TW200840890A - Buffer layer for strings - Google Patents

Buffer layer for strings Download PDF

Info

Publication number
TW200840890A
TW200840890A TW096143229A TW96143229A TW200840890A TW 200840890 A TW200840890 A TW 200840890A TW 096143229 A TW096143229 A TW 096143229A TW 96143229 A TW96143229 A TW 96143229A TW 200840890 A TW200840890 A TW 200840890A
Authority
TW
Taiwan
Prior art keywords
coating
nylon
buffer layer
filaments
wound
Prior art date
Application number
TW096143229A
Other languages
Chinese (zh)
Inventor
Zvi Yaniv
yun-jun Li
dong-sheng Mao
Original Assignee
Nano Proprietary Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano Proprietary Inc filed Critical Nano Proprietary Inc
Publication of TW200840890A publication Critical patent/TW200840890A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B51/00Stringing tennis, badminton or like rackets; Strings therefor; Maintenance of racket strings
    • A63B51/02Strings; String substitutes; Products applied on strings, e.g. for protection against humidity or wear
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/162Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber enveloping sheathing
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/165Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber inlay
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10DSTRINGED MUSICAL INSTRUMENTS; WIND MUSICAL INSTRUMENTS; ACCORDIONS OR CONCERTINAS; PERCUSSION MUSICAL INSTRUMENTS; AEOLIAN HARPS; SINGING-FLAME MUSICAL INSTRUMENTS; MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR
    • G10D3/00Details of, or accessories for, stringed musical instruments, e.g. slide-bars
    • G10D3/10Strings
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1028Rope or cable structures characterised by the number of strands
    • D07B2201/1036Rope or cable structures characterised by the number of strands nine or more strands respectively forming multiple layers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2071Spacers
    • D07B2201/2074Spacers in radial direction
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2083Jackets or coverings
    • D07B2201/2087Jackets or coverings being of the coated type
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/10Natural organic materials
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2046Polyamides, e.g. nylons
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3007Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2936Wound or wrapped core or coating [i.e., spiral or helical]

Abstract

A thin buffer layer is used to coat on the multi-filament wrapped string to fill the gaps. The polymers of the buffer-layer coating have a high melt-flow (low viscosity) during coating process to fill all the gaps between the filaments, and the filaments are fixed by the coatings onto base core materials.

