CN101781520B - Water-based conducting polymer/metal composite nano-coating for porous wall board and preparation method thereof - Google Patents

Water-based conducting polymer/metal composite nano-coating for porous wall board and preparation method thereof Download PDF

Info

Publication number
CN101781520B
CN101781520B CN2010101090079A CN201010109007A CN101781520B CN 101781520 B CN101781520 B CN 101781520B CN 2010101090079 A CN2010101090079 A CN 2010101090079A CN 201010109007 A CN201010109007 A CN 201010109007A CN 101781520 B CN101781520 B CN 101781520B
Authority
CN
China
Prior art keywords
metal
water
conducting polymer
nano
nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010101090079A
Other languages
Chinese (zh)
Other versions
CN101781520A (en
Inventor
朱英
王亮
丁春梅
江雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN2010101090079A priority Critical patent/CN101781520B/en
Publication of CN101781520A publication Critical patent/CN101781520A/en
Application granted granted Critical
Publication of CN101781520B publication Critical patent/CN101781520B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention relates to the field of functional materials, in particular to a water-based conducting polymer/metal composite nano-coating for a porous wall board and a preparation method thereof. In the invention, the water-based conducting polymer/metal composite nano-coating for the porous wall board is a water-based disperse system of a conducting polymer/metal nano-core-shell structure, and the size of the conducting polymer/metal nano-core-shell structure is 20-300 nanometers, wherein the sizes of metal nano-particles of the core layer are 10-100 nanometers, the sizes of conducting polymers of the shell layer are 10-200 nanometers, and the molar ratio of the metal nano-particles to the conducting polymer monomers is 1:1-1:10. The water-based composite coating of the invention has no pollution and good stability and can be directly sprayed into holes of the porous wall board.

