TW201020283A - Conductive polymer composite material and method for making the same - Google Patents

Conductive polymer composite material and method for making the same Download PDF

Info

Publication number
TW201020283A
TW201020283A TW97145549A TW97145549A TW201020283A TW 201020283 A TW201020283 A TW 201020283A TW 97145549 A TW97145549 A TW 97145549A TW 97145549 A TW97145549 A TW 97145549A TW 201020283 A TW201020283 A TW 201020283A
Authority
TW
Taiwan
Prior art keywords
polymer composite
conductive polymer
alumina
producing
acid
Prior art date
Application number
TW97145549A
Other languages
Chinese (zh)
Other versions
TWI381011B (en
Inventor
Fu-Su Yen
Cheng-Ho Chen
Meng-Yin Hsieh
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW97145549A priority Critical patent/TWI381011B/en
Publication of TW201020283A publication Critical patent/TW201020283A/en
Application granted granted Critical
Publication of TWI381011B publication Critical patent/TWI381011B/en

Links

Abstract

A conductive polymer composite material is disclosed. The conductive polymer composite material is synthesized by a stirring polymerization using a starting material of at least one monomer and a alumina flake nanoparticles, in which the alumina flake nanoparticles comprise purity of at least 90% of κ -alumina nanoparticles evenly dispersed in the polymer. The resultantly conductive polymer composite material can be applied on conductive paints, conductive films and electromagnetic interference (EMI) shields.