Description

200840890 九、發明說明 【發明所屬之技術領域】 本申請案主張美國臨時申請案序號 優先權,其以引用方式納入本文中。本 層經用來塗覆在多絲纏繞弦線以塡充間 聚合物在塗覆程序中具有高熔融流速( 諸絲間的所有間隙,且諸絲係藉由塗覆 予以固定。 【先前技術】 用於運動設備(例如,網球拍)或 在彼等的最外表面塗覆一薄層以改良彼 、觸覺、等。聚醯胺(尼龍(nylon) 聚合物業經用來塗覆在弦線上。 nanocomposites ),諸如黏土及奈米碳 化之尼龍6奈米複合材料(具有比純尼 性)皆有可能爲具其他功能性之高耐用 使用具有局縱橫比(aspect ratio)之奈 該強化聚合物複合材料業經自1 9 8 0年 美國專利第4,73 9,007號)。弦線常爲 心絲、在核心絲上的纏繞絲、及塗層之 具有多層結構之弦線,塗覆材料皆需要 某一溫度要具有良好的熔融流動性質( 使彼等滲透到介於纏繞絲之間的間隙內 第 60/866,1 99 號之 案係關於一薄緩衝 隙。緩衝層塗層之 低黏度)以塡充在 在基礎核心材料上 音樂樂器之弦線常 等的耐久性、旋轉 )、聚酯、及其他 奈米複合材料( 管(Nanotube)強 龍6較佳的物理特 性弦線塗覆材料。 米尺寸黏土粒子之 代硏究至今(參閱 具有多層結構··核 聚合物材料。對於 匹配基礎材料及在 可接受的黏度)以 。奈米複合材料之 -5- 200840890 黏度在相同溫度下常高於純的尼龍6。如此,奈米複合材 料可能不容易滲透入介於纏繞絲間之間隙內。圖1顯示一 種塗覆在纏繞絲上的尼龍6/黏土奈米複合材料之橫截面圖 之SEM影像。可看出奈米複合材料材料未成功地塡充該 間隙。在弦線中留下的許多缺陷導致弦線之不可接受的耐 久性。該等間隙會在球的高衝擊拍擊中導致塗層的落屑( c h i p p i n g 〇 f f )或不可接受的耐久性。再者,由於間隙之造 成,塗層亦不能將絲固定在弦線的核心材料上。圖2顯示 在弦線上的高衝擊檢驗後從絲和塗層切落之材料。 【發明內容】 雖然聚合物奈米複合材料具有比純聚合物材料更高的 物理/機械性質,不過彼等在擠壓或塗覆程序中通常具有 較高的黏度或熔融流速。爲解決此問題,係使用薄緩衝層 塗覆在多絲纏繞弦線上以塡充間隙。緩衝層塗料之聚合物 在塗覆程序中具有高熔融流速(低黏度)以塡充介於諸絲 之間的所有間隙,及藉由塗料將絲固定在基礎核心材料上 【實施方式】 實施例1 :具有尼龍6緩衝層之塗料系統200840890 IX. INSTRUCTIONS OF THE INVENTION [Technical Field of the Invention] This application claims priority to U.S. Provisional Application Serial No. This layer is used to coat the multifilament-wound string to interpret the polymer with a high melt flow rate in the coating process (all gaps between the filaments, and the filaments are fixed by coating.) 】 for sports equipment (eg tennis rackets) or a thin layer on their outermost surface to improve the feel, touch, etc. Polyamide (nylon) polymer is used to coat the string Nanocomposites), such as clay and nanocarbonized nylon 6 nanocomposites (with a purer than the pure nature), are likely to be highly durable with other functionalities and have a local aspect ratio of the reinforced polymer. Composite materials have been used in U.S. Patent No. 4,73,007, 1987. The string is usually a core wire, a wound wire on the core wire, and a coated string having a multi-layer structure. The coating material needs a certain temperature to have good melt flow properties (so that they penetrate into the winding The 60/866,1 99 case in the gap between the wires is about a thin buffer gap. The low viscosity of the buffer layer coating is used to fill the string of the string of musical instruments on the base core material. , Rotating), Polyester, and other nanocomposites (Nanotube) Strong physical properties of string coating materials. The generation of rice-sized clay particles has been studied so far (see Multilayer Structure··Nuclear Polymerization) Materials. For matching base materials and acceptable viscosity), the viscosity of nanocomposite -5 - 200840890 is often higher than pure nylon 6 at the same temperature. Thus, nanocomposites may not easily penetrate into the medium. In the gap between the wound filaments. Figure 1 shows an SEM image of a cross-sectional view of a nylon 6/clay nanocomposite coated on a wound wire. It can be seen that the nanocomposite material did not successfully fill the gap. . Many of the defects left in the strings result in unacceptable durability of the strings, which can cause chipping 〇ff or unacceptable durability in the high impact slap of the ball. Due to the gap, the coating cannot fix the wire to the core material of the string. Figure 2 shows the material cut from the wire and the coating after high impact inspection on the string. [Summary] Although polymer nano Composite materials have higher physical/mechanical properties than pure polymer materials, but they typically have a higher viscosity or melt flow rate during extrusion or coating procedures. To solve this problem, a thin buffer layer is used to coat The multifilament winding string is filled with a gap. The polymer of the buffer layer coating has a high melt flow rate (low viscosity) in the coating process to fill all the gaps between the filaments, and the filament is fixed by the coating. Basic core material [Embodiment] Example 1: Coating system with nylon 6 buffer layer

