TW201035204A - Resin composition and shaped article comprising same - Google Patents

Resin composition and shaped article comprising same Download PDF

Info

Publication number
TW201035204A
TW201035204A TW99101448A TW99101448A TW201035204A TW 201035204 A TW201035204 A TW 201035204A TW 99101448 A TW99101448 A TW 99101448A TW 99101448 A TW99101448 A TW 99101448A TW 201035204 A TW201035204 A TW 201035204A
Authority
TW
Taiwan
Prior art keywords
compound
resin
resin composition
thermoplastic resin
filler
Prior art date
Application number
TW99101448A
Other languages
Chinese (zh)
Other versions
TWI468453B (en
Inventor
Akira Ito
Yuya Masai
Mikio Furukawa
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Publication of TW201035204A publication Critical patent/TW201035204A/en
Application granted granted Critical
Publication of TWI468453B publication Critical patent/TWI468453B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • C08L77/08Polyamides derived from polyamines and polycarboxylic acids from polyamines and polymerised unsaturated fatty acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

A resin composition containing a thermoplastic resin (A), a filler (B) and a given amount of melt viscosity lowering agent (C) is provided. The given amount of melt viscosity lowering agent (C) is either one of the following (a) and (b). (a) The melt viscosity lowering agent (C) is a polyfunctional allyl compound (C1), and the content of polyfunctional allyl compound(C1), relative to the total amount of 100 mass parts for thermoplastic resin (A) and filler (B), is 3 to 20 mass parts. (b) The melt viscosity lowering agent c is a dimer acid-base thermoplastic resin (C2), and the content of dimer acid-base thermoplastic resin (C2), relative to the total amount of 100 volume parts for thermoplastic resin (A) and filler (B), is 10 to 45 volume parts.

Description

201035204 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種樹脂組成物及其所構成之、 特別是有關一種具備成形時之熔融流動性之樹於組 其所構成之成形體。 反 【先前技術】 做為成形用之原料使用之習知之熱塑性樹月旨,可 如:聚丙烯(PP)、ABS(㈣腈一丁= (PA6、PA66等)、聚酯(PET(聚對醜酸乙二醋)、ρΒτ( 酞酸丁二酯)等)、聚碳酸酯(PC)、液晶聚酯(Lcp)、聚苯炉 鍵(PPS)等。此等樹脂已廣泛使用於各種電子機器、電子ς 件、機械零件等領域中。此等熱塑性樹脂係經藉 纖維等強化用填充材而改善強度或耐熱性,且: 藉由:配具有特定機能之填充材而賦予各種機能〇 、 二等行動電子機器之外殼,至 _旨或abs樹月旨等非晶性熱曲性優良之聚碳酸 子機器小型化、輕量化,也逐漸要t曰。近年來,隨著電 為了達成該目的,至今係逐漸在前;外殼為薄化成形品。[Technical Field] The present invention relates to a resin composition and a molded body comprising the same, which is composed of a resin having a melt fluidity at the time of molding. [Previous technique] The conventional thermoplastic tree used as a raw material for forming can be, for example, polypropylene (PP), ABS ((4) nitrile butyl = (PA6, PA66, etc.), polyester (PET (poly pair) Ethyl oxalate), ρΒτ (butyl butyrate), polycarbonate (PC), liquid crystal polyester (Lcp), polystyrene (PPS), etc. These resins have been widely used in various electronic applications. In the fields of machines, electronic components, and mechanical parts, these thermoplastic resins are improved in strength and heat resistance by reinforcing fillers such as fibers, and: by providing a filler having a specific function, various functions are provided. The outer casing of the second-class mobile electronic device, such as the miniaturization and weight reduction of amorphous polycarbonates, which are excellent in amorphous thermodynamic properties, such as _ or abs tree, are gradually becoming more and more important. The purpose is that the system is gradually in the front; the outer casing is a thinned molded product.

樹脂中調配滑石或玻璃纖維等 ^碳酸醋樹脂或ABS 強化樹脂組成物中,雖外殼等之強強化材。然而,在此等 之調配量而提高,但樹脂之流動性2隨著增加該強化材 難以將特別是如夕卜殼之薄且複雜形妝J會隨之降低。因此, 另一方面,在最近之電子機器製^進行成形。 命’隨者其高性能化、 321746 4 201035204 f 小型化及輕量化,有效地使各種電子零件中所產生之熱散 逸至外部之熱對桌成為非常重要的課題。因此,要求改良 做為該電子機器之構成材料之樹脂成形材料之散熱性的聲 ' 浪逐漸變大。用以改良樹脂成形材料之散熱性之習知手段,In the resin, talc or glass fiber is blended. In the carbonated resin or ABS reinforced resin composition, a strong reinforcing material such as a shell is used. However, the amount of the compound is increased in this manner, but the fluidity 2 of the resin is apt to be lowered with the addition of the reinforcing material, which is particularly thin and complex. Therefore, on the other hand, it has been formed in the recent electronic machine manufacturing. High performance, 321746 4 201035204 f Miniaturization and light weight, effectively dissipating the heat generated in various electronic parts to the outside is a very important issue. Therefore, it is required to improve the sound of the heat dissipation of the resin molding material which is a constituent material of the electronic device. a conventional means for improving the heat dissipation of a resin molding material,

•已知有調配導熱率高的填充材料(氮化硼、氮化鋁、氮化 發、乳化銘、氧化鎮、氧化辞、碳化硬、石墨等)之手法。 例如.在JP62-131033A中記載有一種在熱塑性樹脂中填充 〇石墨粉末而成之導熱性樹脂成形品,在Jp2〇〇1_1519〇5A 中記載有一種在聚苯硫醚樹脂中填充氧化鎂或氧化鋁而成 之樹脂製散熱板。然而,為了得到高導熱性樹脂組成物, 必須大量添加填充材。於是,成形加工性因此而顯著降低, 而有樹脂組成物之用途受限之問題。 改善如此大量添加有填充材之樹脂組成物之加工性之 手法,已知有添加可塑劑。然而’若添加可_,則有樹 2組成物之強度會顯著降低,並且可_在細混練時揮 〇發之問題。也有可塑劑會滲出(bleedout)之問題。 【發明内容】 (發明欲解決的課題) 於是,本發明之課題在於提供一種進行射出成形時等 加工時之熔融流動性優良的樹脂組成物及其所構成之成形 體。 (解決課題的手段) 本發明之要旨係如下述。 (1)—種樹脂組成物,係含有熱塑性樹脂(A)、填充材 321746 5 201035204 (β)、及預定量之熔融黏度 又降低劑(c) ’其中,前述預 总融黏度降_(〇係下述^及⑹之任一者: ⑷炼融黏度降低_)係多官能㈣丙基化合 物(C1),且相對於熱塑性樹脂⑷與填充材⑻之合 。十⑽質量伤,多官能性婦丙基化合物(C1)之含量 係3至20質量份; (b)熔融黏度降低劑(C)係二聚酸系熱塑性樹脂 (C2),且相對於熱塑性樹脂(A)與填充材(B)之合計 1〇〇體積份,二聚酸系(dimmer acid_base)熱塑性 樹脂(C2)之含量係10至45體積份。 (2) 如(1)之樹脂組成物,其中,多官能性烯丙基化合物 (C1)係在骨架中具有異氰脲酸酯之化合物。 (3) 如(1)之樹脂組成物,其中,多官能性烯丙基化合物 (C1)係由下述式(i)所示之一級胺化合物(D)、與具有 烯丙基及環氧丙基(glycidyl)之多官能性化合物(E) 反應而得之烯丙基化合物: R-(NH2)n (i) 在此,n=l至4,R表示芳香族系或脂肪族系之i至 4取代基。 (4) 如(3)之樹脂組成物,其中,具有烯丙基及環氧丙基 之多官能性化合物(E)係在骨架中具有異氰脲酸酯之 化合物。 (5) 如(2)或(4)之樹脂組成物,其中,在骨架中具有異氰 脲酸酯之化合物係單環氧丙基二烯丙基異氰脲酸酯。 6 321746 201035204 u (6) 如(1)之樹脂組成物,其中,二聚酸系熱塑性樹脂(C2) '係聚醯胺樹脂及/或聚酯樹脂。 (7) 如(1)至(6)中任一項之樹脂組成物,其中,填充材(B) 係具有10W/(m.K)以上之導熱率之導熱性填充材 (B1)。 (8)如(7)之樹脂組成物,其中,熱塑性樹脂(A)與導熱性 填充材(B1)之體積比(A/B1)係20/80至95/5。 (9)如(7)或(8)之樹脂組成物,其中,導熱性填充材(Bi) 〇 係從平均粒徑為1至300 #m之鱗片狀石墨、平均纖 維徑為1至30# ra且平均纖維長為1至2〇mm之石墨 化碳纖維、具有六方晶系結晶構造之平均粒徑為】至 200 之鱗片狀氮化硼、平均粒徑為〇. 5至也 之氧化鋁、平均粒徑為0.5至150/zm之氧化鎂、平 均粒徑為〇. 5至150# m之碳酸鎂、及平均粒徑為〇. 5 至150//m之氧化鋅中選出之至少一種。 〇 (10)如(1)至(9)中任一項之樹脂組成物,其中,熱塑性樹 脂(A)係聚酿胺樹脂。 項之樹脂組成 (11)一種成形體’係將上述(1)至(1〇)中任一 物成形而成者。 (12)-種㈣體,係將上述⑴至⑽中任—項之樹脂組 物成形後照射放射線而成者。 (發明的效果) 根據本發明,可提供一種樹脂組成物及由其所得之成 形體’該樹脂組成物由於含有敎量之溶融黏度降低劑 321746 7 201035204 (c),故加工時之熔融流動性優良。 特別疋可提供一種樹脂矣且成物及其所構 體,該樹㈣成物係纽融黏度降低劑⑹為多官能而 基化合物(C1)時,心多官能_喊化合物(e I:=丙基,因此以習知方法使烯内基與樹脂 灯父口強化成形品之機械特性,故機械特性優_且 加工時之熔融流動性優良者。 & 【實施方式】 以下’詳細說明本發明。 本發明中可使用之熱塑性樹脂(A)係無特別限定,可舉 例如:聚乙烯、聚丙烯、乙烯_丙烯共聚物等乙烯—邙—烯 烴共聚物、聚甲基戊烯、聚氣乙烯、聚偏二氯乙烯、聚乙 酸乙烯酯、乙烯一乙酸乙烯酯共聚物、聚乙烯醇、聚乙烯 縮醛(polyvinyl acetal)、氟樹脂(聚偏二氟乙烯、聚四氟 乙烯等)、聚對醜酸乙二酯'聚對酜酸丁二醋、聚蔡二甲酸 乙一酯、聚乳酸、聚苯乙婦、聚丙浠腈、苯乙浠—丙烯腈 共聚物、ABS樹脂、聚苯醚(ppe)、改質ppE、聚醯胺、聚 醯亞胺、聚醯胺醯亞胺、聚醚醯亞胺、聚甲基丙烯酸甲酯 等聚甲基丙婦酸酯、聚丙晞酸類、聚碳酸酯、聚芳酸酯 (polyarylate)、聚苯硫鱗、聚石風(p〇iySuif〇ne)、聚謎礙、 聚醚腈、聚醚酮、聚酮、液晶聚合物等。其中,在成形性、 耐藥品性、經濟性之觀點上,以聚醯胺為佳,此外,在成 形性、耐熱性、機械強度之觀點上,以液晶聚合物為佳。 本發明中可使用之聚醯胺樹脂可舉例如:由内醯胺或 8 321746 201035204 胺基叛酸進行聚合、或由二胺與竣酸進行聚縮合而得之均 •聚醯胺及共聚醯胺、以及此等之混合物。 聚酿胺樹脂之較佳例可舉例如:聚己醯胺(耐綸6)、 I 己一酿丁一胺(polytetramethyiene adipamide)(^^· . 46)、聚己二醯己二胺(耐綸66)、聚己醯胺/聚己二醯己 一¾c共¾^物(耐論 6/66)、聚_| —烧酿胺(polyundecamide) (耐論11)、聚己醯胺/聚十一烷醯胺共聚物(耐綸6/11)、 聚十二烧醯胺(耐綸12)、聚己醯胺/聚十二烷醯胺共聚物• It is known to mix filler materials with high thermal conductivity (boron nitride, aluminum nitride, nitrided, emulsified, oxidized, oxidized, hardened, graphite, etc.). For example, JP-A-62-131033A discloses a thermally conductive resin molded article in which a bismuth graphite powder is filled in a thermoplastic resin, and a polyphenylene sulfide resin is filled with magnesium oxide or oxidized in Jp2〇〇1_1519〇5A. A resin-made heat sink made of aluminum. However, in order to obtain a highly thermally conductive resin composition, a large amount of filler must be added. As a result, the formability is remarkably lowered, and the use of the resin composition is limited. It is known to add a plasticizer to improve the processability of the resin composition in which the filler is added in a large amount. However, if the addition is _, the strength of the composition of the tree 2 is remarkably lowered, and the problem can be spurred during the fine mixing. There are also problems with plasticizers that can bleed out. [Problems to be Solved by the Invention] The object of the present invention is to provide a resin composition which is excellent in melt fluidity during processing such as injection molding, and a molded body formed therefor. (Means for Solving the Problem) The gist of the present invention is as follows. (1) A resin composition comprising a thermoplastic resin (A), a filler material 321746 5 201035204 (β), and a predetermined amount of a melt viscosity reducing agent (c) wherein the aforementioned pre-total melt viscosity is lowered _ (〇 Any one of the following ^ and (6): (4) Reduced smelting viscosity _) is a polyfunctional (tetra) propyl compound (C1), and is a combination with the thermoplastic resin (4) and the filler (8). Ten (10) mass injury, the content of the polyfunctional propyl compound (C1) is 3 to 20 parts by mass; (b) the melt viscosity reducing agent (C) is a dimer acid thermoplastic resin (C2), and is relative to the thermoplastic resin (A) The total amount of the filler (B) is 1 part by volume, and the content of the dimer acid-base thermoplastic resin (C2) is 10 to 45 parts by volume. (2) A resin composition according to (1), wherein the polyfunctional allylic compound (C1) is a compound having an isocyanurate in a skeleton. (3) The resin composition of (1), wherein the polyfunctional allyl compound (C1) is a one-stage amine compound (D) represented by the following formula (i), and has an allyl group and an epoxy group. Polyfunctional compound (E) of propyl (glycidyl) allyl compound obtained by reaction: R-(NH2)n (i) Here, n = 1 to 4, and R represents an aromatic or aliphatic group I to 4 substituents. (4) A resin composition according to (3), wherein the polyfunctional compound (E) having an allyl group and a glycidyl group is a compound having an isocyanurate in a skeleton. (5) A resin composition according to (2) or (4), wherein the compound having an isocyanurate in the skeleton is monoepoxypropyl diallyl isocyanurate. 6 321746 201035204 u (6) The resin composition of (1), wherein the dimer acid-based thermoplastic resin (C2) is a polyamide resin and/or a polyester resin. (7) The resin composition according to any one of (1) to (6), wherein the filler (B) is a thermally conductive filler (B1) having a thermal conductivity of 10 W/(m.K) or more. (8) A resin composition according to (7), wherein the volume ratio (A/B1) of the thermoplastic resin (A) to the thermally conductive filler (B1) is 20/80 to 95/5. (9) The resin composition according to (7) or (8), wherein the thermally conductive filler (Bi) is a flaky graphite having an average particle diameter of from 1 to 300 #m, and an average fiber diameter of from 1 to 30# a graphitized carbon fiber having an average fiber length of 1 to 2 mm, a scaly boron nitride having an average particle diameter of a hexagonal crystal structure of from 200 to 200, and an average particle diameter of 0.5 to alumina. The magnesium oxide having an average particle diameter of 0.5 to 150/zm, at least one selected from the group consisting of magnesium carbonate having an average particle diameter of from 0.5 to 150 #m, and zinc oxide having an average particle diameter of from 0.5 to 150/m. The resin composition according to any one of (1) to (9) wherein the thermoplastic resin (A) is a polyamine resin. Resin composition (11) A molded body is obtained by molding any of the above (1) to (1). (12) A seed (four) body obtained by molding the resin composition of any of the above (1) to (10) and irradiating the radiation. (Effect of the Invention) According to the present invention, it is possible to provide a resin composition and a molded body obtained therefrom. The resin composition has a melt viscosity of a molten viscosity reducing agent 321746 7 201035204 (c), so that the melt fluidity during processing excellent. In particular, it is possible to provide a resin bismuth and a composition thereof, and the tree (4) is a polyfunctional cation-reducing agent (C1), and a polyfunctional cation compound (e I:= Since the propyl group is used to strengthen the mechanical properties of the molded article by the internal electrode and the resin lamp parent port by a known method, the mechanical properties are excellent and the melt fluidity at the time of processing is excellent. [Embodiment] The following is a detailed description of the present invention. The thermoplastic resin (A) which can be used in the present invention is not particularly limited, and examples thereof include ethylene-fluorene-olefin copolymers such as polyethylene, polypropylene, and ethylene-propylene copolymer, polymethylpentene, and gas gathering. Ethylene, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl alcohol, polyvinyl acetal, fluororesin (polyvinylidene fluoride, polytetrafluoroethylene, etc.), Poly(p-ethyl phthalate) poly(p-butyl phthalate), polyethyl phthalate, polylactic acid, polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymer, ABS resin, polyphenylene ether (ppe), modified ppE, polyamine, polyimine Polymethyl propyl acrylate, polymethyl acrylate, polymethyl methacrylate, polyacrylic acid, polycarbonate, polyarylate, polyphenyl sulphide, poly Stone wind (p〇iySuif〇ne), polymycem, polyether nitrile, polyether ketone, polyketone, liquid crystal polymer, etc. Among them, in terms of formability, chemical resistance, economy, polyamine Further, in view of formability, heat resistance, and mechanical strength, a liquid crystal polymer is preferred. The polyamine resin which can be used in the present invention may be, for example, an indoleamine or an amine-based repellent of 8 321746 201035204 The acid is polymerized, or the polyamine and the copolymerized decylamine are obtained by polycondensation of a diamine and a decanoic acid, and a mixture thereof. Preferred examples of the polyacrylamide resin include polyhexylamine ( Nylon 6), I have polytetramethyiene adipamide (^^·. 46), polyhexamethylenediamine (Nylon 66), polyhexylamine/polyhexamethylene hexamate 3⁄4^物(耐论6/66),聚_|—polyundecamide (Neat 11), polyhexylamine/polyundecylamide copolymer (Nylon 6) /11), polydodecanamide (Nylon 12), polyhexylamine / polydodecyl decylamine copolymer