Description

201020283 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種導電性複合材料,特別是有關於 料 種添加/C相氧㈣m狀微粒之導電性高分子複合材 〇 【先前技術】 隨著電子產品科技發展曰新月異,電子產品朝向數位 化同頻化發展,然隨之而來便是電磁波干擾的問題。電 磁波干擾是—種電磁波雜訊,通常是由電腦、自動化電子 通訊系統、電視、行動電話及其他電子產品所產生,嚴重 的話會影響機械的正常運作。由於電磁波雜訊一般無法 在金屬殼體内傳導,加上目前產品研發趨勢皆朝向輕、薄、 紐、小的設計理念,而一般金屬材料質量較重,因此近年 來發展出導電性高分子複合材料。 高分子材料相對於其他材料而言,具有高度的設計自 由性、質輕、美觀、價廉等諸項優點。導電性高分子複合 材料可利用改質方法,使聚合物主鏈結構含有共輛雙鍵, 電子的移動而賦予材料導電性,因此又稱為本質 型導電性高分子(intdnsieaIIy eQndueting __ 複合材料’例如聚苯胺(pGlyaniHne ; pANI )。另—種方式, 則是將導電㈣,例如金粉、㈣、銅粉、㈣、錄粉、 故黑、碳纖維或鑛銀微粒…等,添加於高分子材料中以 増加向分子材料電荷轉移能力,使材料能迅速將電荷傳導 而達到導電效果,故又稱為填充型導電性高分子(add— 201020283 conducting polymer)複合材料 ° 此外,導電性高分子複合材料依其導電效果(或表面 電阻值)不同,又可區分為電磁波干擾的遮蔽材料或是靜 電消散材料(static dissipative material)。一般而言,表面 電阻值為105 Ω/□至ΙΟ12 Ω/□的導電性高分子複合材料 屬於靜電消散材料;而表面電阻值為l〇o q/□至1〇5 □的導電性高分子複合材料則屬於電磁波干擾的遮蔽材 料,一般可應用於導電塗料、導電薄臈及電磁波遮蔽等。 • 以本質型導電性聚苯胺複合材料為例,目前用來提升 導電度之導電材料多以金粉、銀粉、銅粉、鋁粉、鎳粉、 碳黑、碳纖維或鍍銀微粒…等為主,惟鮮少應用氧化鋁添 加於苯胺單體中以製得導電性聚苯胺,究其原因,實為氧 化鋁具有絕緣性,而氧化鋁於導電性聚苯胺的添加量愈 多,其導電度就愈低,例如Te〇h等人於2〇〇7年於材料文 摘(Materials Letters)第 61 期第 4947-4949 頁發表“製備 具有可控制導電度之聚苯胺_氧化鋁複合奈米纖維 ❹ (PreParation P〇lyaniline-Al2〇3 eomposite nanofibers with controllable conductivity) ’,一文中,其聚苯胺氧化 鋁複合奈米纖維之較佳導電度僅〇 I8 s/cm ,使得所製得之 聚苯胺-氧化鋁高分子複合材料在導電性高分子複合材料 方面的應用表現不佳。 有鑑於此,亟需提出一種導電性高分子複合材料,藉 以改善添加氧化鋁之導電性高分子複合材料的導電性。 【發明内容】 201020283 、因此’本發明的觀點之—就是在提供—種導電性高分 子複合材料,其係利用氧化紹奈米片狀微粒與至少一單體 混合之起始物’進行原位(in_situ) _聚合反應,以製得 導電性高分子複合材料,其中氧化銘奈米片狀微粒至少包 3純度至少9G重量百分比之^相氧仙奈米片狀微粒並均 勻刀布於上述單體構成之聚合物中,藉此製備出具高導電 度之高分子複合材料。而所得之導電性高分子複合材料可 m用於導電塗料、導電薄膜及電磁波遮蔽等。 • «本發明之上述觀點,提出一種導電性高分子複合 材料。此導電性高分子複合材料包括聚合物以及均勾分散 其中之氧化銘奈米片狀微粒,其中聚合物與氧化銘奈米片 狀微粒之重量比可例如為1:1至1:〇〇1,氧化铭奈米片 狀微粒之平均厚度為20奈米至5〇奈米、平均長度與平均 寬度均為200奈米至1〇〇〇奈米,且氧化铭奈米片狀微粒至 少包含純度至少90重量百分比之&相氧化链奈米片狀微 粒,使此導電性高分子複合材料之導電度為5 S/cm至200 s/ 參 cm。 依照本發明一較佳實施例,上述之氧化銘奈米片狀微 更了 b括例如γ相氧化銘奈米微粒、0相氧化銘奈米微 粒、必相氧化鋁奈米微粒或上述之任意組合。 依照本發明一較佳實施例,上述之單體可例如為苯胺 單體。 根據本發明之其他觀點,更提出一種導電性高分子複 j材料之製造方法。首先,提供一起始物,其中此起始物 可包括至少一單體、氧化鋁奈米片狀微粒及一質子酸。接 201020283201020283 IX. Description of the Invention: [Technical Field] The present invention relates to a conductive composite material, in particular to a conductive polymer composite material in which a seed crystal is added/C phase oxygen (tetra) m-shaped particles 〇 [Prior Art] With the rapid development of electronic products technology, electronic products are moving toward digitalization and the same frequency, which is followed by electromagnetic interference. Electromagnetic wave interference is an electromagnetic wave noise that is usually generated by computers, automated electronic communication systems, televisions, mobile phones, and other electronic products. In severe cases, it affects the normal operation of machinery. Since electromagnetic wave noise is generally not transmitted in the metal casing, and the current product development trend is toward the light, thin, new, and small design concept, and the general metal material quality is heavier, so in recent years, the development of conductive polymer compound material. Compared with other materials, polymer materials have a high degree of design freedom, light weight, beautiful appearance, and low cost. The conductive polymer composite material can be modified by a method to make the polymer main chain structure contain a common double bond, and the electrons move to impart conductivity to the material. Therefore, it is also called an intrinsic conductive polymer (intdnsieaIIy eQndueting __composite material' For example, polyaniline (pGlyaniHne; pANI). Another way is to add conductive (four), such as gold powder, (four), copper powder, (four), recording powder, black, carbon fiber or mineral silver particles, etc., in the polymer material. The charge-transfer ability of the molecular material is increased, so that the material can conduct the charge quickly to achieve the conductive effect, so it is also called a filled conductive polymer (add-201020283 conducting polymer) composite material. In addition, the conductive polymer composite material The conductive effect (or surface resistance value) is different, and can be distinguished as a shielding material for electromagnetic wave interference or a static dissipative material. Generally, a surface resistance value is 105 Ω/□ to ΙΟ12 Ω/□. The polymer composite material is a static dissipative material; and the surface resistance value is l〇oq/□ to 1〇5 □. The sub-composite material is a shielding material for electromagnetic interference, and can be generally applied to conductive coatings, conductive thin enamels, electromagnetic wave shielding, etc. • Taking an intrinsic conductive polyaniline composite material as an example, the conductive materials currently used for improving conductivity are mostly Gold powder, silver powder, copper powder, aluminum powder, nickel powder, carbon black, carbon fiber or silver-plated particles, etc., mainly using less alumina to be added to the aniline monomer to produce conductive polyaniline, the reason, In fact, alumina is insulating, and the more the amount of alumina added to the conductive polyaniline, the lower the conductivity. For example, Te〇h et al. at the age of 2-7 in Materials Letters 61 Preliminary publication 4947-4949, "Preparation P〇lyaniline-Al2〇3 eomposite nanofibers with controllable conductivity", in which the polyaniline alumina The preferred conductivity of the composite nanofiber is only 8I8 s/cm, so that the obtained polyaniline-alumina polymer composite material is in the aspect of the conductive polymer composite material. In view of the above, it is urgent to provide a conductive polymer composite material for improving the conductivity of a conductive polymer composite material to which alumina is added. [Summary of the Invention] 201020283, therefore, the viewpoint of the present invention- The invention provides a conductive polymer composite material which is in situ (in_situ) polymerization by using a starting material of oxidized Schneider flake particles mixed with at least one monomer to obtain a conductive polymer. The composite material, wherein the oxidized Mingnai flake particles comprise at least 3 phase oxygen oxide flaky particles having a purity of at least 9 G% and uniformly coated in the polymer composed of the above monomers, thereby preparing a high conductivity Polymer composite material. The obtained conductive polymer composite material can be used for conductive coatings, conductive films, and electromagnetic wave shielding. • The above viewpoint of the present invention proposes a conductive polymer composite material. The conductive polymer composite material comprises a polymer and oxidized Mingnai flake particles uniformly dispersed therein, wherein the weight ratio of the polymer to the oxidized Mingnai flake particles can be, for example, 1:1 to 1: 〇〇1 The average thickness of the oxidized Mingnai flaky particles is 20 nm to 5 Å nanometer, the average length and the average width are both 200 nm to 1 Å nanometer, and the oxidized Mingnai flaky particles contain at least purity. At least 90% by weight of the <phase oxidized chain nanosheet-like particles, the conductive polymer composite has a conductivity of 5 S/cm to 200 s/cm. According to a preferred embodiment of the present invention, the above-mentioned oxidized Ming Nai sheet is slightly b-shaped, for example, γ-phase oxidized Ming Nano particles, 0-phase oxidized Ming Nano particles, phase-phase alumina nanoparticles or any of the above. combination. According to a preferred embodiment of the present invention, the above monomer may be, for example, an aniline monomer. According to another aspect of the present invention, a method of producing a conductive polymer composite j material is further proposed. First, a starting material is provided, wherein the starting material may include at least one monomer, alumina nano-flaky particles, and a protonic acid. Connected 201020283