圖3 A示出用於塗覆的弦線之橫截面,其包括一用較 小直徑的複絲3 0 2纏繞的一卓絲核心3 0 1。將純尼龍6九 粒如可得自 UBE Industries Inc.者(產品名稱·· UBE SF 200840890 1018 A)熔化。經由在從220 °C至270 1範圍之溫度 壓製程施加緩衝層塗層3 03。緩衝層塗層3〇3之厚度 從10至100微米。藉由純尼龍6塗覆完全塡充介於 3 02間之間隙。 接著經由在從240 °C至2 80 °C範圍的溫度下之濟 序塗覆一耐磨耗塗層304 (圖3C)。可以使用尼龍 土或尼龍6/奈米碳管奈米複合材料作爲耐磨耗塗覆 304。藉由原位聚合產生的尼龍6奈米複合材料可含年 奈米黏土塡充料。藉由熔融調配製程產生的其他尼龍 米複合材料亦可用於耐磨耗塗層304。除了黏土之外 米碳管、陶瓷粒(諸如Si02及Al2〇3)、或玻璃粒也 來製造尼龍6奈米複合材料。尼龍6奈米複合材料亦 橡膠改質劑改質以改良延展性及韌度。耐磨耗塗層之 可爲從1至100微米。 實施例2 :具有尼龍1 1緩衝層之塗料系統 再參照圖3A,用於塗覆之弦線係一用較小直徑 3 02纏繞的單絲核心301。純尼龍1 1可得自ARKEMA 獲得。尼龍1 1在超過22(TC的溫度下具有非常好的熔 動性。良好的抗衝擊強度及抗剪強度也使尼龍1 1成 好的緩衝層材料。在圖3B中,緩衝層塗層3 03係藉 190°C至2 7(TC範圍的溫度之擠壓製程所施加。 緩衝層303之厚度可爲從10至100微米。藉由 龍Π塗覆將介於複絲3 02間之間隙完全塡充。 的擠 可爲 複絲 壓程 6/黏 材料 r 4% 6奈 ,奈 可用 可用 厚度 複絲 Inc. 融流 爲良 由在 純尼 200840890 參照圖3C,接著藉由在從24(TC至280°C範圍的溫度 下之擠壓程序塗覆耐磨耗塗層304。可採用尼龍6 /黏土或 尼龍6/奈米碳管之奈米複合材料作爲耐磨耗塗覆材料304 。藉由原位聚合產生的尼龍6奈米複合材料可含4%奈米 黏土塡充料。藉由熔融調配程序產生的其他尼龍6奈米複 合材料亦可用於耐磨耗塗層3 04。尼龍6奈米複合材料亦 可用橡膠改質劑改質以改良延展性及韌度。耐磨耗塗層 304之厚度可爲從1至100微米。 除了用於在弦線上沉積塗層之擠壓程序之外,其他方 法諸如噴塗、浸塗、旋塗、刷塗、漆塗、及浸沒等程序可 用來在弦線表面上沉積塗層。尼龍6奈米複合材料可在高 於190°C下熔化及擠壓以在弦線上沉積塗層。尼龍6奈米 複合材料可溶解在溶劑諸如甲酸之中且在室溫或高溫下經 噴塗、浸塗、旋塗、刷塗、漆塗、或浸沒以在弦線上沉積 塗層。接著可藉由後續程序諸如蒸發方法移除該溶劑。 圖4示出本發明另一具體實例。基本上,接著係在圖 3 C之塗覆弦線結構上再用較小直徑複絲40 1塗覆。藉由 在從190°C至270°C範圍的溫度下之擠壓程序施加一緩衝 層塗層402,類似於塗層303。緩衝層塗料402之厚度可 爲從1 0至1 0 0微米。藉由純尼龍1 1塗覆將複絲4 0 1間之 間隙完全塡充。然後,藉由在從2 4 0 °C至2 8 0 °C範圍的溫 度下之擠壓程序塗覆一耐磨耗塗層403。可以採用尼龍6/ 黏土或尼龍6/奈米碳管奈米複合材料作爲耐磨耗塗覆材料 403。藉由原位聚合產生的尼龍6奈米複合材料可含4 %奈 200840890 米黏土塡充料。藉由熔融調配程序產生的其他尼龍6奈米 複合材料亦可用於耐磨耗塗層403。尼龍6奈米複合材料 亦可用橡膠改質劑改質以改良延展性及韌度。耐磨耗塗層 403之厚度可爲從1至1〇〇微米。 【圖式簡單說明】 圖1顯示塗覆在纏繞絲上的尼龍6/黏土奈米複合材料 的橫截面圖之SEM影像。 圖2顯示在弦線的高衝擊檢驗後,自該絲和塗層切落 的材料之SEM影像。 圖3A示出具有環繞其的纏繞絲的核心絲之橫截面; 圖3 B示出施用於纏繞絲上之緩衝層; 圖3C示出施用於緩衝層上之塗層;且 圖4示出本發明另一具體實例。 【主要元件符號說明】 30 1,401 :單絲核心 3 02 :複絲 3 03, 402 :緩衝層塗層 3 04, 403 :耐磨耗塗層Figure 3A shows a cross section of a string for coating comprising a wire core 301 wound with a smaller diameter multifilament 306. Pure nylon 6 nine particles were melted as available from UBE Industries Inc. (product name·· UBE SF 200840890 1018 A). The buffer layer coating 3 03 is applied via a temperature press from 220 ° C to 270 1 . The thickness of the buffer layer coating 3〇3 is from 10 to 100 μm. The gap between the 3 02 is completely filled by pure nylon 6 coating. An abradable coating 304 (Fig. 3C) is then applied via a process at a temperature ranging from 240 °C to 280 °C. A nylon or nylon 6/nano carbon nanotube nanocomposite can be used as the wear resistant coating 304. The nylon 6 nanocomposite produced by in-situ polymerization may contain an annual nano-clay crucible. Other nylon composites produced by the melt blending process can also be used in the wear resistant coating 304. In addition to clay, carbon nanotubes, ceramic particles (such as SiO 2 and Al 2 〇 3), or glass granules are also used to make nylon 6 nanocomposites. The nylon 6 nanocomposite is also modified with a rubber modifier to improve ductility and toughness. The abrasion resistant coating can range from 1 to 100 microns. Example 2: Coating System with Nylon 1 1 Buffer Layer Referring again to Figure 3A, the string used for coating was a monofilament core 301 wound with a smaller diameter 03. Pure nylon 1 1 is available from ARKEMA. Nylon 1 1 has very good meltability at temperatures above 22 (TC). Good impact strength and shear strength also make nylon 11 a good buffer layer material. In Figure 3B, buffer layer coating 3 03 is applied by an extrusion process of 190 ° C to 27 (temperature in