JP2003126643A - Pulp-like hygroscopic material and conditioned paper - Google Patents

Pulp-like hygroscopic material and conditioned paper

Info

Publication number
JP2003126643A
JP2003126643A JP2001330731A JP2001330731A JP2003126643A JP 2003126643 A JP2003126643 A JP 2003126643A JP 2001330731 A JP2001330731 A JP 2001330731A JP 2001330731 A JP2001330731 A JP 2001330731A JP 2003126643 A JP2003126643 A JP 2003126643A
Authority
JP
Japan
Prior art keywords
paper
pulp
moisture absorption
glass
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001330731A
Other languages
Japanese (ja)
Inventor
Michiya Nakajima
道也 中嶋
Satoshi Demura
智 出村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2001330731A priority Critical patent/JP2003126643A/en
Publication of JP2003126643A publication Critical patent/JP2003126643A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a pulp-like hygroscopic material free from falling-off and deviation of a hygroscopic component, having a rapid-reversible, moisture controlling property, heat stability, and excellent dimensional stability, and to provide a conditioned paper and a highly decorative colored conditioned paper comprising the same. SOLUTION: The pulpy hygroscopic material is a composite material comprising glass microparticles and polyamide, wherein the particle diameter of the glass microparticle is at most 300 nm, and the content of the glass microparticles is 30-80 mass%. The conditioned paper comprises the pulpy hygroscopic material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はパルプ状吸湿材及び
調湿紙に関する。本発明で得られる吸湿材及び調湿紙は
吸湿性のみならず可逆的な高い調湿力を持つ。また本吸
湿材はパルプ形状を持つため、結合材を用いることなく
容易に抄紙することができ、得られる紙、シートは調湿
紙として好適に用いられる。加えてこの調湿紙は吸湿や
温度変化に対する寸法安定性に優れ、表面硬度が高い上
に耐摩耗性や熱安定性を持つため、エレクトロニクス関
連ディバイスの防湿保護用ペーパー等に好適に用いられ
る。
TECHNICAL FIELD The present invention relates to a pulp-like hygroscopic material and a humidity-controlled paper. The hygroscopic material and humidity control paper obtained in the present invention have not only hygroscopicity but also reversible high humidity control power. Further, since the moisture absorbent has a pulp shape, it can be easily made into paper without using a binder, and the obtained paper or sheet is suitably used as a humidity control paper. In addition, this humidity-controlling paper is excellent in dimensional stability against moisture absorption and temperature change, has high surface hardness, and has abrasion resistance and heat stability, so that it is suitably used as a moisture-proof protection paper for electronics-related devices.

【0002】また、本発明での吸湿材は純白色であるた
め、着色材と共に抄紙することにより任意の色に着色す
ることができ、意匠性に優れることから壁紙等の内装材
に好適に用いられる。
Further, since the moisture absorbing material of the present invention is pure white, it can be colored in any color by making a paper together with the coloring material, and it is excellent in designability and thus is suitably used as an interior material such as wallpaper. To be

【0003】[0003]

【従来の技術】吸湿性の高い繊維とその繊維から成る紙
及びその製造方法が特開昭63−99400号公報及び
特開昭63−270528号公報に記載されている。こ
れらの繊維は吸湿材料としてシリカゲルを用い、これを
繊維成分と混合している。しかし、この繊維は吸湿率が
40%程度にとどまり、他の吸湿剤にくらべて吸湿速度
が遅い。
2. Description of the Related Art Highly hygroscopic fibers, papers made of the fibers, and a method for producing the same are described in JP-A-63-99400 and JP-A-63-270528. These fibers use silica gel as a hygroscopic material, which is mixed with the fiber component. However, this fiber has a moisture absorption rate of only about 40% and has a slower moisture absorption rate than other moisture absorbents.

【0004】特開平1−299624号公報には吸湿材
料として塩化リチウム、塩化カルシウム等の無機塩類を
用い、これらを繊維に含浸させる方法が記載されてい
る。これらの無機塩は吸湿量が多く吸湿速度も速いが、
潮解性があり吸湿に伴い表面が粘着性を帯びるため、そ
の用途が限定されている。また、その吸湿は不可逆で調
湿性はなく再生には高温での処理を要する。
Japanese Unexamined Patent Publication No. 1-299624 describes a method of impregnating fibers with inorganic salts such as lithium chloride and calcium chloride as a hygroscopic material. These inorganic salts have a large amount of moisture absorption and a high moisture absorption rate,
Its use is limited because it has deliquescent properties and its surface becomes tacky with moisture absorption. Further, the moisture absorption is irreversible and has no humidity control property, and therefore, a treatment at a high temperature is required for regeneration.

【0005】特開平8−131755号公報にはポリア
クリル酸ナトリウム等の吸水性ポリマーを裁断し、繊維
成分と混合してパルプ化し、これを用いて吸湿紙を製造
する方法が記載されている。該公報に限らず上述したこ
れらすべての従来技術は紙へ加工する為に、吸湿材料を
繊維成分と混合するためのパルプ化工程が不可欠であり
製造が煩雑である。また、その工程で吸湿材料の脱落や
局在が生じ、吸湿能が十分得られない。また繊維成分と
しては各種天然繊維やポリアミド等の合成繊維を用いて
いるが、これらの材料は温度変化や吸湿に伴う寸法変化
が大きいため、使用範囲が制限されている。
Japanese Unexamined Patent Publication No. 8-131755 discloses a method of cutting a water-absorbent polymer such as sodium polyacrylate, mixing it with a fiber component to form a pulp, and producing a hygroscopic paper using this. Not only in this publication but also in all of the above-mentioned conventional techniques, a pulping step for mixing a hygroscopic material with a fiber component is indispensable for processing into paper, and the production is complicated. In addition, the hygroscopic material may be removed or localized in the process, so that the hygroscopic ability cannot be sufficiently obtained. Although various natural fibers and synthetic fibers such as polyamide are used as the fiber component, the range of use of these materials is limited because of large dimensional changes due to temperature changes and moisture absorption.

【0006】[0006]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、吸湿成分の脱落や局在がなく、高い吸湿
力、可逆的で即応性に優れた調湿性、及び熱安定性を有
し、かつ寸法安定性に優れたパルプ状吸湿材、該パルプ
状吸湿材から成る調湿紙、及び該パルプ状吸湿材から成
る意匠性の高い着色された調湿紙を提供することにあ
る。
The problem to be solved by the present invention is that there is no loss or localization of the hygroscopic component, a high hygroscopic force, a reversible and highly responsive humidity control property, and thermal stability. And a pulp-like moisture absorbent having excellent dimensional stability, a humidity-controlling paper comprising the pulp-like moisture-absorbing material, and a colored humidity-controlling paper comprising the pulp-like moisture absorbent having high designability.