D (耐綸6/12)、聚癸二醢己二胺(耐綸61〇)、聚十二烷二醯 己二胺(财論612)、聚己二醯十一烷二胺(耐綸116)、聚間 醜酿己二胺(耐綸61)、聚對酞醯己二胺(耐綸6T)、聚對酞 醢己二胺/聚間酞醯己二胺共聚物(耐綸6T/6I)、聚己醯 胺/聚對敌醯己二胺共聚物(耐綸6/6Τ)、聚己醯胺/聚 間醜酿己二胺共聚物(耐綸6/61)、聚己二醯己二胺/聚 對酜醯己二胺共聚物(耐綸66/6Τ)、聚己二酿己二胺/聚 〇 間酞醯己二胺共聚物(耐綸66/61)、聚對酞醯三曱基己二 胺(耐綸TMDT)、聚雙(4-胺基環己基)曱烷十二烷醯胺(耐 綸PACM12)、聚雙(3-甲基-4-胺基環己基)曱烷十二烷醯胺 (耐綸二曱基PACM12)、聚己二醯間苯二曱胺 (polymetaxylyleneadipamide)(而i、^MXD6)、聚對醜醯十 一烷二胺(耐綸11T)、及此等之混合物或共聚物等。其中, 在成形性、經濟性之觀點上,以财绘6、耐論6 6為佳。 本發明中可使用之所謂液晶聚合物,係指具有可形成 光學異向性溶融相的性質之溶融加工性聚合物。如此之液 9 321746 201035204 晶聚合物係在熔融狀態下具有聚八^勿八 應力而採取規則的平行排列之性質。刀子鍵會因受到剪切 一般為細長、扁平且沿著分子長軸 此之聚合物分子係 常具有呈現同軸或平行之任—者之之:::::個:且通 .鍵。例如:全芳香族系或半芳香 復數個鏈伸長 矢系之聚酷、取 聚酯醯胺、或此等之混合物等。 取Sa·亞胺、 液晶聚合物之較佳例可舉例如1 賴、液晶聚酉旨碳酸酉旨、液晶聚酉旨彈性體 液晶聚酉旨 形性之觀點上,以液晶聚酯為佳。 。其中,在成 液晶聚酯可舉例如:形成 香族二氧基單元、芳香族二縣=香=基單元、芳 等中選出之構造單元所構成之異向㈣基單元 物係含有填充材⑻。本^ 用之填充材(B)係無特別限定,其代表例 使 善機械性践熱性料之目的錢用者;和為了賦ti改 =導=、磁性、壓電性、電磁波吸收、阻燃性、紫: 線吸收#機能之目的而使用者等。填充材⑻之形態可 如··球狀、粉狀、纖維狀、針狀、鱗狀、鱗片狀、鬚1 微線圈狀、奈米管狀等。 , 、 填充材(B)之具體例可舉例如:乙炔黑、科琴碳累 aetjen black)、碳奈米管、碳奈米纖維、金屬粉(銀、銅、 鋁、鈦、鎳、錫、鐵、不鏽鋼等)、導電性氧化鋅、氧化錫、 氧化銦、各種鐵氧體(ferrite)、磁性氧化鐵、氧化鋁、氧 化鎮、氧化鋅、碳酸鎮、碳化石夕、氮化銘、氮化硼、氮化 321746 10 201035204 石夕、碳、石墨、鈦酸鋇、敛酸錯酸錯、欽酸卸、硬销石 -(xonotlite)、雲母、滑石、蒙脫石(m〇ntm〇riu〇nite)、 水滑石(hydrotacite)、碳酸舞、碳酸辞、梦灰石 • (W〇llaSt〇nite)、硫酸鋇、二硫化鉬、氟乙婦(例如鐵氟龍 . ⑽1加)(註冊商標))粉、氧切、玻璃珠⑷咖⑹糾、 玻璃球(glass balloon)、氧化鈦、氫氧化鋁、氫氧化鎂、 三氧化録、砸、賴鋅、氧化飾、氧化詞、石夕膠、海泡 A石(sepiome)、活性碳、沸石(ze〇Hte)、鶴、氧化錯、 纖維素微粒子、木粉、豆逢、穀殼、玻璃纖維、碳纖維、 石墨化碳纖維、芳醯胺(aramid)纖維、金屬纖維、不鏽鋼 纖維、氧切纖維、氧化石夕/氧化銘纖維、氧化錐纖維、 氮化石夕纖維、删纖維、鈦酸卸纖維、洋麻加⑽或麻等天 然纖維等。 在本發明之樹脂、纟域物巾脂⑷與填充材 (B)(包含後述之導熱性填充材(Bl))之體積比(^)以2〇 ❹/80至95/5為佳 '以30/70至90/10較佳、以3〇/7〇 至60/40特佳。若填充材⑻之調配量未達5體積%,則有 時無法制充分的觸填捕之效果,若娜量超過8〇 體積%,則由於流動性顯著降低,故成形加工時之負㈣ 高,而有時操作性降低。 在本發明中,為了對樹脂組成物賦予導熱性,填充材 ⑻可使用具有H)W/(m.K)以上之導熱率之導熱性填充材 (B1)。導触填充材(B1)可使轉電性填充材、絕緣性填 充材之任-者。導熱性填充材⑽之導熱率可使用其燒結 321746 11 201035204 物進行測定。導熱性填充材(B1)之具體例(以下在括弧内標 示導熱率之代表值[單位·· W/(m . K))]可舉例如:氧化鋁 (36)、氧化鎂(60)、氧化鋅(25)、碳酸鎂(15)、碳化矽 (160)、氮化鋁(170)、氮化硼(21〇)、氮化矽(4〇)、碳(10 至數百)、石墨(10至數百)等無機系填充材;銀(427)、銅 (398)、鋁(237)、鈦(22)、鎳(90)、錫(68)、鐵(84)、不 鏽鋼(15)等金屬系填充材等。此等除了可使用1種,也可 併用2種以上。 導熱性填充材(B1)之平均粒徑係,除了後述之特定者 以外,以0· 5至300 //in為佳、以1至150/zm較佳。由於 若平均粒徑未達0.5#m,則因分散不良而容易產生凝聚 塊,因此無法得到均勻的成形品,而使機械物性降低、或 導熱性產生不均,故不佳。由於若平均粒徑超過, 則有時難以高漢度地填充在細旨巾、或成形品表面變粗 缝,故不佳。 ^在本發明中,因調配在熱塑性樹脂(A)中時之導熱致 间,故上述例示之填充材中以使用石墨、氮化硼作為導μ 性填充材(Β1)為佳。此外,在經濟性之觀點上,以使熱 化鋁、氧化鎂、碳酸鎂、氧化鋅為佳。 氣 :球 、奈 高導 本發明中可使用之石墨系填充材之形態可舉例如 狀二粉狀、纖維狀、針狀、鱗片狀、鬚狀、微線圈狀 米管狀等。其中,由於調配在熱塑性樹脂(Α)中時可提 熱效率,故以鱗片狀石墨、石墨化碳纖維特佳。 鱗片狀石墨之平均粒徑以1至300 “m為佳… Λ 5至 12 321746 201035204 150# m更佳。若平均粒徑未達i ,則因分散不良而容易 產生凝聚塊,因此無法得到均勻的成形品,而有時機械物 性降低、或導熱性產生不均。若平均粒徑超過3〇〇#m,則 -有時難以高濃度地填充在樹脂組成物中、或成形品表面變 r 粗糖。 石墨化碳纖維以瀝青(Pitch)系之碳纖維為佳,瀝青系 之碳纖維以例如JP2003一49327A中所記載之遞青系碳纖 維為佳’其中尤以經由以介相瀝青做為原料 在1000至30001之高温進行煅燒而促進石墨化之瀝青系 碳纖維較佳。石墨化之程度係無特別限制,但長度方向之 導熱率曰隨著接近石墨纖維而增力σ。在本發明中,石墨化 碳纖維之長度方向之導熱率通常為麵/(m K)以上,且 以500W/(m · κ)以上為佳。 石墨化碳纖維之平均纖維徑以1至30//Π1為佳、以5 至20 ^更佳。若平均纖維徑未達1_,則無法得到充分 ϋ的導熱率,若平均纖維徑超過3〇_,則有時成形性等會 石墨化碳纖維之平均纖維長以丨至—為佳、以3 ΐΓΓ更佳。若平均纖維長未達imm,難法得到充分的 :織曲彈::纖維長越長’則不僅導熱率越高,彎曲強度 合”也献。然而’若平均纖維長超過2Gmm,則 >爪動性會大幅降低,而在成形料之誠上為不佳。 纖維之市售物可舉例如:日本石墨纖維公司 V GRAN〇C」、和三菱化學產資公司製之商品名 321746 13 201035204 「DIALEAD」等。 本發明中可使用之氮化硼之形態可舉例如:球狀、粉 狀、纖維狀、針狀、鱗片狀、鬚狀、微線圈狀、奈米管狀 等。因在製作成成形體時容易定向於面方向,結果可提高 導熱率,因此以鱗片狀為佳。因含有氮化爛,而可在不降 低樹知組成物之絕緣性之情形下提高導熱性。 氮化硼之平均粒徑以丨至2〇〇/zm為佳、以5至1〇〇 _更佳。若平均粒徑未達Um,則因分散不良而容易產 生凝聚塊,因此無法得到均㈣成形品,而有時機械物性 降低、或導熱性產生不均。若平均粒徑超過獅# m,則有 時難以高濃度地填充在樹脂組成物中、或成形品表面變粗 糙。 氮化蝴之結晶㈣並無制限定。可使用六方晶系 立方晶系、其他任何的結晶構造之氮化硼。其中,由於導 熱率大,故以具有六方晶系結晶構造之氮化硼為佳。 ,本發明中可使用之氧化銘、氧化鎂、碳酸鎮、氧化辞 ^形態可舉例如:球狀、纖維狀、紡錘狀、棒狀、針狀、 筒狀、柱狀等。因在調配於熱塑性樹脂(A)中時可抑制樹脂 之=動f生降低,因此以球狀為佳。因含有氧化銘、氧化鎮、 炭酉文鎂而可在不降低樹脂組成物之絕緣性之情形下提亨 導熱性。 网 氧化銘氣化鎮、礙酸鎮、氧化鋅之平均粒徑以〇 至150"為佳、以1至l〇〇Am更佳。若平均粒獲未達〇 ”因分散不良而容#產生凝聚塊,·無法得到均 321746 14 201035204 的成形品,而有時機械物性降低、或導熱性產生不均。若 平均粒徑超過l50/zm,則有時難以高濃度地填充在樹脂組 成物中、或成形品表面變粗糖。 為了提高與熱塑性樹脂(A)之密著性,本發明中所使用 之填充材(B)也可為經耦合劑實施表面處理者。耦合劑之例 子可舉例如矽烷系耦合劑、鈦系耦合劑,例如:胺基丙 基三甲氧基矽烷、N-/5-(胺基乙基)-τ_胺基丙基三甲氧基 矽烷、Ν-冷-(胺基乙基_胺基丙基二甲氧基甲基矽烷等 〇胺基矽烷系耦合劑;7 •環氧丙氧基丙基三甲氧基矽烷、了 -環氧丙氧基丙基乙氧基矽烷、々-(3, 4-環氧環己基)乙基 二甲氧基梦燒等環氧梦燒系搞合劑;和異丙基三硬脂酿基 鈦酸酯、異丙基三(十二烷基苯磺醯基)酞酸酯、四異丙基 雙(二辛基亞磷酸基)¾酸酯(Tetraisopropyl bis(dioctylphosphito)titanate)等鈦系耦合劑等。此等 可單獨使用,也可併用。 〇 本發明之樹脂組成物係含有預定量之流動性改良劑 (c)。本發明中所使用之流動性改良劑(c)係多官能性歸丙 基化合物(C1)與二聚酸系熱塑性樹脂(C2)之任一者。 多官能性烯丙基化合物(C1)係無特別限定,但在樹月旨 組成物之熔融加工溫度下必須為液狀。此外,夕―处 曰 丙基化合物(ci)係可降低所添加之樹脂之熔融黏度 也可有效地發揮做為可塑劑之作用。 多官能性烯丙基化合物(C1)之具體例可舉例如:二 丙基異氰脲酸酉旨、單環氧丙基二稀丙基異氰脲酸醋、:语 321746 15 201035204 氧丙基單稀丙基異氰腺酸醋、三(甲基稀丙基)異氰服酸 =衰氧丙基二崎丙基)異氯輸旨、二環氧: 早基蝉丙基)異氰脲酸醋、三稀丙基氰服酸酯、單環氧 丙基二稀丙基氰腺酸醋、二環氧丙基單婦丙基氛腺酸醋、 二(甲基婦丙基)氰腺酸醋、單環氧丙基二(T基婦丙基)氰 腺酸酯、二環氧丙基單(甲基稀丙基)氛服酸醋、稀丙基環 氧丙基胺、二烯丙基單環氧丙基胺、單烯丙基二環氧丙基 胺、單環ft丙基二(甲基烯丙基)胺、二環氧丙基單(甲基烯 丙基)胺1菌酸環氧丙酯婦丙醋、己二酸稀丙醋環氧丙 酯、碳酸稀丙酯縣丙酯、氯化婦丙基環氧丙基二甲基錢、 :馬酸烯丙酯環氧丙酯、間酞酸烯丙酯環氧丙酯、丙二酸 稀丙自曰環氧丙自曰、草酸稀丙酯環氧丙酯、酞酸烯丙酯環氧 丙酉曰烯丙基環氧丙基丙基異氰脲酸酯、癸二酸稀丙g旨環 氧丙酯、琥珀酸烯丙酯環氧丙酯、對酞酸烯丙酯環氧丙酯、 酒石馱烯丙酯環氧丙酯(aUylta^rate)、酞酸 環氧丙酉曰甲基烯丙酯等。此等化合物中尤以在骨架中具有 異氰脲酸酯之化合物為佳,特別是在處理性、經濟性之觀 點上,以三烯丙基異氰脲酸酯、單環氧丙基二烯丙基異氰 脲酸醋為更佳。 此外’多官能性烯丙基化合物(C1)係除了上述化合物 以外’還可使用由下述式(i)所示之一級胺化合物(D)、與 具有烯丙基及環氧丙基之多官能性化合物(E)反應而得之 如丙基化合物: R-(NH2)n ⑴ 16 321746 201035204 在此,n=l至4,R表示芳香族系或脂肪族系之(至*取 代基。 n=2之二胺類為 乙二胺、己二胺、 '4,4’-二胺基二環 雙(胺基甲基) 式(i)所示之一級胺化合物(D)係以 佳。n= 2之二胺類之具體例可舉例如: 1,4-二胺基環己烷、1,3-二胺基環己燒 己基曱烷、1,3-雙(胺基甲基)環己烧、 環己烧、4’4’-二胺基二環己基丙燒、雙(4_胺基環己基)D (Nylon 6/12), polyfluorene dimercaptohexamine (Nylon 61 〇), polydodecane dimercaptohexane (Capital 612), polyhexamethylene undecane diamine (Nylon) 116), Jujian ugly hexamethylene diamine (Nylon 61), poly-p-hexane diamine (Nylon 6T), poly-p-hexane diamine / poly-m-hexane diamine copolymer (Nylon 6T /6I), polyhexylamine/poly-p-hexanediamine copolymer (Nylon 6/6Τ), polyhexylamine/poly-male hexamethylene copolymer (Nylon 6/61), poly Dioxanediamine/poly-p-hexanediamine copolymer (Nylon 66/6Τ), polyhexamethylenediamine/polyruthenium hexamethylenediamine copolymer (Nylon 66/61), poly P-trimethyl hexamethylenediamine (Nylon TMDT), polybis(4-aminocyclohexyl)decanedodecyl decylamine (Nylon PACM12), poly-bis(3-methyl-4-amino group) Cyclohexyl)decanedodecylamine (Nylon dimercapto PACM12), polymetaxylyleneadipamide (i, ^MXD6), poly-p-uneven undecanediamine (resistant Polyene 11T), and mixtures or copolymers thereof. Among them, in terms of formability and economy, it is better to use Caijing 6 and Naiguo 6 6 . The term "liquid crystal polymer" which can be used in the present invention means a molten processable polymer having a property of forming an optically anisotropic molten phase. Such a liquid 9 321746 201035204 The crystalline polymer has a property of having a regular parallel arrangement in a molten state having a poly 8 stress. Knife keys are generally slender, flat and along the long axis of the molecule. The polymer molecules often have a coaxial or parallel function: ::::: and pass. For example, a wholly aromatic or semi-aromatic chain extension, a polyester phthalamide, or a mixture thereof. Preferred examples of the Sa-imine and the liquid crystal polymer are liquid crystal polyesters, for example, from the viewpoints of liquid crystal polymerization, liquid crystal polymerization, and liquid crystal polymerization. . In the liquid crystal polyester, for example, an anisotropic (tetra)-based unit containing a structural unit selected from the group consisting of an aromatic dioxy unit, an aromatic two-counter=fragrance=base unit, and an aromatic unit may contain a filler (8). . The filler (B) used in the present invention is not particularly limited, and a representative example thereof is used for the purpose of mechanically heat-treating materials; and for the purpose of imparting ti-change = conduction, magnetic, piezoelectric, electromagnetic wave absorption, and flame retardancy Sex, purple: Line absorption #function for the purpose of users and so on. The shape of the filler (8) may be, for example, a spherical shape, a powder shape, a fibrous shape, a needle shape, a scaly shape, a scale shape, a micro-coil shape, a nano tube shape, or the like. Specific examples of the filler (B) include, for example, acetylene black, aetjen black, carbon nanotubes, carbon nanofibers, metal powders (silver, copper, aluminum, titanium, nickel, tin, Iron, stainless steel, etc.), conductive zinc oxide, tin oxide, indium oxide, various ferrite, magnetic iron oxide, aluminum oxide, oxidized town, zinc oxide, carbonic acid town, carbon carbide, nitriding, nitrogen Boron, nitridation 321746 10 201035204 Shi Xi, carbon, graphite, barium titanate, acid absorption wrong acid, acid acid unloading, hard stone - (xonotlite), mica, talc, montmorillonite (m〇ntm〇riu 〇nite), hydrotalcite, carbonic acid dance, carbonated water, dream limestone • (W〇llaSt〇nite), barium sulfate, molybdenum disulfide, fluoride (for example, Teflon. (10) 1 plus) (registered trademark )) powder, oxygen cut, glass beads (4) coffee (6) correction, glass balloon, titanium oxide, aluminum hydroxide, magnesium hydroxide, trioxide, lanthanum, zinc, oxidized, oxidized, shi , sepiome, activated carbon, zeolite (ze〇Hte), crane, oxidized, cellulose microparticles, Wood flour, bean husk, chaff, glass fiber, carbon fiber, graphitized carbon fiber, aramid fiber, metal fiber, stainless steel fiber, oxygen-cut fiber, oxidized stone, oxidized fiber, oxidized cone fiber, nitrite Even fiber, fiber, titanium acid unloading fiber, kenaf plus (10) or natural fiber such as hemp. The volume ratio (^) of the resin of the present invention, the resin (4) and the filler (B) (including the thermally conductive filler (B1) described later) is preferably 2〇❹/80 to 95/5. 30/70 to 90/10 is preferred, and 3〇/7〇 to 60/40 is particularly preferred. If the amount of the filler (8) is less than 5% by volume, the effect of sufficient contact filling may not be obtained. If the amount of the filler is more than 8% by volume, the fluidity is remarkably lowered, so the negative (four) during molding is high. And sometimes the operability is reduced. In the present invention, in order to impart thermal conductivity to the resin composition, the filler (8) may be a thermally conductive filler (B1) having a thermal conductivity of H) W / (m. K) or more. The conductive filler (B1) can be used for any of a conductive filler or an insulating filler. The thermal conductivity of the thermally conductive filler (10) can be measured using its sintered 321746 11 201035204. Specific examples of the thermal conductive filler (B1) (hereinafter, the representative value of the thermal conductivity (in terms of W/(m. K)) is indicated in parentheses), for example, alumina (36), magnesium oxide (60), Zinc oxide (25), magnesium carbonate (15), tantalum carbide (160), aluminum nitride (170), boron nitride (21〇), tantalum nitride (4〇), carbon (10 to hundreds), graphite Inorganic fillers such as (10 to hundreds); silver (427), copper (398), aluminum (237), titanium (22), nickel (90), tin (68), iron (84), stainless steel (15 ), such as metal-based fillers. These may be used alone or in combination of two or more. The average particle diameter of the thermally conductive filler (B1) is preferably from 0.5 to 300 // in., preferably from 1 to 150/zm, in addition to the specific ones described later. When the average particle diameter is less than 0.5 #m, agglomerates are likely to be generated due to poor dispersion, so that a uniform molded article cannot be obtained, and mechanical properties are lowered or unevenness in thermal conductivity is caused, which is not preferable. When the average particle diameter is exceeded, it may be difficult to fill the surface of the fine towel or the surface of the molded article with a high degree of roughness, which is not preferable. In the present invention, it is preferable to use graphite or boron nitride as the conductive filler (Β1) in the above-exemplified filler because of the heat conduction in the thermoplastic resin (A). Further, from the viewpoint of economy, it is preferred to heat aluminum, magnesium oxide, magnesium carbonate or zinc oxide. Gas: Ball, Nai High Conductance The form of the graphite-based filler which can be used in the present invention may, for example, be a powdery shape, a fibrous shape, a needle shape, a scale shape, a whisker shape or a micro coil shape. Among them, scaly graphite and graphitized carbon fiber are particularly preferable because they can be heated in a thermoplastic resin. The average particle diameter of the flaky graphite is preferably from 1 to 300 "m... Λ 5 to 12 321746 201035204 150 # m. If the average particle diameter is less than i, the agglomerates are likely to be generated due to poor dispersion, so that uniformity cannot be obtained. In the molded article, the mechanical properties are lowered or the thermal conductivity is uneven. If the average particle diameter exceeds 3 〇〇 #m, it may be difficult to fill the resin composition at a high concentration or the surface of the molded article may become r. The graphitized carbon fiber is preferably a pitch-based carbon fiber, and the pitch-based carbon fiber is preferably a pitch-type carbon fiber as described in, for example, JP 2003-49327 A, in particular, by using a mesophase pitch as a raw material at 1000 to The pitch-based carbon fiber which is calcined at a high temperature of 30001 to promote graphitization is preferable. The degree of graphitization is not particularly limited, but the thermal conductivity 长度 in the longitudinal direction increases the force σ as it approaches the graphite fiber. In the present invention, graphitized carbon fiber The thermal conductivity in the longitudinal direction is usually at a surface / (m K) or more, and preferably 500 W / (m · κ) or more. The average fiber diameter of the graphitized carbon fiber is preferably 1 to 30 / / Π 1 , and 5 to 20 ^ Better. If average If the diameter is less than 1 mm, the sufficient thermal conductivity cannot be obtained. If the average fiber diameter exceeds 3 〇 _, the average fiber length of the graphitized carbon fiber such as formability may be preferably 丨 to - preferably 3 ΐΓΓ. If the average fiber length is less than imm, it is difficult to get sufficient: the warp bomb: the longer the fiber length, the higher the thermal conductivity, the better the bending strength. However, if the average fiber length exceeds 2 Gmm, the claw mobility is greatly lowered, and the molding material is not good. The commercial product of the fiber may, for example, be a Japanese graphite fiber company V GRAN〇C, and a trade name of 321746 13 201035204 "DIALEAD" manufactured by Mitsubishi Chemical Corporation. The form of boron nitride which can be used in the present invention may, for example, be spherical, powdery, fibrous, acicular, scaly, whisker, microcoil, or nanotubular. Since it is easy to be oriented in the plane direction when the formed body is formed, as a result, the thermal conductivity can be improved, so that it is preferably in the form of scales. Since it contains nitriding, the thermal conductivity can be improved without lowering the insulating properties of the composition. The average particle diameter of boron nitride is preferably 丨2 〇〇/zm, more preferably 5 to 1 _. When the average particle diameter is less than Um, agglomerates tend to be generated due to poor dispersion, so that the (4) molded article cannot be obtained, and the mechanical properties may be lowered or the thermal conductivity may be uneven. When the average particle diameter exceeds lion #m, it is sometimes difficult to fill the resin composition at a high concentration or the surface of the molded article becomes rough. The crystal of nitriding butterfly (4) is not limited. Boron nitride of a hexagonal crystal system and any other crystal structure can be used. Among them, since the heat conductivity is large, boron nitride having a hexagonal crystal structure is preferred. The form of the oxidized metal, the magnesium oxide, the carbonic acid, and the oxidized metal which can be used in the present invention may be, for example, a spherical shape, a fibrous shape, a spindle shape, a rod shape, a needle shape, a cylindrical shape, or a columnar shape. It is preferable to use a spherical shape because the resin can be suppressed from being lowered when it is blended in the thermoplastic resin (A). It can promote the thermal conductivity without reducing the insulation of the resin composition due to the inclusion of oxidized, oxidized, and anthraquinone. The average particle size of the oxidized Zhenhua Town, the acid-suppressed town and the zinc oxide is preferably 〇 to 150", preferably 1 to l〇〇Am. If the average particle size is less than 50 〇 〇 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 321 321 321 321 421 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 In the case of zm, it may be difficult to fill the resin composition at a high concentration or to form a raw sugar on the surface of the molded article. In order to improve the adhesion to the thermoplastic resin (A), the filler (B) used in the present invention may be The surface treatment is carried out by a coupling agent. Examples of the coupling agent include, for example, a decane-based coupling agent and a titanium-based coupling agent, for example, aminopropyltrimethoxydecane, N-/5-(aminoethyl)-τ_ Aminopropyltrimethoxydecane, hydrazine-cold-(aminoethyl-aminopropyldimethoxymethyl decane, etc. guanamine decane coupling agent; 7 • glycidoxypropyltrimethoxy Oxalane, propylene-oxypropyloxyethoxy decane, oxime-(3,4-epoxycyclohexyl)ethyldimethoxymethane, etc.; and isopropyl Tristearyl silicate, isopropyl tris(dodecylbenzenesulfonyl) phthalate, tetraisopropyl bis(dioctylphosphite) A titanium-based coupling agent such as a Tetraisopropyl bis (dioctylphosphito) titanate, etc. These may be used singly or in combination. The resin composition of the present invention contains a predetermined amount of the fluidity improver (c). The fluidity improver (c) used in the present invention is either a polyfunctional propyl compound (C1) or a dimer acid thermoplastic resin (C2). The polyfunctional allylic compound (C1) is a polyfunctional allylic compound (C1). It is not particularly limited, but it must be liquid at the melt processing temperature of the composition of the tree. In addition, the propyl group (ci) can reduce the melt viscosity of the added resin and can effectively function as The role of the plasticizer. Specific examples of the polyfunctional allylic compound (C1) include, for example, dipropyl isocyanuric acid, monoepoxypropyl diisopropyl isopropyl laurate, and 321746 15 201035204 Oxypropyl propyl mono-propyl isocyanate vinegar, tris(methyl propyl) isocyanate acid = oxypropyl propyl diacetate propyl) isochloroethylene, diepoxy: early base 蝉Base) isocyanuric acid vinegar, tri-propyl cyanoacetate, monoepoxypropyl di-propyl cyanate Diepoxypropyl monopropyl acetoacetate, bis(methylpropylpropyl) cyanate, monoepoxypropyl bis(T-propylpropyl) cyanate, diepoxypropyl Single (methyl propyl) atmosphere vinegar, propyl propyl propyl propylamine, diallyl monoepoxypropylamine, monoallyl digoxypropylamine, monocyclic ft propyl (methallyl)amine, diglycidyl mono(methylallyl)amine, acetoacetate, propyl acrylate, adipic acid propylene glycol, propylene carbonate Propyl ester, propyl propyl epoxide propyl dimethyl ketone, allyl methacrylate, propyl propyl acrylate, propylene glycol malonate Bismuth, propylene propyl acrylate, propyl acrylate, propylene propylene propyl propyl propyl acrylate, succinic acid Allyl ester glycidyl ester, p-isopropionyl methacrylate, eucalyptus propyl acrylate, a propyl methacrylate, and the like. Among these compounds, a compound having an isocyanurate in the skeleton is preferred, and in particular, in terms of handleability and economy, triallyl isocyanurate or monoepoxypropyldiene is preferred. Propyl isocyanuric acid vinegar is more preferred. Further, the 'polyfunctional allyl compound (C1) may be used in addition to the above compounds, and one of the amine compounds (D) represented by the following formula (i), and having an allyl group and an epoxypropyl group may be used. The functional compound (E) is obtained by reacting a propyl compound: R-(NH2)n (1) 16 321746 201035204 Here, n = 1 to 4, and R represents an aromatic or aliphatic group (to * substituent). The diamines of n=2 are ethylenediamine, hexamethylenediamine, '4,4'-diaminobicyclobis(aminomethyl), and the monoamine compound (D) represented by the formula (i) is preferably Specific examples of the n=2 diamines include, for example, 1,4-diaminocyclohexane, 1,3-diaminocyclohexanylhexyldecane, and 1,3-bis(aminomethyl). Cyclohexene, cyclohexane, 4'4'-diaminodicyclohexylpropane, bis(4-aminocyclohexyl)