the range of TC. The thickness of the buffer layer 303 may be from 10 to 100 μm. The coating by the tarragon will be between the gaps of the multifilaments 03. Fully squeezing. The squeezing can be multifilament pressure stroke 6/viscous material r 4% 6 na, neat can be used thickness of multifilament Inc. fused flow as good cause in pure Nepal 200840890 refer to Figure 3C, then by at 24 The abrasion resistant coating 304 is applied by an extrusion process at a temperature ranging from TC to 280 ° C. A nanocomposite of nylon 6 / clay or nylon 6 / carbon nanotubes may be used as the wear resistant coating material 304 . The nylon 6 nanocomposite produced by in-situ polymerization can contain 4% nano-clay crucible. Other nylon 6 nanocomposites produced by the melt blending procedure can also be used for wear-resistant coatings. 6 nanocomposites can also be modified with rubber modifiers to improve ductility and toughness. The thickness of the wear resistant coating 304 can be From 1 to 100 microns. In addition to the extrusion process used to deposit coatings on the strings, other methods such as spraying, dip coating, spin coating, brushing, painting, and immersion can be used on the surface of the string. Deposition coating. Nylon 6 nanocomposite can be melted and extruded at temperatures above 190 ° C to deposit a coating on the string. Nylon 6 nanocomposite can be dissolved in a solvent such as formic acid at room temperature or elevated temperature Spraying, dip coating, spin coating, brushing, painting, or immersion to deposit a coating on the string. The solvent can then be removed by subsequent procedures such as evaporation. Figure 4 shows another embodiment of the invention Basically, it is then coated with a smaller diameter multifilament 40 1 on the coated string structure of Figure 3 C. By applying a squeezing procedure at a temperature ranging from 190 ° C to 270 ° C Buffer layer coating 402, similar to coating 303. Buffer layer coating 402 can have a thickness from 10 to 100 microns. The gap between the multifilaments 410 is fully filled by pure nylon 1 1 coating. Then, an abrasion resistance is applied by an extrusion process at a temperature ranging from 240 ° C to 2 80 ° C. Layer 403. A nylon 6/clay or nylon 6/nano carbon nanotube nano composite may be used as the wear resistant coating material 403. The nylon 6 nano composite produced by in-situ polymerization may contain 4% nai 200840890 m. Clay enamel filling. Other nylon 6 nanocomposites produced by the melt blending procedure can also be used for wear resistant coatings 403. Nylon 6 nanocomposites can also be modified with rubber modifiers to improve ductility and toughness. The thickness of the wear resistant coating 403 can range from 1 to 1 micron. [Simplified Schematic] FIG. 1 shows an SEM image of a cross-sectional view of a nylon 6/clay nano composite coated on a wound wire. . Figure 2 shows an SEM image of the material cut from the wire and the coating after the high impact test of the string. Figure 3A shows a cross section of a core wire having a wound wire surrounding it; Figure 3B shows a buffer layer applied to the wound wire; Figure 3C shows a coating applied to the buffer layer; and Figure 4 shows Another specific example of the invention. [Main component symbol description] 30 1,401 : Monofilament core 3 02 : Multifilament 3 03, 402 : Buffer coating 3 04, 403 : Abrasion resistant coating