【0007】[0007]

【課題を解決するための手段】本発明者らはこれらの課
題を解決すべく鋭意研究を行った結果、水ガラス共存下
でジカルボン酸ハロゲン化物とジアミンとを界面重縮合
させて得られるガラス微粒子とポリアミドとの複合体
で、かつ該複合体中にガラス微粒子を30〜80質量%
含む複合体が優れた吸湿性を有し、吸湿材として十分な
性能を有すること、さらに該複合体から成るパルプは抄
紙しやすく、抄紙された紙は可逆的に水分を放出するの
で調湿材として有用であることを見出し、本発明を完成
するに至った。
As a result of intensive studies to solve these problems, the present inventors have found that glass fine particles obtained by interfacial polycondensation of dicarboxylic acid halide and diamine in the presence of water glass. Of 30 to 80% by mass of glass particles in the composite of
The composite containing the composite has excellent hygroscopicity and has sufficient performance as a hygroscopic material. Further, the pulp made of the composite is easy to paper-making, and the paper-made paper reversibly releases water, so the humidity-controlling material. As a result, the present invention has been completed and the present invention has been completed.

【0008】即ち、本発明はガラス微粒子とポリアミド
との複合体から成り、ガラス微粒子の粒径が300nm
以下であり、かつ、ガラス微粒子含有率が30〜80質
量%であることを特徴とするパルプ状吸湿材、及び該パ
ルプ状吸湿材から成る調湿紙を提供する。
That is, the present invention comprises a composite of glass particles and polyamide, and the glass particles have a particle size of 300 nm.
Provided is a pulp-like hygroscopic material characterized by having a glass fine particle content of 30 to 80% by mass, and a humidity control paper comprising the pulp-like hygroscopic material.

【0009】[0009]

【発明の実施の形態】以下に本発明を更に詳細に説明す
る。本発明のパルプ状吸湿材は、ガラス微粒子とポリア
ミドとの複合体から成り、該複合体中に含まれるガラス
微粒子の粒径が300nm以下のものであり、好ましく
は160nm以下、さらに好ましくは50nmである。
ガラス微粒子の粒径が300nmを超えて大きすぎる
と、ガラス質量あたりのガラス微粒子の外表面積が小さ
くなり吸湿能力、特に吸湿速度が低下する。またポリア
ミド樹脂に対する接着性が不足し、脱落等の問題が生じ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below. The pulp-like moisture absorbent of the present invention is composed of a composite of glass fine particles and polyamide, and the glass fine particles contained in the composite have a particle diameter of 300 nm or less, preferably 160 nm or less, more preferably 50 nm. is there.
If the particle size of the glass particles exceeds 300 nm and is too large, the outer surface area of the glass particles per mass of glass becomes small, and the moisture absorption capacity, particularly the moisture absorption rate, decreases. In addition, the adhesiveness to the polyamide resin is insufficient, causing problems such as falling off.

【0010】本発明に用いるガラス微粒子とポリアミド
との複合体中のガラス微粒子の含有率は30〜80質量
%、好ましくは50〜70質量%とすることが望まし
い。ガラス微粒子の含有率が30質量%未満であると吸
湿量が不十分となるばかりか、ガラス微粒子が該複合体
に与える補強効果が小さくなるため、温度変化や吸湿に
よる寸法の安定性が低下する。逆に80質量%を超えて
多すぎると、結合成分としてのポリアミドの不足により
パルプ状の吸湿材が得られにくくなり、その結果、ガラ
ス微粒子とポリアミドとの複合体から成るパルプのみで
の抄紙では、十分な強度のある紙が得られなくなる。
The content of glass particles in the composite of glass particles and polyamide used in the present invention is 30 to 80% by mass, preferably 50 to 70% by mass. If the content of the glass fine particles is less than 30% by mass, not only the moisture absorption becomes insufficient, but also the reinforcing effect of the glass fine particles on the composite becomes small, so that the dimensional stability due to temperature change or moisture absorption is reduced. . On the other hand, if it exceeds 80% by mass and is too much, it becomes difficult to obtain a pulp-like hygroscopic material due to a shortage of polyamide as a binding component, and as a result, in the papermaking using only pulp composed of a composite of glass fine particles and polyamide. , Paper with sufficient strength cannot be obtained.

【0011】本発明で言う調湿性とは、周囲の湿度変化
に応答して、周囲の湿度を一定に保つ方向で水分を吸放
出する性質のことを意味する。加えて良好な調湿性とは
水分の吸放出が可逆的で、かつ繰り返しの水分の吸放湿
により吸湿能力の変化が無い性質を言う。
The term "humidity control" as used in the present invention means the property of absorbing and releasing water in the direction of keeping the ambient humidity constant in response to changes in the ambient humidity. In addition, good humidity control property means that water absorption and release are reversible and that moisture absorption capacity does not change due to repeated absorption and release of water.

【0012】本発明のガラス微粒子とポリアミドとの複
合体から成る吸湿材はパルプ状である。ここで言うパル
プ状とは、JIS P 8207−1976に準じたパル
プ篩分試験法に於いて、その繊維長が212μm以上の
繊維状物が30質量%以上で、かつ2mm以上の繊維状
物が50質量%以下のものを言う。中でも、地合が良好
な紙を得ることができるため、繊維長が212μm以上
の繊維状物が60質量%以上であり、かつ2mm以上の
繊維状物が30質量%以下の範囲の繊維長分布を持つパ
ルプが好ましく用いられる。
The hygroscopic material comprising the composite of glass fine particles and polyamide of the present invention is in the form of pulp. The term “pulp-like” as used herein means that in the pulp sieving test method according to JIS P 8207-1976, a fibrous substance having a fiber length of 212 μm or more is 30% by mass or more and a fibrous substance of 2 mm or more is used. It means 50% by mass or less. In particular, since a paper having a good texture can be obtained, the fiber length distribution is such that the fibrous substance having a fiber length of 212 μm or more is 60% by mass or more and the fibrous substance having a fiber length of 2 mm or more is 30% by mass or less. Pulp having a is preferably used.

【0013】本発明でいう紙とは、表面の地合が良くJ
IS P 8113−76に準じた引っ張り強度試験にお
いて2.0MPa・cm3/g以上の強度を持つものを
言う。この強度以上の紙はカレンダー加工等の各種加工
に耐える十分な強度を持つ。
The paper referred to in the present invention has a good texture on the surface.
It has a strength of 2.0 MPa · cm 3 / g or more in a tensile strength test according to ISP 8113-76. Paper with a strength above this level has sufficient strength to withstand various processes such as calendering.

【0014】本発明で用いるガラス微粒子とポリアミド
との複合体は、ジカルボン酸ハロゲン化物を含む有機溶
媒溶液と、ジアミンと水ガラスとを含む水溶液を界面重
縮合させ、剪断することによって得ることができ、その
製造方法は特開平10−176106公報に開示されて
いる。
The composite of glass particles and polyamide used in the present invention can be obtained by subjecting an organic solvent solution containing a dicarboxylic acid halide and an aqueous solution containing a diamine and water glass to interfacial polycondensation and shearing. The manufacturing method thereof is disclosed in JP-A-10-176106.