颯、4,4 -一胺基一環己基驗、2,2,-二甲基_4,4’-二胺基 二環己烷、2, 2’-雙(三氟曱基)_4, 4, _二胺基二環己烷: 2, 2 -雙(二氣甲基)-4,4 -二胺基二環已炫、2, 2,_雙(三溴 甲基)-4,4 -二胺基二環己烷、2, 2,-二氟-4, 4,-二胺基二 環己烷、2, 2’-二氯-4, 4’-二胺基二環己院、2, 2,_二溴 -4,4’ -二胺基二環己烷、4,4’ -二胺基二環己烷、2, 2_雙(4_ 胺基環己基)-1,1,1,3,3,3-六氟丙烧、2,3-二胺基雙環〔 2. 2. 1〕庚烷、2, 5-二胺基雙環〔2. 2. 1〕庚烷、2, 6-二胺 基雙環〔2. 2. 1〕庚烷、2, 7-二胺基雙環〔2. 2. 1〕庚烷、 2, 5-雙(胺基曱基)-雙環〔2. 2. 1〕庚烷、2, 6-雙(胺基甲基)一 雙環〔2. 2. 1〕庚烷、2, 3-雙(胺基甲基)-雙環〔2. 2. 1〕庚 烧、二伸乙三胺、二伸丙三胺、三伸乙四胺、1,2-雙(胺基 甲基)苯、1,3-雙(胺基甲基)苯、丨,4-雙(胺基甲基)苯、 2, 2’ -二甲基-4, 4’ -二胺基聯苯、2Ί费f三氟甲 基)-4, 4’-二胺基聯苯、2, 2’_雙(三氯甲基)4,-二胺基 聯苯、2, 2’-雙(三溴甲基)一4, 4’-二胺基聯苯、2, 2’-二氟 -4, 4’ -二胺基聯苯、2, 2’ -二氯-4, 4,-二胺基聯苯、2, 2, - 17 321746 201035204 二溴-4, 4’-二胺基聯笨、4, 4’-二胺基聯苯、4, 4’-二胺基 二苯甲酮、9, 9-雙(4-胺基苯基)葆、9, 9-雙(4-胺基-2-氟 笨基)萚、9, 9-雙(4-胺基-2-溴苯基)筅、9, 9-雙(4-胺基-2-氣苯基)薙、9, 9-雙(4-胺基-3-氟苯基)箨、9, 9-雙(4-胺基 -3-溴苯基)荞、9,9-雙(4-胺基-3-氯苯基)苐、9,9-雙(4-胺基-2-三氟甲基苯基)苐、9, 9-雙(4-胺基-3-三氟曱基苯 基)苐、雙(4-胺基苯基)礙、1,4-二胺基苯、1,3-二胺基笨、 4, 4’ _二胺基二苯基醚、4, 4’ -二胺基二笨基曱烷、4, 4’ -二胺基二苯基丙烷、2, 2-雙(4-胺基苯基)-1, 1,1,3, 3, 3-六氟丙烷、3, 4’-二胺基二苯基醚等。 式(i)所示之一級胺化合物(D)中之]q=i之單胺類之 具體例可舉例如:甲胺、二甲胺、乙胺、二乙胺、正丙胺、 二正丙胺、異丙胺、正丁胺、異丁胺、二級丁胺、三級丁 胺、二正丁胺、單戊胺、二戊胺、乙基丁基胺、正己胺、 二正己胺、環己胺、十二烷胺、十六烷胺、十八烷胺、苯 胺、鄰甲苯胺(0-t〇iuidine)、間甲苯胺、對甲苯胺、2 3- 二甲苯胺(2, 3-xyl idine)、2, 6-二甲苯胺、3, 4-二甲苯胺、 3, 5-二甲苯胺、鄰氯苯胺、間氣苯胺、對氯苯胺、鄰溴苯 胺、間溴苯胺、對溴苯胺、鄰硝基苯胺、間硝基苯胺、對 硝基笨胺、鄰胺基苯酚(〇_amin〇phen〇l)、間胺基苯酚、對 胺基苯酚、鄰甲氧基苯胺(〇_anisidine)、間甲氧基苯胺、 對甲氧基苯胺、鄰乙氧基苯胺(〇_phenetidine)、間乙氧基 苯胺、對乙氧基笨胺、鄰胺基苯甲醛、間胺基苯T醛、對 胺基苯甲藤、鄰胺基苯甲腈、間胺基苯甲腈、對胺基苯甲 321746 18 201035204 腈、2-胺基聯苯、3-胺基聯笨、4_胺基聯苯、2-胺基苯基 苯基驗、3-胺基苯基苯基醚、4_胺基苯基苯基醚、2—胺基 二苯甲酮、3-胺基二苯甲酮、4-胺基二苯甲酮、2-胺基笨 基苯基硫趟、3-胺基苯基苯基硫醚、4-胺基苯基苯基硫醚、 2-胺基苯基苯基颯、3-胺基苯基苯基砜、4-胺基苯基苯基 颯、α -萘胺、/5-萘胺、1-胺基—2—萘酚、2-胺基-1-萘酚、 4-胺基-1-萘酚、5-胺基-1-萘酚、5-胺基-2-萘酚、7-胺基 2秦盼、8-胺基-1-奈紛、8—胺基-2-寮齡、胺基蒽、2_ 〇胺基蒽、9-胺基蒽等。 式(i)所示之一級胺化合物(|))中之之具體例可 舉例如:1,3, 5-三胺基苯、參(3-胺基苯基)胺、參(4-胺基 苯基)胺、參(3-胺基苯基)苯、參(4-胺基苯基)苯、丨,3, 5_ 參(3-胺基苯氧基)苯、1,3, 5-參(4-胺基苯氧基)苯、1,3, 5- 參(4-胺基苯氧基)三畊等。 式(i)所示之一級胺化合物(D)中之η==4之四胺類之 ❹具體例可舉例如:1,2, 4, 5-四胺基苯、3, 3,,4, 4,-四胺基 聯苯、3, 3’,4, 4,-四胺基二苯基颯、3, 3,,4, 4,_四胺基二 苯基硫醚、2, 3, 6, 7-四胺基萘、1,2, 5, 6-四胺基萘等。 也可為了調整各種特性等之目的而併用此等中之複數 種胺。 使與上述一級胺化合物(D)反應之具有烯丙基及環氧 丙基之多官能性化合物(Ε),只要為具有烯丙基及環氧丙基 兩者之單體性化合物,則無特別限定。多官能性化合物(Ε) 可舉例如:單環氧丙基二烯丙基異氰脲酸酯、二環氧丙基 19 321746 201035204 單烯丙基異氰脲酸酯、單環氧丙基二(甲基烯丙基)異氰脲 酸酯、二環氧丙基單(甲基烯丙基)異氰脲酸酯、單環氧丙 基二烯丙基氰脲酸酯、二環氧丙基單烯丙基氰脲酸酯、單 環氧丙基二(曱基烯丙基)氰脲酸酯、二環氧丙基單(甲基烯 丙基)氰脲酸酯、烯丙基環氧丙基胺、二烯丙基單環氧丙基 胺、單烯丙基二環氧丙基胺、單環氧丙基二(甲基烯丙基) 胺、二環氧丙基單(曱基烯丙基)胺、氣菌酸環氧丙酯烯丙 酯、己二酸烯丙酯環氧丙酯、碳酸烯丙酯環氧丙酯、氯化 烯丙基環氧丙基二曱基銨、富馬酸烯丙酯環氧丙酯、間酞 酸烯丙酯環氧丙酯、丙二酸烯丙酯環氧丙酯、草酸烯丙酯 環氧丙酯、酞酸烯丙酯環氧丙酯、烯丙基環氧丙基丙基異 氰脲酸酯、癸二酸烯丙酯環氧丙酯、琥珀酸烯丙酯環氧丙 酯、對酞酸烯丙酯環氧丙酯、酒石酸烯丙酯環氧丙酯、酞 酸環氧丙酯甲基烯丙酷等。 此等化合物中,多官能性化合物(E)係以在骨架中具有 異氰脲酸酯之化合物為佳,特別是以單環氧丙基二烯丙基 異氰脲酸酯為佳。 經由將上述之一級胺化合物(D)與具有烯丙基及環氧 丙基之多官能性化合物(E)混合並加熱,而藉由熱使胺與環 氧丙基進行加成反應,即可得到在1分子中具有多個烯丙 基之化合物。進行反應時之一級胺化合物(D)與多官能性化 合物(E)之調配比,只要相對於一級胺化合物(D)l當量, 使環氧丙基成為1至2當量即可。由於當一級胺化合物(D) 為脂肪族系時,胺之親核性強,故可相對於1個胺使2個 20 321746 201035204 環氧丙基進行加成反應。換言之’例如相對於脂肪族二胺 1莫耳,使環氧丙基以4莫耳量進行反應。當一級胺化合 物(D)為芳香族系時,胺之親核性較弱,而有時無法使2 個環氧丙基進行加成反應。換言之,例如相對於芳香族二 ‘胺1莫耳,使環氧丙基以大約2莫耳量進行反應。 使一級胺化合物(D)與多官能性化合物(E)反應之方法 係並無特別限定,例如:可如上述經由將一級胺化合物(D) ◎ >、夕B能性化合物(E)以預疋量混合並使其加熱溶融,而簡 便地進行上述反應。此時’也可依需要而使用適當的反應 容劑。用以進行反應之加熱溫度’通常只要設定在至 2〇〇°C之範 圍即可。進行反應時之氣體環境係無特別限定, 只要在大氣中進行反應即可。惟,當因氧氣所致之氧化會 造成問題時,只要以氮氣等惰性氣體來將氣體環境置換即 可。 ' 如此所得之反應生成物由於沸點高,故在進行溶融加 ^ ¥不容易揮發,而可有效做為交聯助劑、末端封閉劑等 ^用。此外,因在!分子中具有多個烯丙基,所以可以習 化方法使婦丙基與樹月旨進行交聯,而可有效率地將樹月旨強 充材(B)^^之樹脂組成物中’相對於熱塑性樹脂(A)與填 之添加量必〶為〇〇質量份’多§此性烯丙基化合物(C1) 當添加量未達:3至2〇質量份,且以4至15質量份為佳。 性。相反地,♦質量份時,有時無法得到充分的熔融流動 田超過20質量份時,熔融黏度過度降低,而 321746 21 201035204 在熔融混練時有無法顆粒化之情形、或有所得之成形體之 物性大幅降低之情形。 多官能性烯丙基化合物(C1)因在1分子中具有多個烯 丙基,所以可依照習知方法,經由與交聯劑併用、或與電 子束或7射線等之放射線照射處理併用,而使熱塑性樹脂 ⑴進行交聯。其中,從可在成形為所需之形狀後在短時間 内進行處理之顏來看,簡由電子核7射線進行交聯 為佳。由於r射線係穿透性較電子束更強而可均勻照射, 故以使用7射線進行交聯較佳。電子束照射可使用習知之 電子加速器等,7射線照射可使用習知之藉由鉛6G輻射源 等發出r射線之照射裝置。電子束之照射量以i至3〇〇kGy ,佳、以50至lOOkGy較佳。當進行7射線照射時,照射 量以10至lOOkGy為佳、以20至40kGy較佳。由於若放射 線之照射量超過上述上限值,則會因樹脂分解而強度降 低,故不佳。此外,由於若未達上述下限值,則無法發揮 交聯所產生之效果,故不佳。照射環境係通常在空氣存在 下即可’可依所需而在氮氣環境下或真空中進行照射。 說明一聚酸系熱塑性樹脂(C2 )。在本發明中,所謂二 聚酸系熱塑性樹脂(C2),係指以包含做為大豆油、桐油、 松油等脂肪酸之二聚物之二聚酸、或是可生成其醯胺之衍 生物、或可生成其酯之衍生物的二羧酸做為主要酸成分, 並且將該酸成分與二胺、二醇等成分進行聚縮合而得之熱 塑性樹脂。二聚酸之主成分係二聚物,但除此之外也可含 有單體或三聚物等。此外,包含做為脂肪酸之二聚物之二 321746 22 201035204 聚酸、或是可生成其驢胺之衍生物、或可生成其酯之衍生 4 物的二羧酸’也可為經氫化者。 二聚酸系熱塑性樹脂(C2)係熔融黏度較熱塑性樹脂(A) * 更低’添加該熱塑性樹脂即可降低樹脂之熔融黏度,因此 .可有效地發揮做為可塑劑之作用。而且,二聚酸系熱塑性 樹脂(C2)係一種樹脂’並且分解溫度高,且在進行熔融加 工時不會揮發’故有效地發揮做為可塑劑之作用。並且, 在即使添加該熱塑性樹脂,機械強度之降低也少,並且不 ^ 會滲出之觀點上為有效。 二聚酸系熱塑性樹脂(C2)係無特別限定,可舉例如: 聚醯胺、聚酯等。其中,在處理性、經濟性之觀點上,以 聚醯胺為佳。 二聚酸系聚醯胺係並無特別限定,可舉例如:由包含 二聚酸或是可生成其醯胺的衍生物之二羧酸成分與二胺所 構成之聚醯胺樹脂等。可舉例如:做為大豆油、桐油、松 ❹油等脂肪酸之二聚物之二聚酸與例如如乙二胺、二伸乙三 胺等烷基多胺類等的反應生成物。 二聚酸系聚酯係並無特別限定’可舉例如:由包含二 聚酸或是可生成其酯的衍生物之二羧酸成分與二醇所構成 之聚酯樹脂等。可舉例如:做為大豆油、桐油、松油等脂 肪酸之二聚物之二聚酸與例如如乙二醇或丨,4_丁二醇等 二醇成分與對酞酸、間酞酸等的反應生成物。 二聚酸系聚醯胺與二聚酸系聚酯可分別個別使用’也 可將兩者混合使用。 23 321746 201035204 在本發明之樹脂組成物中’相對於熱塑性樹脂(A)與填 充材⑻之Q彳100體積份’二聚酸系熱塑性樹脂⑽)之添 :量必須為10至45體積份,且以10至25體積份為佳。 右-聚熱塑性樹脂(⑶之調配量未達μ體積份,則有 夺…法得到充分的調配二聚酸系熱塑性樹脂(C2)之效果。 相反地*調配量超過45體積份,則有時機械物性顯著降 低、或在熔融混練時無法顆粒化。 _在本發明之樹脂組成物中,在不會大幅損害其特性之 範圍内彳添加顏料、熱安定劑、抗氧化劑、财候劑、阻 燃劑、潤滑劑、離型劑、抗靜電劑、晶核材、相溶化劑等。 熱安定劑和抗氧化射舉例如:受阻紛(h indered phenol) 類4化S物、觉[J且胺、硫化合物、銅化合物、驗金屬之 齒化物等:限燃劑可舉例如:水合金屬化合物(氫氧化铭、 氫氧化鎂等)、含氮化合物(三聚氰胺系、胍。腿池㈤ |〇'«'阻燃劑 '自素系阻燃劑、無機系阻燃劑等。晶核 材可舉例如·山梨糖醇軒化合物、笨甲酸及該化合物之金 屬鹽、鱗酸s旨金屬鹽、松香化合物等。相溶化劑可舉例如: 離子聚合㈣相溶化劑、.料相溶化劑、 彈性體系相 溶化劑、反應性相溶化劑、共聚㈣相溶化财。此等添 蘇二::用上⑧•併用2種以上。在本發明之樹脂組成 物中混δ此等之方法係無特別限定 單:Γ=成物可經由使用-般的擠壓機,例如 ΓΓ二:壓機,見練機、布氏塑譜儀 (Brabender)4,將熱塑性樹脂⑷、填充材⑻、及多官能 321746 24 201035204 性烯丙基化合物(ci)或二聚酸系熱 塑性樹脂(C2)、以及依 耑要而添加之各種添加物予以熔融混練來製造。此時,併 用靜態混合機或動態混合機也為有效。為了使混練狀態良 好,以使用雙軸擠壓機為佳。填充.材(B)、與多官能性烯丙 基化合物(c〇或二聚酸系熱塑性樹脂(C2)係並無特別限 定’可在擠壓機中從進料斗或使用侧面進料機(side feeder)來添加。 本發明之樹脂組成物可使用射出成形、壓縮成形、擠 壓成形II移成形、薄片成形等習知之溶融成开)手法來成 形為所需之形狀,而製作成成形體。在將樹脂組成物成形 為所需之形狀後’如上述般照射放射線,即可使樹脂進行 交聯。 在本發明中,將調配具有lGW/(m · K)以上之導熱率 之導熱性填充材(B1)而成之樹脂組成物成形而得之成形體 之具體例可舉例如:用於半導體元件或電阻等之密封材 〇料、連接器、插座、繼電器零件、線圈架bobbin)、 先學讀取頭、《器、電腦相關零件等電/電子 機)、電視、貧斗、空調、立體音響、吸塵器、冰 Γ 明器具等家庭電器製品零件;散熱片、散敎 益(heat smk)、風扇等用以將電子零件所產生之 外部之散熱構件;燈座、反射燈、燈罩等照明器^零件. 光碟(⑽pact disc)、雷射磁碟(1_γ ·)、揚哭 (speaker)等音響製品零件;光學電_套圈、行動電話二 固定電話、傳真機、數據機等通訊機器零件;分離鉤、加 321746 25 201035204 熱器支架(heater holder)等影印機、印刷機相關零件;葉 輪(impeller)、風扇#輪、齒輪、軸承、馬達零件及外殼 等機械零件;汽車用機構零件、引擎零件、機艙内零件、 電子零件、内部零件等汽車零件;微波調理用鍋、耐熱餐 具等調理用器具;飛機、太空梭、太空機器用零件;感測 器類零件等。 (實施例) 以下,依據實施例具體說明本發明。惟,本發明並不 受此等實施例所限定。 在以下之實施例及比較例中,各種物性值之測試方法 係如下述。 [1] MFR(Melt Flow Rate,溶融流動率): 對熱塑性樹脂組成物之顆粒,使用下降式流動測試機 (東洋精機製作所公司製),測定在預定載重、預定溫度之 MFR值。此時之孔口(or if ice)係使用直徑lmmx長度10mm 者。 [2] 彎曲強度、彎曲彈性率: 依據ASTM規格D— 790中所記載之方法進行測定。 [3] 衝擊強度: 依據ASTM規格D— 256中所記載之方法,使用附缺口 (notch)之試驗片測定艾氏衝擊強度(Izod impact strength) ° [4] 導熱率: 導熱率;I係藉由下述方法求出熱擴散率α、密度p、 26 321746 201035204 比熱Cp後,以下式算出其乘積。 λ = a p Cp λ :導熱率(W/(m · K)) α :熱擴散率(m2/sec) P :密度(g/m3)飒, 4,4-amino-monocyclohexyl, 2,2,-dimethyl-4,4'-diaminodicyclohexane, 2,2'-bis(trifluoromethyl)-4, 4 , _diaminodicyclohexane: 2,2-bis(dimethyl)-4,4-diaminobicyclohexanyl, 2,2,_bis(tribromomethyl)-4,4 -diaminodicyclohexane, 2,2,-difluoro-4,4,-diaminodicyclohexane, 2,2'-dichloro-4,4'-diaminobicyclohexyl , 2, 2, _dibromo-4,4'-diaminodicyclohexane, 4,4'-diaminodicyclohexane, 2,2-bis(4-aminocyclohexyl)-1, 1,1,3,3,3-hexafluoropropane, 2,3-diaminobicyclo[2.2.1]heptane, 2,5-diaminobicyclo[2.2.1]heptane , 2,6-diaminobicyclo[2.2.1]heptane, 2,7-diaminobicyclo[2.2.1]heptane, 2,5-bis(aminomercapto)-bicyclic [2. 2. 1] heptane, 2,6-bis(aminomethyl)-bicyclo[2.2.1]heptane, 2,3-bis(aminomethyl)-bicyclo[2. 2 1] Geng, Diethylenetriamine, Dipropylenetriamine, Triethylenetetramine, 1,2-bis(aminomethyl)benzene, 1,3-bis(aminomethyl)benzene, Bismuth, 4-bis(aminomethyl)benzene, 2, 2'-Dimethyl-4,4'-diaminobiphenyl, 2Ίf f-trifluoromethyl)-4,4'-diaminobiphenyl, 2, 2'-bis (trichloromethyl) 4,-diaminobiphenyl, 2,2'-bis(tribromomethyl)-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4'-diamine Base benzene, 2, 2'-dichloro-4, 4,-diaminobiphenyl, 2, 2, - 17 321746 201035204 dibromo-4, 4'-diamino phenyl, 4, 4'- Diaminobiphenyl, 4,4'-diaminobenzophenone, 9,9-bis(4-aminophenyl)anthracene, 9,9-bis(4-amino-2-fluorophenyl) ), 9,9-bis(4-amino-2-bromophenyl)anthracene, 9,9-bis(4-amino-2-phenylphenyl)anthracene, 9,9-bis(4-amine 3-fluorophenyl)anthracene, 9,9-bis(4-amino-3-bromophenyl)anthracene, 9,9-bis(4-amino-3-chlorophenyl)anthracene, 9, 9-bis(4-amino-2-trifluoromethylphenyl)fluorene, 9,9-bis(4-amino-3-trifluorodecylphenyl)fluorene, bis(4-aminophenyl) ), 1,4-diaminobenzene, 1,3-diamine stupid, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl decane, 4, 4'-Diaminodiphenylpropane, 2,2-bis(4-aminophenyl)-1, 1,1 3, 3, 3-hexafluoropropane, 3, 4'-diamino diphenyl ether. Specific examples of the monoamine of the q=i in the one-stage amine compound (D) represented by the formula (i) include, for example, methylamine, dimethylamine, ethylamine, diethylamine, n-propylamine, and di-n-propylamine. , isopropylamine, n-butylamine, isobutylamine, secondary butylamine, tertiary butylamine, di-n-butylamine, monoamylamine, diamylamine, ethylbutylamine, n-hexylamine, di-n-hexylamine, cyclohexyl Amine, dodecylamine, hexadecylamine, octadecylamine, aniline, o-toluidine (0-t〇iuidine), m-toluidine, p-toluidine, 2 3-dimethylaniline (2, 3-xyl Idine), 2,6-xylyleneamine, 3,4-dimethylaniline, 3,5-dimethylaniline, o-chloroaniline, m-aniline, p-chloroaniline, o-bromoaniline, m-bromoaniline, p-bromoaniline , o-nitroaniline, m-nitroaniline, p-nitro-l-amine, o-aminophenol (〇_amin〇phen〇l), m-aminophenol, p-aminophenol, o-methoxyaniline (〇_anisidine) , m-methoxyaniline, p-methoxyaniline, o-ethoxyaniline (〇-phenetidine), m-ethoxyaniline, p-ethoxylamine, o-aminobenzaldehyde, m-aminophenyl T-formaldehyde P-aminobenzidine, ortho-amino group Nitrile, m-aminobenzonitrile, p-aminobenzoic acid 321746 18 201035204 nitrile, 2-aminobiphenyl, 3-aminobiphenyl, 4-aminobiphenyl, 2-aminophenylphenyl , 3-aminophenyl phenyl ether, 4-aminophenyl phenyl ether, 2-aminobenzophenone, 3-aminobenzophenone, 4-aminobenzophenone, 2- Amino-phenylphenyl sulfonium, 3-aminophenyl phenyl sulfide, 4-aminophenyl phenyl sulfide, 2-aminophenyl phenyl hydrazine, 3-aminophenyl phenyl sulfone , 4-aminophenylphenyl hydrazine, α-naphthylamine, 5-naphthylamine, 1-amino-2-naphthol, 2-amino-1-naphthol, 4-amino-1-naphthalene Phenol, 5-amino-1-naphthol, 5-amino-2-naphthol, 7-amino 2, expectin, 8-amino-1-naphthyl, 8-amino-2-pyrene Amino hydrazine, 2-hydrazinyl hydrazine, 9-amino hydrazine, and the like. Specific examples of the one-stage amine compound (|) represented by the formula (i) include, for example, 1,3,5-triaminobenzene, ginseng (3-aminophenyl)amine, and stilbene (4-amine). Phenyl)amine, ginseng (3-aminophenyl)benzene, ginseng (4-aminophenyl)benzene, anthracene, 3,5- gin (3-aminophenoxy)benzene, 1,3, 5 - ginseng (4-aminophenoxy)benzene, 1,3,5-(4-aminophenoxy) tri-farming, and the like. Specific examples of the tetraamines of η==4 in the one-stage amine compound (D) represented by the formula (i) include, for example, 1,2,4,5-tetraaminobenzene, 3, 3, 4 , 4,-tetraaminobiphenyl, 3,3',4,4,-tetraaminodiphenylanthracene, 3,3,4,4,4-tetraaminodiphenyl sulfide, 2, 3 6, 7,-tetraaminonaphthalene, 1,2,5,6-tetraaminonaphthalene, and the like. A plurality of amines may also be used in combination for the purpose of adjusting various properties and the like. A polyfunctional compound having an allyl group and a glycidyl group which is reacted with the above primary amine compound (D), as long as it is a monomeric compound having both an allyl group and a glycidyl group, Specially limited. The polyfunctional compound (Ε) may, for example, be monopropylene propylene diallyl isocyanurate or diepoxypropyl 19 321746 201035204 monoallyl isocyanurate or monoepoxypropyl group (methallyl) isocyanurate, diepoxypropyl mono(methylallyl) isocyanurate, monoepoxypropyl diallyl cyanurate, diepoxypropyl Monoallyl cyanurate, monoepoxypropyl bis(decylallyl) cyanurate, diepoxypropyl mono(methylallyl) cyanurate, allyl ring Oxypropylamine, diallyl monoepoxypropylamine, monoallyl diepoxypropylamine, monoepoxypropyl bis(methylallyl)amine, diepoxypropyl mono(曱) Allyl)amine, allyl epoxidized propyl acrylate, allyl adipate propylene acrylate, allyl carbonate propyl acrylate, allyl epoxide propyl fluorenyl chloride Ammonium, allyl fumarate propyl acrylate, allyl phthalate propyl acrylate, allyl malonate propyl propyl ester, allyl oxalate propyl acrylate, allyl citrate ring Oxypropyl propyl ester, allyl propyl propyl propyl isocyanurate, hydrazine Acetyl propyl acrylate, allyl succinate, propyl propyl acrylate, propyl propyl citrate, propyl propyl tartrate, propyl propyl methacrylate Wait. Among these compounds, the polyfunctional compound (E) is preferably a compound having an isocyanurate in the skeleton, and particularly preferably a monoepoxypropyl diallyl isocyanurate. By mixing and heating the above-mentioned one-stage amine compound (D) with a polyfunctional