Description

A kind of water-based conducting polymer/metal composite nano-coating that is used for porous wall board and preparation method thereof
Technical field
The present invention relates to field of functional materials, particularly, the present invention relates to a kind of water-based conducting polymer/metal composite nano-coating that is used for porous wall board and preparation method thereof.
Background technology
Along with fast development of information technology, computer network, information processing device, electronic communication equipment and various electrical equipment as the carrier of infotech in the industry-by-industry widespread use.For the electromagnetic radiation of attenuation apparatus and interference each other, eliminate space-pollution, prevent information-leakage, ensure that the person is healthy, need carry out shielding processing to hertzian wave, the electromagnetic shielding problem has become very urgent problem in the modern protection works.
In recent years; Many shield technologies have been developed; Like metal meltallizing (cathode) sputtering, subsides tinsel, electroless plating etc.; Wherein electromagnetic screen coating have that cost is low, technology is easy (can spraying, blade coating, brushing etc.), practical, be prone to the advantages such as shell shape that realize robotization and can adapt to more complicated, become present widely used electromagnetic shielding material.Common electromagnetic screen coating is made up of film forming matter, conductive filler material, auxiliary agent, solvent etc., it is coated on substrate surface forms one deck cured film, thereby produce the conductive shield effect.Conductive filler material commonly used is non-metal powders such as metal-powders such as silver, copper, nickel, carbon black, graphite and oxide compound.Wherein, the electroconductibility of silver powder is good, but costs an arm and a leg, and is difficult to popularize utilize.Copper is that the electroconductibility and the effectiveness of coating is good, but oxidation-resistance is poor.The nickel powder coating price is moderate, and resistance of oxidation is stronger than copper powder, is coating at the shield effectiveness of low frequency range not as copper but nickel is coating.Carbon black, graphite is as electrically conducting coating, its poorly conductive, and effectiveness is bad.The electroconductibility of other oxide-based conductive filler materials is difficult to reach requirement.In addition, problem the such as at present electromagnetic screen coating of development is difficult to regulate effectiveness of shielding, and area density is high, sticking power is low has limited applying of shielding coating.In addition, used solvent mainly is an organic solvent, is prone to cause the pollution of environment.
Along with the appearance and the fast development of conducting polymer, they have, and chemicalstability is good, easy to use, light weight, be prone to the characteristics that machine-shaping, specific conductivity are easy to regulate, and has potential advantages in the shielding electromagnetic wave field.Can not only pass through the reflection loss hertzian wave, and absorption loss has more advantage, can remedy the defective of metallic substance.
Summary of the invention
Contriver of the present invention proposes and has accomplished the present invention in order to address the above problem.
The purpose of this invention is to provide a kind of water-based conducting polymer/metal composite nano-coating that is used for porous wall board.
A purpose more of the present invention provides the above-mentioned method that is used for the water-based conducting polymer/metal composite nano-coating of porous wall board of preparation.
According to the water-based conducting polymer/metal composite nano-coating that is used for porous wall board of the present invention; Wherein, Said composite nano-coating is the dispersion system of conducting polymer/metal nano core-shell structure; Described conducting polymer/metal nano core-shell structure is of a size of the 20-300 nanometer; Wherein the metal nanoparticle of stratum nucleare is of a size of 10~100 nanometers, and the conducting polymer of shell is of a size of 10~200 nanometers, and described metal nanoparticle is to be selected from nanometer silver, nanometer nickel, nano hydroxy ferrite, the nanometer copper one or more; The monomer of said conducting polymer is to be selected from aniline, pyrroles, thiophene, alkylated substituted thiazoline fen, the diethoxy thiophene one or more, and the mol ratio of said metal nanoparticle and said conductive high polymer monomer is 1: 1~1: 10.