【0015】ジカルボン酸ハロゲン化物は、界面重合反
応に用いられるものであれば特に限定されないが、アジ
ポイルクロライド、アゼラオイルクロライド、セバシル
クロライド、またはこれらの臭素化物等の脂肪族ジカル
ボン酸ハロゲン化物、イソフタロイルクロライド、テレ
フタロイルクロライド、およびこれらの芳香族環の1個
以上の水素をハロゲン原子、ニトロ基、アルキル基で置
換した芳香族ジカルボン酸ハロゲン化物が挙げられ、こ
れらは単独または2種以上の組み合わせで用いられても
良い。なかでも、繊維状物が容易に得られるという理由
から、アジポイルクロライド、アゼラオイルクロライド
が好ましく用いられる。
The dicarboxylic acid halide is not particularly limited as long as it can be used in the interfacial polymerization reaction, and aliphatic dicarboxylic acid halogen compounds such as adipoyl chloride, azela oil chloride, sebacyl chloride, or bromides of these compounds can be used. Compound, isophthaloyl chloride, terephthaloyl chloride, and aromatic dicarboxylic acid halides in which one or more hydrogen atoms of these aromatic rings are substituted with a halogen atom, a nitro group, or an alkyl group. You may use it in combination of 2 or more types. Among them, adipoyl chloride and azela oil chloride are preferably used because a fibrous material can be easily obtained.

【0016】ジカルボン酸ハロゲン化物の有機溶媒溶液
に用いる有機溶媒としては、ジカルボン酸ハロゲン化物
やジアミンと反応せず、ジカルボン酸ハロゲン化物を溶
解させるものであれば特に制限なく用いることができ、
トルエン、キシレン、クロロホルム、シクロヘキサン、
シクロヘキサノン、テトラヒドロフラン、2−ブタノン
などを代表的な例として挙げることができる。
The organic solvent used in the organic solvent solution of dicarboxylic acid halide can be used without particular limitation as long as it does not react with dicarboxylic acid halide or diamine and dissolves dicarboxylic acid halide.
Toluene, xylene, chloroform, cyclohexane,
Cyclohexanone, tetrahydrofuran, 2-butanone, etc. can be mentioned as a typical example.

【0017】有機溶媒溶液中のジカルボン酸ハロゲン化
物の濃度としては重合反応が十分に進行すれば特に制限
されないが、0.01〜3モル/Lの濃度範囲、特に
0.05〜1モル/Lが好ましい。
The concentration of the dicarboxylic acid halide in the organic solvent solution is not particularly limited as long as the polymerization reaction proceeds sufficiently, but it is in the concentration range of 0.01 to 3 mol / L, particularly 0.05 to 1 mol / L. Is preferred.

【0018】ジアミンは、前記ジカルボン酸ハロゲン化
物と反応するもので、1,2−ジアミノエタン、1,3
−ジアミノプロパン、1,6−ジアミノヘキサン等の脂
肪族ジアミン、m−キシリレンジアミン、p−キシリレ
ンジアミン、m−フェニレンジアミン、p−フェニレン
ジアミン、1,5’−ジアミノナフタレン、1,8−ジ
アミノナフタレン、2,3−ジアミノナフタレン等の芳
香族ジアミン及びこれらの芳香環の1個以上の水素をハ
ロゲン、ニトロ基、またはアルキル基で置換した芳香族
ジアミンが挙げられ、これらは単独又は2種以上の組み
合わせで用いても良い。なかでも、繊維状物が容易に得
られるという理由から、1,2−ジアミノエタン、1,
3−ジアミノプロパン、1,6−ジアミノヘキサンが好
ましく用いられる。また、水溶液中のジアミンの濃度範
囲は例えば0.01〜3モル/Lの濃度範囲、特に0.
05〜1モル/Lが好ましい。
The diamine reacts with the above dicarboxylic acid halide, and is 1,2-diaminoethane or 1,3.
-Diaminopropane, aliphatic diamine such as 1,6-diaminohexane, m-xylylenediamine, p-xylylenediamine, m-phenylenediamine, p-phenylenediamine, 1,5'-diaminonaphthalene, 1,8- Aromatic diamines such as diaminonaphthalene and 2,3-diaminonaphthalene, and aromatic diamines in which one or more hydrogen atoms of these aromatic rings are substituted with a halogen, a nitro group, or an alkyl group are exemplified, and these are single or two types. You may use it in the above combination. Among them, 1,2-diaminoethane, 1, and 1,2-diaminoethane, because the fibrous material can be easily obtained
3-diaminopropane and 1,6-diaminohexane are preferably used. Further, the concentration range of the diamine in the aqueous solution is, for example, 0.01 to 3 mol / L concentration range, particularly, 0.
05-1 mol / L is preferable.

【0019】水ガラスは、ガラス微粒子とポリアミドと
の複合体のガラス源であり、例えばJIS K 1408
−1966に記載の水ガラス1号、2号、3号等のM
O・nSiOの組成式で表され、Mがアルカリ金属、
nの範囲が1.2≦n≦4のものが挙げられる。ジカル
ボン酸ハロゲン化物を含む有機溶媒溶液と、ジアミンを
含む水溶液との界面または混合溶液中で重縮合反応が進
行し、ポリアミドが生成する反応に際しては水ガラス中
のアルカリ金属自身が酸受容体として働き、水ガラスか
ら生成したガラスがポリアミド内に微細に分散し、複合
体を形成する。このときの水ガラスの濃度を調節するこ
とにより、複合体中のガラス微粒子の割合を30〜80
質量%の範囲で任意にコントロールすることができる。
ガラス微粒子の質量%を低くするために水ガラス濃度を
低くする場合は酸受容体が不足することがある。その場
合には、酸受容体の不足分を補い、重合反応を促進させ
る目的で水溶液に、例えば水酸化ナトリウム、水酸化カ
リウム等の酸受容体を添加しても良い。
Water glass is a glass source of a composite of glass fine particles and polyamide, and is, for example, JIS K 1408.
Water glass No. 1 according to -1966, No. 2, such as No. 3 M 2
It is represented by the composition formula of O · nSiO 2 , M is an alkali metal,
The range of n is 1.2 ≦ n ≦ 4. At the interface between the organic solvent solution containing dicarboxylic acid halide and the aqueous solution containing diamine or in the mixed solution, the polycondensation reaction proceeds, and the alkali metal in water glass itself acts as an acid acceptor during the reaction to form polyamide. The glass produced from water glass is finely dispersed in polyamide to form a composite. By adjusting the concentration of water glass at this time, the ratio of the glass fine particles in the composite is adjusted to 30 to 80.
It can be arbitrarily controlled within the range of mass%.
If the concentration of water glass is lowered to lower the mass% of glass particles, the acid acceptor may be insufficient. In that case, an acid acceptor such as sodium hydroxide or potassium hydroxide may be added to the aqueous solution for the purpose of supplementing the shortage of the acid acceptor and promoting the polymerization reaction.