著’進行一原位攪拌聚合反應,其係添加一催化劑於上述 起始物中並持續擾拌此起始物1小時至4小時,以獲得導 電陡呵分子複合材料,其中上述氧化鋁奈米片狀微粒於聚 5物之含量可例如為i重量百分比至1〇〇重量百分比,氧 化銘奈米片狀微粒之平均厚度可例如為20奈米至50奈 米、平均長度與平均寬度均為2〇〇奈米至1〇〇〇奈米,此氧 化鋁奈米片狀微粒可包括純度至少90重量百分比之π相氧 化鋁奈米片狀微粒,且此導電性高分子複合材料之導電度 可為 5 S/cm 至 200 s/cm。 /依照本發明_較佳實施例,在±述原讀拌聚合反應 之後,更可進行一塗佈製程,其係將上述導電性高分子複 合材料分散於一有機溶劑中以形成一塗料後,進行一塗佈 製程,使此塗料於一底材之一表面形成一導電薄膜。 ㈤應用本發明之導電性高分子複合材料,其係利用苯胺 早體於聚合時能均句包覆氧化紹奈米片狀微粒,藉此克服 習知添加氧化銘於聚合物時,其導電度偏低的缺點。 【實施方式】 承前所述,本發明提供一種導電性高分子複合材料, 其係利用氧化銘奈米片狀微粒與至少—單體混合之起始 物,進行原位(in_SitU) _聚合反應,以製得導電性高分 子複:材料,#中氧化鋁奈米片狀微粒至少包含純度至少 9〇重量百分比之/c相氧化銘奈米片狀微粒並均勻分布於上 述單體構成之聚合物中。 ' 本發明在此所指之 原位添加”係指於聚合物合成製 8 201020283 程中同步添加純度至少9G重量百分比之以目氧化銘奈米片 狀微粒,使/C相氧化鋁奈米片狀微粒得以均勻分布於聚合 物中’不會產生聚集,藉此解決添加的奈米級氧化物容易 聚集、與聚合物之結合性差、需經後續改質製程等缺點。 詳S之,首先,提供一起始物,其中此起始物可包括 i~不限於至y單體、氧化奈米片狀微粒及—質子酸。 在一實施例中,此氧化鋁奈米片狀微粒之平均厚度以例如 2〇奈米i 5G纟米為較佳’而其平均長度與平均寬度均以 ® 200奈米至1000奈米為較佳。將上述氧化紹奈米片狀微粒 添加並均勾混合至含有單體及質子酸中,以利於後續進行 原位授拌聚合反應。在一較佳實施例中,上述之氧化鋁奈 米片狀微粒至少包含純度至少9〇重量百分比之^相氧化鋁 奈米片狀微粒,且更可包括其他氧化鋁的過渡相’例如7 相氧化鋁奈米微粒、0相氧化鋁奈米微粒、少相氧化鋁奈 米微粒或上述之任意組合。 在一較佳實施例中,上述純度至少9〇重量百分比之冗 ® 相氧化鋁奈米片狀微粒係利用例如三水鋁石(Gibbsite )直 接經熱處理步驟而得。另一種方式,可利用習知方法將三 水铭石處理為%相氧化結,經整形微粒化,再經熱處理步 驟而獲得。在-實施例中,上述熱處理步驟可於例如i _ C至1200 C之溫度進行,以獲得純度至少9〇重量百分比之 疋相氧化鋁奈米片狀微粒,且此&相氧化鋁奈米片狀微粒 具有片狀結構,其平均長度與平均寬度均為2〇〇奈米至 1000奈米。 值得一提的是’氧化鋁是一種常用的陶瓷材料,尤其 9 201020283 材料具備有高表面積’低的燒結溫度增 材、=二米級氧化銘粉體可以用在做燒結成奈米級塊 為現代工鞏、盒科上’目前應用領域越來越廣’儼然成 〃不可或缺的原料。由於聚笨胺為本質型導電性 =微粒可:!苯胺單體於聚合時能均句包覆氧化銘奈米 二=’藉此可克服習知氧化銘因其絕緣性而導致添加 於聚0物時導電度不佳的缺點。 在實施例中,上述之聚合物一般可由至少一單體聚 合而成’而此單體於後續原位授掉聚合反應中,與氧化链 奈”狀微粒形成導電性高分子複合材料。在一實施例 2,早體可例如苯胺單體。由於聚苯胺具有較佳的環境穩 定性、成本低廉、容易合成及量產’因此廣泛應用於導電 性高分子複合材料及其應用於電子相關產業。惟本發明可 使用之聚合物並不限於聚苯胺,在不脫離本發明之精神和 範圍内,亦可應用其他一或多種單體形成其他聚合物。此 外’在-實施射’上述之質子酸可包括但不限於鹽酸、 確酸、碌酸、硫酸、醋酸、十二院基苯績酸(Dodecyibenzene sulfonic acid ; DBSA)、甲苯磺酸(T〇luenesulf〇nicacid)、 本績酸(BeZene sulfonic acid )、樟腦磺酸(―咖^ sulfonic acid)、或曱基磺酸(Methylsulf〇nicacid)等。 接著,進行一原位攪拌聚合反應,其係添加一氧化劑 於上述之起始物中,例如,並持續攪拌此起始物於例如〇 C至50 C之溫度進行例如!小時至4小時,藉以獲得導電 性尚分子複合材料,然而原位攪拌聚合反應於例如2〇c>c至 30之溫度進行例如2小時為較佳。聚合物與氧化鋁奈米片 201020283 狀微粒之重量比可例如為1 : 1至1 : 0.01,且所得之導電 性高分子複合材料之導電度為50 S/cm至100 s/cm。 本發明此處所指之導電度為將電流通過1 cm 2載面 積、長1 cm之液柱時電阻之倒數,單位為s/cm或1/Ω cm。 在一實施例中,氧化劑可例如過硫酸胺(ammonium persulfate ; APS ; (NH4)2S208)或其水溶液,惟本發明並不 限於此’舉凡過硫酸納(sodium persulfate,Na2S208 )或其 水溶液、過硫酸鉀(p〇tassiuni persulfate,K2S2〇8)或其水Carrying out an in-situ agitation polymerization reaction by adding a catalyst to the above starting materials and continuously disturbing the starting material for 1 hour to 4 hours to obtain a conductive steep molecular composite material, wherein the above alumina nanoparticles The content of the flaky particles in the poly 5 may be, for example, from 1% by weight to 1% by weight, and the average thickness of the oxidized Mingna flaky particles may be, for example, 20 nm to 50 nm, and the average length and the average width are both 2 〇〇 nanometer to 1 〇〇〇 nanometer, the alumina nano flaky particles may include π phase alumina nano flaky particles having a purity of at least 90% by weight, and the conductivity of the conductive polymer composite material It can be from 5 S/cm to 200 s/cm. / In accordance with the present invention, the coating process is further carried out after dispersing the conductive polymer composite in an organic solvent to form a coating. A coating process is performed to form a conductive film on one surface of a substrate. (5) Applying the conductive polymer composite material of the present invention, which utilizes an aniline precursor to coat the oxidized saueroid flake particles in a uniform manner, thereby overcoming the conductivity of the conventionally added oxidized polymer. The disadvantage of being low. [Embodiment] As described above, the present invention provides a conductive polymer composite material in which an in-situ (in_SitU)_polymerization reaction is carried out by using a starting material in which oxidized Mingnai flake particles and at least a monomer are mixed. In order to obtain a conductive polymer complex: material, the alumina nano-flaky particles of # at least contain at least 9 〇 by weight of /c phase oxidized Mingnai flake particles and uniformly distributed in the polymer composed of the above monomers in. 'In situ addition as used herein refers to the simultaneous addition of at least 9G by weight of the oxidized Mingnai flake particles to the /C phase alumina nanosheets during the polymer synthesis process 8 201020283. The particles are evenly distributed in the polymer', and no aggregation occurs, thereby solving the disadvantages that the added nano-oxides are easily aggregated, have poor adhesion to the polymer, and require subsequent modification processes. Providing a starting material, wherein the starting material may include i~ not limited to the y monomer, the oxidized nano flaky particles, and the protonic acid. In one embodiment, the average thickness of the alumina nano flaky particles is For example, 2 〇 nano i 5G glutinous rice is preferred 'the average length and average width are preferably from 200 nm to 1000 nm. The above-mentioned oxidized slag flaky particles are added and uniformly mixed to contain The monomer and the protonic acid are used to facilitate the subsequent in-situ polymerization. In a preferred embodiment, the alumina nanosheet particles comprise at least 9% by weight of the phase of alumina nanoparticles. Flaky particles, and more Other transition phases of alumina, such as 7-phase alumina nanoparticles, 0-phase alumina nanoparticles, oligo-alumina nanoparticles, or any combination thereof. In a preferred embodiment, the purity is at least 9 The amount of 〇 〇 ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® The knot is obtained by shaping micronization and then subjected to a heat treatment step. In the embodiment, the heat treatment step can be carried out at a temperature of, for example, i _ C to 1200 C to obtain a ruthenium phase of the ruthenium alumina having a purity of at least 9 〇. Rice flake particles, and the & phase alumina nano-flaky particles have a sheet-like structure with an average length and an average width of 2 〇〇 to 1000 nm. It is worth mentioning that 'alumina is a kind Commonly used ceramic materials, especially 9 201020283 The material has a high surface area 'low sintering temperature additive, = two-meter oxidation powder can be used for sintering into nano-blocks for modern Gonggong, box science' The field of application is becoming more and more extensive. It is an indispensable raw material. Because polyphenylamine is intrinsic conductivity = microparticles can be: aniline monomer can be coated with oxide in the polymerization. It can overcome the disadvantage that the conventional oxidation is caused by poor insulation due to its insulating property. In the embodiment, the above polymer can generally be polymerized from at least one monomer, and the monomer is subsequently In the in-situ polymerization reaction, a conductive polymer composite material is formed with the oxidized chain-like particles. In an embodiment 2, the precursor may be, for example, an aniline monomer. Polyaniline is widely used in conductive polymer composites and in electronic related industries because of its good environmental stability, low cost, and ease of synthesis and mass production. However, the polymer which can be used in the present invention is not limited to polyaniline, and other one or more monomers may be used to form other polymers without departing from the spirit and scope of the invention. In addition, the above-mentioned protonic acids may include, but are not limited to, hydrochloric acid, acid, acid, sulfuric acid, acetic acid, dodecyibenzene sulfonic acid (DBSA), toluenesulfonic acid (T〇luenesulf). 〇nicacid), BeZene sulfonic acid, camphorsulfonic acid, or ethyl sulfonate. Next, an in-situ agitation polymerization is carried out by adding an oxidizing agent to the above starting materials, for example, and continuously stirring the starting material at a temperature of, for example, 〇C to 50 C for example! It is preferred to carry out the in-situ agitation polymerization at a temperature of, for example, 2 〇c > c to 30, for example, 2 hours, in an hour to 4 hours. The weight ratio of the polymer to the alumina nanosheet 201020283 may be, for example, 1:1 to 1:0.01, and the conductive polymer composite obtained has a conductivity of 50 S/cm to 100 s/cm. The conductivity referred to herein is the reciprocal of the resistance when passing a current through a liquid column of 1 cm 2 and a length of 1 cm, in units of s/cm or 1/Ω cm. In one embodiment, the oxidizing agent may be, for example, ammonium persulfate (APS; (NH4) 2S208) or an aqueous solution thereof, but the present invention is not limited thereto, and sodium persulfate (Na2S208) or an aqueous solution thereof has been used. Potassium sulphate (p〇tassiuni persulfate, K2S2〇8) or its water