According to the water-based conducting polymer/metal composite nano-coating that is used for porous wall board of the present invention; Its principle based on: metal nanoparticle is modified; Be easy to form the nucleocapsid structure of conducting polymer/metal nano particle, this structure can prevent the oxidation of metal nano material.Therefore the organic acid that the doping agent of conductive polymers uses, has increased the dispersiveness of conducting polymer/metal nano composite material in water, has improved the stability of coating.In addition, the high characteristic of conducting electricity of metal-powder is combined with the controlled electroconductibility of high-conductivity polymer, in the range of frequency of its shielding electromagnetic wave of adjustment.
Method according to the above-mentioned water-based conducting polymer/metal composite nano-coating of preparation of the present invention may further comprise the steps:
1) be that 0.01~0.5% tensio-active agent is added to the water by weight percentage; Add the ultrasonic mixing of metal nanoparticle again; Filtering separation, washing, drying; Obtain the metal nanoparticle of modification, wherein the metal nanoparticle add-on is a 100g/L water, and described metal nanoparticle is to be selected from nanometer silver, nanometer nickel, nanometer zinc, nanometer iron, nanometer iron carbonyl, the nanometer copper one or more;
2) modified metal nanoparticles that step 1) is obtained adds in the entry, and ultra-sonic dispersion is to even, and the add-on of modified metal nanoparticle is every premium on currency 10~100 mmoles;
3) high polymer monomer and organic acid are added step 2) in the modified metal nanoparticles solution that obtains; Ultrasonic mixing; Form mixed emulsion, monomeric add-on is every liter of mixed solution 100~1000 mmoles, and organic acid add-on and monomeric molar ratio are 1: 1; Described high polymer monomer is to be selected from aniline, pyrroles, thiophene, alkylated substituted thiazoline fen, the diethoxy thiophene one or more
Described organic acid is Witco 1298 Soft Acid, oleic acid, dodecyl sodium sulfonate, helianthic acid, camphorsulfonic acid, p-methyl benzenesulfonic acid, Hydrocerol A, oxysuccinic acid, oxalic acid or tartrate;
4) preparation aqueous oxidizing agent solution, its concentration is 100~8000 mmoles/L;
5) oxidizing agent solution with step 4) joins in the mixed emulsion of step 3), and oxygenant and monomeric mol ratio are 1: 1~1: 8, and stirring reaction 10~24 hours filters, and cleans, and obtains the nano particle of conducting polymer/metal nucleocapsid structure;
6) compound concentration is the water-soluble polymer aqueous solution of 50~150 gram/L;
7) in the polymer aqueous solution that the nano combined nanoparticulate dispersed of conducting polymer/metal that step 5) is obtained obtains to step 6); Ultrasonic mixing forms the water-based conducting polymer/metal nano composite dope, and the add-on of the nano combined nano particle of conducting polymer/metal is every rising molecular water solution 10~500 grams.
According to the method for the invention, wherein, in step 1), described tensio-active agent comprises: X 2073, sodium laurylsulfonate, sodium lauryl sulphate, X 2073, oleic acid, Triple Pressed Stearic Acid.
According to the method for the invention; Wherein, In step 4), described oxygenant comprises: persulphate, dichromate, potassium permanganate, potassium periodate, hyperbromic acid potassium, potassium perchlorate, ydrogen peroxide 50, iron trichloride, ferric sulfate, cerous sulfate, cerous nitrate, cupric chloride or Lucidol.
According to the method for the invention, wherein, in step 6), described water-soluble polymer comprises: Z 150PH, polyoxyethylene glycol, SEPIGEL 305, Vinylpyrrolidone polymer, CMC 99.5, methylcellulose gum, TKK 021 or Natvosol.
Can be sprayed in the porous wall board according to conducting polymer/metal composite nano-coating of the present invention, have the effect of electromagnetic shielding action, antistatic, heat insulating.
Compared with prior art, the invention has the advantages that:
1) the present invention provides conducting polymer/metal composite nano-coating, and is as solvent, pollution-free with water;
2) because the conducting polymer/metal composite nano material that forms has nucleocapsid structure, and the conducting polymer that metal is had chemicalstability coats, and therefore, metal is difficult for oxidized, the stability of coating improves;