compound (E) having an allyl group and a glycidyl group, an amine and a glycidyl group are subjected to an addition reaction by heat. A compound having a plurality of allyl groups in one molecule is obtained. The compounding ratio of the monovalent amine compound (D) to the polyfunctional compound (E) at the time of the reaction may be such that the epoxypropyl group is 1 to 2 equivalents per equivalent of the primary amine compound (D). Since the amine has a strong nucleophilicity when the primary amine compound (D) is an aliphatic system, two 20 321746 201035204 epoxypropyl groups can be subjected to an addition reaction with respect to one amine. In other words, the epoxy propyl group is reacted in an amount of 4 moles, for example, relative to the aliphatic diamine. When the primary amine compound (D) is aromatic, the amine has a weak nucleophilicity, and sometimes it is impossible to carry out an addition reaction of two epoxypropyl groups. In other words, for example, the epoxy propyl group is reacted in an amount of about 2 moles relative to the aromatic diamine. The method of reacting the primary amine compound (D) with the polyfunctional compound (E) is not particularly limited. For example, the primary amine compound (D) ◎ > The above reaction is simply carried out by premixing and mixing and heating. At this time, an appropriate reaction agent can also be used as needed. The heating temperature used to carry out the reaction is usually set to a range of up to 2 °C. The gas atmosphere at the time of the reaction is not particularly limited, and it is only necessary to carry out the reaction in the atmosphere. However, when oxidation due to oxygen causes problems, it is only necessary to replace the gas atmosphere with an inert gas such as nitrogen. Since the reaction product thus obtained has a high boiling point, it is not easily volatilized when it is melted and added, and can be effectively used as a crosslinking assistant, a terminal blocking agent, and the like. In addition, because! There are a plurality of allyl groups in the molecule, so that the method can be used to crosslink the propyl group and the tree, and the resin composition of the tree can be efficiently filled with (B)^^ The addition amount of the thermoplastic resin (A) and the filling amount must be 〇〇 part by mass. § The allyl compound (C1) is added in an amount of not less than 3 to 2 parts by mass, and 4 to 15 parts by mass. It is better. Sex. On the other hand, in the case of ♦ by mass, when the sufficient melt flow field is not obtained in excess of 20 parts by mass, the melt viscosity is excessively lowered, and 321746 21 201035204 may not be granulated during melt-kneading, or the obtained molded body may be obtained. A situation in which physical properties are greatly reduced. Since the polyfunctional allyl compound (C1) has a plurality of allyl groups in one molecule, it can be used in combination with a crosslinking agent or a radiation treatment with an electron beam or a 7-ray or the like according to a conventional method. The thermoplastic resin (1) is crosslinked. Among them, from the viewpoint of being able to be processed in a short period of time after being formed into a desired shape, it is preferable to carry out crosslinking by electron beam 7 rays. Since the r-ray system is more transparent than the electron beam and can be uniformly irradiated, it is preferable to carry out crosslinking by using 7 rays. As the electron beam irradiation, a conventional electron accelerator or the like can be used, and a 7-ray irradiation can use an irradiation device which emits r rays by a conventional lead 6G radiation source or the like. The irradiation amount of the electron beam is preferably from i to 3 〇〇 kGy, preferably from 50 to 100 kGy. When 7-ray irradiation is performed, the irradiation amount is preferably 10 to 100 kGy, and more preferably 20 to 40 kGy. When the amount of irradiation of the radiation exceeds the above upper limit value, the strength of the resin is decomposed and the strength is lowered, which is not preferable. Further, if the lower limit is not reached, the effect of crosslinking is not exhibited, which is not preferable. The irradiation environment is usually irradiated in a nitrogen atmosphere or in a vacuum as needed. A polyacid thermoplastic resin (C2) will be described. In the present invention, the dimer acid-based thermoplastic resin (C2) means a dimer acid containing a dimer of a fatty acid such as soybean oil, tung oil or pine oil, or a derivative capable of producing a guanamine thereof. Or a dicarboxylic acid which can form a derivative of the ester as a main acid component, and a thermoplastic resin obtained by polycondensing the acid component with a component such as a diamine or a diol. The main component of the dimer acid is a dimer, but may contain a monomer or a trimer or the like. Further, the dicarboxylic acid comprising dimer as a dimer of a fatty acid, or a derivative which can form a derivative thereof, or a derivative which can form an ester thereof, can also be a hydrogenated one. The dimer acid-based thermoplastic resin (C2) has a lower melt viscosity than the thermoplastic resin (A) *. The addition of the thermoplastic resin lowers the melt viscosity of the resin, so that it can effectively function as a plasticizer. Further, the dimer acid-based thermoplastic resin (C2) is a resin and has a high decomposition temperature and does not volatilize when it is subjected to melt processing, so that it functions effectively as a plasticizer. Further, even if the thermoplastic resin is added, the decrease in mechanical strength is small, and it is effective from the viewpoint of oozing out. The dimer acid-based thermoplastic resin (C2) is not particularly limited, and examples thereof include polyamine and polyester. Among them, polyamine is preferred from the viewpoint of handling property and economy. The dimer acid-based polyamine is not particularly limited, and examples thereof include a polyamine resin composed of a dicarboxylic acid component or a diamine containing a derivative of a dimer acid or a guanamine. For example, a reaction product of a dimer of a dimer of a fatty acid such as soybean oil, tung oil or turpentine, and an alkyl polyamine such as ethylenediamine or diethylenetriamine may be mentioned. The dimer acid-based polyester is not particularly limited, and examples thereof include a polyester resin composed of a dicarboxylic acid component containing a dimer acid or a derivative capable of forming an ester thereof, and a diol. For example, dimer acids which are dimers of fatty acids such as soybean oil, tung oil, and pine oil, and diol components such as ethylene glycol or hydrazine, 4-butanediol, and citric acid, meta-citric acid, etc. Reaction product. The dimer acid polyamine and the dimer acid polyester may be used individually or in combination. 23 321746 201035204 In the resin composition of the present invention, the amount of 'Q-100 parts by volume of the dimer acid-based thermoplastic resin (10) relative to the thermoplastic resin (A) and the filler (8) must be 10 to 45 parts by volume, It is preferably 10 to 25 parts by volume. When the right-poly thermoplastic resin ((3) is less than μ part by volume, the effect of the dimer acid-based thermoplastic resin (C2) can be sufficiently obtained. Conversely, if the amount is more than 45 parts by volume, sometimes Mechanical properties are remarkably lowered, or granules cannot be granulated during melt-kneading. _In the resin composition of the present invention, pigments, heat stabilizers, antioxidants, fuels, and retardants are added within a range that does not greatly impair the properties thereof. Fuel, lubricant, release agent, antistatic agent, crystal core material, compatibilizing agent, etc. Thermal stabilizer and anti-oxidation shots, for example: hindered phenol, Amine, sulfur compound, copper compound, metallized metallization, etc.: the flame retardant may, for example, be a hydrated metal compound (manganese hydroxide, magnesium hydroxide, etc.), a nitrogen-containing compound (melamine system, hydrazine. leg pool (five) | '«'Flame retardant' is a self-based flame retardant, an inorganic flame retardant, etc. The crystal nucleus material may, for example, be a sorbitol compound, a benzoic acid, a metal salt of the compound, or a metal salt of squaric acid s. a rosin compound, etc. The compatibilizing agent may, for example, be: Polymerization (4) a compatibilizing agent, a material phase melting agent, an elastic system, a compatibilizing agent, a reactive compatibilizing agent, and a copolymerization (4), which are compatible with each other. These are used in combination with two or more types. There is no particular limitation on the method of mixing δ in the resin composition: Γ = the product can be passed through a general-purpose extruder, for example, a squeezing machine: a press machine, a training machine, and a Brabender 4 The thermoplastic resin (4), the filler (8), and the polyfunctional 321746 24 201035204 allyl compound (ci) or the dimer acid thermoplastic resin (C2), and various additives added as needed are melt-kneaded and manufactured. At this time, it is also effective to use a static mixer or a dynamic mixer. In order to make the kneading state good, it is preferable to use a biaxial extruder. Filling material (B), and polyfunctional allyl compound (c〇 The dimer acid-based thermoplastic resin (C2) is not particularly limited. It can be added from a feed hopper or a side feeder in an extruder. The resin composition of the present invention can be injection molded and compressed. Forming, extrusion forming II shift forming, A conventional method of forming a sheet into a desired shape to form a molded body. After the resin composition is formed into a desired shape, the resin is crosslinked by irradiating radiation as described above. In the present invention, a specific example of a molded article obtained by molding a resin composition obtained by disposing a thermally conductive filler (B1) having a thermal conductivity of 1 GW/(m·K) or more can be used, for example, for a semiconductor. Sealing materials such as components or resistors, connectors, sockets, relay parts, bobbin), first reading heads, "devices, computer related parts, etc.", TV, poor, air conditioning, stereo Household electrical parts such as audio, vacuum cleaners, ice blasting appliances, heat sinks, heat smk, fans, etc., external heat radiating components for electronic components; lamp holders, reflector lamps, lampshades, etc. ^Parts. (10) pact disc, laser disk (1_γ ·), speaker (speaker) and other audio products parts; optical power _ ring, mobile phone two fixed telephone, fax machine, data machine and other communication equipment parts; Off-hook, plus 321746 25 201035204 heat holder (photographer), printing machine related parts; impeller (impeller, fan # wheel, gear, bearing, motor parts and casing and other mechanical parts; automotive parts, engine Auto parts such as parts, cabin parts, electronic parts, internal parts, etc.; microwave conditioning pots, heat-resistant tableware and other conditioning equipment; aircraft, space shuttle, space machine parts; sensor parts. (Examples) Hereinafter, the present invention will be specifically described based on examples. However, the invention is not limited by the embodiments. In the following examples and comparative examples, the test methods for various physical property values are as follows. [1] MFR (Melt Flow Rate): The particle size of the thermoplastic resin composition was measured using a descending flow tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.) to measure the MFR value at a predetermined load and a predetermined temperature. At this time, the or if ice is used with a diameter of lmmx and a length of 10 mm. [2] Flexural strength and flexural modulus: The measurement was carried out in accordance with the method described in ASTM Standard D-790. [3] Impact strength: Izod impact strength is measured according to the method described in ASTM specification D-256 using a notch test piece [4] Thermal conductivity: Thermal conductivity; I The thermal diffusivity α, the density p, the 26321746, and the 201035204 specific heat Cp were obtained by the following method, and the product was calculated by the following equation. λ = a p Cp λ : thermal conductivity (W / (m · K)) α : thermal diffusivity (m2 / sec) P : density (g / m3)