溶液等,亦可應用於本發明。由於氧化劑端視所使用之單 體而異’在其他實施例應用其他一或多種單體形成其他聚 合物時,亦可使用其他習知之氧化劑。 在上述原位攪拌聚合反應之後,更可選擇性進行一塗 佈製程。此塗佈製程係將上述導電性高分子複合材料分散 於一有機溶劑中以形成一塗料後,進行一塗佈製程,使此 塗料於一底材之一表面形成一導電薄膜。 在上述原位攬拌聚合反應之後,本發明所得之導電性 高分子複合材料更可選擇性進行一塗佈製程並經乾燥後, 以於底材之表面形成導電性高分子複合材料薄膜,其令上 述塗佈製程可使用各種習知方式塗佈,且適用的底材亦不 拘。在一實施例中,上述所得之導電性高分子複合材料可 先分散於-有機溶劑中,以形成濃度為5重量百分比至% 重量百分比之塗料,其中適用之有機溶劑可例如碳數為ι 至5之醇類或碳數為丨纟5之醇類水溶液,惟以乙酵或其 水溶液、異丙醇或其水溶液等為較佳。 八 之應用,然其並非 以下利用數個實施例以說明本發明 201020283 用以限定本發明,本發明技術領域中具有通常知識者,在 不脫離本發明之精神和範圍内,當可作各種之更動與潤飾。 實施例一:製備導電性高分子複合材料薄膜 此實施例係製備導電性高分子複合材料薄膜。首先, 提供一起始物,其中此起始物可包括笨胺單體、氧化鋁奈 米片狀微粒及硝酸,其中苯胺單體於起始物之含量為50重 量百分比,氧化鋁奈米片狀微粒於起始物之含量亦為50重 φ 量百分比,且氧化鋁奈米片狀微粒為純度至少90重量百分 比之/C相氧化鋁奈米片狀微粒。硝酸之濃度為1M。接著, 以實質每分鐘750轉(revolution per minute ; rpm )之轉速 震盪上述起始物5分鐘至20分鐘,惟以震盪約10分鐘為 較佳。然後,再以濃度為0.5 Μ之過硫酸胺(APS)水溶液 為氧化劑,添加於上述起始物中,於攪拌式反應器於〇°C至 50°C之溫度反應1小時至4小時,惟以2小時為較佳。反 應完成後,可獲得含有Λ:相氧化鋁奈米片狀微粒之導電性 _ 高分子複合材料。 接著,將上述所得之導電性高分子複合材料分散於乙 醇中,經超音波震盪30分鐘後,塗佈於例如聚乙烯對苯二 甲酸醋(poly(ethyleneterephthalate); PET)底材上並經乾 燥後,可獲得含有/c相氧化鋁奈米片狀微粒之導電性高分 子複合材料薄膜,其中所得之導電性高分子複合材料薄膜 的厚度約為1至20微米。 此外,更進一步利用穿透式電子顯微鏡(Transmission • Electron Microscope ; TEM ),例如場發射穿透式電子顯微 12 201020283 鏡(Field Emission ΤΕΜ ’ 型號:HF_2〇〇〇,日立公司日 本)’觀察/c相氧化鋁奈米片狀微粒、聚笨胺以及聚苯胺_ 氧化鋁高分子複合材料之微結構狀態。請參閱第1A圖至第 1C圖’其係分別顯示根據本發明—較佳實施例之&amp;相氧化 紹奈米片狀微粒(第1A圖)、聚苯胺(第1B圖)以及聚 苯胺-氧化鋁高分子複合材料(第1C圖)的穿透式電子顯 微照片。 ’A solution or the like can also be applied to the present invention. Since the oxidizing agent is different depending on the monomer used, other conventional oxidizing agents may be used in the case of using other one or more monomers to form other polymers in other embodiments. After the above-mentioned in-situ agitation polymerization, a coating process can be selectively performed. The coating process is performed by dispersing the above conductive polymer composite in an organic solvent to form a coating, and then performing a coating process to form a conductive film on one surface of a substrate. After the above-mentioned in-situ polymerization reaction, the conductive polymer composite material obtained by the present invention can be selectively subjected to a coating process and dried to form a conductive polymer composite film on the surface of the substrate. The above coating process can be applied by various conventional methods, and the applicable substrate is also not limited. In one embodiment, the conductive polymer composite obtained above may be first dispersed in an organic solvent to form a coating having a concentration of 5 to 100% by weight, wherein the applicable organic solvent may be, for example, a carbon number of ι. The alcohol of 5 or the alcohol solution having a carbon number of 丨纟5 is preferably an aqueous solution of ethylene glycol or an aqueous solution thereof, isopropyl alcohol or an aqueous solution thereof. </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; Change and retouch. Example 1: Preparation of Conductive Polymer Composite Material Film This example is a method of preparing a conductive polymer composite material film. First, a starting material is provided, wherein the starting material may include a strepamine monomer, an alumina nano-flaky particles, and nitric acid, wherein the aniline monomer is 50% by weight of the starting material, and the alumina nanosheet is used. The content of the microparticles in the starting material is also 50 φ by volume, and the alumina nano flaky particles are at least 90% by weight of /C phase alumina nano flaky particles. The concentration of nitric acid is 1M. Next, the starting material is shaken at a rate of 750 revolutions per minute (revolution per minute; rpm) for 5 minutes to 20 minutes, preferably with an oscillation of about 10 minutes. Then, the aqueous solution of ammonium persulfate (APS) having a concentration of 0.5 Torr is used as an oxidizing agent, and is added to the above starting material, and reacted in a stirred reactor at a temperature of from 〇 ° C to 50 ° C for 1 hour to 4 hours, It is better to take 2 hours. After the reaction is completed, a conductive _ polymer composite material containing ruthenium: phase alumina flaky particles can be obtained. Next, the conductive polymer composite obtained above is dispersed in ethanol, ultrasonically shaken for 30 minutes, and then applied to, for example, a polyethylene terephthalate (PET) substrate and dried. Thereafter, a conductive polymer composite film containing /c phase alumina nano-flaky particles is obtained, wherein the obtained conductive polymer composite film has a thickness of about 1 to 20 μm. In addition, a transmission electron microscope (TEM) such as a field emission transmission electron microscope 12 201020283 mirror (Field Emission ΤΕΜ 'model: HF_2〇〇〇, Hitachi Japan) observation/ The microstructure state of c-phase alumina nano-flaky particles, poly-phenylamine, and polyaniline-alumina polymer composite. Please refer to FIGS. 1A to 1C for respectively showing the &amp; phase oxidation of Schneider flake particles (Fig. 1A), polyaniline (Fig. 1B) and polyaniline according to the preferred embodiment of the present invention. A transmission electron micrograph of an alumina polymer composite (Fig. 1C). ’