3) this water-based composite nano-coating matrix material that is metal and conducting polymer, therefore, the range of frequency of shielding enlarges, and not only shows shield effectiveness preferably at low frequency range, and the shield effectiveness that also shows at high frequency region;
4) high matrix material is according to the kind and the quantity of composition and the amount and the conductive polymers of nano metal powder, and its shielding efficiency in 1MHz~101GHz scope is 20~90dB;
5) content of the metal in this water-based conducting polymer/metal composite nano material reduces than the content of conventional metal-powder, and the area density of coating reduces, cost descends;
6) this water-borne coatings is applied in the porous wall board, not only can protect irradiation of electromagnetic waves, and has the effect of heat insulating, has energy-conservation effect;
7) this water-borne coatings is easy to use, and can directly be sprayed in the hole of porous wall board.
Description of drawings
Fig. 1 is the sem photograph of nanometer nickel particles among the embodiment 1.
Fig. 2 is the sem photograph of polyaniline among the embodiment 1/nickel composite nanoparticle.
Embodiment
Embodiment 1 preparation is used for the water-based conducting polymer/metal composite nano-coating of porous wall board
1) be that 0.3% X 2073 tensio-active agent is added to the water by weight percentage, add the ultrasonic mixing of nanometer nickel particles 2 hours again, filtering separation, washing, drying obtain the nanometer nickel particles of modification; Wherein the nano nickle granules add-on is a 100g/L water;
2) the modified Nano nickel particle that step 1) is obtained adds in the entry, and ultra-sonic dispersion is to even, and modified Nano nickel particulate add-on is every premium on currency 10 mmoles.
3) add high polymer monomer aniline and organic acid Witco 1298 Soft Acid, ultrasonic mixing forms mixed emulsion, and monomeric add-on is every liter of mixed solution 100 mmoles; Organic acid add-on and monomeric molar ratio are 1: 1;
4) with the oxygenant ammonium persulphate formation solution that is dissolved in the water, the add-on of oxygenant is every premium on currency 100 mmoles, the add-on of oxygenant for monomeric mol ratio be 1: 1;
5) oxidizing agent solution with step 4) joins in the mixed emulsion of step 3), and stirring reaction 10~24 hours filters, and cleans, and obtains the nano particle of electrically conductive polyaniline/nickel core-shell structure.
6) the water-soluble polymer Z 150PH is dissolved in heating for dissolving in the water, high molecular add-on is every premium on currency 50 grams;
7) in the polymer aqueous solution that the nano combined nanoparticulate dispersed of electrically conductive polyaniline/nickel that step 5) is obtained obtains to step 6); Ultrasonic mixing forms waterborne conductive polyaniline/nickel nano composite dope, and the add-on of the nano combined nano particle of electrically conductive polyaniline/nickel is every rising molecular water solution 100 grams.
The water-based conducting polymer/metal composite nano-coating of the porous wall board that makes; Described electrically conductive polyaniline/nickel core-shell structure is of a size of 80 nanometers; Wherein the metal nickel nano particle of stratum nucleare is of a size of 20 nanometers; The electrically conductive polyaniline of shell is of a size of 60 nanometers, and the molar ratio of said nano nickle granules and said aniline monomer is 1: 10.
8) coating of the nano combined nano particle of this electrically conductive polyaniline/nickel is 61~69dB at the effectiveness of shielding of 50~1000MHz scope; Effectiveness of shielding under 101GHz is 40~58dB.
Embodiment 2 preparations are used for the water-based conducting polymer/metal composite nano-coating of porous wall board
1) be that 0.5% sodium laurylsulfonate tensio-active agent is added to the water by weight percentage, add the ultrasonic mixing of argent nanoparticle 2 hours again, filtering separation, washing, drying obtain the metal nanoparticle of modification; Wherein the metal nanoparticle add-on is a 100g/L water;
2) modified metal nanoparticles that step 1) is obtained adds in the entry, and ultra-sonic dispersion is to even, and the add-on of modified metal nanoparticle is every premium on currency 100 mmoles.
3) add high polymer monomer pyrroles and oleic acid, ultrasonic mixing forms mixed emulsion, and monomeric add-on is every liter of mixed solution 500 mmoles; Organic acid add-on and monomeric molar ratio are 1: 1;