Cp:比熱(J/g-K) 熱擴散率α係對於[2]中所製得之彎曲試驗片之樹脂 流動方向,使用雷射閃光法熱常數測定裝置TC— 7000 〇 (ULVAC理工公司製),以雷射閃光法進行測定。密度ρ係 使用電子比重計ED—120T(MIRAGE貿易公司製)進行測定。 比熱Cp係使用示差掃描熱量計DSC— 7(PerkinElmer公司 製),在升溫速度10°C/分鐘之條件下進行測定。 [5]成形性: 將供試樹脂組成物充分乾燥後,使用射出成形機(東芝 機械公司製:EC-100型),射出成形為寬度13mm、長度 0 130mm、厚度0. 8腿之條狀樣品。對所得之成形片之狀態, 以下述所示之基準進行3階段之評估。 良好:外觀上無問題,且已成形為預定大小。 稍差:雖已成形為預定大小,但成形片表面之平滑性不 良。 不良:流動性不良,且無法成形為預定大小。 實施例與比較例中所使用之原料係如下述所示。 (1)熱塑性樹脂(A) 春PA6A :由無規聚合所得之聚醯胺6(相對黏度2. 6,密度 27 321746 201035204 1. 13g/cm3) 鲁ΡΑ6Β :由無規聚合所得之聚醯胺6(相對黏度1. 9,密度 1. 13g/cm3) • PA66:由己二胺與己二酸進行聚合所得之聚醯胺66(相 對黏度2. 8,密度1. 14g/cm3) • LCP :液晶聚酯(由尼帝佳公司製 RODRUN LC— 5000, 密度 1. 41g/cm3) • PA12 :聚醯胺12(阿爾公司(77社)製 Rilsan A丽,相對黏度2· 3,密度1. 01 g/cm ) • PP :聚丙烯(日本波麗普羅公司(日本术U 7。口社)製 MA1B,密度 0. 9g/cm ) • PLA:聚乳酸(NatureWorks公司製,重量平均分子量(卿) = 190,000,密度 1. 25g/cm ) (2)填充材(B) • GrA :鱗片狀石墨(日本石墨工業公司製,平均粒徑4〇 /z m ’ 導熱率 l〇〇W/(m . K),密度 2. 25g/cm ) • GrB :鱗片狀石墨(日本石墨工業公司製,平均粒徑ι3〇 /zm,導熱率 l〇〇W/(m . K),密度 2. 25g/cm ) • GrCF :石墨化碳纖維(曰本石墨纖維公司製,平均纖維 徑9//m,平均纖維長3mm,密度2· 2g/cm ) • BN :六方晶系鱗片狀氮化硼(電氣化學工業公司製,平 均粒徑15/zm,密度2.26g/cm ) • AL0A:氧化鋁(電氣化學工業公司製,平均粒徑1〇以冚,, 導熱率 38W/(m · K),密度 3. 97g/cm ) 321746 28 201035204 • AL0B:氧化鋁(電氣化學工業公司製,平岣粒徑50//m, 導熱率 38W/(m . K),密度 3. 97g/cm3) • TC .滑石(曰本滑石公司製K — 1,平均粒徑8 // m,密 度 2. 7g/cm3) • MgO :氧化鎂(神島化學公司製,平均粒徑5# m,導熱 率 50W/(m . κ),密度 3. 58g/cm3) • MgCO :碳酸鎂(神島化學公司製,平均粒徑1〇//m,導 熱率 15W/(m · K),密度 3. 05g/cm3) 〇 φ ZnO :氧化鋅(得化學工業公司製,平均粒徑1〇ΑΠ1,導 熱率 25W/(m · Κ),密度 5. 78g/cm3) 籲AF :共聚(對伸苯基-3, 4’-氧二伸苯基對酞醯胺)纖維 (帝人TECHNO PRODUCTS公司製,平均纖維徑12^111, 平均纖維長3mm,密度1. 39g/cm3) • GF .玻璃纖維(〇wens Corning公司製,平均纖維徑10 //m,平均纖維長3mm,密度2. 50g/cm3) Q (3)多官能性烯丙基化合物(Cl) • ΤΑ 1C.二烯丙基異氰脲酸酯(日本化成公司製 TAIC, 液體’沸點15〇°C) • DAMG 1C.單環氧丙基二稀丙基異氰脲酸醋(四國化成公 司製DA —MGIC,固體,融點40°C,由TGA測定所測得 之重量減少5%之溫度為178。〇 • C11 : 使用1,3-雙(胺基甲基)苯(MXDA)做為—級胺化合物 (D),使用單環氧丙基異氰脲酸酯(DAMGIc)做為多官能性化 321746 29 201035204 合物(E),以相對於1當量MXDA使DAMGIC成為2當量之方 式量取後加入圓底燒瓶中,並一面攪拌一面在80°C加熱30 分鐘。並且,在180。(:加熱30分鐘,而得到無色透明的液 狀物。將所得之液狀物緩緩冷卻至室溫後,將此時所生成 之固形物粉碎,而得到多官能性烯丙基化合物(C11)之白色 粉末。 使用TGA裝置(PerkinElmer公司製TGA — 7) ’在氮氣 置換環境中,使5mg之樣品以升溫速度20°C/分鐘之速度 從室溫升溫至600°C,測定樣品之質量變化。所得之粉末 之由TGA測定所測得之質量減少5%之溫度為375°C。MXDA 之由TGA測定所測得之質量減少5%之溫度為52。0所得之 粉末之融點在55至70°C之範圍。 • C12 : 以相對於1當量MXDA使DAMGIC成為1當量之方式量 取。除此之外,其餘與C11時同樣地進行合成,而得到無 色透明的液狀物。將所得之液狀物緩緩冷卻至室溫後,將 固化之固形物粉碎,而得到多官能性烯丙基化合物(C12) 之白色粉末。 所传之粉末之由TGA測定所測得之質量減少5%之溫度 為335°C。所得之粉末之融點在5〇至卯艽之範圍。 • C13 : 使用己二胺(HMDA)做為一級胺化合物(D)。除此之外, 其餘與C11時同樣地進行合成,而得到無色透明的液狀 物。將所得之液狀物緩緩冷卻至室溫後,將此時所生成之 30 321746 201035204 Λ 固形物粉碎,而得到多官能性烯丙基化合物(C13)之白色粉 •末。 所得之粉末之由TGA測定所測得之質量減少5%之溫度 ' 為356°C °HMDA之由TGA測定所測得之質量減少5%之溫度 «為76°C。所得之粉末之融點在35至45°C之範圍。 , (4)二聚酸系熱塑性樹脂(C2) •製造例1(C21) 將二聚酸(築野食品工業公司製,未氫化)/1,3-雙(胺 基甲基)苯= 46. 5/53. 5(莫耳比)之比例之原料饋入反應 槽中,並在240°C使其反應2小時。反應結束後取出並切 割,而得到二聚酸系聚醯胺樹脂顆粒。所得之顆粒之在230 °C、21. 18N 之熔融流動率(MFR)為 1800g/min。 *製造例2(C22) 將一聚酸(梁野食品工業公司製,未氫化)/65. 3%己二 胺水溶液/己内醯胺= 10. 3/7· 3/82.4(莫耳比)之比例 〇之原料饋入反應槽中,並在25(TC使其反應2小時。反應 結束後取出並切割,而得到二聚酸系聚醯胺樹脂顆粒。所 得之顆粒之在23(TC、21· 18N之熔融流動率(MFR)為l3〇〇g /min 〇 *製造例3(C23) 將二聚酸(築野食品工業公司製,未氫化)/對酞酸/ 1,4-丁二醇= 13. 2/26, 8/60(莫耳比)之比例之原料饋入 反應槽中,並在24(TC進行酯化反應,接著依慣用方法, 添加鈦觸媒並在24(TC進行聚縮合反應3小時。反應結束 321746 31 201035204 後取出並切割’而得到二聚酸系聚酯樹脂顆粒。所得之顆 粒之在200°C、21. 18N之熔融流動率(MFR)為800g/rain。 (5)可塑劑 * HB:對經基苯甲酸烷基酯(花王公司製EXCEPARLHD —PB ’液體’由TGA測定所測得之質量減少5%之溫度 為 285°C ) (實施例1) 將聚醯胺6樹脂(PA6A)30質量份、與多官能性烯丙基 化合物(C12)5質量份供給至雙軸擠壓機(東芝機械公司 衣’ TEM26SS ’螺桿直徑26mm)之主進料斗,並在260°C使 其溶融。在中途’從側面進料機供給玻璃纖維(GF)7〇質量 伤’並充分進行炼融混練。然後,擠壓成繩股(strand)狀 並使其冷卻固化後’切割成顆粒狀,而得到樹脂組成物。 將此樹脂組成物充分乾燥後,使用射出成形機(東芝機 械公司製’ EC—1〇〇型),在汽缸(cylinder)溫度27〇〇c、 模具溫度lOOt:、射出時間2〇秒、冷卻時間1〇秒之條件 下射出成形為上述之條狀樣品。 其評估結果如表1所示。在進行混練及射出成形操作 時,未觀測到有揮發氣體產生。 (比較例1) 相較於貫施例1’變更成不添加多官能性烯丙基化合 物(C1) °除此之外,其餘與實施例1同樣進行,而得到樹 脂组成物’將該樹脂組成物進行射出成形,並進行成形性 之5平估。其评估結果如表1所示。在進行混練及射出成形 32 321746 201035204 操作時’未觀測到有揮發氣體產生。 (實施例2至8、比較例2至7) 與實施例1相比’將熱塑性樹脂(A)、填充材邙)、多 官能性烯丙基化合物(C1)分別變更為如表丨所示之種類與 畺。除此之外,其餘與實施例1同樣進行,而得到樹脂組 成物。並且,將該樹脂組成物進行射出成形,並進行成形 性之評估。從中途開始藉由侧面進料機供給纖維狀填充 劑,並由主進料斗供給除此之外之填充材,從混練機中途 使用泵來注入液體之二婦丙基氰脈酸酯(Τα I c )後,實施溶 融混練。 整理其評估結果如表1所示。再者’實施例4及6係 在進行混練及射出成形操作時產生大量的揮發氣體,導致 二細丙基亂脈酸醋在所得之成形體之表面渗出。 [表1]Cp: specific heat (J/gK) thermal diffusivity α is the laser flow direction of the bending test piece prepared in [2], using a laser flash thermal constant measuring device TC-7000 (manufactured by ULVAC Corporation), The measurement was carried out by a laser flash method. Density ρ was measured using an electronic hydrometer ED-120T (manufactured by MIRAGE Trading Co., Ltd.). The specific heat Cp was measured using a differential scanning calorimeter DSC-7 (manufactured by PerkinElmer Co., Ltd.) under the conditions of a temperature increase rate of 10 ° C /min. [5] Formability: After the test resin composition was sufficiently dried, it was molded into a strip having a width of 13 mm, a length of 0 130 mm, and a thickness of 0.8 leg using an injection molding machine (manufactured by Toshiba Machine Co., Ltd.: EC-100 type). sample. The state of the obtained formed piece was evaluated in three stages on the basis of the following criteria. Good: no problem in appearance and has been shaped to a predetermined size. Slightly poor: Although it has been formed to a predetermined size, the smoothness of the surface of the formed sheet is not good. Poor: Poor fluidity and cannot be formed into a predetermined size. The raw materials used in the examples and comparative examples are as follows. (1) Thermoplastic Resin (A) Spring PA6A: Polyamide 6 obtained by random polymerization (relative viscosity 2.6, density 27 321746 201035204 1. 13g/cm3) Luke 6Β: Polydecylamine obtained by random polymerization 6 (relative viscosity 1. 9, density 1.13g/cm3) • PA66: polyamine 66 obtained by polymerization of hexamethylenediamine and adipic acid (relative viscosity 2.8, density 1.14g/cm3) • LCP: Liquid crystal polyester (RODRUN LC-5000, manufactured by Nedica Co., Ltd., density 1.41g/cm3) • PA12: Polyamide 12 (Rilsan A Li, manufactured by Alpha Company, 77, relative viscosity 2. 3, density 1. 01 g/cm) • PP: Polypropylene (MA1B, manufactured by Japan Poly U. Co., Ltd., density: 0. 9g/cm) • PLA: Polylactic acid (manufactured by NatureWorks, weight average molecular weight (Qing) ) = 190,000, density 1. 25g/cm) (2) Filler (B) • GrA: scaly graphite (manufactured by Nippon Graphite Co., Ltd., average particle size 4〇/zm' thermal conductivity l〇〇W/(m. K), density 2. 25g / cm) • GrB: flaky graphite (made by Nippon Graphite Co., Ltd., average particle size ι3 〇 / zm, thermal conductivity l 〇〇 W / (m. K), density 2. 25g / cm ) • GrCF: Stone Inkized carbon fiber (manufactured by Sakamoto Graphite Fiber Co., Ltd., average fiber diameter 9/m, average fiber length 3 mm, density 2·2 g/cm) • BN: hexagonal scaly boron nitride (manufactured by Electric Chemical Industry Co., Ltd., average Particle size 15/zm, density 2.26g/cm) • AL0A: Alumina (manufactured by Electric Chemical Industry Co., Ltd., average particle size 1〇, thermal conductivity 38W/(m · K), density 3.97g/cm) 321746 28 201035204 • AL0B: Alumina (manufactured by Electric Chemical Industry Co., Ltd., flat grain size 50/m, thermal conductivity 38W/(m. K), density 3.97g/cm3) • TC. Talc (Sakamoto talc company) K-1, average particle size 8 // m, density 2. 7g/cm3) • MgO: magnesium oxide (manufactured by Shendao Chemical Co., Ltd., average particle size 5# m, thermal conductivity 50W/(m. κ), density 3 . . . . . . . . . Chemical industry company, average particle size 1〇ΑΠ1, thermal conductivity 25W/(m · Κ), density 5.78g/cm3) AFAF: copolymerization (p-phenylene-3,4'-oxydiphenylene pair) Indoleamine fiber (Teijin TECHNO PRO Made by DUCTS, the average fiber diameter is 12^111, the average fiber length is 3mm, the density is 1. 39g/cm3) • GF. Glass fiber (〇wens Corning company, average fiber diameter 10 // m, average fiber length 3mm, density 2 50g/cm3) Q (3) Polyfunctional allyl compound (Cl) • ΤΑ 1C. Diallyl isocyanurate (TAIC manufactured by Nippon Kasei Co., Ltd., liquid 'boiling point 15 〇 ° C) • DAMG 1C Monoepoxypropyldipropylpropylisocyanuric acid vinegar (DA-MGIC manufactured by Shikoku Kasei Co., Ltd., solid, melting point 40 ° C, the temperature measured by TGA is reduced by 5% and the temperature is 178. 〇• C11 : Use 1,3-bis(aminomethyl)benzene (MXDA) as the amine compound (D) and monomethyl propyl isocyanurate (DAMGIc) as the polyfunctional 321746 29 201035204 The compound (E) was weighed in such a manner that DAMGIC was equivalent to 1 equivalent of MXDA, and then added to a round bottom flask, and heated at 80 ° C for 30 minutes while stirring. And, at 180. (: heating for 30 minutes to obtain a colorless and transparent liquid. After the obtained liquid was gradually cooled to room temperature, the solid matter formed at this time was pulverized to obtain a polyfunctional allyl compound (C11). White powder. Using a TGA apparatus (TGA-7 manufactured by PerkinElmer Co., Ltd.) 'In a nitrogen-substituted atmosphere, a sample of 5 mg was heated from room temperature to 600 ° C at a temperature increase rate of 20 ° C/min to measure the mass of the sample. The temperature of the powder obtained by the TGA measurement is reduced by 5% to 375 ° C. The temperature of MXDA measured by TGA is reduced by 5%, and the temperature of the powder is 52. In the range of 55 to 70 ° C. C12 : The same was carried out in the same manner as in the case of C11 except that the DAMGIC was measured to be one equivalent of 1 equivalent of MXDA, and a colorless transparent liquid material was obtained. After the obtained liquid was gradually cooled to room temperature, the solidified solid was pulverized to obtain a white powder of a polyfunctional allyl compound (C12). The mass of the passed powder was measured by TGA. The temperature reduced by 5% is 335 ° C. The obtained powder The melting point is in the range of 5 〇 to 卯艽. • C13 : hexamethylenediamine (HMDA) is used as the primary amine compound (D), and the same as in the case of C11, the colorless transparent liquid is obtained. After the obtained liquid was gradually cooled to room temperature, the solid matter of 30 321746 201035204 此时 formed at this time was pulverized to obtain a white powder of the polyfunctional allyl compound (C13). The temperature of the powder measured by TGA is reduced by 5%. The temperature of 356 ° C °HMDA measured by TGA is reduced by 5%. The temperature is 76 ° C. The melting point of the obtained powder is 35 to 45 ° C. (4) Dimer acid-based thermoplastic resin (C2) • Production example 1 (C21) Dimer acid (manufactured by Chikuno Food Industry Co., Ltd., unhydrogenated) / 1,3-double ( The raw material of the ratio of aminomethyl)benzene = 46.5/5. 5 (mole ratio) is fed into the reaction tank and allowed to react at 240 ° C for 2 hours. After the reaction is completed, it is taken out and cut to obtain two. Polyacid-polyamide resin particles. The obtained pellets had a melt flow rate (MFR) of 1800 g/min at 230 ° C and 21.18 N. * Production Example 2 (C22) Polyacid (manufactured by Liangye Food Industry Co., Ltd., unhydrogenated) / 65. 3% hexanediamine aqueous solution / caprolactam = 10. 3/7 · 3/82.4 (mole ratio) ratio of raw material feed In the reaction tank, the reaction was carried out for 2 hours at 25 (TC). After the reaction was completed, the mixture was taken out and cut to obtain dimer acid-based polyamide resin particles. The obtained pellets were in a melt flow rate of 23 (TC, 21·18 N). (MFR) is l3〇〇g /min 制造*Production Example 3 (C23) Dimer acid (made by Chikuno Food Industry Co., Ltd., unhydrogenated) / p-citric acid / 1,4-butanediol = 13. 2/ The ratio of 26, 8/60 (mole ratio) of the raw materials is fed into the reaction tank, and esterification reaction is carried out at 24 (TC), followed by a conventional method, adding a titanium catalyst and performing a polycondensation reaction for 24 hours at 24 (TC). . The reaction was completed 321746 31 201035204, and then taken out and cut to obtain dimer acid-based polyester resin particles. The obtained pellet had a melt flow rate (MFR) of 200 g/rain at 200 ° C and 21.18 N. (5) Plasticizer* HB: A temperature of 5% by weight of the alkyl benzoate (EXCEPARLHD - PB 'liquid' manufactured by Kao Co., Ltd.) is 285 ° C (Example 1) 30 parts by mass of polyamine 6 resin (PA6A) and 5 parts by mass of polyfunctional allylic compound (C12) were supplied to a main hopper of a twin-screw extruder (Toshiba Machine Co., Ltd. TEM26SS' screw diameter: 26 mm). It was allowed to melt at 260 °C. In the middle of the process, glass fiber (GF) 7 〇 quality damage was supplied from the side feeder, and the smelting and kneading was sufficiently performed. Then, it was extruded into a strand shape, and after cooling and solidifying, it was cut into pellets to obtain a resin composition. After the resin composition was sufficiently dried, an injection molding machine ("EC-1" type manufactured by Toshiba Machine Co., Ltd.) was used, and the cylinder temperature was 27 〇〇c, the mold temperature was 100 t:, the injection time was 2 sec, and the cooling was performed. The strip sample was formed by injection under the condition of 1 sec. The evaluation results are shown in Table 1. No volatilization gas was observed during the kneading and injection molding operations. (Comparative Example 1) A resin composition was obtained in the same manner as in Example 1 except that the polyfunctional allylic compound (C1) was not added in the same manner as in Example 1'. The composition was subjected to injection molding, and the flatness of the formability was evaluated. The evaluation results are shown in Table 1. During the mixing and injection molding 32 321746 201035204 Operation No volatile gas was observed. (Examples 2 to 8 and Comparative Examples 2 to 7) In comparison with Example 1, 'the thermoplastic resin (A), the filler 邙) and the polyfunctional allylic compound (C1) were changed as shown in Table 分别. The type and the embarrassment. Otherwise, the same procedure as in Example 1 was carried out to obtain a resin composition. Further, the resin composition was subjected to injection molding, and the moldability was evaluated. From the middle of the process, the fibrous filler is supplied by the side feeder, and the other filler is supplied from the main feed hopper, and the pump is used to inject the liquid dipropyl propyl cyanate from the middle of the kneading machine (Τα I After c), the melt kneading is carried out. The results of the evaluation are summarized in Table 1. Further, in Examples 4 and 6, a large amount of volatile gas was generated during the kneading and injection molding operations, and the bis-propyl vinegar was oozing out on the surface of the obtained molded body. [Table 1]