【0020】パルプ状吸湿材の製造法としては有機溶液
と水溶液を効率よく接触反応させ、生じたゲル状の反応
物を剪断し、パルプ状物を生成しうる方法であればとく
に方式は限定されない。連続式の製造法としては、回転
する混合体の回転側面に設けた突子により両溶液を撹拌
混合させながら、撹拌により重合する固形分を剪断する
混合装置に連続的に流通させる方法が挙げられる。具体
的な装置としては大平洋機工株式会社製ファインフロー
ミルFM−15型、INDAG Machinenba
u Gmb社製ダイナミックミキサDLM/S215型
に加え、大平洋機工株式会社製スパイラルピンミキサS
PM−15型等が挙げられる。
The method for producing the pulp-like moisture absorbent is not particularly limited as long as it is a method capable of efficiently contacting an organic solution and an aqueous solution and shearing the resulting gel-like reaction product to produce a pulp-like product. . Examples of the continuous production method include a method in which both solutions are stirred and mixed by a protrusion provided on the rotating side surface of a rotating mixture, and a solid content to be polymerized by stirring is continuously circulated in a mixing device. . As a specific device, Fine Flow Mill FM-15 type manufactured by Taiheiyo Kiko Co., Ltd., INDAG Machinenba
u Gmb dynamic mixer DLM / S215 type, as well as Taiheiyo Kiko Co., Ltd. spiral pin mixer S
PM-15 type etc. are mentioned.

【0021】バッチ式の製造法としては高速攪拌翼と反
応槽の内容物全体を混合しうる攪拌翼とを有する多軸攪
拌装置により、攪拌翼のみの攪拌下で予備重合を行った
後、高速攪拌翼を攪拌し重合、剪断を行う方法が挙げら
れる。具体的な装置としては井上製作所株式会社製2軸
ミキサーBDM−V−270V、浅田鉄工株式会社製コ
ーネルデスパーMHK−10型に加え、特殊機化株式会
社製コンビミックスCBS−100等を挙げることがで
きる。合成の温度は常温付近でよく、例えば−10〜5
0℃の温度範囲で十分に重合を行うことができる。この
ように本発明ではパルプ状吸湿材を1工程のみの容易な
プロセスで直接製造することが出来る。
As a batch-type production method, a multi-spindle stirring device having a high-speed stirring blade and a stirring blade capable of mixing the entire contents of the reaction tank is used to carry out prepolymerization under stirring only with the stirring blade, followed by high-speed A method of stirring with a stirring blade to carry out polymerization and shearing can be mentioned. Specific devices include a twin-screw mixer BDM-V-270V manufactured by Inoue Seisakusho Co., Ltd., a Cornell Desper MHK-10 type manufactured by Asada Iron Works Co., Ltd., and Combimix CBS-100 manufactured by Tokushu Kika Co., Ltd. it can. The synthesis temperature may be around room temperature, for example, -10 to 5
Polymerization can be sufficiently carried out in the temperature range of 0 ° C. As described above, according to the present invention, the pulp-like hygroscopic material can be directly produced by a simple process including only one step.

【0022】本発明のパルプ状吸湿材は、例えば水に分
散させた分散液から公知慣用の方法により結合材を全く
用いずに抄紙することが可能である。例えば分散液をス
テンレスやナイロン網等の濾材に通じる方法や、分散液
をスプレーにより基材に噴霧する方法等が挙げられる。
本方法により、引っ張り試験による比強度が2.0MP
a・cm3/g以上の各種加工に耐える紙を製造するこ
とが出来る。また、必要とされる吸湿性や調湿性を損な
わない範囲で、公知慣用の結合材を用いることは一向に
差し支えない。
The pulp-like hygroscopic material of the present invention can be paper-made from a dispersion liquid dispersed in water, for example, by a known and conventional method without using any binder. For example, a method in which the dispersion liquid is passed through a filter material such as stainless steel or a nylon mesh, and a method in which the dispersion liquid is sprayed on the substrate are mentioned.
With this method, the specific strength by the tensile test is 2.0MP.
It is possible to manufacture paper that can withstand various processings of a · cm 3 / g or more. Further, it is perfectly acceptable to use a known and commonly used binder within a range that does not impair the required hygroscopicity and humidity control.

【0023】本発明の調湿紙のうち特にガラス微粒子の
含有率が60質量%付近の材料は良好な調湿性のみなら
ず、800GPa以上の表面硬度を持つ。また25℃か
ら325℃までの300Kの温度上昇に伴う寸法変化が
僅か0.1%以下、自重の80質量%以上の吸湿に伴う
寸法変化が0.3%以下と言う高い寸法安定性を持つ。
加えて熱安定性にも優れ、300℃以下の温度では物性
変化が殆ど見られない。そのために過酷な条件で使用さ
れながら高い物性安定性が求められるエレクトロニクス
関連ディバイスの防湿保護用ペーパー等に好適に用いら
れる。
Among the humidity control papers of the present invention, particularly the material having a content of glass particles of about 60% by mass has not only good humidity control but also surface hardness of 800 GPa or more. Also, it has a high dimensional stability that the dimensional change due to temperature rise of 300K from 25 ° C to 325 ° C is only 0.1% or less, and the dimensional change due to moisture absorption of 80% by weight or more of its own weight is 0.3% or less. .
In addition, it has excellent thermal stability and shows almost no change in physical properties at temperatures of 300 ° C or lower. Therefore, it is suitable for use as a moisture-proof protection paper for electronics-related devices, which is required to have high physical property stability while being used under severe conditions.

【0024】本発明の吸湿材は、窒素ガスを用いたガス
吸着量の測定の結果、細孔直径が6〜30nmのメソポ
アー領域の微細孔を多量に持つ多孔質体であり、100
2/g以上の比表面積を持つことが明らかとなった。
このため本発明の吸湿材は水蒸気の吸放出のみならず、
種々の気体、例えばメタンガス、プロパンガス等の炭化
水素ガス、一酸化炭素、二酸化炭素、ホルムアルデヒ
ド、トルエン、硫黄酸化物ガスや窒素酸化物ガス、及び
これらの水蒸気含有混合ガス等の吸放出に応用可能であ
る。
The hygroscopic material of the present invention is a porous body having a large amount of fine pores in the mesopore region having a pore diameter of 6 to 30 nm as a result of measuring the gas adsorption amount using nitrogen gas.
It was clarified that it has a specific surface area of m 2 / g or more.
Therefore, the moisture absorbent of the present invention not only absorbs and releases water vapor,
Applicable to various gases such as hydrocarbon gas such as methane gas, propane gas, carbon monoxide, carbon dioxide, formaldehyde, toluene, sulfur oxide gas, nitrogen oxide gas, and mixed gas containing these steam. Is.