4) form solution with in oxygenant iron trichloride dissolving and the water, the add-on of oxygenant is every premium on currency 1000 mmoles, the add-on of oxygenant for monomeric mol ratio be 1: 2;
5) oxidizing agent solution with step 4) joins in the mixed emulsion of step 3), and stirring reaction 10~24 hours filters, and cleans, and obtains the nano particle of conducting polymer/metal nucleocapsid structure.
6) the water-soluble polymer polyoxyethylene glycol is dissolved in heating for dissolving in the water, high molecular add-on is every premium on currency 100 grams;
7) conductive polymers that step 5) is obtained/metal nano composite nanometer particle is distributed in the polymer aqueous solution that step 6) obtains, and ultrasonic mixing forms the water-based conducting polymer/metal nano composite dope.The add-on of the nano combined nano particle of conducting polymer/metal is every rising molecular water solution 100 grams.
The water-based conducting polymer/metal composite nano-coating that makes; Described conducting polymer/metal nano core-shell structure is of a size of 150 nanometers; Wherein the metal nanoparticle of stratum nucleare is of a size of 100 nanometers; The conducting polymer of shell is of a size of 50 nanometers, and the molar ratio of said metal nanoparticle and said conductive high polymer monomer is 1: 5.
8) effectiveness of shielding of this conducting polymer/metal composite nano particulate coating 9KHz~1000MHz scope is 48~68dB; Effectiveness of shielding under 101GHz is 36~45dB.
Embodiment 3 preparations are used for the water-based conducting polymer/metal composite nano-coating of porous wall board
1) be that 0.2% tensio-active agent sodium lauryl sulphate is added to the water by weight percentage, add the ultrasonic mixing of metal nano copper particle 2 hours again, filtering separation, washing, drying obtain the metal nano copper particle of modification; Wherein the metal nanoparticle add-on is a 100g/L water;
2) modified metal nanoparticles that step 1) is obtained adds in the entry, and ultra-sonic dispersion is to even, and the add-on of modified metal nanoparticle is every premium on currency 50 mmoles;
3) add high polymer monomer thiophene and organic acid helianthic acid, ultrasonic mixing forms mixed emulsion, and monomeric add-on is every liter of mixed solution 500 mmoles, and organic acid add-on and monomeric molar ratio are 1: 1;
4) form solution with in oxygenant hyperbromic acid potassium dissolving and the water, the add-on of oxygenant is every premium on currency 4000 mmoles, the add-on of oxygenant for monomeric mol ratio be 1: 4;
5) oxidizing agent solution with step 4) joins in the mixed emulsion of step 3), and stirring reaction 10~24 hours filters, and cleans, and obtains the nano particle of conducting polymer/metal nucleocapsid structure;
6) the water-soluble polymer SEPIGEL 305 is dissolved in heating for dissolving in the water, high molecular add-on is every premium on currency 100 grams;
7) conductive polymers that step 5) is obtained/metal nano composite nanometer particle is distributed in the polymer aqueous solution that step 6) obtains, and ultrasonic mixing forms the water-based conducting polymer/metal nano composite dope.The add-on of the nano combined nano particle of conducting polymer/metal is every rising molecular water solution 200 grams.
The water-based conducting polymer/metal composite nano-coating that makes; Described conducting polymer/metal nano core-shell structure is of a size of 130 nanometers; Wherein the metal nanoparticle of stratum nucleare is of a size of 30 nanometers; The conducting polymer of shell is of a size of 100 nanometers, and the molar ratio of said metal nanoparticle and said conductive high polymer monomer is 1: 10.
8) effectiveness of shielding of this conducting polymer/metal composite nano particulate coating in 30MHz~1.5GHz scope reaches 67~82dB.
Comparative example's 1 preparation is used for the water-based conducting polymer/metal composite nano-coating of porous wall board
1) be that 0.5% X 2073 tensio-active agent is added to the water by weight percentage, add the ultrasonic mixing of nanometer nickel particles 2 hours again, filtering separation, washing, drying obtain the nanometer nickel particles of modification; Wherein the nano nickle granules add-on is a 100g/L water;
2) the modified Nano nickel particle that step 1) is obtained adds in the entry, and ultra-sonic dispersion is to even, and modified Nano nickel particulate add-on is every premium on currency 5 mmoles.