由第1A圓至第ic目之結果可知,《相氧化銘奈米片 狀微粒具有明顯的片狀結構(第1A圖),聚苯胺具有纖維 狀結構(第1B圖)’而聚苯胺_氧化鋁高分子複合材料可明 顯看出聚苯胺均勻包覆/c相氧化鋁奈米片狀微粒(第⑴ 圖)〇 實施例二:評估導電性高分子複合材料薄膜之導電度 實施例一所得之導電性高分子複合材料以FTIR壓錠 機(廠商:Carver·’型號:435〇L,生產國:美國)壓製成 Φ 錠後,利用低阻抗測試儀器(廠商:德技股份有限公司, 型號:5601Y,生產國:中華民國)評估實施例一所得之導 電性高分子複合材料的導電度、 由結果可得知,添加&amp;相氧化鋁奈米片狀微粒之聚苯 胺,其導電度為約79.44 S/cm ,確實明顯高出Teoh等人於 2007 年於材料文摘(Materials Letters)第 61 期第 494*7-4949 頁發表製備具有可控制導電度之聚苯胺-氧化鋁複合奈 米纖維(Preparation 〇f p〇iyaniHne_Al2〇3 c〇mp〇site nanofibers with controllable conductivity) ” 一文所揭示之 13 201020283 米纖維之較佳導電度僅 導電度’其聚笨胺-氧化鋁複合奈 0.18 S/cm。 τ 人物成μ Γ 本發^定的底材、特定聚 :本==例、特定溶劑或特定之應用方式為例示進 == 分子複合材料的應用,惟本發明所屬 中任何具有通常知識者可知,本發明並不限於 份及其比例、其他溶劑,且用其他聚合物成From the results of the 1A round to the ic target, it is known that "phase-oxidized Mingnai flake particles have a distinct sheet structure (Fig. 1A), polyaniline has a fibrous structure (Fig. 1B)" and polyaniline_oxidation The aluminum polymer composite material can be clearly seen as polyaniline uniformly coated/c-phase alumina nano-flaky particles (Fig. 1). Example 2: Evaluation of conductivity of conductive polymer composite film Example 1 The conductive polymer composite material was pressed into a Φ ingot by a FTIR press (manufacturer: Carver·'model: 435〇L, producing country: USA), and a low-impedance test instrument was used (manufacturer: Technik Co., Ltd., model: 5601Y) , Producing country: Republic of China) The conductivity of the conductive polymer composite obtained in Example 1 was evaluated. As a result, it was found that the polyaniline of the &amp; phase alumina nanosheet-like particles had a conductivity of about 79.44. S/cm, indeed significantly higher than Teoh et al., 2007, in Materials Letters, No. 61, 494*7-4949, for the preparation of polyaniline-alumina composite nanofibers with controlled conductivity (Pr) Eparation 〇fp〇iyaniHne_Al2〇3 c〇mp〇site nanofibers with controllable conductivity) ”13 disclosed in the article 201020283 The preferred conductivity of rice fiber is only conductivity 'its polyamine-alumina composite nano 0.18 S/cm. τ The character becomes μ Γ The substrate of the hair, the specific poly: this == example, the specific solvent or the specific application mode is exemplified by the application of the molecular composite material, but any one of the ordinary knowledge of the invention belongs to The invention is not limited to parts and ratios thereof, other solvents, and is formed from other polymers.