【0025】また、本発明のパルプ状吸湿材は純白色で
あり、公知の着色剤と共に抄紙することにより任意の色
に着色可能である。本発明で用いられる着色材は水に不
溶であり、抄紙の際に着色材が吸湿材上に残存する物で
あれば特に限定されず、顔料等が好ましく用いられる。
顔料としては公知慣用のカーボンブラック、ヘマタイ
ト、コバルトブルー、酸化鉄やカドミウムイエロー等の
無機顔料やアゾ系、フタロシアニン系、キノリン系やト
リフェニルメタン系の有機顔料等が挙げられるがこれら
に限定されない。上述のごとく本発明の調湿紙は純白色
から各種の着色紙、並びに印刷を付した高い意匠性を有
する紙材、例えば壁紙等の内装材にも好適に用いられ
る。
The pulp-like hygroscopic material of the present invention is pure white and can be colored in any color by making a paper with a known coloring agent. The colorant used in the present invention is not particularly limited as long as it is insoluble in water and remains on the hygroscopic material during papermaking, and a pigment or the like is preferably used.
Examples of the pigment include, but are not limited to, known and commonly used inorganic pigments such as carbon black, hematite, cobalt blue, iron oxide and cadmium yellow, and organic pigments of azo type, phthalocyanine type, quinoline type and triphenylmethane type. As described above, the humidity control paper of the present invention is suitably used for pure white to various colored papers, and printed paper materials having a high design property, for example, interior materials such as wallpaper.

【0026】[0026]

【実施例】以下に本発明を実施例にてより具体的に説明
するが、実施例は発明の代表的形態を示すものであっ
て、本発明はその範囲に限定されない。
EXAMPLES The present invention will be described in more detail below with reference to examples, but the examples show typical forms of the invention, and the present invention is not limited to the scope thereof.

【0027】(1)抄紙方法 0.2g/dLの濃度にパルプを分散した液200gを
直径95mmのヌッチェを用い目開き4μmのろ紙上で
減圧濾過した。得られたケーキを170℃、1MPa/
cmの条件で熱プレスを行い、乾燥紙を作成した。
(1) Papermaking method 200 g of a liquid in which pulp was dispersed at a concentration of 0.2 g / dL was filtered under reduced pressure on a filter paper having an opening of 4 μm using a Nutsche having a diameter of 95 mm. The obtained cake is 170 ° C., 1 MPa /
Hot pressing was performed under the condition of cm 2 to prepare a dry paper.

【0028】(2)吸湿率の測定 (1)の方法で得られた紙を110℃で17時間乾燥さ
せ、絶乾状態とした。その状態の紙質量(乾燥質量)を
計測し、23℃相対湿度95%の条件で24時間保持
し、その質量(吸湿質量)を測定した。吸湿率の算出式
は以下の通りである。 吸湿率(%)=[(吸湿質量−乾燥質量)/乾燥質量]
×100
(2) Measurement of Moisture Absorption Rate The paper obtained by the method of (1) was dried at 110 ° C. for 17 hours to be completely dried. The paper mass (dry mass) in that state was measured, and the mass (moisture absorption mass) was measured by holding the paper at 23 ° C. and 95% relative humidity for 24 hours. The formula for calculating the moisture absorption rate is as follows. Moisture absorption rate (%) = [(moisture absorption mass-dry mass) / dry mass]
× 100

【0029】(3)吸放湿の繰り返し特性の測定 (2)の方法に従って吸湿させた紙を再度110℃で1
7時間乾燥させ、絶乾状態とした後、再度同様な方法で
吸湿させる操作を繰り返し、吸放湿回数の変化に伴う吸
湿率の変化を測定した。
(3) Measurement of Repeated Moisture Absorption / Desorption Characteristics The paper that has been made to absorb moisture according to the method of (2) is again stored at 110 ° C. for 1 hour.
After drying for 7 hours to be in an absolutely dry state, the operation of absorbing moisture again was repeated, and the change in the moisture absorption rate with the change in the number of times of moisture absorption and release was measured.

【0030】(4)調湿性の測定 (1)の方法で得られた紙を110℃で17時間乾燥さ
せ、絶乾状態とした。その後23℃相対湿度30%の条
件で4時間保持し、続いて温度を保ったままで相対湿度
60%、続いて相対湿度95%の条件で各4時間保持し
た。その後再び相対湿度を60%、30%と低下させ各
4時間保持し各相対湿度での吸湿率を測定した。
(4) Measurement of Humidity Control The paper obtained by the method of (1) was dried at 110 ° C. for 17 hours to be completely dried. After that, the temperature was maintained at 23 ° C. and a relative humidity of 30% for 4 hours, then, while the temperature was maintained, the relative humidity was maintained at 60%, and subsequently, the relative humidity was maintained at 95% for 4 hours. After that, the relative humidity was lowered again to 60% and 30%, respectively, and maintained for 4 hours, and the moisture absorption rate at each relative humidity was measured.

【0031】(5)ガラス微粒子含有率(灰分)の測定 ガラス微粒子とポリアミドとの複合体を空気中、750
℃で3時間焼成しポリアミド成分を完全に焼失させた
後、灰分質量を測定し、灰分含有率をガラス微粒子の含
有率として算出した。算出式は以下の通りである。 ガラス微粒子含有率=灰分(質量%)=(750℃焼成
後質量/焼成前質量)×100
(5) Measurement of glass fine particle content (ash content) A composite of glass fine particles and polyamide was placed in air for 750
After baking for 3 hours at 0 ° C. to completely burn off the polyamide component, the ash content was measured, and the ash content was calculated as the content of glass particles. The calculation formula is as follows. Glass fine particle content rate = ash content (mass%) = (mass after firing at 750 ° C / weight before firing) x 100

【0032】(6)引っ張り強度測定 (1)の方法で得た紙をJIS P 8113−76に準
じた引っ張り強度試験によって行った。
(6) Tensile Strength Measurement The paper obtained by the method (1) was subjected to a tensile strength test according to JIS P 8113-76.

【0033】(7)比表面積の測定 (1)の方法で得た紙約0.2gを湯浅アイオニクス株
式会社製全自動ガス吸着装置オートソーブ1Cにセット
して窒素ガスを用いBET多点法により、ガラス微粒子
とポリアミドとの複合体中のガラス微粒子の比表面積
(m/g)を測定した。
(7) Measurement of specific surface area Approximately 0.2 g of the paper obtained by the method of (1) is set in a fully automatic gas adsorber Autosorb 1C manufactured by Yuasa Ionics Co., Ltd., and nitrogen gas is used by the BET multipoint method. The specific surface area (m 2 / g) of the glass particles in the composite of glass particles and polyamide was measured.

【0034】(8)ガラス微粒子の粒径測定 300℃で焼成したガラス微粒子とポリアミドとの複合
体紙をマイクロトームを用いて厚さ75nmの超薄切片
とした。得られた切片を日本電子製JEM−200CX
にて100000倍の倍率で観察し、100個のガラス
微粒子の平均粒径を測定した。
(8) Particle Size Measurement of Glass Fine Particles A composite paper of glass fine particles and polyamide fired at 300 ° C. was made into an ultrathin section having a thickness of 75 nm using a microtome. The obtained section is JEM-200CX manufactured by JEOL Ltd.
Was observed at a magnification of 100,000 times and the average particle diameter of 100 glass fine particles was measured.