3) add high polymer monomer aniline and organic acid Witco 1298 Soft Acid, ultrasonic mixing forms mixed emulsion, and monomeric add-on is every liter of mixed solution 500 mmoles; Organic acid add-on and monomeric molar ratio are 1: 1;
4) with the oxygenant ammonium persulphate formation solution that is dissolved in the water, the add-on of oxygenant is every premium on currency 100 mmoles, the add-on of oxygenant for monomeric mol ratio be 1: 1;
5) oxidizing agent solution with step 4) joins in the mixed emulsion of step 3), and stirring reaction 10~24 hours filters, and cleans, and obtains the nano particle of electrically conductive polyaniline/nickel core-shell structure.
6) the water-soluble polymer Z 150PH is dissolved in heating for dissolving in the water, high molecular add-on is every premium on currency 50 grams;
7) in the polymer aqueous solution that the nano combined nanoparticulate dispersed of electrically conductive polyaniline/nickel that step 5) is obtained obtains to step 6); Ultrasonic mixing forms waterborne conductive polyaniline/nickel nano composite dope, and the add-on of the nano combined nano particle of electrically conductive polyaniline/nickel is every rising molecular water solution 100 grams.
The water-based conducting polymer/metal composite nano-coating of the porous wall board that makes; Described electrically conductive polyaniline/nickel nano composite material mainly is a nano particle; The particulate diameter is about 160 nanometers, and the molar ratio of said nano nickle granules and said aniline monomer is 1: 100.
8) effectiveness of shielding of this conducting polymer/metal composite nano particulate coating 9KHz~1000MHz scope is 12~19dB; Effectiveness of shielding under 101GHz is 47~53dB.Because it is metal nano content is lower in the composite coating, therefore lower at the effectiveness of shielding of low frequency range and intermediate frequency zone.
Comparative example's 2 preparations are used for the water-based conducting polymer/metal composite nano-coating of porous wall board
1) be that 0.2% sodium laurylsulfonate tensio-active agent is added to the water by weight percentage, add the ultrasonic mixing of argent nanoparticle 2 hours again, filtering separation, washing, drying obtain the metal nanoparticle of modification; Wherein the metal nanoparticle add-on is a 100g/L water;
2) modified metal nanoparticles that step 1) is obtained adds in the entry, and ultra-sonic dispersion is to even, and the add-on of modified metal nanoparticle is every premium on currency 500 mmoles.
3) add high polymer monomer pyrroles and oleic acid, ultrasonic mixing forms mixed emulsion, and monomeric add-on is every liter of mixed solution 100 mmoles; Organic acid add-on and monomeric molar ratio are 1: 1;
4) form solution with in oxygenant iron trichloride dissolving and the water, the add-on of oxygenant is every premium on currency 1000 mmoles, the add-on of oxygenant for monomeric mol ratio be 1: 2;
5) oxidizing agent solution with step 4) joins in the mixed emulsion of step 3), and stirring reaction 10~24 hours filters, and cleans, and obtains the nano particle of conducting polymer/metal nucleocapsid structure.
6) the water-soluble polymer polyoxyethylene glycol is dissolved in heating for dissolving in the water, high molecular add-on is every premium on currency 100 grams;
7) conductive polymers that step 5) is obtained/metal nano composite nanometer particle is distributed in the polymer aqueous solution that step 6) obtains, and ultrasonic mixing forms the water-based conducting polymer/metal nano composite dope.The add-on of the nano combined nano particle of conducting polymer/metal is every rising molecular water solution 100 grams.
The water-based conducting polymer/metal composite nano-coating that makes; Described conducting polymer/metal nano core-shell structure is of a size of 110 nanometers; Wherein the metal nanoparticle of stratum nucleare is of a size of 100 nanometers; The conducting polymer of shell is of a size of 10 nanometers, and the molar ratio of said metal nanoparticle and said conductive high polymer monomer is 1: 5.
8) this conducting polymer/metal composite nano particulate coating is 59dB at the effectiveness of shielding of 50~1000MHz scope, and the effectiveness of shielding under 101GHz is merely 9dB.In addition, because the content of metal nanoparticle is higher, the composite coating quality is heavier, after the spraying, can increase the weight of porous wall board, and the porous wall board that is used for buildings of the present invention is a kind of novel light body wall brick.