小J應用於其他底材等。 由上述本發明較佳實施例可知,本發明之導電性高分 子複合材料,其係利用氧化銘奈米片狀微粒與至少一單體 混合之起始物’進行原位授拌聚合反應,以製得導電性高 刀子複口材料,其申氧化鋁奈米片狀微粒至少包含純度至 少90重量百分比之“目氧化鋁奈米片狀微粒並均勻分布於 上述單體構成之聚合物中。而所得之導電性高分子複合材 料可應用料電塗料、冑電薄膜及電磁波遮蔽等。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,在本發明所屬技術領域中任何具有通常知 識者,在不脫離本發明之精神和範圍内,當可作各種之更 動與潤飾,因此本發明之保護範圍當視後附之申請專利範 圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂’所附圖式之詳細說明如下: 201020283 第1A圖係顯示根據本發明一較佳實施例之&amp;相氧化 鋁奈米片狀微粒的穿透式電子顯微照片; 第1Β圖係顯示根據本發明一較佳實施例之聚苯胺的 穿透式電子顯微照片;以及 氧 第1C圖係顯示根據本發明一較佳實施例之聚笨胺 化銘高分子複合材料的穿透式電子顯微照片。 【主要元件符號說明】 ❹ 15Small J is applied to other substrates and the like. According to the preferred embodiment of the present invention, the conductive polymer composite material of the present invention is subjected to in-situ polymerization polymerization by using the starting material of the oxidized Mingnai flake particles mixed with at least one monomer. A highly conductive knife-opening material is prepared, wherein the alumina nano-flaky particles comprise at least 90% by weight of "mesh alumina nano-flaky particles and are uniformly distributed in the polymer composed of the above monomers. The obtained conductive polymer composite material can be applied with electric paint, electric film, electromagnetic wave shielding, etc. Although the present invention has been disclosed above in a preferred embodiment, it is not intended to limit the present invention, and is in the technical field to which the present invention pertains. The scope of protection of the present invention is defined by the scope of the appended claims, and the scope of the present invention is subject to the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; 1A is a transmission electron micrograph of a &lt;aluminum nanosheet-like particle according to a preferred embodiment of the present invention; FIG. 1 is a view showing the wearing of polyaniline according to a preferred embodiment of the present invention. A transmissive electron micrograph; and an oxygen 1C diagram showing a transmission electron micrograph of a polyamidamide polymer composite according to a preferred embodiment of the present invention. [Key element symbol description] ❹ 15

Claims (1)