321746 〇 33 201035204 由表1明顯得知,在實施例1至8中,由於多官能性 烯丙基化合物(C1)發揮做為可塑劑之機能,故成形性良 好,相對地,在比較例1至7中,由於未調配可塑劑、或 調配量過少,故在相同的成形溫度無法得到良好的成形片。 (實施例9) 將聚醯胺6樹脂(PA6B)41質量份、做為導熱性填充材 (B1)之鱗片狀石墨(GrA)59質量份、與單環氧丙基異氰脲 酸酯(DAMGIC)4質量份供給至與實施例1中所使用者相同 的雙軸擠壓機之主進料斗,並在25(TC進行熔融混練。然 後’擠壓成繩股狀並使其冷卻固化後,切割成顆粒狀,而 得到樹脂組成物。 將所得之樹脂組成物充分乾燥後,在25(TC、載重 10〇kg之條件下測定MFR後,結果為l〇〇g/l〇min。 接著’使用與實施例1中所使用者相同的射出成形 機’在汽缸溫度260乞、模具温度1〇〇。(:、射出時間20秒、 冷卻時間10秒之條件下,將此樹脂組成物進行射出成形, 而得到評估用之成形體。再者,在進行混練及射出成形操 夺’未觀測到有揮發氣體產生。 其評估結果如表2所示。 (實施例1〇至27,比較例8至18) 與實施例9相比,將熱塑性樹脂(A)、導熱性填充材 (B1)、多官能性烯丙基化合物(Ci)、其他填充材、其他可 塑劑分別變更為如表2所示之種類與量。除此之外,其餘 與實施例1同樣進行,而得到樹脂組成物。將此樹脂組成 34 321746 201035204 '物進行射出成形,並測定各種物性。此時,從中途開始藉 ' 由側面進料機供給纖維狀填充劑,由主進料斗供給除此之 外之填充材。從混練機中途使用泵來注入液體之三稀丙基 -氰脲酸酯(TAIC)後,實施熔融混練。 , 實施例16及21係在進行混練及射出成形操作時產生 大量的揮發氣體。實施例16係三烯丙基氰脲酸酯在所得之 成形體之表面滲出。 對實施例 10、12、14、16、17、19、比較例 8、11、 〇 14中所得之成形體照射以鈷60做為輻射源之γ射線30kGy 後,進行強度測定,並比較照射7射線前後之物性。 綜合實施例9至27、比較例8至18之評估結果示於 表2。 ❹ 35 321746 201035204 [表2] 導熱率 W/(m-K) 1 μ 窝 Si μ s δ esi μ O 苒 7 tn ο CO S3 δ σ» esj S 1 熔融黏度過低而無法製作射出成形用之顆粗· | 1 «« w in - CM m - in z 00 S & δ 铅 f m eg in m tn «* ο ο» Γ- β> ?5 s S 穿 9 <r m n rj «•3 € Ln CD CD in (0 r*» <D S 卜 to s tn - ir> eo β> η σ> 苒 努 «ο <〇 甘 CM σ> Oi η 二 - Sj 彎西 強度 I 8 s 8 s δ in % s s s s |A s 君 A 2 S ? & 8 S δ Β SS s 萏 荃 s 浜 % r射線 吸故量 1 1 1 R 1 1 I I 1 1 R I 1 I 1 1 1 1 1 1 1 1 1 8 1 1 I s 1 1 i I g/tOmh 1 S § 器 尝 £ 1 s s s PO to 3 8 s s s § ΐο S <D P- eg S ο eo ο 8 B δ 8 s δ δ s 8 s g 1 g 1 1 § g δ δ δ δ 8 1 § S δ 1 1 s P § g g S s CM 爵 § g 赛 g § 1 g § g g g g 爵 爵 I 器 1 1 器 § s s 射出成形條件I P S 8 8 s 8 δ 8 8 8 8 δ S 8 8 δ 8 8 δ δ 8 δ δ 8 δ S 8 8 δ 8 P g S CM δ CM 1 § 8 CM i 1 I S CM 1 i i 1 i § S 赛 § £ CM 1 1. δ eg S csl S esi s g § i a度 P g δ esi 爵 s CM g g g § § g S g i § s CM s S eg s οι 1 § § § § i 赛 s i § S 1 樹鹿组成物之原料 1 SIS 材、 質董份 1 I 1 ( f I 1 1 1 tr> a> 〇> 1 i i 1 1 I 1 1 σ> Ο) to (O 1 i 1 1 種類1 l 1 l 1 I I 1 f 1 友 'k 1 1 l 1 1 1 1 I 1 1 女 会 % X 1 1 1 1 讀 «广· ¥ 〇3 **份 Γ*» 卜 CD oo eo oo Ι-» CO tn 卜 to r» r- 卜 r— η» ιη 1 — t 1 1 1 I 1 — 1 種類1 DAMGIC I DAMGIC DAMGIC 1 δ 5 5 Γ5 δ TA1C Μ 5 CM 5 5 OI 5 I DAMGIC 1 esi 5 〇 5 CM o δ CM δ OJ Q 1 CM δ f 1 1 i 1 1 CM 5 l CM δ (Α)/⑻ 髏精比1 58/42 I 55/45 55/45 1 56/44 56/44 I 56/44 ;56/44 I 55/45 56/44 涅 50/50 I 50/50 I 33/67 I 33/67 i I 33/67 丨 I 33/67 | 33/67 1 33/67 1 52/48 60/40 1 60/40 1 60/40 58/42 I 55/45 涅 56/44 | 40/60 | 38/62 | 40/60 1 42/58 導熱fBR充材 質量份 s S CD to S % O «〇 s s 3 8 S 1 54/26 S ΰ κ S ο to u> (O tn ο 種類i ί i S % s ί ί % i t % % S s 1 |GrA/QrCF 1 S ί § % ί § ί % i % ί 熱咒難 質董份1 7 n % n n δ s δ δ 5 5 5 s U9 % 種類丨 PA6B 1 PA6B PA6B PA6B PA田 PA6B 1 PA6B 1 PA6B PA12 PA6A PA6B I PA12 I PA6B I PA6B ! I ΡΑ6Θ I PA6B PA6B ΡΑ6β I ΡΑ6Β ΡΑβΒ ΡΑ6Β I PA12 ΡΑΘΒ I ΡΑ12 ΡΑ6Α PA6B I PA6B I PA6B 1 PA6G 1 ΡΑ68 1實施例9 1 贫施例10 實施例Π 貧施例12 實施例13 實施例14 實施例15 實施例阳 赏施例17 貧施例18 實施例19 |實施例20 I 實施例21 實施例22 |實施例23 I 實施例24 1 實施例25 1 實施例2β 實施例27 比較例Β 比較例9 I比較例10 比較例11 |比較例彳2 比較例13 比較例M |比較例15 I比較例ie 比較例Π I比較例18 實施例9至27由於多官能性烯丙基化合物(Cl)發揮做 為可塑劑之機能,故MFR值大而成形性優良。相對地,比 36 321746 201035204 較例8至13及比較例15至17由於未調配做為可塑劑之多 ^ 官能性烯丙基化合物(C1)或調配量過少,故相較於多官能 性烯丙基化合物(C1)之調配量為適當量且其他條件相同的 ‘ 各實施例,MFR值較小,而成形性較差。 ^ 特別是,實施例21至26及比較例15至17皆為調配 有大量的填充材(B)者’但實施例21至26係因調配預定量 之多官能性浠丙基化合物(C1 ),而可較比較例15至17更 使成形溫度降低。比較例14係調配市售之可塑劑者,因而 〇 雖然MFR值高而成形性優良’但成形體之機械性能較實施 例者更差。比較例18由於多官能性稀丙基化合物(ci)之調 配量過多’故熔融黏度過低’在進行熔融混練時無法擠壓 成繩股狀並使其冷卻固化,而無法製作射出成形用之顆粒。 實施例10、12、14、16、17、19由於調配有多官能性 烯丙基化合物(C1 ),故聚醯胺樹脂會藉由照射7射線而進 行交聯’使.彎曲強度提南。另一方面,比較例8、11、U Q 由於未調配多官能性烯丙基化合物,故未觀察到因照射γ 射線所造成之強度提高。 (實施例28) 將聚醯胺6樹脂(ΡΑ6Α)35體積%、與二聚酸系熱塑性 樹脂(C21)15體積%供給至與實施例1中所使用者相同的雙 軸擠壓機之主進料斗,並在260tT使其;熔融ύ隹中途,從 侧面進料機供給玻璃纖維(GF)50體積%,並充分進行炫融 混練後,將熔融混練物擠壓成繩股狀並使其冷卻固化。然 後,切割成顆粒狀,而得到樹脂組成物。 37 321746 201035204 將所得之樹脂紐成物充分乾燥後,使用與實施例1中 所使用者相同的射出成形機,在與實施例1相同的條件 下’射出成形為上述之條狀樣品。 其評估結果如表3所示。在進行混練及射出成形操作 時,未觀測到有揮發氣體產生。 (比較例19) 與貫施例28相比,未添加二聚酸系熱塑性樹脂(C2)。 除此之外’其餘與實施例28同樣進行,而得到樹脂組成 物。將所得之樹脂組成物進行射出成形,並進行成形性之 評估。其評估結果如表3所示。在進行混練及射出成形操 作時’未觀測到有揮發氣體產生。 (實施例29至37,比較例20至26) 與貫施例28相比,將熱塑性樹脂(a)、填充材(B)、二 聚酸系熱塑性樹脂(C2)分別變更為如表3所示之種類與 量除此之外,其餘與實施例28同樣進行,而得到樹脂組 成物。此時,從中途開始藉由側面進料機供給纖維狀填充 劑’並由主進料斗供給除此之外之填充材後,實施炫融混 練。將所得之樹脂組成物進行射出成形,並進行成形性之 評估。整理其評估結果如表3。 321746 38 201035204 [表3] &塑(?)赌 填充材(B) 二聚A系(Sr 混練 温度 射出成形條件 成形性 汽缸 温度 模具 溫度 種類 艘積% 種類 艘積% 種類 體積X °c °c °c 實施例28 PA6A 35 GF 50 C21 15 260 270 80 m 比較例19 PA6A 50 GF 50 - - 260 270 80 稍差 實施例29 PA6A 40 ALOB 50 021 10 240 240 80 餅 實施例30 FA6A 35 ALOB 50 C21 15 240 240 80 朗 實施例31 PA6A 10 ALOB 50 C21 40 240 230 80 m- 實施例32 PA6B 35 ALOB 50 C21 15 240 240 80 良好 實施例33 PA6A 30 ALOB 50 C21 20 240 240 80 良好 比較倒20 PA6A 50 ALOB 50 - - 240 240 80 不良 比較例21 PA6B 50 ALOB 50 - - 240 240 80 不良 比較例22 PA6A 47 ALOB 50 C21 3 240 240 80 不良 實施例34 PA6B 35 MgO 50 C21 15 260 270 80. 餅 比較例23 PA6B 50 MgO 50 - - 260 270 80 不良 實施例35 PA6B 25 GrA 60 C21 15 260 270 100 良好 比較例24 PA6B 40 QrA 60 - - 260 270 100 不良 實施例36 PA66 35 GrA 50 C21 15 300 300 100 良好 比較例25 PA66 50 GrA 50 - - XO 300 100 不良 實施例37 LCP 60 AF 30 C21 10 300 300 100 良好 比較例26 LCP 70 AF 30 - - 300 300 100 稍差 由表3可得知,在實施例28至37由於調配有二聚酸 系熱塑性樹脂(C2 ),故成形性良好。相對地,比較例19 ◎ 至26由於未調配二聚酸系熱塑性樹脂(C2)、或調配量過 少,故在與實施例28至37相同的成形條件下,成形片表 面之平滑性差、或無法得到預定大小之成形片。 (實施例38) 將聚醯胺6樹脂(PA6A)50體積%、做為導熱性填充材 (B1)之鱗片狀石墨(GrA)40體積%、與二聚酸系熱塑性樹脂 (C21) 10體積%供給至與實施例1中所使用者相同的雙軸擠 壓機之主進料斗,並在260°C進行熔融混練。然後,將熔 融混練物擠壓成繩股狀並使其冷卻固化後,切割成顆粒 39 321746 201035204 狀,而得到樹脂組成物。 將所得之樹脂組成物充分乾燥後,在27(TC、載重 100kg之條件下測定MFR後’結果為i58g/10min。 使用與實施例1中所使用者相同的射出成形機,以汽 缸溫度270°C、模具溫度80°C、射出時間2〇秒、冷卻時間 10秒將此樹脂組成物進行射出成形,而射出成形為上述之 條狀樣品。 其評估結果如表4所示。在進行混練及射出成形操作 時,未觀測到有揮發氣體產生。 (貫施例39至56,比較例27至40) 與實施例38相比,將熱塑性樹脂⑷、導熱性填充材 (B1)、二聚酸系熱塑性樹脂(⑵、其他填充材、其他可塑 劑分別變更為如表4所示之種類與量。除此之外,其餘與 實施例38同樣進行,而得到樹脂組成物。將此樹脂細成物 進行射出成形,並測定各種物性。此時 侧面進料機供給織維狀填充劑,並由主進料斗=== 外之填充材後,實_融混練。 核〜除此之 声'%例38至46、比較例27至34之評估钻麥4 所示,實施例47 $ u Γ 估結果如表4 至56、比較例35至40之評估結果如表5。 321746 40 201035204 [表4]321746 〇33 201035204 It is apparent from Table 1 that in Examples 1 to 8, since the polyfunctional allyl compound (C1) functions as a plasticizer, the formability is good, and in Comparative Example 1, In the case of 7 or less, since the plasticizer was not formulated or the amount of the compounding agent was too small, a good molded piece could not be obtained at the same molding temperature. (Example 9) 41 parts by mass of polyamine 6 resin (PA6B), 59 parts by mass of flaky graphite (GrA) as a heat conductive filler (B1), and monoepoxypropyl isocyanurate ( DAMGIC) 4 parts by mass supplied to the main hopper of the same twin-screw extruder as in the user of Example 1, and melt-kneaded at 25 (TC), and then 'extruded into strands and allowed to cool and solidify The resin composition was cut into pellets to obtain a resin composition. After the obtained resin composition was sufficiently dried, MFR was measured under the conditions of 25 (TC, load of 10 〇kg, and the result was l〇〇g/l〇min. 'Using the same injection molding machine as the user in the first embodiment', the resin composition was subjected to a cylinder temperature of 260 Torr and a mold temperature of 1 Torr (:, an injection time of 20 seconds, and a cooling time of 10 seconds). Injection molding was carried out to obtain a molded body for evaluation. Further, in the kneading and injection molding operation, no volatilized gas was observed. The evaluation results are shown in Table 2. (Examples 1 to 27, Comparative Example) 8 to 18) Compared with Example 9, the thermoplastic resin (A) and the thermal conductive filler (B1) The resin composition was obtained in the same manner as in Example 1 except that the polyfunctional allyl compound (Ci), other fillers, and other plasticizers were changed to the types and amounts shown in Table 2. The resin composition 34 321746 201035204 'objects were injection molded, and various physical properties were measured. At this time, the fibrous filler was supplied from the side feeder from the middle, and the filler was supplied from the main feed hopper. Melt kneading was carried out by using a pump to inject a liquid tri-propyl-cyanurate (TAIC) from the middle of the kneading machine. Examples 16 and 21 produced a large amount of volatile gas during the kneading and injection molding operations. Example 16 is a triallyl cyanurate oozing on the surface of the obtained molded body. The molded bodies obtained in Examples 10, 12, 14, 16, 17, 19, Comparative Examples 8, 11, and 14 were irradiated. After γ ray 30 kGy using cobalt 60 as a radiation source, the strength was measured, and the physical properties before and after the irradiation of 7 ray were compared. The evaluation results of the general examples 9 to 27 and the comparative examples 8 to 18 are shown in Table 2. ❹ 35 321746 201035204 [Table 2] Thermal conductivity W/(mK) 1 μ Nest Si μ s δ esi μ O 苒7 tn ο CO S3 δ σ» esj S 1 The melt viscosity is too low to make a coarse grain for injection molding · 1 «« w in - CM m - in z 00 S & δ lead fm eg in m tn «* ο ο» Γ- β> ?5 s S wear 9 <rmn rj «•3 € Ln CD CD in (0 r*» <DS To s tn - ir> eo β> η σ> 苒努«ο <〇甘CM σ> Oi η II-Sj bend strength I 8 s 8 s δ in % ssss |A s Jun A 2 S ? & 8 S δ Β SS s 萏荃s 浜% r ray absorbing amount 1 1 1 R 1 1 II 1 1 RI 1 I 1 1 1 1 1 1 1 1 1 8 1 1 I s 1 1 i I g/tOmh 1 S § s sss PO to 3 8 sss § ΐο S <D P- eg S ο eo ο 8 B δ 8 s δ δ s 8 sg 1 g 1 1 § g δ δ δ δ 8 1 § S δ 1 1 s P § gg S s CM 爵 g g g § 1 g § gggg 爵 克 I 1 1 § ss injection molding conditions IPS 8 8 s 8 δ 8 8 8 8 δ S 8 8 δ 8 8 δ δ 8 δ δ 8 δ S 8 8 δ 8 P g S CM δ CM 1 § 8 CM i 1 IS CM 1 ii 1 i § S Race § £ CM 1 1. δ eg S csl S esi sg § ia degree P g δ esi 爵 s CM ggg § § g S gi § s s § S eg s οι 1 § § § § i 赛si § S 1 Raw material of the tree deer 1 SIS Material, quality Dong 1 I 1 ( f I 1 1 1 tr> a> 〇 > 1 ii 1 1 I 1 1 σ> Ο) to (O 1 i 1 1 type 1 l 1 l 1 II 1 f 1 friend 'k 1 1 l 1 1 1 1 I 1 1 Female Club% X 1 1 1 1 Read «广· ¥ 〇3 **份Γ*» 卜 CD oo eo oo Ι-» CO tn 卜to r» r- 卜R— η» ιη 1 — t 1 1 1 I 1 — 1 Type 1 DAMGIC I DAMGIC DAMGIC 1 δ 5 5 Γ5 δ TA1C Μ 5 CM 5 5 OI 5 I DAMGIC 1 esi 5 〇5 CM o δ CM δ OJ Q 1 CM δ f 1 1 i 1 1 CM 5 l CM δ (Α)/(8) 髅 fine ratio 1 58/42 I 55/45 55/45 1 56/44 56/44 I 56/44 ;56/44 I 55/ 45 56/44 Nie 50/50 I 50/50 I 33/67 I 33/67 i I 33/67 丨I 33/67 | 33/67 1 33/67 1 52/48 60/40 1 60/40 1 60/40 58/42 I 55/45 Nie 56/44 | 40/60 | 38/62 | 40/60 1 42/58 Thermally conductive fBR filling parts s S CD to S % O «〇ss 3 8 S 1 54/26 S ΰ κ S ο to u> (O tn ο Type i ί i S % s ί ί % it % % S s 1 |GrA/QrCF 1 S ί § % ί § ί % i % ί 热咒难质董份1 7 n % nn δ δ δ δ 5 5 5 s U9 % Species 丨PA6B 1 PA6B PA6B PA6B PA Field PA6B 1 PA6B 1 PA6B PA12 PA6A PA6B I PA12 I PA6B I PA6B ! I ΡΑ6Θ I PA6B PA6B ΡΑ6β I ΡΑ6Β ΡΑβΒ ΡΑ6Β I PA12 ΡΑΘΒ I ΡΑ12 ΡΑ6Α PA6B I PA6B I PA6B 1 PA6G 1 ΡΑ68 1 Example 9 1 Poor Example 10 Example 贫 Poor Example 12 Example 13 Example 14 Example 15 Example Yangshang Example 17 Lean Example 18 Example 19 | Example 20 I Example 21 Example 22 | Example 23 I Example 24 1 Example 25 1 Example 2 β Example 27 Comparative Example Β Comparative Example 9 I Comparative Example 10 Comparative Example 11 | Comparative Example 彳 2 Comparative Example 13 Comparative Example M | Comparative Example 15 I Comparative Example ie Comparative Example Π I Comparative Example 18 Examples 9 to 27 due to polyfunctional allylic The base compound (Cl) functions as a plasticizer, so that the MFR value is large and the formability is excellent. In contrast, the ratio of 36 321746 201035204 to Examples 8 to 13 and Comparative Examples 15 to 17 is less than the polyfunctional olefin because the unfunctionalized allyl compound (C1) is not formulated as a plasticizer or the amount is too small. The compounding amount of the propyl compound (C1) was an appropriate amount and the other conditions were the same. In each of the examples, the MFR value was small and the formability was poor. ^ In particular, Examples 21 to 26 and Comparative Examples 15 to 17 are all formulated with a large amount of filler (B)', but Examples 21 to 26 are formulated with a predetermined amount of polyfunctional fluorenyl compound (C1). Further, the forming temperature was lowered as compared with Comparative Examples 15 to 17. In Comparative Example 14, a commercially available plasticizer was blended, and therefore, although the MFR value was high and the formability was excellent, the mechanical properties of the molded body were worse than those of the examples. In Comparative Example 18, since the amount of the polyfunctional propyl compound (ci) was too large, the melt viscosity was too low, and when it was melt-kneaded, it could not be extruded into a strand shape and cooled and solidified, and it was impossible to produce an injection molding. Particles. In Examples 10, 12, 14, 16, 17, and 19, since the polyfunctional allylic compound (C1) was formulated, the polyamide resin was crosslinked by irradiation of 7 rays, and the bending strength was increased. On the other hand, in Comparative Examples 8, 11, and U Q, since the polyfunctional allylic compound was not prepared, no increase in strength due to irradiation with γ-rays was observed. (Example 28) 35 wt% of a polyamide 6 resin and 15% by volume of a dimer acid-based thermoplastic resin (C21) were supplied to the same main body of the twin-screw extruder as the user of Example 1. Feed the hopper and make it at 260 tT; in the middle of melting enthalpy, supply 50% by volume of glass fiber (GF) from the side feeder, and fully perform the smelting and kneading, then extrude the melt kneaded material into a strand shape and make it Cooled and solidified. Then, it was cut into pellets to obtain a resin composition. 37 321746 201035204 The obtained resin product was sufficiently dried, and then extruded into the above-mentioned strip sample under the same conditions as in Example 1 using the same injection molding machine as that of the user of Example 1. The evaluation results are shown in Table 3. No volatilization gas was observed during the kneading and injection molding operations. (Comparative Example 19) A dimer acid-based thermoplastic resin (C2) was not added as compared with Example 28. Otherwise, the same procedure as in Example 28 was carried out to obtain a resin composition. The obtained resin composition was subjected to injection molding, and the formability was evaluated. The evaluation results are shown in Table 3. When the kneading and injection molding operations were carried out, no volatilized gas was observed. (Examples 29 to 37, Comparative Examples 20 to 26) The thermoplastic resin (a), the filler (B), and the dimer acid-based thermoplastic resin (C2) were changed as shown in Table 3, respectively, as compared with Example 28. The resin composition was obtained in the same manner as in Example 28 except for the type and amount shown. At this time, the fibrous filler is supplied from the side feeder from the middle, and the other filler is supplied from the main hopper, and then the blending is performed. The obtained resin composition was subjected to injection molding, and the formability was evaluated. The results of the evaluation are summarized in Table 3. 321746 38 201035204 [Table 3] & plastic (?) gambling filler (B) Dimerization A system (Sr kneading temperature injection molding conditions forming cylinder temperature mold temperature type product%% type product%% type volume X °c ° c °c Example 28 PA6A 35 GF 50 C21 15 260 270 80 m Comparative Example 19 PA6A 50 GF 50 - - 260 270 80 Poor Example 29 PA6A 40 ALOB 50 021 10 240 240 80 Cake Example 30 FA6A 35 ALOB 50 C21 15 240 240 80 Long Example 31 PA6A 10 ALOB 50 C21 40 240 230 80 m- Example 32 PA6B 35 ALOB 50 C21 15 240 240 80 Good example 33 PA6A 30 ALOB 50 C21 20 240 240 80 Good comparison inverted 20 PA6A 50 ALOB 50 - - 240 240 80 Bad Comparative Example 21 PA6B 50 ALOB 50 - - 240 240 80 Bad Comparative Example 22 PA6A 47 ALOB 50 C21 3 240 240 80 Bad Example 34 PA6B 35 MgO 50 C21 15 260 270 80. Cake Comparison Example 23 PA6B 50 MgO 50 - - 260 270 80 Poor Example 35 PA6B 25 GrA 60 C21 15 260 270 100 Good Comparative Example 24 PA6B 40 QrA 60 - - 260 270 100 Bad Example 36 PA66 35 GrA 50 C21 15 300 300 100 Good Comparative Example 25 PA66 50 GrA 50 - - XO 300 100 Bad example 37 LCP 60 AF 30 C21 10 300 300 100 Good comparative example 26 LCP 70 AF 30 - - 300 300 100 Slightly worse from Table 3, in Examples 28 to 37 due to the deployment of two The polyacid-based thermoplastic resin (C2) was excellent in moldability. In contrast, Comparative Examples 19 to 26 were the same as Examples 28 to 37 because the dimer acid-based thermoplastic resin (C2) was not blended or the blending amount was too small. Under the molding conditions, the smoothness of the surface of the formed sheet is poor, or a molded piece having a predetermined size cannot be obtained. (Example 38) 50% by volume of polyamine 6 resin (PA6A), 40% by volume of flaky graphite (GrA) as thermal conductive filler (B1), and 10 parts by volume of dimer acid thermoplastic resin (C21) % was supplied to the main hopper of the same twin-screw extruder as in Example 1, and melt-kneaded at 260 °C. Then, the melt kneaded material was extruded into a strand shape and cooled and solidified, and then cut into pellets 39 321746 201035204 to obtain a resin composition. After the obtained resin composition was sufficiently dried, the result was i58 g/10 min after measuring MFR under conditions of 27 (TC, load of 100 kg). The same injection molding machine as that used in Example 1 was used, and the cylinder temperature was 270°. C. The mold temperature was 80 ° C, the injection time was 2 sec, and the cooling time was 10 seconds. The resin composition was injection-molded and injection-molded into the above-mentioned strip sample. The evaluation results are shown in Table 4. In the injection molding operation, no volatilized gas was observed. (Examples 39 to 56, Comparative Examples 27 to 40) Compared with Example 38, the thermoplastic resin (4), the thermally conductive filler (B1), and the dimer acid were used. The thermoplastic resin ((2), other fillers, and other plasticizers were changed to the types and amounts shown in Table 4, except that the same procedure as in Example 38 was carried out to obtain a resin composition. The material is subjected to injection molding, and various physical properties are measured. At this time, the side feeder supplies the weaving-shaped filler, and after the main feed hopper === the outer filler, the solid-melt is mixed. The core ~ except the sound '% Examples 38 to 46 and Comparative Examples 27 to 34 Wheat drill 4, Examples 47 $ u Γ estimation results shown in Table 4-56, Comparative Examples 35 to 40 The evaluation results are shown in Table 5.321746 40 201 035 204 [Table 4]