Claims (5)

1. water-based conducting polymer/metal composite nano-coating that is used for porous wall board; It is characterized in that; Said composite nano-coating is the dispersion system of conducting polymer/metal nano core-shell structure; Described conducting polymer/metal nano core-shell structure is of a size of the 20-300 nanometer; Wherein the metal nanoparticle of stratum nucleare is of a size of 10~100 nanometers, and the conducting polymer of shell is of a size of 10~200 nanometers, and described metal nanoparticle is to be selected from nanometer silver, nanometer nickel, nanometer zinc, nanometer iron, nanometer iron carbonyl, the nanometer copper one or more; The monomer of said conducting polymer is to be selected from aniline, pyrroles, thiophene, alkylated substituted thiazoline fen, the diethoxy thiophene one or more, and the mol ratio of said metal nanoparticle and said conductive high polymer monomer is 1: 1~1: 10.
2. a method for preparing the described water-based conducting polymer/metal composite nano-coating of claim 1 is characterized in that, said method comprising the steps of:
1) tensio-active agent is added to the water; Add the ultrasonic mixing of metal nanoparticle again; Filtering separation, washing, drying; Obtain the metal nanoparticle of modification, wherein the metal nanoparticle add-on is a 100g/L water, and described metal nanoparticle is to be selected from nanometer silver, nanometer nickel, nanometer zinc, nanometer iron, nanometer iron carbonyl, the nanometer copper one or more;
2) modified metal nanoparticles that step 1) is obtained adds in the entry, and ultra-sonic dispersion is to even, and the add-on of modified metal nanoparticle is every premium on currency 10~100 mmoles;
3) high polymer monomer and organic acid are added step 2) in the modified metal nanoparticles solution that obtains; Ultrasonic mixing; Form mixed emulsion, monomeric add-on is every liter of mixed solution 100~1000 mmoles, and organic acid add-on and monomeric molar ratio are 1: 1; Described high polymer monomer is to be selected from aniline, pyrroles, thiophene, alkylated substituted thiazoline fen, the diethoxy thiophene one or more
Described organic acid is Witco 1298 Soft Acid, oleic acid, dodecyl sodium sulfonate, helianthic acid, camphorsulfonic acid, p-methyl benzenesulfonic acid, Hydrocerol A, oxysuccinic acid, oxalic acid or tartrate;
4) preparation aqueous oxidizing agent solution, its concentration is 100~8000 mmoles/L;
5) oxidizing agent solution with step 4) joins in the mixed emulsion of step 3), and oxygenant and monomeric mol ratio are 1: 1~1: 8, and stirring reaction 10~24 hours filters, and cleans, and obtains the nano particle of conducting polymer/metal nucleocapsid structure;
6) compound concentration is the water-soluble polymer aqueous solution of 50~150 gram/L;
7) conductive polymers that step 5) is obtained/metal nano composite nanometer particle is distributed in the polymer aqueous solution that step 6) obtains; Ultrasonic mixing forms the water-based conducting polymer/metal nano composite dope, and the add-on of the nano combined nano particle of conducting polymer/metal is every rising molecular water solution 10~500 grams.
3. method according to claim 2 is characterized in that, in step 1), described tensio-active agent is X 2073, sodium laurylsulfonate, sodium lauryl sulphate, oleic acid or Triple Pressed Stearic Acid.
4. method according to claim 2; It is characterized in that; In step 4), described oxygenant comprises: persulphate, dichromate, potassium permanganate, potassium periodate, hyperbromic acid potassium, potassium perchlorate, ydrogen peroxide 50, iron trichloride, ferric sulfate, cerous sulfate, cerous nitrate, cupric chloride or Lucidol.
5. method according to claim 2; It is characterized in that; In step 6), described water-soluble polymer comprises: Z 150PH, polyoxyethylene glycol, SEPIGEL 305, Vinylpyrrolidone polymer, CMC 99.5, methylcellulose gum, TKK 021, Natvosol.
CN2010101090079A 2010-02-08 2010-02-08 Water-based conducting polymer/metal composite nano-coating for porous wall board and preparation method thereof Expired - Fee Related CN101781520B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101090079A CN101781520B (en) 2010-02-08 2010-02-08 Water-based conducting polymer/metal composite nano-coating for porous wall board and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101090079A CN101781520B (en) 2010-02-08 2010-02-08 Water-based conducting polymer/metal composite nano-coating for porous wall board and preparation method thereof