201020283 十、申請專利範圍: 種導電性高分子複合材料,至少包含: 一聚合物,其中該聚合物係由至少一單體聚合而成; 以及 一氧化銘奈米片狀微粒均勻分布於該聚合物中,其中 該聚合物與該氧化鋁奈米片狀微粒之重量比係1 : 1至i : 〇·01,該氧化鋁奈米片狀微粒之平均厚度為20奈米至50 ❹奈f、平均長度與平均寬度均為奈米至1〇〇〇奈米且 該氧化鋁奈米片狀微粒至少包含純度至少90重量百分比之 Μ目氧化叙奈米片狀微粒,1該導電性高分子複合材料之 導電度為50 s/cm至100 s/cm。 2.根據申請專利範圍第丨項所述之導電性高分子複合 材料,其中該氧化鋁奈米片狀微粒更至少包含選自於由7 相氧化鋁奈米微粒、Θ相氧化鋁奈米微粒、必相氧化鋁奈 # 米微粒及上述之任意組合所組成之一族群。 3‘根據申請專利範圍第丨項所述之導電性高分子複合 材料’其中該單體為苯胺單體。 4. 一種導電性高分子複合材料之製造方法,至少包含: 提供一起始物,其中該起始物至少包含至少一單體、 氧化鋁奈米片狀微粒及一質子酸,其中該氧化鋁奈米片狀 微粒之平均厚度為20奈米至5〇奈米、平均長度與平均寬 16 201020283 度均為200奈米至1000奈米,且該氧化鋁奈米片狀微粒至 少包含純度至少90重量百分比之/c相氧化鋁奈米片狀微 粒;以及 進行一原位攪拌聚合反應,其係添加一氧化劑於該起 始物中並持續攪拌該起始物1小時至4小時,藉以獲得該 導電性高分子複合材料,其中該聚合物與該氧化鋁奈米片 狀微粒之重量比係1 : 1至1 : 0.01,且該導電性高分子複 合材料之導電度為50 S/cm至100 S/cm。 5. 根據申請專利範圍第4項所述之導電性高分子複合 材料之製造方法,其中該氧化鋁奈米片狀微粒更至少包含 選自於由7相氧化鋁奈米微粒、0相氧化鋁奈米微粒、0 相氧化鋁奈米微粒及上述之任意組合所組成之一族群。 6. 根據申請專利範圍第4項所述之導電性高分子複合 材料之製造方法,其中該單體為苯胺單體。 7. 根據申請專利範圍第4項所述之導電性高分子複合 材料之製造方法,其中該質子酸係選自於由鹽酸、硝酸、 填酸、硫酸、醋酸、十二烧基苯績酸(Dodecylbenzene sulfonic acid ; DBSA)、甲苯續酸(Toluenesulfonic acid)、 苯續酸(Bezene sulfonic acid )、樟腦石黃酸(Camphoryl sulfonic acid)、以及甲基續酸(Methyl sulfonic acid)所組 成之一族群。 17 201020283 8.根據申請專利範圍第4項所述之導電性高分子複合 材料之製造方法,丨中該氧化劑係選自於由過硫酸: (amm〇nium persulfate ; Aps ; (nhwa)及其水溶液、 過硫酸鈉(s〇diumpersulfate; Na2S2〇8)及其水溶液、以及 過硫酸卸(P〇tassiumpersulfate;略⑹及其水溶液所組 成之一族群。 9·根據中請專利㈣第4項所述之導電性高分子複合 材料之製造方法,其中該氧化劑係為過硫酸鍵或其水溶液。 10.根據申請專利範圍第4項所述之導電性高分子複 合材料之製造方法,其中該原位授拌聚合反應係於(TC至 50之溫度進行1小時至4小時。 根據申身專利範圍第4項所述之導電性高分子複 合材社製造方法,其巾該原位_聚合反錢於贼至 W 3〇進行2小時。 12.根據申請專利範圍第*項所述之導電性高分子複 合材料之製造方法,在㈣位_聚合反應之後,更至少 包含: 將該導電性馬分子複合材料分散於一有機溶劑中以形 成一塗料;以及 進行一塗佈製盘,估姑&amp; , 程使該塗料於一底材之一表面形成一 導電薄膜。 201020283 13. 根據申請專利範圍第12項所述之導電性高分子 複合材料之製造方法,其中該有機溶劑係碳數為1至5之 醇類或碳數為1至5之醇類水溶液。 14. 根據申請專利範圍第12項所述之導電性高分子 複合材料之製造方法,其中該有機溶劑係選自於由乙醇及 其水溶液、以及異丙醇及其異丙醇水溶液所組成之一族 15. 根據申請專利範圍第12項所述之導電性高分子 複合材料之製造方法,其中該導電性高分子複合材料於該 有機溶劑之含量係5重量百分比至50重量百分比。 16. 根據申請專利範圍第a項所述之導電性高分子 複合材料之製造方法,其中該導電薄膜之厚度係丨至2〇微 米。 蠹 19201020283 X. Patent application scope: A conductive polymer composite material comprising at least: a polymer, wherein the polymer is polymerized from at least one monomer; and the oxidized Mingnai flake particles are uniformly distributed in the polymerization The weight ratio of the polymer to the alumina nano-flaky particles is 1:1 to i: 〇·01, and the average thickness of the alumina nano-flaky particles is from 20 nm to 50 Å. , the average length and the average width are both nanometers to 1 nanometer and the alumina nano-platelet particles comprise at least 90% by weight of the oxidized Senna nanoparticle flake particles, 1 the conductive polymer The composite has a conductivity of 50 s/cm to 100 s/cm. 2. The conductive polymer composite according to the above-mentioned claim, wherein the alumina nano-flaky particles further comprise at least one selected from the group consisting of 7-phase alumina nanoparticles and Θ phase alumina nanoparticles. , a phase group of alumina particles and any combination of the above. 3 'The conductive polymer composite material according to the scope of the patent application' wherein the monomer is an aniline monomer. A method for producing a conductive polymer composite, comprising: providing a starting material, wherein the starting material comprises at least one monomer, alumina nano-flaky particles, and a protonic acid, wherein the alumina naphthalene The average thickness of the rice flake particles is from 20 nanometers to 5 nanometers, the average length and the average width of 16 201020283 degrees are both 200 nanometers to 1000 nanometers, and the alumina nano-flaky particles contain at least 90 weights of purity. a percentage of /c phase alumina nano-flaky particles; and performing an in-situ agitation polymerization reaction by adding an oxidizing agent to the starting material and continuously stirring the starting material for 1 hour to 4 hours to obtain the conductive The polymer composite material, wherein the weight ratio of the polymer to the alumina flaky particles is 1:1 to 1:0.01, and the conductivity of the conductive polymer composite is 50 S/cm to 100 S. /cm. 5. The method for producing a conductive polymer composite according to claim 4, wherein the alumina nano-flaky particles further comprise at least one selected from the group consisting of 7-phase alumina nanoparticles and 0-phase alumina. A group of nanoparticles consisting of nanoparticulates, 0-phase alumina nanoparticles, and any combination of the above. 6. The method for producing a conductive polymer composite according to claim 4, wherein the monomer is an aniline monomer. 7. The method for producing a conductive polymer composite according to claim 4, wherein the protic acid is selected from the group consisting of hydrochloric acid, nitric acid, acid, sulfuric acid, acetic acid, and dodecylbenzene acid ( Dodecylbenzene sulfonic acid; DBSA), Toluenesulfonic acid, Bezene sulfonic acid, Camphoryl sulfonic acid, and Methyl sulfonic acid. The method for producing a conductive polymer composite according to claim 4, wherein the oxidizing agent is selected from the group consisting of persulfuric acid: (amm〇nium persulfate; Aps; (nhwa) and an aqueous solution thereof). And sodium sulphate (s〇diumpersulfate; Na2S2〇8) and its aqueous solution, and persulfate unloading (P〇tassiumpersulfate; slightly (6) and its aqueous solution is composed of one group. 9. According to the fourth paragraph of the patent (4) The method for producing a conductive polymer composite material, wherein the oxidizing agent is a persulfate bond or an aqueous solution thereof. The method for producing a conductive polymer composite according to claim 4, wherein the in-situ mixing The polymerization reaction is carried out at a temperature of from TC to 50 for 1 hour to 4 hours. According to the method for producing a conductive polymer composite material according to item 4 of the patent application scope, the in-situ _polymerization is anti-money to the thief to W 3 〇 is carried out for 2 hours. 12. The method for producing a conductive polymer composite according to claim 4, after the (four)-polymerization reaction, further comprises at least: the conductivity The molecular composite material is dispersed in an organic solvent to form a coating; and a coating plate is formed, and the coating is applied to form a conductive film on one surface of a substrate. 201020283 13. According to the patent application scope The method for producing a conductive polymer composite according to Item 12, wherein the organic solvent is an alcohol having 1 to 5 carbon atoms or an alcohol aqueous solution having 1 to 5 carbon atoms. The method for producing a conductive polymer composite according to the invention, wherein the organic solvent is selected from the group consisting of ethanol and an aqueous solution thereof, and an aqueous solution of isopropyl alcohol and an isopropanol thereof. The method for producing a conductive polymer composite according to the above aspect, wherein the conductive polymer composite is contained in an amount of from 5 to 50% by weight based on the total amount of the organic solvent. A method for producing a polymer composite material, wherein the thickness of the conductive film is 丨 to 2 μm. 蠹19
TW97145549A 2008-11-25 2008-11-25 Conductive polymer composite material and method for making the same TWI381011B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97145549A TWI381011B (en) 2008-11-25 2008-11-25 Conductive polymer composite material and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97145549A TWI381011B (en) 2008-11-25 2008-11-25 Conductive polymer composite material and method for making the same