Claims (1)

200840890 十、申請專利範圍 1 · 一種用於弦線之塗層,其包括: 一核心絲’其經由具有比核心絲較小直徑的複數條纏 繞絲予以纏繞; 一緩衝層塗層’其塡充在介於纏繞絲之間及介於纏繞 絲與核心絲間之間隙;及 一外部塗層,其覆蓋該緩衝層塗層、纏繞絲及核心絲 〇 2 ·如申請專利範圍第1項之塗層,其中該緩衝層塗 層包含聚合物。 3 ·如申請專利範圍第1項之塗層,其中該緩衝層塗 層包含尼龍(nylon )。 4.如申請專利範圍第3項之塗層,其中該緩衝層塗 層包含尼龍6。 5 ·如申請專利範圍第3項之塗層,其中該緩衝層塗 層包含尼龍1 1。 6·如申請專利範圍第3項之塗層,其中該外部塗層 包含尼龍和黏土奈米粒之複合材料。 7·如申請專利範圍第3項之塗層,其中該外部塗層 包含尼龍和奈米碳管之複合材料。 8·如申請專利範圍第6項之塗層,其中該外部塗層 進一步包含一改質劑。 9· 一種用於塗覆弦線之方法,其包括: 纒繞具有第一直徑之核心絲,其中係使用一或更多具 -1(K 200840890 有小於該第一直徑的第二直徑之纏繞絲; 擠壓熔融尼龍至一或更多纒繞絲間之間隙及該纏繞絲 與核心絲間之間隙中; 擠壓一塗層於弦線的圓周之上使其覆蓋一或更多纏繞 絲及在間隙內的熔融尼龍。 10·如申請專利範圍第9項之方法,其中該熔融尼龍 包含尼龍6。 1 1 ·如申請專利範圍第9項之方法,其中該熔融尼龍 包含尼龍1 1。 1 2.如申請專利範圍第9項之方法,其中該塗層包含 尼龍與黏土奈米粒之複合材料。 1 3 ·如申請專利範圍第9項之方法,其中該塗層包含 尼龍與奈米碳管之複合材料。 1 4 ·如申請專利範圍第9項之方法,其中該塗層包含 尼龍與陶瓷粒之複合材料。 1 5 ·如申請專利範圍第9項之方法,其中該塗層包含 尼龍與玻璃粒之複合材料。 1 6·如申請專利範圔第9項之方法,其中該塗層厚度 爲介於1與100微米之間。 1 7 ·如申請專利範圓第1項之塗層,其進一步包含: 另一複數纏繞絲,其纏繞該外部塗層; 另一緩衝層塗層’其塡充在該另一複數纏繞絲間之間 隙;及 另一外部塗層,其覆蓋該另一緩衝層塗層。 -11 - 200840890 18. 如申請專利範圍第3項之塗層,其中該塗層包含 尼龍和玻璃粒之複合材料。 19. 如申請專利範圍第3項之塗層,其中該塗層包含 尼龍和陶瓷粒之複合材料。 -12-200840890 X. Patent Application No. 1 · A coating for a string comprising: a core filament 'wound through a plurality of winding filaments having a smaller diameter than the core filament; a buffer layer coating' a gap between the wound filaments and between the wound filaments and the core filaments; and an outer coating covering the buffer layer coating, the wound filaments, and the core filaments 2 as described in claim 1 a layer wherein the buffer layer coating comprises a polymer. 3. The coating of claim 1, wherein the buffer layer coating comprises nylon. 4. The coating of claim 3, wherein the buffer layer coating comprises nylon 6. 5. The coating of claim 3, wherein the buffer layer coating comprises nylon 11. 6. The coating of claim 3, wherein the outer coating comprises a composite of nylon and clay nanoparticle. 7. The coating of claim 3, wherein the outer coating comprises a composite of nylon and carbon nanotubes. 8. The coating of claim 6 wherein the outer coating further comprises a modifier. 9. A method for coating a string, comprising: winding a core wire having a first diameter, wherein one or more of -1 is used (K 200840890 has a second diameter less than the first diameter) a filament; extruding molten nylon to a gap between one or more twisted filaments and a gap between the wound filament and the core filament; extruding a coating over the circumference of the string to cover one or more winding filaments The method of claim 9, wherein the molten nylon comprises nylon 6. The method of claim 9, wherein the molten nylon comprises nylon 11. 1 2. The method of claim 9, wherein the coating comprises a composite of nylon and clay nanoparticle. The method of claim 9, wherein the coating comprises nylon and nanocarbon. The method of claim 9, wherein the coating comprises a composite of nylon and ceramic particles. The method of claim 9, wherein the coating comprises nylon. Compound with glass The method of claim 9, wherein the coating thickness is between 1 and 100 microns. 1 7 · The coating of claim 1, wherein the coating further comprises: Another plurality of winding wires wound around the outer coating; another buffer layer coating 'filling the gap between the other plurality of winding wires; and another outer coating covering the other buffer layer coating -11 - 200840890 18. The coating of claim 3, wherein the coating comprises a composite of nylon and glass granules. 19. The coating of claim 3, wherein the coating comprises nylon Composite with ceramic particles. -12-
TW096143229A 2006-11-16 2007-11-15 Buffer layer for strings TW200840890A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86619906P 2006-11-16 2006-11-16

Publications (1)

Publication Number Publication Date
TW200840890A true TW200840890A (en) 2008-10-16

Family

ID=39186839

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096143229A TW200840890A (en) 2006-11-16 2007-11-15 Buffer layer for strings

Country Status (7)

Country Link
US (1) US20080124546A1 (en)
EP (1) EP2083928B1 (en)
JP (1) JP2010510400A (en)
CN (1) CN101534909A (en)
AT (1) ATE530230T1 (en)
TW (1) TW200840890A (en)
WO (1) WO2008061229A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9056783B2 (en) 1998-12-17 2015-06-16 Hach Company System for monitoring discharges into a waste water collection system
US8958917B2 (en) 1998-12-17 2015-02-17 Hach Company Method and system for remote monitoring of fluid quality and treatment
US7454295B2 (en) 1998-12-17 2008-11-18 The Watereye Corporation Anti-terrorism water quality monitoring system
US8920619B2 (en) 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
US8713906B2 (en) 2006-11-16 2014-05-06 Applied Nanotech Holdings, Inc. Composite coating for strings
US20080206559A1 (en) * 2007-02-26 2008-08-28 Yunjun Li Lubricant enhanced nanocomposites
FR2934958B1 (en) * 2008-08-12 2012-11-09 Babolat Vs ROPE FOR RACKETS, IN PARTICULAR FOR TENNIS RACKETS
WO2010019151A1 (en) 2008-08-15 2010-02-18 Otis Elevator Company Cord and polymer jacket assembly having a flame retardant in the polymer jacket material
EP2704136A1 (en) * 2012-09-04 2014-03-05 Larsen Strings A/S Damping and adhesive material for music strings
CN104043233A (en) * 2014-05-21 2014-09-17 安徽梦谷纤维材料科技有限公司 Method for preparing badminton racket string
JP6698317B2 (en) * 2015-11-12 2020-05-27 ヨネックス株式会社 Racket string
JP6812052B2 (en) * 2016-04-18 2021-01-13 ヨネックス株式会社 Racket string
EP3418433B1 (en) * 2017-06-21 2019-12-11 Speed France S.A.S. Monofilament string for a racket and process for manufacturing such a monofilament string
BR112020014890A2 (en) 2018-03-26 2020-12-08 Bridon International Limited SYNTHETIC FIBER ROPE
JP6722835B1 (en) * 2018-08-10 2020-07-15 株式会社ゴーセン Racket string and manufacturing method thereof

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1770794A (en) * 1927-07-09 1930-07-15 Johnson & Johnson Tennis string
US1974453A (en) * 1930-03-15 1934-09-25 Edson F Gallaudet Process and apparatus for making filled and coated cords
GB1205281A (en) * 1967-03-16 1970-09-16 Toray Industries A method for manufacturing synthetic multicore composite filaments and fabrics made therewith
GB1228171A (en) * 1967-04-06 1971-04-15
US3840427A (en) * 1972-07-26 1974-10-08 Milprint Inc Triplex films with nylon as a laminating layer
US4016714A (en) * 1975-05-21 1977-04-12 Ashaway Line & Twine Mfg. Co. String construction
KR830001509B1 (en) * 1980-04-28 1983-08-08 스카라 그레이드 리미티드 Racket Lines
US4377620A (en) * 1982-06-21 1983-03-22 Edward Alexander Gut for tennis racket and the like and method of making same
JPH0822946B2 (en) * 1985-09-30 1996-03-06 株式会社豊田中央研究所 Composite material
US4739007A (en) * 1985-09-30 1988-04-19 Kabushiki Kaisha Toyota Chou Kenkyusho Composite material and process for manufacturing same
JPH064246B2 (en) * 1985-12-09 1994-01-19 富士スタンダ−ドリサ−チ株式会社 Flexible composite material and manufacturing method thereof
US5090188A (en) * 1990-01-26 1992-02-25 Lin Tseng Y Ridged racquet string
JPH0683731B2 (en) * 1990-08-30 1994-10-26 株式会社ゴーセン Synthetic fiber gut for racket and method of manufacturing the same
DE69222773T2 (en) * 1991-08-12 1998-02-12 Allied Signal Inc FORMATION OF POLYMERIC NANOCOMPOSITES FROM LEAFY LAYER MATERIAL BY A MELTING PROCESS
US5536005A (en) * 1993-03-09 1996-07-16 Koff; Steven G. Means for racket to return strings to original position after ball impact
JP3025431B2 (en) * 1995-04-26 2000-03-27 株式会社ゴーセン Racket string
US5849830A (en) * 1995-06-07 1998-12-15 Amcol International Corporation Intercalates and exfoliates formed with N-alkenyl amides and/or acrylate-functional pyrrolidone and allylic monomers, oligomers and copolymers and composite materials containing same
US5698624A (en) * 1995-06-07 1997-12-16 Amcol International Corporation Exfoliated layered materials and nanocomposites comprising matrix polymers and said exfoliated layered materials formed with water-insoluble oligomers and polymers
US5578672A (en) * 1995-06-07 1996-11-26 Amcol International Corporation Intercalates; exfoliates; process for manufacturing intercalates and exfoliates and composite materials containing same
US5760121A (en) * 1995-06-07 1998-06-02 Amcol International Corporation Intercalates and exfoliates formed with oligomers and polymers and composite materials containing same
US5552469A (en) * 1995-06-07 1996-09-03 Amcol International Corporation Intercalates and exfoliates formed with oligomers and polymers and composite materials containing same
US5952095A (en) * 1996-12-06 1999-09-14 Amcol International Corporation Intercalates and exfoliates formed with long chain (C10 +) monomeric organic intercalant compounds; and composite materials containing same
US6460321B1 (en) * 1996-12-12 2002-10-08 Gosen Co., Ltd. Racquet string
US6371318B1 (en) * 1997-12-24 2002-04-16 Owens-Illinois Closure Inc. Plastic closure with compression molded sealing/barrier liner
US6232388B1 (en) * 1998-08-17 2001-05-15 Amcol International Corporation Intercalates formed by co-intercalation of onium ion spacing/coupling agents and monomer, oligomer or polymer MXD6 nylon intercalants and nanocomposites prepared with the intercalates
US6262162B1 (en) * 1999-03-19 2001-07-17 Amcol International Corporation Layered compositions with multi-charged onium ions as exchange cations, and their application to prepare monomer, oligomer, and polymer intercalates and nanocomposites prepared with the layered compositions of the intercalates
JP3389193B2 (en) * 1999-04-26 2003-03-24 住友特殊金属株式会社 Method for Sealing Holes in Ring-Shaped Bonded Magnet and Ring-Shaped Bonded Magnet Sealed by the Method
FR2796086B1 (en) * 1999-07-06 2002-03-15 Rhodianyl ABRASION RESISTANT WIRE ARTICLES
US6835454B1 (en) * 1999-08-24 2004-12-28 Stuart Karl Randa Fluoropolymer modification of strings for stringed sports equipment and musical instruments
JP3593939B2 (en) * 2000-01-07 2004-11-24 セイコーエプソン株式会社 Magnet powder and isotropic bonded magnet
JP2001267111A (en) * 2000-01-14 2001-09-28 Seiko Epson Corp Magnet powder and isotropic bonded magnet
JP3593940B2 (en) * 2000-01-07 2004-11-24 セイコーエプソン株式会社 Magnet powder and isotropic bonded magnet
FR2808697B1 (en) * 2000-05-09 2002-10-11 Cousin Biotech COMPOSITE SYNTHETIC ROPE FOR TENNIS RACQUET
BR0111333A (en) * 2000-05-30 2003-06-03 Univ South Carolina Res Found Polymer-clay nanocomposite, article, and process for preparing a polymer-clay nanocomposite
US6737464B1 (en) * 2000-05-30 2004-05-18 University Of South Carolina Research Foundation Polymer nanocomposite comprising a matrix polymer and a layered clay material having a low quartz content
US6682677B2 (en) * 2000-11-03 2004-01-27 Honeywell International Inc. Spinning, processing, and applications of carbon nanotube filaments, ribbons, and yarns
US6790296B2 (en) * 2000-11-13 2004-09-14 Neomax Co., Ltd. Nanocomposite magnet and method for producing same
JP2003126643A (en) * 2001-10-29 2003-05-07 Dainippon Ink & Chem Inc Pulp-like hygroscopic material and conditioned paper
US7037562B2 (en) * 2002-01-14 2006-05-02 Vascon Llc Angioplasty super balloon fabrication with composite materials
US6893730B2 (en) * 2002-09-24 2005-05-17 Honeywell International Inc. Barrier film with reduced dynamic coefficient of friction
JP2004202000A (en) * 2002-12-26 2004-07-22 Mizuno Corp String
US7247373B2 (en) * 2004-03-10 2007-07-24 Gosen Co., Ltd. Racquet string
WO2006096203A2 (en) * 2004-08-02 2006-09-14 University Of Houston Carbon nanotube reinforced polymer nanocomposites
US20060084532A1 (en) * 2004-10-20 2006-04-20 Chaokang Chu Strings for racquets