Publications (2)

Publication Number Publication Date
CN101781520A CN101781520A (en) 2010-07-21
CN101781520B true CN101781520B (en) 2012-05-30

Family

ID=42521677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101090079A Expired - Fee Related CN101781520B (en) 2010-02-08 2010-02-08 Water-based conducting polymer/metal composite nano-coating for porous wall board and preparation method thereof

Country Status (1)

Country Link
CN (1) CN101781520B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097472A (en) * 2010-09-02 2013-05-08 昭和电工株式会社 Coating solution, electric collector, and method for producing electric collector
CN103524733B (en) * 2013-10-14 2015-11-18 中南大学 A kind of cerous nitrate (III) doped polyaniline/argentum nano composite material and preparation method thereof
CN103642332B (en) * 2013-11-27 2016-11-02 长沙理工大学 A kind of conductive coating of the polymer overmold light metal particle for grounded screen protection
CN103740209B (en) * 2014-01-26 2016-01-20 南通广泰生化制品有限公司 A kind of preparation method of microporous nano coating
CN104449086B (en) * 2014-11-24 2017-05-03 江苏斯迪克新材料科技股份有限公司 Heat-dissipation superconducting coating liquid and manufacturing process thereof
CN105330826B (en) * 2015-12-04 2017-10-17 扬州大学 A kind of method for synthesizing polypyrrole microcapsules
CN105753115B (en) * 2016-04-19 2018-07-06 陈守刚 A kind of triple sterilization composite materials and preparation method thereof
CN105801854A (en) * 2016-04-20 2016-07-27 桂林理工大学 Method for preparing conducting polypyrrole by using malic acid as template and doping agent
CN108948976A (en) * 2018-06-07 2018-12-07 太仓萃励新能源科技有限公司 A kind of synthetic method of N-type conductive coating
CN109180974A (en) * 2018-07-23 2019-01-11 赵阳 A kind of quaternary phosphonium film of poly pyrrole and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1335342A (en) * 2000-07-22 2002-02-13 郭金强 Environment protection type water-thinned nanometer paint
CN1401718A (en) * 2002-09-20 2003-03-12 西安交通大学 Process for preparing corrosion-resistant polyaniline paint
CN101235206A (en) * 2008-01-29 2008-08-06 东华理工大学 Core-shell type lightweight broad-band composite wave-absorbing material and preparation method thereof
CN101418182A (en) * 2008-10-28 2009-04-29 日照君青能源科技材料有限公司 Conductive macromolecule solvent-free low viscosity anti-corrosive paint and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1335342A (en) * 2000-07-22 2002-02-13 郭金强 Environment protection type water-thinned nanometer paint
CN1401718A (en) * 2002-09-20 2003-03-12 西安交通大学 Process for preparing corrosion-resistant polyaniline paint
CN101235206A (en) * 2008-01-29 2008-08-06 东华理工大学 Core-shell type lightweight broad-band composite wave-absorbing material and preparation method thereof
CN101418182A (en) * 2008-10-28 2009-04-29 日照君青能源科技材料有限公司 Conductive macromolecule solvent-free low viscosity anti-corrosive paint and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李新贵等."聚苯胺/金属纳米粒子复合物的制备及性能".《化学进展》.2007,第19卷(第5期),第787-794页.

Also Published As

Publication number Publication date
CN101781520A (en) 2010-07-21

Similar Documents

Publication Publication Date Title
CN101781520B (en) Water-based conducting polymer/metal composite nano-coating for porous wall board and preparation method thereof
CN107399735B (en) Preparation method and application of graphene composite aerogel wave-absorbing material
EP3723465B1 (en) Electromagnetic shielding filler, electromagnetic shielding coating comprising same, preparation method and application thereof
KR101789213B1 (en) Method of Manufacturing Silver-Coated Copper Nano Wire Having Core-Shell Structure by Chemical Reduction Method
AU2008229178B2 (en) Shielding based on metallic nanoparticle compositions and devices and methods thereof
EP0403180A2 (en) Coated particulate metallic materials
CN108728835B (en) Preparation method of material with silver-plated surface
CN108281761B (en) Carbon/metal conductive composite material and application thereof
KR101982010B1 (en) Metal-graphene powder and coating composition for shielding electromagnetic wave comprising the same
CN101585959B (en) Conductive polymer wave-absorbing material
KR20130050906A (en) Low-temperature sintered silver nanoparticle composition and electronic articles formed using the same
JP6958842B2 (en) An oxidation-resistant hybrid structure containing a metal thin film layer coated on the outside of the conductive polymer structure and a method for manufacturing the same.
CN109957144B (en) Preparation method of conductive filler with silver-plated surface
US11312870B2 (en) Copper based conductive paste and its preparation method
CN110170650B (en) Method for preparing high-compactness and completely-coated silver-coated copper powder
CN101306468A (en) Preparation method of conductive silver composite nano particles coated by polypyrrole
CN109423637A (en) A kind of preparation method of high conductive material
US20180155508A1 (en) Methods for manufacturing coated metal nanoparticles and a composite material comprising same, use of such a material and device comprising same
CN112980356A (en) Conductive adhesive, flexible circuit, flexible printed circuit board and flexible electronic element
TWI481644B (en) Polyaniline composites and manufacturing method thereof
Mumtaz et al. Synthesis of hybrid semiconducting polymer–metal latexes
KR101597346B1 (en) Electromagnetic interference shielding film using coating composition with low specific gravity conductive particle
WO2016006285A1 (en) Copper powder and electrically conductive paste, electrically conductive coating, electrically conductive sheet, and antistatic coating using same
KR101433639B1 (en) Conductive nano ink using copper nano gel composition and prepration method of the same
JP6181367B2 (en) Coated fibrous copper particulate aggregate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120530

Termination date: 20170208