Publications (2)

Publication Number Publication Date
TW201020283A true TW201020283A (en) 2010-06-01
TWI381011B TWI381011B (en) 2013-01-01

Family

ID=44832133

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97145549A TWI381011B (en) 2008-11-25 2008-11-25 Conductive polymer composite material and method for making the same

Country Status (1)

Country Link
TW (1) TWI381011B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2847569B1 (en) * 2002-11-21 2005-01-21 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF MONOLITHIC HYDRATED ALUMINA, AMORPHOUS OR CRYSTALLIZED ALUMINA, ALUMINATES AND COMPOSITE MATERIALS BY METAL ALUMINUM OXIDATION OR ALUMINUM ALLOY
JP4959192B2 (en) * 2003-11-28 2012-06-20 出光興産株式会社 Conductive polyaniline composition, method for producing the same, and molded article comprising the same

Also Published As

Publication number Publication date
TWI381011B (en) 2013-01-01

Similar Documents

Publication Publication Date Title
Jianjun et al. γ-MnO2/polyaniline composites: Preparation, characterization, and applications in microwave absorption
JP4689261B2 (en) Carbon nanotube-containing composition, composite having coating film made thereof, and method for producing them
Tang et al. Surface modification of M-Ba-ferrite powders by polyaniline: towards improving microwave electromagnetic response
Liu et al. POSS-tetraaniline based giant molecule: Synthesis, self-assembly, and active corrosion protection of epoxy-based organic coatings
CN110724493B (en) Multi-walled carbon nanotube/ferroferric oxide/nano oxide hybrid wave-absorbing material and preparation method thereof
CN101781520B (en) Water-based conducting polymer/metal composite nano-coating for porous wall board and preparation method thereof
Cao et al. High-performance conductive adhesives based on water-soluble resins for printed circuits, flexible conductive films, and electromagnetic interference shielding devices
Song et al. Preparation and characterization of CdS hollow spheres
Yu et al. Synthesis and properties of PANI/SiO2 organic–inorganic hybrid films
CN103159948A (en) POSS (polyhedral oligomeric silsesquioxane) fluoric polyaryletherketone nano composite material with low dielectric coefficients and preparation method thereof
Likius et al. Percolation threshold for electrical resistivity of Ag-nanoparticle/titania composite thin films fabricated using molecular precursor method
Bai et al. Controllable synthesis of leaflet-like poly (3, 4-ethylenedioxythiophene)/single-walled carbon nanotube composites with microwave absorbing property
Rashidifard et al. Investigating the electrical properties of epoxy resin containing MWCNT–PANI with a core-shell morphology: synthesis and characterization
Wang et al. Enhanced microwave absorption properties of manganese dioxide/carbon fiber hybrid with polyaniline in the X band
WO2013046917A1 (en) Organic-inorganic composite and method for manufacturing same
Kim et al. Influence of silver-decorated multi-walled carbon nanotubes on electrochemical performance of polyaniline-based electrodes
CN113493619A (en) Graphene surface-coated silicon dioxide composite material and preparation method and application thereof
CN103755958B (en) A kind of preparation method of polyimides/CaCu 3 Ti 4 O coated with silver nano particle composite material
CN113773688A (en) Functionalized nano composite electromagnetic shielding coating and preparation method and application thereof
JP2005314658A (en) Carbon nanotube-containing polymer, composite having coated film composed of the same and method for producing the same
CN108877990A (en) A kind of graphene nano conductive silver slurry and preparation method thereof
Yu et al. Self-healing electromagnetic interference shielding composite based on Diels–Alder chemistry
TW201020283A (en) Conductive polymer composite material and method for making the same
CN110724492B (en) Ferroferric oxide/nano oxide hybrid wave-absorbing material and preparation method thereof
Swathi et al. Fabrication of device quality films of high loaded PPy/MWCNT nanocomposites using pulsed laser deposition

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees