01-14 The Goodyear Tire & Rubber Company Sulfur vulcanizable rubber containing sodium thiosulfate pentahydrate
JP4275370B2 (en) 2002-08-29 2009-06-10 株式会社ブリヂストン Rubber composition for tire tread and tire using the same
US7060757B2 (en) * 2003-02-06 2006-06-13 Bridgestone Corporation Rubber composition and pneumatic tire using the same
US20060019771A1 (en) * 2004-07-20 2006-01-26 Callaway Golf Company Golf ball
JP2006249361A (en) 2005-03-14 2006-09-21 Bridgestone Corp Rubber composition for tread and tire
JP2006328310A (en) 2005-05-30 2006-12-07 Bridgestone Corp Rubber composition and tire using the same
CN101484519B (en) * 2006-07-11 2012-06-06 住友橡胶工业株式会社 Rubber composition for bead apex and tire having bead apex produced by using the same
JP4884316B2 (en) * 2006-07-11 2012-02-29 住友ゴム工業株式会社 Rubber composition for bead apex and tire having bead apex using the same
JP5478816B2 (en) 2007-08-09 2014-04-23 東洋ゴム工業株式会社 Rubber composition for tire
JP5103623B2 (en) * 2007-08-20 2012-12-19 住友ゴム工業株式会社 Rubber composition for tire
JP4308292B2 (en) 2007-12-10 2009-08-05 住友ゴム工業株式会社 Rubber composition for inner liner and tire having inner liner comprising the same
JP5051274B2 (en) * 2009-06-04 2012-10-17 住友化学株式会社 Use of S- (3-aminopropyl) thiosulfuric acid and / or a metal salt thereof for improving viscoelastic properties of vulcanized rubber
JP5589564B2 (en) * 2009-06-30 2014-09-17 住友化学株式会社 Vulcanized rubber and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI625353B (en) * 2012-10-26 2018-06-01 住友化學股份有限公司 Carbon black

Also Published As

Publication number Publication date
EP2450402B1 (en) 2013-11-06
KR20120058507A (en) 2012-06-07
JP2011202138A (en) 2011-10-13
CN102459450A (en) 2012-05-16
RU2012103017A (en) 2013-08-10
JP5589564B2 (en) 2014-09-17
TWI483979B (en) 2015-05-11
BRPI1014764A2 (en) 2020-08-25
WO2011001990A1 (en) 2011-01-06
EP2450402A4 (en) 2013-01-09
EP2450402A1 (en) 2012-05-09
RU2542271C2 (en) 2015-02-20
US20120101219A1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
TW201111430A (en) Vulcanized rubber and process for manufaturing same
TWI532769B (en) Rubber composition
TWI507463B (en) S- (3-aminopropyl) thiosulfate or a metal salt
TWI513708B (en) Method for handling sulfur-containing rubber composition
TW201213404A (en) Method for using s-(3-aminopropyl)thiosulfuric acid and/or metal salt thereof
TW201313788A (en) Method for lowering dynamic-to-static modulus ratio of vulcanized rubber
JP5889017B2 (en) Method for producing vulcanized rubber
JP5889016B2 (en) Method for producing vulcanized rubber
JP2011184614A (en) Vulcanized rubber, and method for producing the same
JP2012116813A (en) Thiosulfuric acid compound or salt thereof, and rubber composition containing the same
JP5310609B2 (en) Use of S- (5-aminopentyl) thiosulfuric acid or a metal salt thereof for improving viscoelastic properties of vulcanized rubber
JP5310608B2 (en) Use of S- (4-aminobutyl) thiosulfuric acid or a metal salt thereof for improving viscoelastic properties of vulcanized rubber
JP2011184613A (en) Vulcanized rubber and method for producing the same
JP2012117008A (en) Using of thiosulfuric acid compound or its salt for improving viscoelastic characteristics which vulcanized rubber has, and rubber composition
TW201336868A (en) Method for producing vulcanized rubber
JP6013823B2 (en) Compound
JP2012153630A (en) Thiosulfuric acid compound or salt thereof and rubber composition including the same
JP2012153771A (en) Thiosulfonate compound, and rubber composition containing the same