【0035】(9)吸湿寸法変化率の測定 (1)の方法で得た紙を(2)の操作を行い、絶乾状態
の紙の直径(乾燥時寸法)と吸湿状態の紙の直径(吸湿
時寸法)を測定した。寸法変化率(%)を以下の式によ
り算出した。 寸法変化率(%)=[(吸湿時寸法−乾燥時寸法)/乾
燥時寸法]×100
(9) Measurement of moisture absorption dimensional change rate The paper obtained by the method of (1) is subjected to the operation of (2), and the diameter of the paper in the dry state (dimension at the time of drying) and the diameter of the paper in the moisture absorption state ( The dimension when absorbing moisture) was measured. The dimensional change rate (%) was calculated by the following formula. Dimensional change rate (%) = [(dimension at moisture absorption-dimension at dry) / dimension at dry] x 100

【0036】(10)線熱膨張率の測定法 セイコー電子工業製TMA/SS120Cを用い、空気
中で2℃/分の昇温速度にて線熱膨張率を測定した。
(10) Method of measuring linear thermal expansion coefficient Using TMA / SS120C manufactured by Seiko Denshi Kogyo Co., Ltd., the linear thermal expansion coefficient was measured in air at a temperature rising rate of 2 ° C./min.

【0037】(実施例1)0.25モル/Lのアジポイ
ルクロライドを含むトルエン溶液(A1)と0.15モ
ル/Lの1,6−ジアミノへキサンと100g/Lの珪
酸ソーダ3号を含む水溶液(B1)を用意した。水溶液
83.3Lを井上製作所株式会社製2軸ミキサーBDM
−V−270Vに予め仕込み、高速攪拌翼の停止下にて
低速攪拌翼により攪拌しつつ、トルエン溶液(A1)5
0Lを仕込んだ。(A1)の仕込み終了後、高速攪拌翼
により攪拌し合成、剪断を行った。この操作のみで大部
分がパルプ形状をした白色生成物が得られた。得られた
パルプ状白色生成物を(1)の方法で抄紙した。
Example 1 A toluene solution (A1) containing 0.25 mol / L adipoyl chloride, 0.15 mol / L 1,6-diaminohexane and 100 g / L sodium silicate No. 3 An aqueous solution (B1) containing was prepared. 83.3L of the aqueous solution was added to the Inoue Seisakusho Co., Ltd. twin-screw mixer BDM.
-V-270V was charged in advance, and the toluene solution (A1) 5 was added while stirring with the low speed stirring blade while the high speed stirring blade was stopped.
I charged 0L. After the preparation of (A1) was completed, the mixture was stirred by a high-speed stirring blade to synthesize and shear. This operation alone yielded a white product, mostly pulp-shaped. The obtained pulp-like white product was paper-made by the method (1).

【0038】抄紙した紙の吸湿率を(2)の方法により
測定し、ガラス微粒子含有率を(5)の方法により測定
した結果を表1及び図1に示す。図1において、縦軸は
抄紙した紙の吸湿率(%)を、横軸は該紙中のガラス微
粒子の含有率(質量%)を表す。図1から明らかなよう
に、ガラス微粒子の含有率が30質量%以上である紙
が、優れた吸湿性能を示した。
Table 1 and FIG. 1 show the results of measuring the moisture absorption rate of the paper made by the method (2) and the glass fine particle content by the method (5). In FIG. 1, the vertical axis represents the moisture absorption rate (%) of the paper made, and the horizontal axis represents the content rate (% by mass) of the glass particles in the paper. As is clear from FIG. 1, the paper having a glass fine particle content of 30% by mass or more exhibited excellent moisture absorption performance.

【0039】抄紙した紙について、(9)の方法により
測定した吸湿に対する寸法変化率を表1に示す。寸法変
化率は0.26%と高い寸法安定性を示した。また、
(6)の方法により測定した引っ張り強度、(7)の方
法により測定した比表面積についても優れた値を示し
た。
Table 1 shows the dimensional change rate with respect to moisture absorption measured by the method (9) for the paper made. The dimensional change rate was 0.26%, indicating high dimensional stability. Also,
The tensile strength measured by the method (6) and the specific surface area measured by the method (7) also showed excellent values.

【0040】(実施例2)水溶液(B2)が0.15モ
ル/Lの1,6−ジアミノへキサンと82.2g/Lの
珪酸ソーダ3号と2.8g/Lの水酸化ナトリウム溶液
である以外は実施例1と同様の原料溶液を用意した。こ
れを実施例1と同様の方法で合成剪断した。本例におい
ても実施例1と同様、この操作のみで大部分がパルプ形
状をした白色生成物が得られた。抄紙した紙について、
実施例1と同様の評価を行った結果を表1及び図1に示
す。
(Example 2) An aqueous solution (B2) was prepared by using 0.15 mol / L of 1,6-diaminohexane, 82.2 g / L of sodium silicate No. 3 and 2.8 g / L of sodium hydroxide solution. The same raw material solution as in Example 1 was prepared except for the above. This was subjected to synthetic shearing in the same manner as in Example 1. In this example as well, as in Example 1, a white product mostly in the form of pulp was obtained only by this operation. About the paper made,
The results of evaluations similar to those in Example 1 are shown in Table 1 and FIG.

【0041】(実施例3)水溶液(B3)が0.15モ
ル/Lの1,6−ジアミノへキサンと64.5g/Lの
珪酸ソーダ3号と5.3g/Lの水酸化ナトリウム溶液
である以外は実施例1と同様の原料溶液を用意した。こ
れを実施例1と同様の方法で合成剪断を行った。本例に
おいても実施例1と同様、この操作のみで大部分がパル
プ形状をした白色生成物が得られた。抄紙した紙につい
て、実施例1と同様の評価を行った結果を表1及び図1
に示す。
Example 3 An aqueous solution (B3) was prepared by adding 0.15 mol / L of 1,6-diaminohexane, 64.5 g / L of sodium silicate No. 3 and 5.3 g / L of sodium hydroxide solution. The same raw material solution as in Example 1 was prepared except for the above. This was subjected to synthetic shearing in the same manner as in Example 1. In this example as well, as in Example 1, a white product mostly in the form of pulp was obtained only by this operation. Table 1 and FIG. 1 show the results of the same evaluations as in Example 1 for the paper made.
Shown in.

【0042】(実施例4)実施例1と同じ方法で得たパ
ルプ形状をした白色生成物を、(1)の方法に従って紙
を製造する過程で、抄紙前の分散液に0.02gの着色
用カーボンブラックを添加し、着色紙を得た。均一な灰
色に染色された紙が得られた。得られた着色紙につい
て、実施例1と同様の評価を行った結果、吸湿率は82
%と優れた吸湿性能を示した。寸法変化率は1.36%
と高い寸法安定性を示した。また、引っ張り強度、比表
面積についても優れた値を示した。
Example 4 The pulp-shaped white product obtained by the same method as in Example 1 was colored with 0.02 g of the dispersion before papermaking in the process of producing paper according to the method of (1). Carbon black was added to obtain a colored paper. A uniformly gray-dyed paper is obtained. The obtained colored paper was evaluated in the same manner as in Example 1, and as a result, the moisture absorption rate was 82.
%, Showing excellent moisture absorption performance. Dimensional change rate is 1.36%
And showed high dimensional stability. Further, it also showed excellent values in tensile strength and specific surface area.

【0043】(実施例5)実施例1と同じ方法で得たパ
ルプ形状をした白色生成物を(1)の方法で抄紙した。
抄紙した紙について(3)の方法により本材料の吸放湿
の繰り返し回数に伴う吸湿率の変化を測定した結果を表
2に示す。吸湿後の加熱により水分が完全に放出され、
加熱後も吸湿率の劣化は観測されないことから、抄紙し
た紙に可逆的吸放湿性が認められた。
Example 5 The pulp-shaped white product obtained by the same method as in Example 1 was paper-made by the method (1).
Table 2 shows the results obtained by measuring the change in the moisture absorption rate with the number of repetitions of moisture absorption and desorption of this material for the paper produced by the method (3). Water is completely released by heating after absorbing moisture,
Since no deterioration in moisture absorption rate was observed even after heating, reversible moisture absorption / desorption properties were observed in the paper made.

【0044】また、(4)の方法に従い抄紙した紙の調
湿性を測定した結果を図2に示す。図2において、縦軸
は抄紙した紙の吸湿率(%)、横軸は時間(h)を表
し、図中の数値(%)は相対湿度を表す。図2から明ら
かなように、相対湿度を増加させると吸湿率は速やかに
上昇し、相対速度を減少させると吸湿率は速やかに下降
した。これより、本発明の吸湿材が、相対湿度に応じて
速やかに吸放湿する良好な調湿性を有することが認めら
れた。
FIG. 2 shows the results of measuring the humidity control of the paper made according to the method (4). In FIG. 2, the vertical axis represents the moisture absorption rate (%) of the produced paper, the horizontal axis represents the time (h), and the numerical value (%) in the figure represents the relative humidity. As is clear from FIG. 2, when the relative humidity was increased, the moisture absorption rate rapidly increased, and when the relative velocity was decreased, the moisture absorption rate rapidly decreased. From this, it was confirmed that the hygroscopic material of the present invention has a good humidity control property of quickly absorbing and releasing moisture according to the relative humidity.

【0045】(実施例6)実施例1と同じ方法で得たパ
ルプ形状をした白色生成物を(1)と同様の方法で濾別
した。得られたケーキを予備成形後、290℃、3MP
aで5分間加熱加圧成形し、ガラス微粒子とポリアミド
との複合体の平板を得た。該複合体平板について(1
0)の方法により温度変化に対する線熱膨張率を測定し
た結果を図3に示す。また、ポリアミドのみからなる平
板の線熱膨張率の測定結果を図3にあわせて示す。
Example 6 A pulp-shaped white product obtained by the same method as in Example 1 was filtered off by the same method as in (1). After preforming the obtained cake, 290 ℃, 3MP
The mixture was heated and pressed at a for 5 minutes to obtain a flat plate of a composite of glass fine particles and polyamide. Regarding the composite flat plate (1
The result of measuring the linear thermal expansion coefficient with respect to the temperature change by the method 0) is shown in FIG. The measurement results of the coefficient of linear thermal expansion of a flat plate made only of polyamide are also shown in FIG.

【0046】図3において、縦軸は得られた平板の線熱
膨張率(%)を、横軸は温度(℃)を表す。図中の実線
1にガラス微粒子とポリアミドとの複合体平板の線熱膨
張率を、一点鎖線2にポリアミドの線熱膨張率を示す。
図3より、ポリアミドのみからなる平板は、温度上昇に
ともない線熱膨張率が増大し、融点にて融解して形状を
保持できなかった。これに対して、該複合体平板は温度
上昇に対しても高い寸法安定性を有し、ポリアミドの融
点以上でも溶融することなく、450℃を越えても線熱
膨張率は1%程度であり高い熱安定性を示した。
In FIG. 3, the vertical axis represents the coefficient of linear thermal expansion (%) of the obtained flat plate, and the horizontal axis represents the temperature (° C.). In the figure, the solid line 1 shows the coefficient of linear thermal expansion of the composite plate of glass fine particles and polyamide, and the chain line 2 shows the coefficient of linear thermal expansion of polyamide.
As shown in FIG. 3, the flat plate made of polyamide alone had a linear thermal expansion coefficient which increased as the temperature increased, and it melted at the melting point and could not retain its shape. On the other hand, the composite flat plate has high dimensional stability against temperature rise, does not melt above the melting point of polyamide, and has a coefficient of linear thermal expansion of about 1% above 450 ° C. It showed high thermal stability.

【0047】(比較例1)水溶液(B4)が0.15モ
ル/Lの1,6−ジアミノへキサンと28.9g/Lの
珪酸ソーダ3号と9.3g/Lの水酸化ナトリウム溶液
である以外は実施例1と同様の原料溶液を用意した。こ
れを実施例1と同様の方法で合成剪断を行った。本例に
おいても実施例1と同様、この操作のみで大部分がパル
プ形状をした白色生成物が得られた。抄紙した紙につい
て、実施例1と同様の評価を行った結果を表1及び図1
に示す。
Comparative Example 1 An aqueous solution (B4) was prepared by using 0.15 mol / L of 1,6-diaminohexane, 28.9 g / L of sodium silicate No. 3 and 9.3 g / L of sodium hydroxide solution. The same raw material solution as in Example 1 was prepared except for the above. This was subjected to synthetic shearing in the same manner as in Example 1. In this example as well, as in Example 1, a white product mostly in the form of pulp was obtained only by this operation. Table 1 and FIG. 1 show the results of the same evaluations as in Example 1 for the paper made.
Shown in.

【0048】(比較例2)水溶液(B5)が0.15モ
ル/Lの1,6−ジアミノへキサンと14.5g/Lの
珪酸ソーダ3号と18.6g/Lの水酸化ナトリウム溶
液である以外は実施例1と同様の原料溶液を用意した。
これを実施例1と同一の方法で合成剪断を行った。本例
においても実施例1と同様、この操作のみで大部分がパ
ルプ形状をした白色生成物が得られた。抄紙した紙につ
いて、実施例1と同様の評価を行った結果を表1及び図
1に示す。
COMPARATIVE EXAMPLE 2 An aqueous solution (B5) was prepared by adding 0.15 mol / L 1,6-diaminohexane, 14.5 g / L sodium silicate No. 3 and 18.6 g / L sodium hydroxide solution. The same raw material solution as in Example 1 was prepared except for the above.
This was subjected to synthetic shearing in the same manner as in Example 1. In this example as well, as in Example 1, a white product mostly in the form of pulp was obtained only by this operation. Table 1 and FIG. 1 show the results of the same evaluations as in Example 1 for the paper made.

【0049】これらの比較例ではガラス微粒子含有率が
低いことに起因し吸湿率は低い結果となった。また吸湿
率が低いにもかかわらず、吸湿にともなう寸法変化率は
3%以上であった。
In these comparative examples, the moisture absorption rate was low due to the low glass particulate content. Although the moisture absorption rate was low, the dimensional change rate due to moisture absorption was 3% or more.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【発明の効果】本発明は、吸湿成分の脱落や局在がな
く、高い吸湿力、可逆的で即応性に優れた調湿性、及び
熱安定性を有し、かつ寸法安定性に優れた吸湿性成分か
ら成るパルプ状吸湿材、該パルプから成る調湿紙、及び
該パルプから成る意匠性の高い着色された調湿紙を提供
できる。
INDUSTRIAL APPLICABILITY According to the present invention, there is no loss or localization of a hygroscopic component, a high hygroscopic force, a reversible and quick-adjusting humidity control property, and thermal stability, and also a dimensional stability. It is possible to provide a pulp-like hygroscopic material composed of an organic component, a humidity-controlled paper composed of the pulp, and a colored humidity-controlled paper composed of the pulp with high designability.