Also Published As

Publication number Publication date
WO2008061229A9 (en) 2008-08-21
EP2083928B1 (en) 2011-10-26
EP2083928A1 (en) 2009-08-05
WO2008061229A1 (en) 2008-05-22
JP2010510400A (en) 2010-04-02
ATE530230T1 (en) 2011-11-15
CN101534909A (en) 2009-09-16
US20080124546A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
TW200840890A (en) Buffer layer for strings
US8713906B2 (en) Composite coating for strings
JP2010510400A5 (en)
Zhang et al. Improved interfacial property of carbon fiber composites with carbon nanotube and graphene oxide as multi-scale synergetic reinforcements
WO2008106426A9 (en) Lubricant enhanced nanocomposites
CN102906330B (en) Method for the production of a multi-layer metal cord that is rubberised in situ using an unsaturated thermoplastic elastomer
Thostenson et al. Carbon nanotube/carbon fiber hybrid multiscale composites
Sugano et al. Evaluation of mechanical properties of untwisted carbon nanotube yarn for application to composite materials
CN102161814B (en) Preparation method of oriented carbon nano tube/ polymer composite membrane
TWI336272B (en) Method for making metal cladded metal matrix composite wire
EP1388346A1 (en) Balloon catheter with composite, short-fibre reinforced balloon
Pedrazzoli et al. Synergistic effect of exfoliated graphite nanoplatelets and short glass fiber on the mechanical and interfacial properties of epoxy composites
TW201938351A (en) Filaments based on a core material comprising a fibrous filler
JP5553606B2 (en) Reinforced poly (arylene ether) / polyamide composition and articles comprising the same
CN102892949A (en) Multi-layered metal cord rubberised in situ by an unsaturated thermoplastic elastomer
CN102333645A (en) Cnt-infused glass fiber materials and process therefor
EP1574234B1 (en) Racquet string
Seghini et al. Engineering the interfacial adhesion in basalt/epoxy composites by plasma polymerization
Petousis et al. On the substantial mechanical reinforcement of Polylactic Acid with Titanium Nitride ceramic nanofillers in material extrusion 3D printing
Ramachandran et al. Influence of nano silica on mechanical and tribological properties of additive manufactured PLA bio nanocomposite
Chen et al. Aligned carbon nanotube reinforced high performance polymer composites with low erosive wear
CN102892947B (en) Method for the production of a three-layer metal cord of the type that is rubberised in situ
US11149154B2 (en) Spray-coating method with particle alignment control
Ghosh et al. CNT coating and anchoring beads enhance interfacial adhesion in fiber composites
JP2003268674A (en) Method for producing sized carbon fiber bundle and chopped carbon fiber