導熱率 W/(m-K) C4 a s a 8 8 in ο s ?§ P〇 衝艾擊式值 4 a a s s ΪΖ s σ> 〇> O) 〇> ΙΟ C5 CO CO 弩曲 彈性率 CO r— ο CM 寸 CO - 8 iti a s a 弯曲 強度 £ s s s σ> s ο s 8 s δ 04 u> s s s MFR g/1(Vnin s s CM § CVJ ts CM s a e\J 8 CD S s ο 〇 s ΙΑ s CO s 8 δ 8 s 8 8 r- 8 τ— 8 T— 8 δ 8 1 1 δ 产 8 eg § s P 〇 s CM S CM s CM s CM S CM s CM S CM s esj s CM s CSI § g CM o OJ o o 射出成形條件 P s δ S S S 8 S S s s δ 8 δ 8 s s δ P o K S OJ s CM s CM s CM S CM 异 CM § CM s CM s Oi 8 CM S CSJ s eg s CM § § § 混練 溫度 P s CM s CM s CM s CM s CM S C4 § S CJ s 04 s 04 S CM s CSI δ CM S CM 1 1 尋 樹脂組成物之原料 其他 可塑劑 求 無 1 t I 1 1 1 1 1 1 〇 1 1 1 1 1 1 種類 l 1 1 1 1 1 1 1 1 里 1 1 1 1 1 1 其他填 充材 艎積% 1 I 1 1 1 1 1 1 1 1 J 1 1 1 1 1 種類] 1 1 1 1 1 1 1 1 1 1 1 1 } 1 1 1 二聚酸系熱塑性 樹脂(C2) 體積% o o in in o u> ! 1 1 eo I to ΙΟ u> 1 CO 1 1種類 s § S 〇 a o a ϋ i 1 1 S 1 § s S 1 o 1 導熱?B?充村 體積X s § § 5 § ? § i § 5 8 40/20 8 8 s 8 種類j i o 〇 -s o S 1 % 〇 1 'S 1 ί % GrA/GrCF z CD 1 % E 醴積% s s in lg s s s s [〇 S s ιο CM 9 |種類| PA6A PA6B 1 Γ PA6B 1 PA6B PA6B [PA6B 1 PA6A 1 PA68 I PA6B 1 PA6B PA6B ! | PA6B ΡΑ6Β PA6B PA6B PA6B PA6B 實施例38 1實施例39 1 「實施例40 1 |實施例41 I |實施例42 1 1實施例43 1 1比較例27 1 |比較例28 I i比較例29 1 |比較例30 1 | tb較例31 I |實施例44 1 1實施例45 1 |實施例46 1 Γ比較例32 1 1比較例33 I 厂比較例34 1 41 321746 201035204 [表5] 導熱率 W/(m-K) - - - Oj CM CSl - - - - - CM CM 衝艾擊式值 J/m 3 a 5? s s CO !? n 9 S3 s S Si 00 彎曲 彈性率 GPa IA iri in 00 CO 00 σ> CO <0 00 CM s n 00 S QO CO cr> O) 2 彎曲 強度 MPa S S 8 5 s s s δ a> S CnJ S s 3 s MFR g/iQrrin § s o s K s s 8 S 卜 L£> Si s 8 S s 8 s s s 8 8 s s S s S s 8 8 P i g CM § 1 s CM 1 R CM g CM I ? CM I I 9 CM s es CM S CM 射出成形條件 模具 溫度 P s s S s s s δ δ s s s s s s 8 s 汽缸 溫度 P i I i I 3 CM 1 〇 o I i 1 i i C»i g CSf g ex 混練 溫度 P I 1 i ? OJ # CNJ s OJ esi I i 1 I % 240 R CM 〇 r CM 樹脂組成物之原料 其他 可塑劑 次 1 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 膝 想 1 i i t ( l 1 1 1 f 1 / } 1 1 1 其他填 充材 趙積》 1 o o o If) \ 1 1 t o 1 IT) o 1 1 1 種類 1 〇 σ 〇 〇 1 1 1 1 o 1 σ 〇 1 1 1 二聚樹酸溫?性 體積X o o to in o o s s o o 1 t 1 f 1 t 種類ί 〇 s § SI 〇 § s s § 〇 o 1 1 1 1 1 導熱a?充材 體積X 8 s S s s 导 s s s δ s s s § s s 種類 ALOB ALOB ALOB ALOB ALOB i MgO MgCO ZnO 1 ALOB ALOB ALOB ALOB ALOB 1 MgCO ZnO 熱塑(s_ 體積X | o s s s s s o s s in o s s s 1種類| PA6B PA6B 1 PA6B PA6B I PA6B 1 PA6B I | PA6B I 1 PA6B I PA6B 1 PA6B PA6B PA6B 1 PA6B PA6B PA6曰 PA6B 實施例47 I 1實施例48 I |實施例49 I |實施例50 I |實施例51 I 實施例52 實施例53 實施例54 |實施例55 I 實施例56 比較例35 比較例36 丨比較例37 1比較例38 1比較例39 i比較例40 1 42 321746 201035204 實施例38至56由於二聚酸系熱塑性樹脂(C2)發揮做 為可塑劑之機能,故MFR值大而成形性優良。相對地,比 較例27至30及比較例32至40由於未調配二聚酸系熱塑 > 性樹脂(C2)或調配量過少,故相較於二聚酸系熱塑性樹脂 (C2)之調配量為適當量且其他條件相同的各實施例,MFR 值較小,而成形性較差。特別是,實施例44至46及比較 例32至34皆為調配有大量的填充材(B)者,但實施例44 至46係因調配預定量之二聚酸系熱塑性樹脂(C2),而可較 〇 比較例32至34更使成形溫度降低。比較例31係調配市售 之可塑劑者。此時,雖然MFR值高而成形性優良,但在進 行熔融混練時可塑劑揮發,且成形體之機械性能較實施例 更差。 【圖式簡單說明】無 【主要元件符號說明】無 〇 43 321746Thermal conductivity W/(mK) C4 asa 8 8 in ο § P 〇 艾 艾 4 4 aass ΪΖ s σ> 〇> O) 〇> ΙΟ C5 CO CO 弹性 Flexibility CO r— Inch CO - 8 iti asa bending strength £ sss σ > s ο s 8 s δ 04 u> sss MFR g/1 (Vnin ss CM § CVJ ts CM sae\J 8 CD S s ο 〇s ΙΑ s CO s 8 δ 8 s 8 8 r- 8 τ— 8 T— 8 δ 8 1 1 δ production 8 eg § s P 〇s CM S CM s CM s CM S CM s CM S CM s esj s CM s CSI § g CM o OJ Oo Injection molding conditions P s δ SSS 8 SS ss δ 8 δ 8 ss δ P o KS OJ s CM s CM s CM S CM Imm § CM s CM s Oi 8 CM S CSJ s eg s CM § § § Mixing temperature P s CM s CM s CM s CM s CM S C4 § S CJ s 04 s 04 S CM s CSI δ CM S CM 1 1 Raw materials for resin composition Other plasticizers without 1 t I 1 1 1 1 1 1 〇1 1 1 1 1 1 Type l 1 1 1 1 1 1 1 1 Lane 1 1 1 1 1 1 Other filler material accumulation % 1 I 1 1 1 1 1 1 1 1 J 1 1 1 1 1 Type] 1 1 1 1 1 1 1 1 1 1 1 1 } 1 1 1 Dimer acid-based thermoplastic resin (C2) vol% oo in in o u> ! 1 1 eo I to ΙΟ u> 1 CO 1 1 kind s § S 〇aoa ϋ i 1 1 S 1 § s S 1 o 1 Heat conduction? B? Filling village volume X s § § 5 § ? § i § 5 8 40 /20 8 8 s 8 Type jio 〇-so S 1 % 〇1 'S 1 ί % GrA/GrCF z CD 1 % E 醴s % ss in lg ssss [〇S s ιο CM 9 | Type | PA6A PA6B 1 Γ PA6B 1 PA6B PA6B [PA6B 1 PA6A 1 PA68 I PA6B 1 PA6B PA6B ! | PA6B ΡΑ6Β PA6B PA6B PA6B PA6B Example 38 1 Example 39 1 "Example 40 1 | Example 41 I | Example 42 1 1 Example 43 1 1 Comparative Example 27 1 | Comparative Example 28 I i Comparative Example 29 1 | Comparative Example 30 1 | tb Comparative Example 31 I | Example 44 1 1 Example 45 1 | Example 46 1 Γ Comparative Example 32 1 1 Comparative Example 33 I Plant Comparative Example 34 1 41 321746 201035204 [Table 5] Thermal conductivity W/(mK) - - - Oj CM CSl - - - - - CM CM Chong Ai type J/m 3 a 5? ss CO !? n 9 S3 s S Si 00 Bending elastic modulus GPa IA iri in 00 CO 00 σ> CO <0 00 CM sn 00 S QO CO cr> O) 2 Bending strength MPa SS 8 5 sss δ a> S CnJ S s 3 s MFR g/iQrrin § sos K ss 8 S 卜L£> Si s 8 S s 8 sss 8 8 ss S s S s 8 8 P ig CM § 1 s CM 1 R CM g CM I ? CM II 9 CM s es CM S CM Injection molding conditions Mold temperature P ss S sss δ δ ssssss 8 s Cylinder temperature P i I i I 3 CM 1 〇o I i 1 ii C»ig CSf g ex Mixing temperature PI 1 i ? OJ # CNJ s OJ esi I i 1 I % 240 R CM 〇r CM Raw material of resin composition Other plasticizer 1 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 Knee think 1 iit ( l 1 1 1 f 1 / } 1 1 1 Other fillers Zhao 1) 1 ooo If) \ 1 1 to 1 IT) o 1 1 1 Type 1 〇σ 〇〇1 1 1 1 o 1 σ 〇1 1 1 Dimeric acid temperature X oo to in oossoo 1 t 1 f 1 t Type ί 〇s § SI 〇§ ss § 〇o 1 1 1 1 1 Thermal conductivity a? Filling volume X 8 s S ss Leading sss δ sss § ss Type ALOB ALOB ALOB ALOB ALOB i MgO MgCO ZnO 1 ALOB ALOB ALOB ALOB ALOB 1 MgCO ZnO thermoplastic (s_ volume X | osssssoss in Osss 1 type | PA6B PA6B 1 PA6B PA6B I PA6B 1 PA6B I | PA6B I 1 PA6B I PA6B 1 PA6B PA6B PA6B 1 PA6B PA6B PA6曰PA6B Example 47 I 1 Example 48 I | Example 49 I | 50 I | Example 51 I Example 52 Example 53 Example 54 | Example 55 I Example 56 Comparative Example 35 Comparative Example 36 丨Comparative Example 37 1 Comparative Example 38 1 Comparative Example 39 i Comparative Example 40 1 42 321746 201035204 In Examples 38 to 56, since the dimer acid-based thermoplastic resin (C2) functions as a plasticizer, the MFR value is large and the formability is excellent. In contrast, Comparative Examples 27 to 30 and Comparative Examples 32 to 40 were prepared in comparison with the dimer acid-based thermoplastic resin (C2) because the dimer acid-based thermoplastic resin (C2) was not formulated or the amount of the compound was too small. In the examples in which the amount is an appropriate amount and the other conditions are the same, the MFR value is small and the formability is poor. In particular, Examples 44 to 46 and Comparative Examples 32 to 34 were all formulated with a large amount of filler (B), but Examples 44 to 46 were formulated with a predetermined amount of dimer acid-based thermoplastic resin (C2). The forming temperature can be lowered more than Comparative Examples 32 to 34. Comparative Example 31 was formulated with a commercially available plasticizer. At this time, although the MFR value is high and the formability is excellent, the plasticizer volatilizes during melt-kneading, and the mechanical properties of the molded body are worse than those of the examples. [Simple diagram description] None [Main component symbol description] None 〇 43 321746