【図面の簡単な説明】[Brief description of drawings]

【図1】 パルプ状吸湿材中のガラス微粒子含有率と吸
湿率の関係を示す図である。
FIG. 1 is a diagram showing a relationship between a content rate of glass fine particles in a pulp-like moisture absorbent and a moisture absorption rate.

【図2】 パルプ状吸湿材の相対速度の変化と吸湿率と
の関係を時間経過と共に表した図である。
FIG. 2 is a diagram showing a relationship between a change in relative velocity of a pulp-like moisture absorbent and a moisture absorption rate over time.

【図3】 パルプ状吸湿材とポリアミドの温度と線熱膨
張率との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a temperature of a pulp-like hygroscopic material and polyamide and a coefficient of linear thermal expansion.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) D21H 15/12 D21H 15/12 Fターム(参考) 4D052 AA08 CA02 HA32 HA39 HA49 HB02 4G066 AA30A AA71B AC26D BA16 BA20 CA43 DA03 FA37 4L055 AF35 AF43 AF44 AF47 AG02 AH01 EA16 EA32 FA11 FA18 FA19 FA30 GA05 GA50 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) D21H 15/12 D21H 15/12 F term (reference) 4D052 AA08 CA02 HA32 HA39 HA49 HB02 4G066 AA30A AA71B AC26D BA16 BA20 CA43 DA03 FA37 4L055 AF35 AF43 AF44 AF47 AG02 AH01 EA16 EA32 FA11 FA18 FA19 FA30 GA05 GA50

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガラス微粒子とポリアミドとの複合体か
ら成り、ガラス微粒子の粒径が300nm以下であり、
かつ、ガラス微粒子含有率が30〜80質量%であるこ
とを特徴とするパルプ状吸湿材。
1. A composite of glass fine particles and polyamide, wherein the glass fine particles have a particle size of 300 nm or less,
Further, a pulp-like moisture absorbent having a glass fine particle content of 30 to 80% by mass.
【請求項2】 前記ガラス微粒子とポリアミドとの複合
体の繊維長が212μm以上の繊維状物が30質量%以
上で、かつ2mm以上の繊維状物が50質量%以下であ
る請求項1に記載のパルプ状吸湿材。
2. The fiber material having a fiber length of 212 μm or more in the composite of glass fine particles and polyamide is 30% by mass or more, and the fiber material having a fiber length of 2 mm or more is 50% by mass or less. Pulp-like moisture absorbent material.
【請求項3】 請求項1に記載のパルプ状吸湿材から成
る調湿紙。
3. A humidity control paper comprising the pulp-like moisture absorbent according to claim 1.
【請求項4】 請求項1に記載のパルプ状吸湿材を着色
材と共に抄紙した着色調湿紙。
4. A colored humidity-controlled paper obtained by making the pulp-like hygroscopic material according to claim 1 together with a coloring material.
JP2001330731A 2001-10-29 2001-10-29 Pulp-like hygroscopic material and conditioned paper Pending JP2003126643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001330731A JP2003126643A (en) 2001-10-29 2001-10-29 Pulp-like hygroscopic material and conditioned paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001330731A JP2003126643A (en) 2001-10-29 2001-10-29 Pulp-like hygroscopic material and conditioned paper

Publications (1)

Publication Number Publication Date
JP2003126643A true JP2003126643A (en) 2003-05-07

Family

ID=19146412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001330731A Pending JP2003126643A (en) 2001-10-29 2001-10-29 Pulp-like hygroscopic material and conditioned paper

Country Status (1)

Country Link
JP (1) JP2003126643A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083227A (en) * 2004-09-14 2006-03-30 Mitsubishi Engineering Plastics Corp Exterior molded article made of long fiber reinforced polyamide resin
JP2010510400A (en) * 2006-11-16 2010-04-02 アプライド・ナノテック・ホールディングス・インコーポレーテッド Buffer layer for strings
US8713906B2 (en) 2006-11-16 2014-05-06 Applied Nanotech Holdings, Inc. Composite coating for strings

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083227A (en) * 2004-09-14 2006-03-30 Mitsubishi Engineering Plastics Corp Exterior molded article made of long fiber reinforced polyamide resin
JP2010510400A (en) * 2006-11-16 2010-04-02 アプライド・ナノテック・ホールディングス・インコーポレーテッド Buffer layer for strings
US8713906B2 (en) 2006-11-16 2014-05-06 Applied Nanotech Holdings, Inc. Composite coating for strings

Similar Documents

Publication Publication Date Title
CN101208397B (en) Coating composition and its manufacturing method, and resin molding and its manufacturing method
US4595403A (en) Heat exchange element
Dong et al. A new kind of fireproof, flexible, inorganic, nanocomposite paper and its application to the protection layer in flame‐retardant fiber‐optic cables
CN102269828B (en) Preparation method of nano-optical anti-fog film
GB2040273A (en) Silica fibres production and use as friction linings
CN103981592B (en) Flame-retardant cellulose fiber and preparation method thereof
CN101298707A (en) Nano compound modified polyphenyl thioether fibre and preparing method thereof
CN108147457A (en) Prepare the application of the method and bismuth system oxide nanometer sheet of bismuth system oxide nanometer sheet
CN109653024A (en) A kind of single side applies solidification filter paper and preparation method thereof
CN107899301A (en) A kind of fire-retardant filter cotton
JP2003126643A (en) Pulp-like hygroscopic material and conditioned paper
US6692715B2 (en) Silica nanofibers and method for preparing them
KR20170028273A (en) Method for preparing porous particle containing fiber
CN101824256B (en) Outdoor used ultra-thin formed steel construction fire retardant coating and preparation method thereof
WO2003066942A1 (en) Non-thermoplastic starch fibers and starch composition and process for making same
JPS6034618A (en) Silicate fiber, production thereof and friction lining containing said fiber
CN109695181B (en) Cigarette paper with harm reducing function and preparation method thereof
CN110328920B (en) Environment-friendly composite material for preventing toxic gas and preparation method thereof
JP2022155561A (en) Water purification filter
CN114540972A (en) Thermochromic fiber and method for preparing thermochromic fabric by using thermochromic fiber
CN114456774A (en) Shell-encapsulated microcapsule phase change material and preparation method and application thereof
JP4224884B2 (en) Composite pulp-like particles, composite paper, and methods for producing them
JP4260067B2 (en) Method for producing alumina fiber
JPH06207398A (en) Moisture absorbing and releasing fiber sheet and its production
CN112142996A (en) Preparation method and application of modified polyester master batch