Claims (1)

201035204 七、申請專利範圍: - 1.種$知組成物’係含有熱塑性樹脂(a)、填充材(B)、 及預疋量之熔融黏度降低劑(C),前述預定量之熔融黏 度降低劑(C)係下述⑷及⑻之任一者: (a) 炫融黏度降低劑(C)係多官能性稀丙基化合物 (C1) ’且相對於熱塑性樹脂(A)與填充材(B)之合計100 質量份,多官能性烯丙基化合物(C1)之含量係3至20 質量份; (b) 溶融黏度降低劑(C)係二聚酸系熱塑性樹脂(C2), 且相對於熱塑性樹脂(A)與填充材(B)之合計體積 份,二聚酸系熱塑性樹脂(C 2)之含量係1 〇至4 5體積份。 2·如申請專利範圍第1項之樹脂組成物,其中,多官能性 烯丙基化合物(C1)係在骨架中具有異氰脲酸酯之化合 物。 3. 如申請專利範圍第1項之樹脂組成物,其中,多官能性 烯丙基化合物(C1)係由下述式(i)所示之一級胺化合物 (D)、與具有烯丙基及環氧丙基之多官能性化合物(E) 反應而得之烯丙基化合物: R-(NH2)„ (i) 在此’ n=l至4,R表示芳香族系或脂肪族系之1至4 取代基。 4. 如申請專利範圍第3項之樹脂組成物,其中,具有烯丙 基及環氧丙基之多官能性化合物(E)係在骨架中具有異 氰脲酸酯之化合物。 321746 201035204 、 ) 5.如申請專利範圍第2項或第4項之樹脂組成物,其中, ‘在骨架中具有異氰脲酸酯之化合物係單環氧丙基二烯 丙基異亂腺酸酉旨。 6. 如申請專利範圍第1項之樹脂組成物,其中,二聚酸系 ,熱塑性樹脂(C2)係聚醯胺樹脂及/或聚酯樹脂。 7. 如申請專利範圍第1項之樹脂組成物,其中,填充材(B) 係具有10W/(m· K)以上之導熱率之導熱性填充材(μ)。 8. 如申請專利範圍第7項之樹脂組成物’其中,熱塑性樹 Θ 脂(A)與導熱性填充材(B1)之體積比(A/B1)係20/80 至 95/5。 9. 如申請專利範圍第7項之樹脂組成物,其中,導熱性填 充材(B1)係從平均粒徑為1至3〇〇 之鱗片狀石墨、 平均纖維徑為1至SOvm且平均纖維長為1至2〇mm之 石墨化碳纖維、具有六方晶系結晶構造之平均粒徑為工 至200 # m之鱗片狀氮化獨、平均粒徑為〇. 5至以m ❹ 之氧化鋁、平均粒徑為0. 5至150#m之氧化鎂、平均 粒徑為0. 5至150//m之碳酸鎂、及平均粒徑為〇. 5至 150# m之氧化鋅中選出之至少一種。 10. 如申請專利範圍第1項之樹脂組成物,其中,熱塑性樹 脂(A)係聚醯胺樹脂。 11. 一種成形體,係將申請專利範圍第丨項至第1〇項中任 一項之樹脂組成物成形而得者。 12. —種成形體,係將申請專利範圍第丨項至第1〇項中任 一項之樹脂組成物成形後照射放射線而得者。 321746 45 201035204 四、指定代表圖··本案無圖式 - (一)本案指定代表圖為:第()圖。 (二)本代表圖之元件符號簡單說明: 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 本案無代表化學式201035204 VII. Patent application scope: - 1. The composition of the known composition contains a thermoplastic resin (a), a filler (B), and a pre-tanning amount of a melt viscosity reducing agent (C), and the aforementioned predetermined amount of melt viscosity is lowered. The agent (C) is any one of the following (4) and (8): (a) the viscous viscosity reducing agent (C) is a polyfunctional propyl compound (C1)' and is relative to the thermoplastic resin (A) and the filler ( B) a total of 100 parts by mass, the content of the polyfunctional allylic compound (C1) is 3 to 20 parts by mass; (b) the melt viscosity reducing agent (C) is a dimer acid thermoplastic resin (C2), and is relatively The content of the dimer acid-based thermoplastic resin (C 2 ) is from 1 Torr to 45 parts by volume based on the total volume of the thermoplastic resin (A) and the filler (B). 2. The resin composition of claim 1, wherein the polyfunctional allylic compound (C1) is a compound having an isocyanurate in the skeleton. 3. The resin composition of claim 1, wherein the polyfunctional allylic compound (C1) is a mono-amine compound (D) represented by the following formula (i), and has an allyl group and The allyl compound obtained by reacting the polyfunctional compound (E) of the epoxy group: R-(NH2) „ (i) Here, 'n=l to 4, R means an aromatic or aliphatic system 1 4. A resin composition according to claim 3, wherein the polyfunctional compound (E) having an allyl group and a propylene group is a compound having an isocyanurate in the skeleton. 321746 201035204, ) 5. The resin composition of claim 2 or 4, wherein the compound having isocyanurate in the skeleton is a monoepoxypropyl diallyl heterochromic gland 6. The resin composition of claim 1, wherein the dimer acid system, the thermoplastic resin (C2) is a polyamide resin and/or a polyester resin. The resin composition of the item, wherein the filler (B) is a thermal conductive filler having a thermal conductivity of 10 W/(m·K) or more (μ 8. The resin composition of claim 7 wherein the volume ratio of the thermoplastic resin resin (A) to the thermal conductive filler (B1) (A/B1) is 20/80 to 95/5. 9. The resin composition of claim 7 wherein the thermally conductive filler (B1) is from flaky graphite having an average particle diameter of 1 to 3 Å, an average fiber diameter of 1 to SOvm, and an average fiber length. Graphitized carbon fiber of 1 to 2 mm, hexagonal crystal structure having an average particle diameter of scaly nitride of 200 # m, average particle diameter of 〇. 5 to m ❹ of alumina, average The magnesium oxide having a particle diameter of 0.5 to 150 #m, the magnesium oxide having an average particle diameter of 0.5 to 150 / / m, and at least one selected from the group consisting of zinc oxide having an average particle diameter of 5 to 150 # m. 10. The resin composition of claim 1, wherein the thermoplastic resin (A) is a polyamide resin. 11. A molded body, which is to be in any one of the claims 1-3 The resin composition of the article is formed by the molding. 12. The molded body is the resin of any one of the claims 1 to 1 After the formation of the object, the radiation is obtained. 321746 45 201035204 IV. Designation of the representative figure · This case has no schema - (1) The representative representative of the case is: (). (2) A brief description of the symbol of the representative figure : 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: This case does not represent a chemical formula. 3 3217463 321746
TW99101448A 2009-01-20 2010-01-20 Resin composition and shaped article comprising same TWI468453B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009009912 2009-01-20
JP2009248342 2009-10-29

Publications (2)

Publication Number Publication Date
TW201035204A true TW201035204A (en) 2010-10-01
TWI468453B TWI468453B (en) 2015-01-11

Family

ID=42355899

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99101448A TWI468453B (en) 2009-01-20 2010-01-20 Resin composition and shaped article comprising same

Country Status (4)

Country Link
JP (1) JP5686605B2 (en)
CN (2) CN103122140B (en)
TW (1) TWI468453B (en)
WO (1) WO2010084845A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017201172A (en) * 2016-04-27 2017-11-09 花王株式会社 fan
TWI660991B (en) * 2017-12-28 2019-06-01 邦泰複合材料股份有限公司 Plating high density plastic
TWI698409B (en) * 2015-08-26 2020-07-11 日商電化股份有限公司 Thermally conductive resin composition

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103140552B (en) 2010-09-30 2015-04-29 宇部兴产株式会社 Polyamide resin composition and molded article comprising the same
TWI588194B (en) * 2011-12-23 2017-06-21 奇美實業股份有限公司 Resin composite
TWI478974B (en) * 2011-12-23 2015-04-01 Chi Mei Corp Resin composite
KR101457016B1 (en) * 2011-12-30 2014-11-03 제일모직주식회사 Thermal conductive thermoplastic resin composition having excellent water-resistance and article using the same
JP5908739B2 (en) * 2012-02-01 2016-04-26 ユニチカ株式会社 Resin composition and molded body comprising the same
CN102661222A (en) * 2012-06-04 2012-09-12 韩金红 External horizontal-type fuel pump oil outlet tray, manufacturing process and impeller matched with oil outlet tray
JP6007610B2 (en) * 2012-06-20 2016-10-12 東洋紡株式会社 Thermally conductive resin composition
CN103205044A (en) * 2013-03-27 2013-07-17 江苏金聚合金材料有限公司 Silane grafted polyethylene thermally conductive composite material and preparation method and application thereof
JP6526939B2 (en) * 2013-06-14 2019-06-05 スターライト工業株式会社 Thermal conductive resin molding
JP2015023099A (en) * 2013-07-17 2015-02-02 大日本印刷株式会社 Method of manufacturing semiconductor light-emitting device, method of manufacturing molded body, electron beam curable resin composition, resin frame for reflector, and reflector
JP6094412B2 (en) * 2013-07-17 2017-03-15 大日本印刷株式会社 Semiconductor light emitting device manufacturing method, molded body manufacturing method, electron beam curable resin composition, reflector resin frame, and reflector
CN103589149B (en) * 2013-11-20 2016-06-29 湖南映宏新材料股份有限公司 Composite for supporting roller bearing seat and preparation method thereof
JP6436915B2 (en) * 2013-12-26 2018-12-12 ユニチカ株式会社 Flame retardant polyamide resin composition and molded article comprising the same
WO2015129100A1 (en) * 2014-02-25 2015-09-03 住友電気工業株式会社 Transparent polyamide resin composition, transparent polyamide resin crosslinked molded article
JP2017509762A (en) * 2014-04-01 2017-04-06 ディーエスエム アイピー アセッツ ビー.ブイ. Thermally conductive composition
CN103937177B (en) * 2014-04-19 2016-03-16 中山市永威新材料有限公司 A kind of high heat conduction modified plastics and preparation method thereof
JP6841588B2 (en) * 2014-10-31 2021-03-10 花王株式会社 Polyamide resin composition for damping material
CN104460903B (en) * 2014-12-03 2018-08-14 吉首大学 Notebook PC radiator
WO2016139826A1 (en) * 2015-03-02 2016-09-09 大阪ガスケミカル株式会社 Fluidity improver and polyamide resin composition containing same
JP6696283B2 (en) * 2015-04-28 2020-05-20 Tdk株式会社 Resin composition, resin sheet, cured resin and resin substrate
CN105385013A (en) * 2015-12-04 2016-03-09 太仓陶氏电气有限公司 Nonmetal radiator
US11352480B2 (en) 2016-03-18 2022-06-07 Ticona Llc Polyaryletherketone composition
KR101736667B1 (en) * 2016-05-16 2017-05-17 주식회사 소룩스 Lighting apparatus having heat dissipation plastic plate for insulation
KR101736668B1 (en) * 2016-05-30 2017-05-17 주식회사 소룩스 LED Lighting Apparatus For Radiation Area
WO2018216836A1 (en) * 2017-05-26 2018-11-29 주식회사 하이씨엔티 Thermally conductive insulation composition and heat sink made therefrom
US11118053B2 (en) 2018-03-09 2021-09-14 Ticona Llc Polyaryletherketone/polyarylene sulfide composition
EP4089069A4 (en) * 2020-02-28 2023-07-19 Osaka Gas Chemicals Co., Ltd. Resin composiiton and fluidity improvement method
CN117916319A (en) * 2021-09-01 2024-04-19 Ube株式会社 Polyamide resin composition
KR102412881B1 (en) * 2022-03-25 2022-06-24 에이펙스인텍 주식회사 Internal Box Assembly for Floor Sign Lamp and Manufacturing Method thereof
JP7391440B1 (en) 2023-06-23 2023-12-05 株式会社 サンエース resin composition

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912936A (en) * 1982-07-13 1984-01-23 Sumitomo Electric Ind Ltd Crosslinked polyamide resin composition
JPS61130358A (en) * 1984-11-30 1986-06-18 Tounen Sekiyu Kagaku Kk Radiation-resistant polyolefin composition
JPH0563116A (en) * 1991-02-12 1993-03-12 Toshiba Corp Resin-sealed semiconductor device
JPH0517683A (en) * 1991-07-10 1993-01-26 Mitsubishi Kasei Corp Polyamide resin composition
JPH0717683A (en) * 1993-06-30 1995-01-20 Sanwa Tekki Corp Lifting device of strut for climbing crane
JP3714506B2 (en) * 1997-06-17 2005-11-09 三井化学株式会社 High thermal conductive resin composition having excellent water resistance
JP3926794B2 (en) * 2001-09-27 2007-06-06 日本科学冶金株式会社 High thermal conductive resin composition and method for producing the same
JP2004203948A (en) * 2002-12-24 2004-07-22 Shikoku Chem Corp Polybutylene terephthalate resin composition
JP2005239972A (en) * 2004-02-27 2005-09-08 Mitsubishi Engineering Plastics Corp Polybutylene terephthalate resin composition for cross-linking by ionizing radiation
EP1867680A4 (en) * 2005-03-29 2013-10-30 Toray Industries Resin composition, molded article produced from the same, and processes for production of the composition and article
JP2007063359A (en) * 2005-08-30 2007-03-15 Sumitomo Electric Fine Polymer Inc Heat-resistant polylactic acid and method for producing the same
CN101296797A (en) * 2005-11-15 2008-10-29 东丽株式会社 Matte multilayer polyester film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI698409B (en) * 2015-08-26 2020-07-11 日商電化股份有限公司 Thermally conductive resin composition
JP2017201172A (en) * 2016-04-27 2017-11-09 花王株式会社 fan
TWI660991B (en) * 2017-12-28 2019-06-01 邦泰複合材料股份有限公司 Plating high density plastic

Also Published As

Publication number Publication date
CN102203191B (en) 2014-07-09
JP5686605B2 (en) 2015-03-18
JPWO2010084845A1 (en) 2012-07-19
WO2010084845A1 (en) 2010-07-29
CN102203191A (en) 2011-09-28
CN103122140B (en) 2015-07-22
CN103122140A (en) 2013-05-29
TWI468453B (en) 2015-01-11

Similar Documents

Publication Publication Date Title
TW201035204A (en) Resin composition and shaped article comprising same
JP5767809B2 (en) High thermal conductive resin molding
JP7305094B2 (en) Thermoplastic resin composition, resin molded product, method for producing plated resin molded product, and method for producing mobile electronic device parts
KR101731974B1 (en) Thermally conductive and electrically insulative polymer compositions containing a low thermally conductive filler and uses thereof
JP2013028661A (en) Resin composition, and molding formed thereof
US9023462B2 (en) Thermally conductive polymer composite material and an article comprising same
WO2013177850A1 (en) Resin composition with laser direct structuring function, preparation method thereof, and application of resin composition
JP5308859B2 (en) Highly light-resistant and heat-conductive resin molded product for lighting equipment
JP7234204B2 (en) Thermoplastic resin composition, molded article, method for producing thermoplastic resin composition, and method for producing plated molded article
JP2013001802A (en) Heat-conductive resin composition and molded body made of the same
WO2021193196A1 (en) Polyamide resin composition
JP5966931B2 (en) Flame retardant polyamide resin composition and molded article comprising the same
US8765858B2 (en) Polyphenylene sulfide resin composition with improved thermal conductivity and surface appearance and articles thereof
JP2007302831A (en) Thermoplastic resin composition and molded product
JP5908739B2 (en) Resin composition and molded body comprising the same
JP2010043229A (en) Thermally conductive resin composition and resin molding of the composition
KR101446707B1 (en) Electrically insulating and thermally conducting polymer compositions containing excellent dispersive filler, methods for preparing the same, and mold product using the same
KR101674242B1 (en) Thermoplastic Resine Composition Having Excellent EMI Shielding Property
KR20160117652A (en) Heat conductive polyamide resin composition and molded article using thereof
JP2013221095A (en) Resin composition and molded article comprising the same
TW201125923A (en) Polycarbonate resin composition
JP2014091771A (en) Resin composition and molded product formed from the same
TW201529722A (en) Anti-flaming polyamide resin composition and forming product of the same
TW201946952A (en) Polyimide resin composition
TW202307133A (en) Thermoplastic polyimide resin composition and molded item

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees