TW200826226A - Electrostatic attraction electrode, substrate processor, and manufacturing method for electrostatic attraction electrode - Google Patents

Electrostatic attraction electrode, substrate processor, and manufacturing method for electrostatic attraction electrode Download PDF

Info

Publication number
TW200826226A
TW200826226A TW096129451A TW96129451A TW200826226A TW 200826226 A TW200826226 A TW 200826226A TW 096129451 A TW096129451 A TW 096129451A TW 96129451 A TW96129451 A TW 96129451A TW 200826226 A TW200826226 A TW 200826226A
Authority
TW
Taiwan
Prior art keywords
substrate
insulating layer
electrode
linear expansion
expansion coefficient
Prior art date
Application number
TW096129451A
Other languages
Chinese (zh)
Other versions
TWI423380B (en
Inventor
Yoshihiko Sasaki
Masato Minami
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of TW200826226A publication Critical patent/TW200826226A/en
Application granted granted Critical
Publication of TWI423380B publication Critical patent/TWI423380B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Abstract

To provide an electrostatic attraction electrode that suppresses the formation of a crack on an insulating layer, to provide a substrate processor thereof, and to provide a manufacturing method for the electrostatic attraction electrode. An electrostatic chuck 40b includes a base material 41, a second insulating layer 44b that is an alumina-sprayed film, and a first insulating layer 42b interposed between the base material 41 and the second insulating layer 44b. The first insulating layer 42b is made of a ceramic-sprayed film having a linear expansion coefficient that is different from a linear expansion coefficient of the base material 41 by an absolute value of 14×10-6[/DEG C] or less. The first insulating layer 42b functions as a buffering layer, which improves the heat resistance of the electrostatic chuck 40b to suppress crack formation.

Description

200826226 九、發明說明 【發明所屬之技術領域】 本發明是有關一種靜電吸附電極,基板處理裝置及靜 電吸附電極的製造方法,詳細是有關一種例如在平面顯示 器(FPD )等的製造過程中,使用於爲了吸附保持玻璃基 板等之基板的靜電吸附電極,具備該靜電吸附電極之基板 處理裝置及靜電吸附電極的製造方法。 【先前技術】 在FPD的製造過程中,對被處理體的玻璃基板施行 乾式鈾刻或灑鑛、CVD ( Chemical Vapor Deposition)等 的電漿處理。例如在反應室內配置一對平行板式電極(上 部及下部電極),在作爲下部電極功能的晶座(基板載置 台)載置玻璃基板之後,將處理氣體導入到反應室內,並 且在電極的至少一方施加高頻電力,在電極間形成高頻電 場,藉由該高頻電場形成處理氣體的電漿,對基板施行電 漿處理。此時,玻璃基板是藉由設置在晶座上的靜電吸附 電極,例如利用庫侖力以吸附固定。 此種靜電吸附電極,據知是在例如藉由陶瓷等的金屬 等之導電性材料所形成在基材之上,具有依序層積絕緣層 、電極及絕緣層的構造,藉由對該電極施加電壓,產生庫 侖力,就能吸附固定玻璃基板。然後,形成在前述基材上 的絕緣層之材質,據知是使用氧化鋁(ai2o3 )(例如日 本專利文獻1 )。 -4- 200826226 〔專利文獻1〕日本特開第2005-136350號公報(申 請專利範圍等) 【發明內容】 〔發明欲解決之課題〕 習知技術之靜電吸附電極的絕緣層,一般的氧化鋁溶 射膜,係其線膨脹係數爲6.4 XI 0_6〔 /°C〕左右,與作爲基 材之材質所多數使用的鋁之線膨脹係數23 ·8χ1 (Γ6〔 〕 之間有很大的差別,因電極溫度上昇及其熱膨脹率的不同 而在絕緣層增加很大的應力,產生裂痕。又,近年FPD 的製造過程中,基板大型化急速的前進,因產生需要吸附 保持長邊之長度超過2m的大型玻璃基板,故靜電吸附電 極也會大型化。隨著此種靜電吸附電極的大型化,絕緣層 的應力也被放大,成爲易產生裂痕的狀況。 本發明是有鑑於相關事情所完成的發明,其目的在於 提供一種抑制絕緣層產生裂痕的靜電吸附電極及使用該靜 電吸附電極的基板處理裝置。 〔用以解決課題之手段〕 爲了解決上述課題,本發明的第1觀點係提供一種靜 電吸附電極,係爲在基板處理裝置中,具備用來吸附保持 基板之基板保持面的靜電吸附電極,其特徵爲:具備:基 材;和設置在該基材上的絕緣層;和配設在前述絕緣層的 電極;藉由具有與前述基材之線膨脹係數之差的絕對値爲 -5- 200826226 14χ1(Γ6〔 / °C〕以下的線膨脹係數之陶瓷噴塗膜來形成 前述絕緣層的一部分或全部。 在上述第1觀點中,可爲在形成前述基板保持面的前 述絕緣層表面的一部分或全部,形成具有與前述基材之線 膨脹係數之差的絕對値爲1 4 X 1 (Γ6〔/ °C〕以下的線膨脹 係數之陶瓷噴塗膜的構成。尤其最好是在前述基板保持面 的周緣部,形成具有與前述基材之線膨脹係數之差的絕對 値爲14x1 0_6〔 /°C〕以下的線膨脹係數之陶瓷噴塗膜。 又,前述絕緣層,係以包含:比前述電極更下層的第 1絕緣層;和比前述電極更上層的第2絕緣層所構成,藉 由具有與前述基材之線膨脹係數之差的絕對値爲14χ1 (Γ6 〔/ °C〕以下的線膨脹係數之陶瓷噴塗膜來形成至少前述 第1絕緣層或前述第2絕緣層的任一層亦可。 進而,前述絕緣層,係以包含:比前述電極更下層的 第1絕緣層;和比前述電極更上層的第2絕緣層;和比該 第2絕緣層更上層的表面層所構成,藉由具有與前述基材 之線膨脹係數之差的絕對値爲1 4 X 1 (Γ6〔/ °C〕以下的線 膨脹係數之陶瓷噴塗膜來形成將前述表面層亦可。此時最 好前述表面層的膜厚爲50〜250μηι。 更又,藉由具有與前述基材之線膨脹係數之差的絕對 値爲14x1 0_6〔/ °C〕以下的線膨脹係數之陶瓷噴塗膜來 形成前述基板保持面的周緣部及側部亦可。 更又,在前述基板保持面的周緣部,係設有段差並形 成周緣梯形部,藉由具有與前述基材之線膨脹係數之差的 -6- 200826226 絕對値爲1 4 χ 1 (Γ6〔 / °C〕以下的線膨脹係數之陶瓷噴塗 膜來形成該周緣梯形部亦可。 更又,在前述基板保持面的周緣部,係設有段差並形 成周緣梯形部,藉由具有與前述基材之線膨脹係數之差的 絕對値爲1 4 χ 1 (Γ6〔/ °C〕以下的線膨脹係數之陶瓷噴塗 膜來形成該周緣梯形部的頂面亦可。此時,最好具有與前 述基材之線膨脹係數之差的絕對値爲1 4 χ 1 (Γ6〔/ °C〕以 下的線膨脹係數之陶瓷噴塗膜的膜厚爲50〜25 Ομπι。 更又,前述基材爲鋁,具有與前述基材之線膨脹係數 之差的絕對値爲1 4 χ 1 0_6〔/ °C〕以下的線膨脹係數之陶 瓷噴塗膜,較好爲 YF3 (氟化釔)、MgO (氧化鎂)及 2MgO · Si02(鎂橄欖石)之任一種。此時,藉由Al2〇3( 氧化鋁)的噴塗膜來形成,藉由具有與前述基材之線膨脹 係數之差的絕對値爲1 4 X 1 (Γ6〔/ °c〕以下的線膨脹係數 之陶瓷噴塗膜所形成之部分以外的絕緣層。 更又,前述基材爲不鏽鋼或鈦,具有與前述基材之線 膨脹係數之差的絕對値爲1 4 χ 1 (Γ6〔/ °C〕以下的線膨脹 係數之陶瓷噴塗膜,較好爲ai2o3 (氧化鋁)、Y2〇3 (三 氧化二釔)、YF3 (氟化釔)、MgO (氧化鎂)及2MgO • Si〇2(鎭撤檀石)之任一種。 在本發明的第2觀點中,係爲在基板處理裝置中,具 備藉由靜電力來吸附保持基板之基板保持面的靜電吸附電 極,其特徵爲:具備:基材;和設置在該基材上的絕緣層 ;和配設在前述絕緣層中的電極;前述絕緣層的一部分或 200826226 全部,是藉由陶瓷噴塗膜所形成,前述基材,係具有與前 述絕緣層鄰接的上部構件、和支承該上部構件的下部構件 ,前述上部構件與前述陶瓷噴塗膜,係線膨脹係數之差的 絕對値爲14χ UT6〔/ °C〕以下。 在上述第2觀點中,可爲在形成前述基板保持面的前 述絕緣層表面的一部分或全部,形成前述陶瓷噴塗膜的構 成。尤其最好是在前述基板保持面的周緣部,形成前述陶 瓷噴塗膜。 又,前述絕緣層,係以包含:比前述電極更下層的第 1絕緣層;和比前述電極更上層的第2絕緣層所構成;藉 由前述陶瓷噴塗膜來形成至少前述第1絕緣層或前述第2 絕緣層的任一層。 進而,前述絕緣層,係以包含:比前述電極更下層的 第1絕緣層;和比前述電極更上層的第2絕緣層;和比該 第2絕緣層更上層的表面層所構成;藉由前述陶瓷噴塗膜 來形成前述表面層亦可。此時較好是前述表面層的膜厚爲 50 〜250μηιο 更又,藉由前述陶瓷噴塗膜來形成前述基板保持面的 周緣部及側部亦可。 在前述基板保持面的周緣部,係設有段差並形成周緣 梯形部,藉由前述陶瓷噴塗膜來形成前述周緣梯形部亦可 〇 更又,在前述基板保持面的周緣部,係設有段差並形 成周緣梯形部,藉由前述陶瓷噴塗膜來形成前述周緣梯形 -8 - 200826226 部的頂面亦可。此時較好是前述陶瓷噴塗膜的膜厚爲50 〜2 5 0 μηι 〇 更又,在上述第2觀點中,亦可爲前述基材係在其上 面之中央具有凸狀部,該凸狀部的外周側形成凸緣部,前 述絕緣層係形成在前述凸狀部的頂面及側面,前述絕緣層 之前述頂面部分的表面是構成前述基板保持面。此時,前 述基材的前述上部構件,係爲可包含:前述凸狀部、和其 外周部的前述凸緣部的一部分之構成。又,前述上部構件 與前述下部構件可爲螺固的構成。 更又,較好是前述基材的前述上部構件爲不鏽鋼或鈦 ,前述陶瓷噴塗膜爲Α1203 (氧化鋁)、Υ203 (三氧化二 釔)、YF3 (氟化釔)、MgO (氧化鎂)及2MgO · Si〇2 (鎂橄欖石)之任一種。尤其較好是前述上部構件爲不鏽 鋼,前述下部構件爲鋁,前述陶瓷噴塗膜爲ai2o3(氧化 鋁)。此時較好是在以鋁所構成的前述下部構件的表面, 形成有陽極氧化被膜。 在上述第1或第2觀點中,前述基板保持面較好是具 有最長部尺寸爲450mm以上的面積。 在本發明之第3觀點中,提供一種基板處理裝置,其 特徵爲具備:收容基板的反應室;和上述第1或第2觀點 的靜電吸附電極;和對保持在前述靜電吸附電極的基板施 行既定處理的處理機構。作爲該基板處理裝置,係舉例示 範有應用於平板顯示器之製造的裝置,又,前述處理機構 ,係舉例示範有對基板實行電漿蝕刻處理的機構。 -9- 200826226 本發明的第4觀點,係提供一種靜電吸附電極的製造 方法,係爲在基板處理裝置中,用來吸附保持基板之靜電 吸附電極的製造方法,其特徵爲:包含:在基材之表面形 成第1絕緣層之工程;和在前述第1絕緣層之上形成電極 ;和以覆蓋前述電極的方式形成第2絕緣層之工程;在形 成前述第1絕緣層之工程及/或形成前述第2絕緣層之工 程中,藉由噴塗來形成具有與前述基材之線膨脹係數之差 的絕對値爲1 4 X 1 0·6〔/ °C〕以下的線膨脹係數之陶瓷噴 塗膜。 本發明的第5觀點,係提供一種靜電吸附電極的製造 方法,係爲在基板處理裝置中,用來吸附保持基板之靜電 吸附電極的製造方法,其特徵爲包含:在基材之表面形成 第1絕緣層之工程;和在前述第1絕緣層之上形成電極之 工程;和以覆蓋前述電極的方式形成第2絕緣層之工程; 和在前述第2絕緣層之基板保持面的一部分或全部,藉由 噴塗來形成以具有與前述基材之線膨脹係數之差的絕對値 爲1 4 X 1 (Γ6〔/ °C〕以下的線膨脹係數之陶瓷噴塗膜所形 成的被覆層之工程。 本發明的第6觀點,係提供一種靜電吸附電極的製造 方法,係爲在基板處理裝置中,用來吸附保持基板之靜電 吸附電極的製造方法,其特徵爲包含:在基材之表面形成 第1絕緣層之工程;和在前述第1絕緣層之上形成電極之 工程;和以覆蓋前述電極的方式形成第2絕緣層之工程; 和在前述第1絕緣層及前述第2絕緣層之側部,藉由噴塗 -10- 200826226 來形成以具有與前述基材之線膨脹係數之差的絕對値爲 14xl0_6〔 / °C〕以下的線膨脹係數之陶瓷噴塗膜所形成 的被覆層之工程。 〔發明效果〕 根據本發明,因藉由具有與前述基材之線膨脹係數之 差的絕對値爲1 4 X 1 (Γ6〔/ °C〕以下的線膨脹係數之陶瓷 噴塗膜來形成靜電吸附電極的絕緣層的一部分或全部,故 與基材之間的熱應力緩和,能抑制裂痕的發生。因而,提 供一種對基材的熱膨脹之追隨性高,且吸附能力優的靜電 吸附電極。 又,基材爲上部構件與下部構件的分割構造,且以與 絕緣層鄰接的方式來設置上部構件’藉由陶瓷噴塗膜來形 成絕緣層的一部分或全部,並且上部構件與陶瓷噴塗膜的 線膨脹係數之差的絕對値爲1 4 X 1 〇_6〔 / °C〕以下’藉此 就能緩和基材與絕緣層的熱應力’抑制裂痕的發生。又, 藉由此種構成,就能在噴塗皮膜使用氧化鋁’使用鋁作爲 基材的下部構件’就能具有大致與習知靜電吸附電極同等 的形狀及功能。 【實施方式】 〔用以實施發明的最佳形態〕 以下,邊參照圖面、邊針對有關本發明的最佳實施形 態做說明。第1圖是表示具備有關本發明之第1實施形態 -11 - 200826226 之作爲靜電吸附電極的靜電夾盤之基板處理裝置之一例 電漿蝕刻裝置之剖面圖。如第1圖所示,電漿蝕刻裝置 ,是作爲對呈矩形的被處理體的FPD用玻璃基板等的 板G施行鈾刻的電容耦合型平行板式電漿蝕刻裝置所 成。 在此,作爲FPD舉例示範有液晶顯示器(LCD )、 激發光顯示器(Electro Luminescence ; EL )、電漿顯 面板(PDP )等。再者,本發明之基板處理裝置不僅限 電漿飩刻裝置。 該電漿蝕刻裝置1,例如具有:由表面爲被陽極氧 處理(氧化鋁膜處理)的鋁所形成的角筒狀之反應室2 在該反應室2內的底部設有以絕緣材所形成的角柱狀之 緣板3,在該絕緣板3上設有用以載置基板G的晶座4 屬於基板載置台的晶座4,係具有:晶座基材4a、設置 晶座基材4a之上的靜電夾盤40。再者,在晶座基材 的外周,形成有絕緣膜5 a被絕緣被覆,更在其外側設 絕緣材5b。 靜電夾盤4 0,係平面視之呈矩形,具有例如以鋁 不鏽鋼、金屬基複合材(MMC: Metal Matrix Composil )等的導電性材料所形成的基材4 1。在該基材40的上 ,由下依序層積有:第1絕緣層42、電極43及第2絕 層44。靜電夾盤40係藉由從真流電源26經由給電線 對第1絕緣層42與第2絕緣層44之間的電極43施加 流電壓,例如因庫侖力而靜電吸附基板G。在靜電夾 的 1 基 構 電 示 於 化 〇 絕 〇 在 4 a 有 e s 面 緣 27 直 盤 -12- 200826226 40的上面(第2絕緣層44的上面),形成有:吸附保持 基板G的基板保持面50(參照第2圖〜第7圖)。該基 板保持面20的尺寸,係長邊(最長部分的尺寸)的長度 爲450mm以上,例如可爲450mm〜3500 mm。再者,有關 靜電夾盤40的詳細構造於後敘述。 前述絕緣板3及晶座基材4a,甚至在靜電夾盤40, 形成有貫通該些的氣體通路9。經由該氣體通路9將傳熱 氣體例如He氣體等供給到被處理體的基板G的裏面。 亦即,供給到氣體通路9的傳熱氣體,經由形成在晶 座基材4a與靜電夾盤40的基材41之邊界的氣體貯槽9a ’暫時擴散至水平方向之後,通過形成在靜電夾盤40內 的氣體供給連通孔9b,從靜電夾盤40的表面噴出到基板 G的裏側。像這樣,晶座4的冷熱被傳達到基板G,基板 G 6就會維持在既定的溫度。 在晶座基材4a的內部設有冷媒室10。在該冷媒室10 ,例如氟系液體等的冷媒經由冷媒導入管1 〇a被導入,且 經由冷媒排出管1 〇b被排出進行循環,藉此其冷熱從晶座 4a經由前述傳熱氣體對基板G傳熱。 在前述晶座4的上方,設有與該晶座4平行相對’作 爲上部電極功能的淋浴頭11。淋浴頭11被支承在反應室 2的上部,在內部具有內部空間12的同時,在與晶座4 的相對面形成有用來吐出處理氣體的複數個吐出孔13。 該淋浴頭1 1被接地,與晶座4 一同構成一對平行板式電 極0 -13- 200826226 在淋浴頭11的上面設有氣體導入口 14,在該氣體導 入口 1 4連接有處理氣體供給管1 5,該處理氣體供給管1 5 ,經由閥1 6及質量流量控制器1 7而連接有處理氣體供給 源1 8。由處理氣體供給源1 8供給爲了蝕刻的處理氣體。 處理氣體例如可使用鹵素系的氣體、〇2氣體、Ar氣體等 ,通常在此領域所用的氣體。 在前述反應室2的側壁下部連接有排氣管19,在該 排氣管19連接有排氣裝置20。排氣裝置20具備渦輪分 子幫浦等的真空幫浦,藉此構成將反應室2內真空吸引至 既定的減壓環境。又,在反應室2的側壁設有:基板搬出 入口 2 1、和用以開閉該基板搬出入口 2 1的柵型閥22,在 打開該柵型閥22的狀態下,在與基板G鄰接的加載互鎖 真空室(未圖示)之間被搬送。 在晶座4連接有用以供給高頻電力的給電線23 ’在 該給電線23連接有整合器24及高頻電源25 °由該高頻 電源25將例如13.56MHz的高頻電力供給到晶座4 ° 其次,針對如此所構成的電漿蝕刻裝置1的處理動作 做說明。 首先,被處理體的基板G,在打開柵型閥22之後’ 從試料導入室(未圖示)經由基板搬出入口 21搬入反應 室2內,載置於形成在晶座4上的靜電夾盤40上。此時 ,基板G的遞送是經由設成可插通至晶座4的內部’且 從晶座4突出的頂料銷(未圖示)來施行。其後’關閉柵 型閥22,藉由排氣裝置20將反應室2內真空吸引成既定 -14- 200826226 的真空度。 其後,打開閥1 6,從處理氣體供給源1 8讓處理氣體 藉由質量流量控制器17來調整其流量的同時,通過處理 氣體供給管1 5、氣體導入口 1 4,導入到淋浴頭1 1的內部 空間12,甚至通過吐出孔1 3,均勻的對基板G吐出,讓 反應室2內的壓力維持在既定的値。 在此狀態下,從高頻電源2 5將高頻電力經由整合器 24施加到晶座4,藉此,在作爲下部電極的晶座4與作爲 上部電極的淋浴頭1 1之間產生高頻電場,使處理氣體進 行解離而電獎化,藉此對基板G施行蝕刻處理。此時, 從直流電源26對靜電夾盤40的電極43施加既定的電壓 ,藉此基板G例如因庫侖力而吸附保持在靜電夾盤40。 又,經由氣體通路9將傳熱氣體供給到基板G的裏面側 ,藉此效率良好的施行溫度調節。 像這樣施行蝕刻處理之後,停止施加來自高頻電源 25的高頻電力,停止氣體導入之後,將反應室2內的壓 力滅壓到既定的壓力。然後打開柵型閥22,將基板G經 由基板搬出入口 21,從反應室2內搬出加載互鎖室(未 圖示),藉此結束基板G的蝕刻處理。如此,藉由靜電 夾盤40以靜電吸附基板G的同時,可邊調節溫度邊進行 基板G的蝕刻處理。 其次,邊參照第2圖〜第7圖,針對有關上述第1實 施形態之作爲靜電吸附電極的靜電夾盤4 0之構成例做說 明。 -15- 200826226 <第1例> 首先,針對有關第1實施形態的第1例之靜電夾盤 40a做說明。第2圖是靜電夾盤40a的剖面圖。該靜電夾 盤40a係在基材41之上設有第1絕緣層42a,在該第1 絕緣層42a之上設有電極43,在該電極43之上設有第2 絕緣層44a。以鋁舉例示範作爲基材41的材質。又,電 極43的材質最好是鎢、鉬等的金屬材料。再者,在第2 圖中,符號50是基板保持面,符號50a是表示形成在基 板保持面50的複數個凸部(第3圖〜第7圖是同樣的) 。該等的凸部50a是以其頂面來支承基板G的同時,經由 氣體通路9 (參照第1圖)將He氣體等的傳熱氣體供給 到凸部5 0 a彼此間的間隙(基板G之裏面側空間)。 上述靜電夾盤40a中,第1絕緣層42a及第2絕緣層 44a,是藉由具有與基材4 1之線膨脹係數之差的絕對値爲 14xl0_6〔 / °C〕以下的線膨脹係數之陶瓷溶射膜所形成 。此種陶瓷噴塗膜在基材4 1之材質爲鋁(線膨脹係數 23·8χ10_6〔 / °C〕)的情形下,例如可使用氟化釔噴塗膜 (YF3 :線膨脹係數13χ1(Γ6〔 / t:〕)、氧化鎂噴塗膜( MgO :線膨脹係數1 1 X 10_6〜15xl(T6〔 / °C〕)、鎂橄欖 石噴塗膜(2MgO · Si02 :線膨張係數10·2χ10_6〔 /°C〕) 等。 如此,使用具有與基材41之線膨脹係數14x1 (Γ6以 下的線膨脹係數之陶瓷溶射膜,作爲第1絕緣層42a及第 -16- 200826226 2絕緣層44a,藉此緩和熱應力,提昇靜電夾盤40a的耐 熱性,就能抑制裂痕的發生。 基板保持面50的大小是長邊的尺寸,在45 0mm以上 例如450mm〜3500mm的靜電夾盤40a中,爲了提升耐熱 性,膜厚亦爲重要的因素,第1絕緣層42a的膜厚最好爲 250〜600μπι,更好爲300〜550μηι。又,第2絕緣層44a 的膜厚最好爲250〜600μιη,更好爲3 00〜5 5 0μιη。 靜電夾盤40a可藉由先在基材41的表面利用噴塗形 成第1絕緣層42a之後,在該層上配設電極43,更以覆 蓋該電極43的方式利用噴塗形成第2絕緣層44a來製造 。再者,電極43也可利用噴塗來形成。又,可包含利用 適當的切削加工等的形狀加工工程。 再者,在該第1例中,作爲基材41的材質在使用線 膨脹係數爲1 7 · 3 X 1 (Γ6〔/ t〕之不鏽鋼的情形下,作爲 第1絕緣層42a及第2絕緣層44a,例如可使用線膨脹係 數爲6.4x 1(T6〔 / °C〕,與基材41的線膨脹係數之差爲 10·9χ1(Γ6〔 / °C〕的Al2〇3噴塗膜等。又,在使用線膨脹 係數爲8.9x1 (Γ6〔/ °C〕之鈦的情形下,作爲第1絕緣層 42a及第2絕緣層44a,例如可使用線膨脹係數爲6·4χ1(Γ6 〔/°C〕,與基材41的線膨脹係數之差爲2·5χ10_6〔 /°C〕 的ai2o3噴塗膜等。 <第2例> 其次,針對有關第1實施形態的第2例之靜電夾盤 -17- 200826226 4 0b做詳細說明。第3圖是靜電夾盤40b的剖面圖。該靜 電夾盤40b係在基材41之上設有第1絕緣層42b,在該 第1絕緣層42b之上設有電極43,在該電極43之上設有 第2絕緣層44b。以鋁舉例示範作爲基材41的材質。又 ,電極43的材質最好是鎢、鉬等的金屬材料。 上述靜電夾盤4 Ob中,第1絕緣層42b,是藉由具有 與基材4 1之線膨脹係數之差的絕對値爲1 4 X 1 0_6〔/ °C〕 以下的線膨脹係數之陶瓷噴塗膜所形成。作爲此種陶瓷噴 塗膜的材質在與上述第1例同樣的材質,例如基板4 1的 材質爲鋁的情形下,可使用 YF3、MgO、2MgO · Si02等 的噴塗膜。 一方面,第2絕緣層44b是藉由氧化鋁(Al2〇3)噴 塗膜所構成。在氧化鋁噴塗膜的線膨脹係數爲6.4χ1(Γ6〔 / °C〕,與基材41的材質線膨脹係數23·8χ10_6〔 / °C〕 之鋁的情形下,由於兩者間的線膨脹係數有很大的差異, 因此如果直接在基材41形成氧化鋁噴塗膜,易因熱應力 而產生裂痕。於是在本例中,介設著藉由具有與基材41 之線膨脹係數之差的絕對値爲1 4 X 1 0_6〔/ °C〕以下的線 膨脹係數之陶瓷噴塗膜所形成的第1絕緣層42b的構成。 像這樣,以第1絕緣層42b作爲緩衝層的功能,藉此來改 善靜電夾盤40b的耐熱性,且抑制裂痕的發生。又,第2 絕緣層44b之材質的氧化鋁(Al2〇3 )因體積電阻率高、 耐絕緣性優,且硬度及熱傳導率高,故利用該氧化鋁( Al2〇3 )來形成基板保持面50,藉此可令靜電夾盤40b得 -18- 200826226 到優異的吸附性能。 基板保持面50的大小是長邊的尺寸’在45 0mm以上 例如450mm〜3500mm的靜電夾盤40b中,爲了提升耐熱 性,膜厚亦爲重要的因素,第1絕緣層42b的膜厚最好爲 250〜600μηι,更好爲300〜5 5 0μπι。又,第2絕緣層44b 的膜厚最好爲250〜600μπι,更好爲3〇〇〜5 5 0μπι° 靜電夾盤4 0b可藉由先在基材41的表面利用噴塗形 成第1絕緣層42b之後,在該層上配設電極43,更以覆 蓋該電極43的方式利用噴塗形成第2絕緣層44b來製造 。再者,電極43也可利用噴塗來形成。又,可包含利用 適當的切削加工等的形狀加工工程。 再者,在該第2例中,作爲基材41的材質在使用線 膨脹係數爲17.3 χΙΟ·6〔/ °C〕之不鏽鋼的情形下’作爲第 1絕緣層42b,例如可使用線膨脹係數爲6.4 xl (Γ6〔 /°C〕 ,與基材41的線膨脹係數之差爲10.9x1 〇_6〔/ °C〕的 Al2〇3噴塗膜等。又,在使用線膨脹係數爲8.9xl0_6〔 /°C 〕之鈦的情形下,作爲第1絕緣層42a及第2絕緣層44a ,例如可使用線膨脹係數爲6·4χ1 0·6〔/ °C〕’與基材41 的線膨脹係數之差爲2·5χ1(Γ6〔 /°C〕的Ah〇3噴塗膜等 <第3例> 其次,針對有關第1實施形態的第3例之靜電夾盤 40c做詳細說明。第4圖是靜電夾盤40c的剖面圖。該靜 -19- 200826226 電夾盤40c係在基材41之上設有第1絕緣層42c,在該 第1絕緣層42c之上設有電極43,在該電極43之上設有 第2絕緣層44c。以鋁舉例示範作爲基材41的材質。又 ,電極4 3的材質最好是鎢、錨等的金屬材料。 在上述靜電夾盤40c中,第1絕緣層42c是藉由氧化 鋁(Al2〇3)噴塗膜所構成。一方面,第2絕緣層44c, 是藉由具有與基材4 1之線膨脹係數之差的絕對値爲 14xl0_6〔 / °C〕以下的線膨脹係數之陶瓷噴塗膜所形成 。作爲此種陶瓷噴塗膜,與第1例同樣的材質例如基板 41的材質爲鋁的情形下,可使用 YF3、MgO、2MgO · Si〇2等的噴塗膜。 在本實施形態中,藉由利用具有與基材4 1之線膨脹 係數之差的絕對値爲14x1 0_6以下的線膨脹係數之陶瓷噴 塗膜來形成易成爲裂痕之起點的表面層之第2絕緣層44c ,藉此來改善靜電夾盤40c的耐熱性,以抑制裂痕的發生 。又,使用體積電阻率大的氧化鋁(ai2o3 )噴塗膜作爲 第1絕緣層42c,藉此來確保充分的耐電壓性能。 基板保持面50的大小是長邊的尺寸,在45 0mm以上 例如450mm〜3500mm的靜電夾盤40c中,爲了提升耐熱 性,膜厚亦爲重要的因素,第1絕緣層42c的膜厚最好爲 250〜600μιη,更好爲3 0 0〜5 5 0 μιη。又,第2絕緣層44c 的膜厚最好爲25 0〜600μιη,更好爲3 00〜5 5 0μιη。 靜電夾盤40c可藉由先在基材41的表面利用噴塗形 成第1絕緣層42c之後,在該層上配設電極43,更以覆 -20- 200826226 蓋該電極43的方式利用噴塗形成第2絕緣層44c來製造 。再者,電極43也可利用噴塗來形成。又,可包含利用 適當的切削加工等的形狀加工工程。 再者,在該第3例中,作爲基材41的材質在使用線 膨脹係數爲17.3χ1 (Γό〔 /°C〕之不鏽鋼的情形下,作爲第 2絕緣層44c,例如可使用線膨脹係數爲6·4 XI 0_6〔 /°C〕 ,與基材41的線膨脹係數之差爲10.9x1 (Γ6〔/ °C〕的 Al2〇3噴塗膜等。又,在使用線膨脹係數爲8·9χ1(Γ6〔 / °C 〕之鈦的情形下,作爲第1絕緣層42a及第2絕緣層44a ,例如可使用線膨脹係數爲6·4χ1 0_6〔/ °C〕,與基材41 的線膨脹係數之差爲2·5χ10_6〔 / °C〕的Al2〇3噴塗膜等 <第4例> 其次,針對有關第1實施形態的第4例之靜電夾盤 40d做詳細說明。第5圖是靜電夾盤40d的剖面圖。該靜 電夾盤40d係在基材41之上設有第1絕緣層42d,在該 第1絕緣層42d之上設有電極43,在該電極43之上設有 第2絕緣層44d,更在第2絕緣層44d之上設有作爲表面 層的第3絕緣層45。以鋁舉例示範作爲基材41的材質。 又,電極43的材質最好是鎢、鉬等的金屬材料。 在上述靜電夾盤40d中,第1絕緣層42d及第2絕緣 層44d是藉由氧化銘(Al2〇3)噴塗膜所構成。一方面, 第3絕緣層45,是藉由具有與基材41之線膨脹係數之差 -21 - 200826226 的絕對値爲1 4 x 1 (Γ6〔 / °c〕以下的線膨脹係數之陶瓷噴 塗膜形成薄膜。作爲此種陶瓷噴塗膜的材質,在基板41 爲鋁的情形下,可使用與第1例同樣的材質例如YF3、 MgO、2MgO · Si02等。在本實施形態中,藉由利用具有 與基材41之線膨脹係數之差的絕對値爲14χ1(Γ6以下的 線膨脹係數之陶瓷噴塗膜(第3絕緣層45 ),將易成爲 裂痕之起點的表面層形成薄膜,藉此與第3實施形態的靜 電夾盤40c相比,可進一步改善靜電夾盤40d的耐熱性, 裂痕的抑制效更高。此時,因使用體積電阻率大的氧化鋁 (Al2〇3 )噴塗膜作爲第1絕緣層42d及第2絕緣層44d ,藉此可確保充分的耐電壓性能,故即使第3絕緣層45 薄膜化也不易發生異常放電等,可確保靜電夾盤40d的可 靠性。 基板保持面50的大小是長邊的尺寸,在450mm以上 例如45 0 mm〜3500 mm的靜電夾盤40d中,爲了提升耐熱 性,膜厚亦爲重要的因素,第1絕緣層42d的膜厚最好爲 250〜600μιη,更好爲300〜550μηι。又,第2絕緣層44d 的膜厚最好爲150〜5 00μιη,更好爲200〜450μιη。進而, 第3絕緣層45的膜厚最好爲50〜250μηι,更好爲75〜 2 2 5 μιη 〇 靜電夾盤40d可藉由先在基材41的表面利用噴塗形 成第1絕緣層42d之後,在該層上配設電極43, 其次以 覆蓋該電極43的方式利用噴塗形成第2絕緣層44d ’更 以覆蓋第2絕緣層44d的方式利用噴塗形成第3絕緣層 -22- 200826226 45來製造。再者’電極43也可利用噴塗來形成。又,可 包含利用適當的切削加工等的形狀加工工程。 再者,在該第4例中,作爲基材41的材質在使用線 膨脹係數爲17·3χ1(γ6〔 / °C〕之不鏽鋼的情形下,作爲 第3絕緣層4 5 ’例如可使用線膨脹係數爲6.4 X 1 0 _6〔/ °C 〕,與基材4 1的線膨脹係數之差爲1 〇 · 9 X 1 0·6〔 / °C〕的 Al2〇3噴塗膜等。又’在使用線膨脹係數爲8·9χ1(Γ6〔 /°C 〕之鈦的情形下,作爲第1絕緣層42a及第2絕緣層44a ,例如可使用線膨脹係數爲6·4χ10_6〔 / °C〕’與基材41 的線膨脹係數之差爲2·5χ10_6〔 / °C〕的Al2〇3噴塗膜等 <第5例> 其次,針對有關第1實施形態的第5例之靜電夾盤 4〇e做詳細說明。 第6圖是靜電夾盤40e的剖面圖。該靜電夾盤40e係 在基材41之上設有第1絕緣層42e,在該第1絕緣層42e 之上設有電極43,在該電極43之上設有第2絕緣層44 e ,更以圍繞第1絕緣層42e及第2絕緣層44e的方式,設 有周緣部被覆層46。在周緣部被覆層46之上部形成有周 緣梯形部47。該周緣梯形部47 ’係形成基板保持面50之 最外側的區域,以其頂部來支承基板G之下面的周緣部 之同時,在基板G的裏面側形成空間,經由氣體通路9 將He氣體等的傳熱氣體供給到該空間,調節基板G的溫 -23- 200826226 度。周緣梯形部47的高度,例如可爲5〇〜250 μιη。以鋁 舉例示範作爲基材4 1的材質。又,電極4 3的材質例如最 好是鎢、鉬等的金屬材料。 在上述靜電夾盤4〇e中,第1絕緣層42e及第2絕緣 層44e是藉由氧化鋁(a1203 )噴塗膜所構成。一方面, 周緣部被覆層46,是藉由具有與基材41之線膨脹係數之 差的絕對値爲1 4 X 1 0_6〔/ °C〕以下的線膨脹係數之陶瓷 f ' 噴塗膜所形成。作爲此種陶瓷噴塗膜的材質,在基板41 爲鋁的情形下,可使用與第1實施形態同樣的材質,例如 在基材41之材質爲鋁的情形下爲 YF3、MgO、2MgO · Si〇2 等。 設置在基板保持面5 0之周緣部的周緣梯形部47,易 成爲裂痕的起點。因此,在本實施形態之靜電夾盤40e中 ,藉由利用具有與基材4 1之線膨脹係數之差的絕對値爲 14xl(T6以下的線膨脹係數之陶瓷噴塗膜(周緣部被覆層 46)來被覆包含設置在基板保持面50之周緣部的周緣梯 形部47的周緣部,藉此改善靜電夾盤40e的耐熱性,來 . 抑制發生以周緣梯形部47爲起點的裂痕。又,藉由在電 極43周圍的第1絕緣層42e及第2絕緣層44e,使用體 積電阻率大的氧化鋁(A1203 )噴塗膜,就能確保充分的 耐電壓性能。 基板保持面50的大小是長邊的尺寸,在450mm以上 例如450mm〜3500mm的靜電夾盤40e中,爲了提升耐熱 性,膜厚亦爲重要的因素,第1絕緣層42e的膜厚最好爲 -24- 200826226 250〜600μηι,更好爲300〜550μιη。又,第2絕緣層44e 的膜厚最好爲250〜600μπι,更好爲3 00〜5 5 0μηι。 靜電夾盤4 0e可藉由先在基材41的表面利用噴塗形 成第1絕緣層42e之後,在該層上配設電極43,接著以 覆蓋該電極43的方式利用噴塗形成第2絕緣層44e,更 以覆蓋第1絕緣層42e及第2絕緣層44e之側部的方式利 用噴塗形成周緣部被覆層46來製造。再者,電極43也可 利用噴塗來形成。又,可包含藉由利用適當的切削加工之 形成周緣梯形部47等的形狀加工工程。 再者,在該第5例中,作爲基材41的材質在使用線 膨脹係數爲17.3 XI (T6〔 /°C〕之不鏽鋼的情形下,作爲周緣 部被覆層46,例如可使用線膨脹係數爲6.4xl0_6〔 /°C〕, 與基材41的線膨脹係數之差爲1〇·9χ1(Γ6〔 /°C〕的Al2〇3 噴塗膜等。又,在使用線膨脹係數爲8.9x10_6〔 / °C〕之 鈦的情形下,作爲第1絕緣層42a及第2絕緣層44a,例 如可使用線膨脹係數爲6·4χ1(Γ6〔 / °C〕,與基材41的 線膨脹係數之差爲2·5χ1(Γ6〔 /°C〕的Al2〇3噴塗膜等。 <第6例> 其次,針對有關第1實施形態的第6例之靜電夾盤 40f做詳細說明。第7圖是靜電夾盤40f的剖面圖。該靜 電夾盤40f係在基材41之上設有第1絕緣層42f,在該第 1絕緣層42f之上設有電極43,在該電極43之上設有第 2絕緣層44f,更設有被覆形成在第2絕緣層44f之周緣 -25- 200826226 梯形部47之頂部的梯形部被覆層48。該周緣 係形成基板保持面5 0之最外側的區域,以其 基板G之下面的周緣部之同時,在基板G的 空間,經由氣體通路9將He氣體等的傳熱氣 空間,調節基板G的溫度。周緣梯形部47的 可爲5 0〜2 5 0 μιη。以鋁舉例示範作爲基材4 1 ,電極43的材質例如最好是鎢、鉬等的金屬木 在上述靜電夾盤4 0f中,第1絕緣層42f 層44f是藉由氧化鋁(Al2〇3)噴塗膜所構成 作爲形成在靜電夾盤40f之基板保持面50之 梯形部47之頂部的表面層所形成的梯形部被] 藉由具有與基材4 1之線膨脹係數之差的絕對ίί 〔/ °C〕以下的線膨脹係數之陶瓷噴塗膜所形 種陶瓷噴塗膜的材質,在基板4 1爲鋁的情形 與第1例同樣的材質例如YF3、MgO、2MgO · 因設置在基板保持面5 0之周緣部的周緣I 發明裂痕,故在本實施形態中,利用具有與基 膨脹係數之差的絕對値爲14x1 0·6以下的線膨 瓷噴塗膜(梯形部被覆層48)來被覆設置在 50之周緣部的周緣梯形部47,藉此改善靜電 耐熱性,來抑制發生以該周緣梯形部4 7爲起 又,藉由在電極43周圍的第1絕緣層42f及 44f’使用體積電阻率大的氧化銘(a12〇3)噴 確保充分的耐電壓性能。 梯形部47, 頂部來支承 裏面側形成 體供給到該 高度,例如 的材質。又 f料。 及第2絕緣 。一方面, 周緣的周緣 憂層4 8,是 I 爲 14χ10·6 成。作爲此 下,可使用 Si02 等。 卷形部47易 材41之線 脹係數之陶 基板保持面 夾盤4 0 f的 點的裂痕。 第2絕緣層 塗膜,就能 -26- 200826226 基板保持面50的大小是長邊的尺寸,在450mm以上 例如45 0mm〜3500 mm的靜電夾盤40f中,爲了提升耐熱 性,膜厚亦爲重要的因素,第1絕緣層42f的膜厚最好爲 25 0〜600μιη,更好爲3 0 0〜5 5 0 μιη。又,第2絕緣層4 4 f 的膜厚最好爲2 5 0〜600μηι,更好爲300〜5 5 0μηι。進而, 梯形部被覆層48的膜厚最好爲50〜250 μιη,更好爲75〜 225μπι。在本實施形態中,因可像這樣將梯形部被覆層48 形成薄膜,故靜電夾盤4 0 f的耐熱性優。 靜電夾盤40f可藉由先在基材41的表面利用噴塗形 成第1絕緣層42f之後,在該層上配設電極43,接著以 覆蓋該電極43的方式利用噴塗形成第2絕緣層44f,更 在第2絕緣層44f之基板保持面50之周緣形成周緣梯形 部47。然後,以覆蓋該周緣梯形部47之頂部的方式利用 噴塗形成梯形部被覆層48,藉此就能製造靜電夾盤40f。 此時,直接噴塗在第2絕緣層44f,藉此利用具有與基材 4 1之線膨脹係數之差的絕對値爲1 4 X 1 0_6〔/ °C〕以下的 線膨脹係數之陶瓷噴塗膜來形成周緣梯形部4 7的全部。 再者,電極43也可利用噴塗來形成。又,可包含藉由利 用適當的切削加工之形成周緣梯形部47等的形狀加工工 程。 再者,在該第6例中,作爲基材41的材質在使用線 膨脹係數爲17.3 XI (Γ6〔 /°C〕之不鏽鋼的情形下,作爲梯形 部被覆層48,例如可使用線膨脹係數爲6·4χ 1 (Γ6〔 / °C〕, 與基材41的線膨脹係數之差爲1〇.9χ1(Γ6〔 / °C〕的Al2〇3 -27- 200826226 噴塗膜等。又,在使用線膨脹係數爲8·9χ10_6〔 / °C〕之 鈦的情形下,作爲第1絕緣層42a及第2絕緣層44a,例 如可使用線膨脹係數爲6.4 XI 0_6〔 /°C〕,與基材41的 線膨脹係數之差爲2.5ΧΗΓ6〔 / °C〕的Al2〇3噴塗膜等。 其次,針對與第1圖所示者同樣之構成的電漿鈾刻裝 置1的靜電夾盤40,以以下的方法來實施耐熱性試驗。 針對組合表1所示的材質之基材41與噴塗膜(第1 絕緣層42及第2絕緣層44)所製作的靜電夾盤A〜C, 重複五次昇溫—降溫的溫度循環,來確認有無發生裂痕。 噴塗膜係第1絕緣層42及第2絕緣層44均爲相同材質。 本耐熱試驗的冷卻(chiller )設定溫度、溫度循環條件及 靜電夾盤4 0的表面溫度之實測値係如表1所示。又,根 據深色探傷(c ο 1 〇 r c h e c k )法來判定有無裂痕的產生。合 倂其結果表示在表1。 - 28- 200826226 寒4< 嫉Η S醫 1 ^ 霖糊 裂痕 產生處 全面格子狀 氣體供給連通孔 周圍線狀 氣體供給連通孔 周圍線狀 I 1 1 侧 壊 壊 摧 壊 晅cP 撇μ % 1¾ 邊緣 r- S f—Η ITi 00 # 1® M 雛® g r-H 〇\ CN VO οο (N ό 上 (N 个 丄 (N 个 上 CN 个 ό ό ffi w 个 个 § τ ο Τ 姻1 〇 T § 个 II « 个 τ 个 个 1—Η 个 'w^ 1 ο (N 1 ο 1 〇 in g ^ M τ—1 〇 g ο τ-Η $ si m 劍 m 祕 祕 祕 基材 Μ 不鏽鋼 (SUS304) 靜電夾盤 之尺寸 長邊1 § 00 〇 〇〇 r-H 〇 (N 〇\ 短邊 g 〇 r-H 〇 C^j 區分 雞 雞 m < If 试C W J 鎞 鑑 -29- 200826226 由該試驗結果,雖然在鋁基材與氧化鋁噴塗膜的組 合中,不管電極大小都會發生裂痕,但在不鏽鋼基材組合 氧化鋁噴塗膜的情形下,並未觀察到裂痕的發生。由該結 果可確認,對於作爲基材的材質係線膨脹係數爲17·3χ10_6 〔/ °C〕的不鏽鋼,藉由使用線膨脹係數爲1〇·9χ1〇_6〔 / °C〕,與基材之線膨脹係數之差的絕對値爲14χ1(Γ6〔 / °c〕的αι2ο3噴塗膜,可防止裂痕的發生。 其次,針對具備有關本發明之第2實施形態之作爲靜 電吸附電極的靜電夾盤之基板處理裝置之一例的電漿蝕刻 做說明。第8圖是表示此種電漿蝕刻裝置之剖面圖。 在此,上述第1實施形態的靜電夾盤40,主要表示 針對載置基材之構造不同的靜電夾盤140之電漿蝕刻裝置 101,由於其他構成基本上相同,因此在與第1圖相同的 構成附上同一符號,省略說明。 本實施形態的靜電夾盤1 40,係具有以導電性材料所 形成的基材41,該基材41係形成具有上部構件141a與 下部構件1 4 1 b的分割構造。在該基材1 4 1的上面,由下 依序層積有:第1絕緣層142、電極143及第2絕緣層 144。靜電夾盤140係藉由從直流電源26經由給電線27 對第1絕緣層142與第2絕緣層144之間的電極143施加 直流電壓,例如因庫侖力而靜電吸附基板G。在靜電夾盤 140的上面(第2絕緣層144的上面),與第1實施形態 同樣的,形成有吸附保持基板G的基板保持面1 5 0 (參照 第9圖)。該基板保持面150的尺寸,係長邊(最長部分 -30- 200826226 的尺寸)的長度爲450mm以上,例如可爲 3 5 0 0mm 〇 其次’針對有關本實施形態的靜電夾盤1 4 〇 明。第9圖是放大表示靜電夾盤14〇的剖面圖。 所示,該靜電夾盤i 40,係在基材141之上面的 凸狀部1 4 1 c ’凸狀部1 4丨^之外周是形成爲了相 基材4a而螺固靜電夾盤14〇的凸緣部i41d (螺 略)。然後,在凸狀部141c的上面,形成有第 142、第2絕緣層丨44及該等之間的電極ι43。夕 絕緣層1 4 4之上,形成有基板保持面丨5 〇。第 1 42,也形成在凸狀部i 4 1 c的側面。電極1 43的 與第1實施形態的電極4 3同樣的,舉例示範有 又,如第9圖所示在基板保持面15〇形成有複 150a,該等凸部150a是以其頂面來支承基板G 體通路9將H e氣體等的傳熱氣體供給到鄰接的 之間。 連本實施形態中,基板保持面1 5 0的大小是 寸,在 450mm以上例如 450mm〜3 500mm的 14 0c中,爲了提升耐熱性,膜厚亦爲重要的因 絕緣層142的膜厚最好爲250〜600μιη,更好 550μπι。又,第2絕緣層144的膜厚最好爲250^ 更好爲3 00〜5 5 0μιη。 基材1 4 1,係如上述所,分割成上部構件】 部構件1 4 1 b,上部構件1 4 1 a係包含凸狀部1 4 1 c 4 5 0mm ~ 做詳細說 如第9圖 中央具有 對於晶座 釘圖示省 1絕緣層 ,在第2 1絕緣層 材質,係 鎢、鉬。 數個凸部 ,經由氣 凸部1 5 0 a 長邊的尺 靜電夾盤 素,第1 爲 300〜 -6 Ο Ο μιη » 41a與下 ;、凸緣部 -31 - 200826226 1 4 1的一部分。下部構件1 4 1 b係設置在上部構件1 4 1 a之 下,在其中央上部形成有嵌入上部構件141a的凹部141e 。然後,比下部構件1 4 1 b的凹部1 4 1 e更外側的部分,係 構成上述凸緣部1 4 1 d的剩餘部。上部構件1 4 1 a與下部構 件1 4 1 b,係利用螺釘1 6 1做機械式螺合,在該等之間介 裝密封構件162。 上部構件1 4 1 a與下部構件1 4 1 b,形成暫存He等之 傳熱氣體的氣體貯槽l〇9a。在該氣體貯槽l〇9a,係與上 述第1實施形態同樣的,連接有貫通絕緣板3及晶座基材 4a,延伸靜電夾盤140的氣體通路9。又,從氣體貯槽 l〇9a向著上方形成有多數個氣體供給連通孔l〇9b,對基 板G的裏面供給He氣體等之傳熱氣體。此時,由於上部 構件1 4 1 a包含凸緣部1 4 1 d,因此可將貯槽1 09a延伸到 凸部基板保持面1 5 0之外周附近,將傳熱用氣體的He氣 體等供給到基板G之裏面的周緣部。 在此種靜電夾盤140中,第1絕緣層142及第2絕緣 層144是利用陶瓷噴塗皮膜所形成。又,在基材141之凸 狀部1 4 1 c的側面,也以連續於絕緣層1 42、1 44的方式, 形成有以陶瓷噴塗皮膜所形成的側面絕緣層1 42a。然後 ,形成基材1 4 1的上部構件1 4 1 a、第1絕緣層1 42及第2 絕緣層1 44的陶瓷噴塗皮膜,由對絕緣層防止裂痕的觀點 來看,線膨脹係數之差的絕對値爲1 4 X 1 (Γ6〔 / °C〕以下 所形成。具體上,作爲上部構件1 4 1 a ’係使用比習知之 基材141的材料之鋁(線膨脹係數23.8x1 (Γ6〔/ °C〕) -32- 200826226 更低熱膨脹材料的不鏽鋼(線膨脹係數1 7 · 8 χ 1 (Γ6〔 /。〇〕 )或欽(線膨脹係數8 · 9 x 1 〇_ 6〔 / °C〕),作爲構成絕緣 層142、144的陶瓷噴塗皮膜,可使用氟化釔噴塗膜(Yf3 :線膨脹係數13x ΗΓ6〔/ °C〕)、氧化鎂噴塗膜(MgO :線膨脹係數Πχΐ〇_6〜15χ10_6〔 /°C〕)、鎂橄欖石噴 塗膜(2MgO · Si02 :線膨張係數 1〇·2χ1〇-6〔/。(:〕)、三 氧化二釔噴塗膜(Y2〇3 :線膨脹係數8·2χ1(Γ6〔 /。〇〕) 、氧化鋁噴塗膜(Al2〇3 ·•線膨脹係數6·4χ10·6〔 /°C〕) ο 像這樣,構成絕緣層1 4 2、1 4 4的陶瓷噴塗皮膜和鄰 接於此的基材1 4 1的上部構件1 4 1 a的線膨脹係數之差的 絕對値爲1 4 X 1 0·6〔 / °C〕以下,藉此緩和熱應力,提昇 靜電夾盤140的耐熱性,就能抑制絕緣層之裂痕的發生。 在此,如上所述,第1絕緣層14 2,是形成在基材 1 4 1之凸狀部1 4 1 c的側面,延伸到對應於上部構件1 4 1 a 的凸緣部1 4 1 d的部分。另一方面,並未在下部構件1 4 1 b 形成陶瓷噴塗皮膜。藉此,就能只取下上部構件1 4 1 a來 進行陶瓷噴塗皮膜的剝離再處理。 像這樣,因在本實施形態中,鄰接於以陶瓷噴塗皮所 形成的絕緣層1 42、1 44之上部構件1 4 1 a,爲比習知更低 熱臆彡脹材料的不鏽鋼或鈦,且兩者間的線膨脹係數之差的 絕對値爲14xl〇·6〔 / °C〕以下,來抑制絕緣層的裂痕, 故下部構件1 4 1 b的熱膨脹係數可以較大,可使用自以往 作爲基材所用的鋁。因鋁比重小,故比全爲不鏽鋼或鈦的 -33- 200826226 情形有利。 下部構件1 4 1 b爲鋁,係與習知基材相同,最好 面施行陽極氧化處理(氧化鋁膜處理)。藉此,就算 成噴塗皮膜亦可維持較高的耐食性。雖然習知以施行 陽極氧化處理的鋁來構成基材的情形下,在陶瓷噴塗 之剝離再處理時,基材的陽極氧化處理皮膜也會剝離 要再處理,但在本實施形態中,如上所述,因在形成 極氧化皮膜的下部構件141b,並未形成陶瓷噴塗皮 故不需要此種陽極氧化處理皮膜的剝離再處理。 在本實施形態中,特別好的是以ai2o3噴塗膜來 以陶瓷噴塗皮膜所形成的絕緣層142、144,以不鏽 鈦來形成基材1 4 1的上部構件1 4 1 a,以陽極氧化處 鋁來形成下部構件1 4 1 b。藉由此種構件,上部構件 只要變更不鏽鋼或鈦,除此之外,就能具有大致與習 電夾盤同等的形狀及功能,不需要大幅的變更設計。 連本實施形態中,與上述第1實施形態的第2例 3例同樣的,作爲第1絕緣層142及第2絕緣層144 用由線膨脹係數互異的材料所形成的陶瓷噴塗膜。又 上述第1實施形態的第4例同樣的,也可在第2絕 144之上,設置由與上部構件141a之線膨脹係數之 絕對値爲14x1 (Γ6〔/ °C〕以下之陶瓷皮膜所形成的 絕緣層作爲表面層。進而,如第1實施形態的第5例 可設置由與上部構件1 4 1 a之線膨脹係數之差的絕對 14xl(T6〔 / °C〕以下之陶瓷皮膜所形成的周緣部被 對表 未形 此種 皮膜 ,需 有陽 膜, 形成 鋼或 理的 141a 知靜 及第 ,可 ,與 緣層 差的 第3 ,也 値爲 覆層 -34- 200826226 及周緣梯形部。更又,如第1實施形態的第6例,也可設 置由與上部構件1 4 1 a之線膨脹係數之差的絕對値爲 14χ 1(T6〔 / °C〕以下之陶瓷皮膜所形成的梯形部被覆層 〇 以上,雖是針對本發明之實施形態做說明’但本發明 並不限於此,可爲各種變形。 例如,有關本發明的處理裝置,雖是舉例示範對下部 電極施加高頻電力的RIE型的電容耦合型平行板式電漿蝕 刻裝置做說明,但並不限於蝕刻裝置,可應用於進行灰化 、CVD成膜等之其他種類的電漿處理裝置,也可爲對上 部電極供給高頻電力的型式,又不限於電容耦合型,也可 爲感應耦合型,被處理基板並不限於FPD用玻璃基板G ,也可爲半導體晶圓。 再者,在上述實施形態中,雖是針對靜電吸附電極的 基材41與被覆基材之陶瓷噴塗膜的線膨脹係數加以規定 ,但並不限於靜電吸附電極,也可應用於在基板處理裝置 之反應室內所使用的其他構件。 【圖式簡單說明】 第1圖是表示具備有關本發明之第1實施形態之作爲 靜電吸附電極的靜電夾盤之基板處理裝置之一例的電漿蝕 刻裝置之剖面圖。 第2圖是表示有關第1實施形態的第1例之靜電夾盤 之剖面圖。 -35- 200826226 第3圖是表示有關第1實施形態的第2例之靜電夾盤 之剖面圖。 第4圖是表示有關第1實施形態的第3例之靜電夾盤 之剖面圖。 第5圖是表示有關第1實施形態的第4例之靜電夾盤 之剖面圖。 第6圖是表示有關第1實施形態的第5例之靜電夾盤 之剖面圖。 第7圖是表示有關第1實施形態的第6例之靜電夾盤 之剖面圖。 第8圖是表示具備有關本發明之第2實施形態之作爲 靜電吸附電極的靜電夾盤之基板處理裝置之一例的電漿蝕 刻裝置之剖面圖。 第9圖是放大表示有關第2實施形態的靜電夾盤之剖 面圖。 【主要元件符號說明】 1 :電漿蝕刻裝置 2 :反應室 3 :絕絕板 4 :晶座 5 a :絕緣膜 1 1 :淋浴頭 2 〇 :排氣裝置 -36- 200826226 2 5 :高頻電源 26 :直流電源 40、140 :靜電夾盤 4 1、1 4 1 :基材 42、142 :第1絕緣層 43 、 143 :電極 44、144 :第2絕緣層 4 5 :第3絕緣層 46:周緣部被覆層 47 :周緣梯形部 4 8 :梯形部被覆層 5 0、1 5 0 :基板保持面 1 4 1 a :上部構件 1 4 1 b :下部構件 1 4 1 c :凸狀部 1 4 1 d :凸緣部 1 6 1 ·螺釘 -37-200826226 IX. Description of the Invention [Technical Field] The present invention relates to an electrostatic adsorption electrode, a substrate processing apparatus, and a method of manufacturing the electrostatic adsorption electrode, and more particularly to a method of manufacturing, for example, a flat panel display (FPD). A substrate processing apparatus and a method of manufacturing the electrostatic adsorption electrode including the electrostatic adsorption electrode for adsorbing and holding an electrostatic adsorption electrode of a substrate such as a glass substrate. [Prior Art] In the manufacturing process of the FPD, the glass substrate of the object to be processed is subjected to plasma treatment such as dry uranium engraving, sprinkling, and CVD (Chemical Vapor Deposition). For example, a pair of parallel plate electrodes (upper and lower electrodes) are disposed in the reaction chamber, and after the glass substrate is placed on the crystal substrate (substrate mounting table) functioning as the lower electrode, the processing gas is introduced into the reaction chamber, and at least one of the electrodes is placed. A high-frequency electric power is applied to form a high-frequency electric field between the electrodes, and a plasma of the processing gas is formed by the high-frequency electric field to perform plasma treatment on the substrate. At this time, the glass substrate is fixed by adsorption using an electrostatic adsorption electrode provided on the crystal holder, for example, by Coulomb force. Such an electrostatic adsorption electrode is known to have a structure in which an insulating layer, an electrode, and an insulating layer are sequentially laminated on a substrate by a conductive material such as a metal such as ceramic, by using the electrode. By applying a voltage and generating a Coulomb force, the glass substrate can be adsorbed and fixed. Then, the material of the insulating layer formed on the substrate is known to be alumina (ai2o3) (e.g., Japanese Patent Document 1). 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The spray film has a linear expansion coefficient of about 6.4 XI 0_6 [ /°C], and there is a big difference between the linear expansion coefficient of aluminum used in the material used as the substrate of 23 · 8χ1 (Γ6[ ], because The electrode temperature increases and the coefficient of thermal expansion increases, and a large stress is generated in the insulating layer, causing cracks. In addition, in the manufacturing process of FPD in recent years, the substrate has been rapidly advanced, resulting in the need to adsorb and maintain the long side longer than 2 m. In the case of a large-sized glass substrate, the electrostatic adsorption electrode is also increased in size. As the size of the electrostatic adsorption electrode increases, the stress of the insulating layer is amplified and the crack is easily generated. The present invention is an invention that has been completed in view of the related matters. An object of the invention is to provide an electrostatic adsorption electrode that suppresses cracks in an insulating layer and a substrate processing apparatus using the electrostatic adsorption electrode. In order to solve the above-described problems, the first aspect of the present invention provides an electrostatic adsorption electrode comprising: an electrostatic adsorption electrode for holding and holding a substrate holding surface of a substrate in a substrate processing apparatus, comprising: a substrate; and an insulating layer disposed on the substrate; and an electrode disposed on the insulating layer; and an absolute 値 having a difference in linear expansion coefficient from the substrate is -5 - 200826226 14χ1 (Γ6[ / a ceramic sprayed film having a coefficient of linear expansion below to form a part or all of the insulating layer. In the first aspect, a part or all of the surface of the insulating layer on the substrate holding surface may be formed to have a The absolute enthalpy of the difference in linear expansion coefficient of the substrate is a structure of a ceramic sprayed film having a linear expansion coefficient of 1 4 X 1 (Γ6 [/ ° C] or less. Particularly preferably, it is formed at a peripheral portion of the substrate holding surface. A ceramic sprayed film having a linear expansion coefficient of an absolute enthalpy of a difference from a linear expansion coefficient of the substrate of 14×10 0 −6 [ /° C ] or less. Further, the insulating layer includes: a first insulating layer having a lower electrode; and a second insulating layer higher than the electrode; and having an absolute 値 having a difference from a linear expansion coefficient of the substrate of 14 χ 1 (Γ6 〔 ° C ) or less The ceramic sprayed film having a linear expansion coefficient may form at least one of the first insulating layer or the second insulating layer. Further, the insulating layer may include a first insulating layer lower than the electrode; and a second insulating layer higher than the electrode; and a surface layer higher than the second insulating layer, and having an absolute 値 having a difference from a linear expansion coefficient of the substrate is 1 4 X 1 (Γ6[ / ° C ] The following ceramic expansion film having a coefficient of linear expansion is used to form the surface layer. At this time, it is preferable that the film thickness of the aforementioned surface layer is 50 to 250 μm. Further, the peripheral portion and the side portion of the substrate holding surface may be formed by a ceramic spray film having a linear expansion coefficient of an absolute enthalpy of 14×10 −6 [/° C.] or less which is different from a linear expansion coefficient of the substrate. . Further, a peripheral step of the substrate holding surface is provided with a step and a peripheral trapezoidal portion is formed, and the difference between the linear expansion coefficients of the substrate and the substrate is -6-200826226, and the absolute enthalpy is 1 4 χ 1 (Γ6[ / °C] the following ceramic expansion coefficient of the coefficient of linear expansion to form the peripheral trapezoidal portion. Further, a peripheral portion of the substrate holding surface is provided with a step and a peripheral trapezoidal portion is formed by having the base It is also possible to form a top surface of the peripheral trapezoidal portion by using a ceramic spray film having a linear expansion coefficient of 1 4 χ 1 (Γ6 [/ ° C] or less). The film thickness of the ceramic sprayed film having a linear expansion coefficient of the difference of the linear expansion coefficients of the substrate of 1 4 χ 1 (Γ6 [/ ° C] or less is 50 to 25 μm. Further, the substrate is aluminum. a ceramic sprayed film having a linear expansion coefficient of an absolute enthalpy of 1 4 χ 1 0_6 [/ ° C] or less, which is a difference from a linear expansion coefficient of the substrate, preferably YF3 (yttrium fluoride), MgO (magnesium oxide) And 2MgO · Si02 (forsterite). At this time, by Al2〇3 ( a portion formed of a sprayed film of alumina) formed by a ceramic sprayed film having a linear expansion coefficient of an absolute enthalpy of 1 4 X 1 (Γ6 [/°c] or less) having a difference from a linear expansion coefficient of the substrate. Further, the insulating layer is made of stainless steel or titanium, and has a coefficient of linear expansion of the difference between the linear expansion coefficients of the substrate and a linear expansion coefficient of 1 4 χ 1 (Γ6 [/ ° C] or less. The film is preferably any one of ai2o3 (alumina), Y2〇3 (antimony trioxide), YF3 (yttrium fluoride), MgO (magnesium oxide), and 2MgO • Si〇2 (鎭 檀 檀). According to a second aspect of the present invention, in a substrate processing apparatus, there is provided an electrostatic adsorption electrode for adsorbing and holding a substrate holding surface of a substrate by an electrostatic force, comprising: a substrate; and being disposed on the substrate An insulating layer; and an electrode disposed in the insulating layer; a part of the insulating layer or 200826226 is formed by a ceramic sprayed film, the substrate having an upper member adjacent to the insulating layer, and a support a lower member of the upper member, the foregoing The absolute 値 of the difference between the linear expansion coefficient of the member and the ceramic sprayed film is 14 χ UT6 [/ ° C] or less. In the second aspect, a part or all of the surface of the insulating layer on the substrate holding surface may be formed. Preferably, the ceramic sprayed film is formed. In particular, the ceramic sprayed film is formed on a peripheral portion of the substrate holding surface. The insulating layer further includes a first insulating layer lower than the electrode; and The second insulating layer is formed higher than the electrode; and at least one of the first insulating layer or the second insulating layer is formed by the ceramic sprayed film. Further, the insulating layer includes a first insulating layer lower than the electrode; a second insulating layer higher than the electrode; and a surface layer higher than the second insulating layer; The ceramic sprayed film may be used to form the surface layer. In this case, it is preferable that the thickness of the surface layer is 50 to 250 μm. Further, the peripheral portion and the side portion of the substrate holding surface may be formed by the ceramic sprayed film. a stepped portion is formed on a peripheral portion of the substrate holding surface to form a peripheral trapezoidal portion, and the peripheral trapezoidal portion is formed by the ceramic sprayed film, and a step is formed on a peripheral portion of the substrate holding surface. Further, a peripheral trapezoidal portion is formed, and the top surface of the peripheral trapezoidal-8 - 200826226 portion may be formed by the ceramic sprayed film. In this case, it is preferable that the film thickness of the ceramic sprayed film is 50 to 2500 μm, and in the second aspect, the base material may have a convex portion at the center of the upper surface thereof. A flange portion is formed on an outer peripheral side of the portion, and the insulating layer is formed on a top surface and a side surface of the convex portion, and a surface of the top surface portion of the insulating layer constitutes the substrate holding surface. In this case, the upper member of the base material may include a configuration of the convex portion and a part of the flange portion of the outer peripheral portion. Further, the upper member and the lower member may be screwed. Furthermore, it is preferred that the upper member of the substrate is stainless steel or titanium, and the ceramic sprayed film is Α1203 (alumina), Υ203 (antimony trioxide), YF3 (lanthanum fluoride), MgO (magnesium oxide), and Any of 2MgO · Si〇2 (forsterite). Particularly preferably, the upper member is stainless steel, the lower member is aluminum, and the ceramic sprayed film is ai2o3 (aluminum oxide). In this case, it is preferable that an anodized film is formed on the surface of the lower member made of aluminum. In the above first or second aspect, the substrate holding surface preferably has an area having a longest portion size of 450 mm or more. According to a third aspect of the present invention, a substrate processing apparatus includes: a reaction chamber that houses a substrate; and the electrostatic adsorption electrode of the first or second aspect; and the substrate held by the electrostatic adsorption electrode The processing mechanism for the given treatment. The substrate processing apparatus is exemplified as a device applied to the manufacture of a flat panel display, and the processing mechanism is exemplified by a mechanism for performing a plasma etching treatment on a substrate. -9-200826226 A fourth aspect of the present invention provides a method for producing an electrostatic adsorption electrode, which is a method for producing an electrostatic adsorption electrode for adsorbing and holding a substrate in a substrate processing apparatus, characterized in that it comprises: a process of forming a first insulating layer on the surface of the material; forming an electrode on the first insulating layer; and forming a second insulating layer to cover the electrode; and forming the first insulating layer and/or In the process of forming the second insulating layer, ceramic spraying having a linear expansion coefficient of an absolute enthalpy of 1 4 X 1 0·6 [/° C] or less with a difference in linear expansion coefficient from the substrate is formed by spraying. membrane. According to a fifth aspect of the invention, there is provided a method for producing an electrostatic adsorption electrode, wherein the substrate processing apparatus is a method for producing an electrostatic adsorption electrode for adsorbing and holding a substrate, comprising: forming a surface on a surface of the substrate a process of insulating the layer; and a process of forming an electrode on the first insulating layer; and a process of forming the second insulating layer so as to cover the electrode; and a part or all of the substrate holding surface of the second insulating layer A coating of a coating layer formed of a ceramic sprayed film having a linear expansion coefficient of an absolute enthalpy of 1 4 X 1 (Γ6 [/ ° C] or less with a difference in linear expansion coefficient from the substrate is formed by spraying. According to a sixth aspect of the invention, there is provided a method for producing an electrostatic adsorption electrode, which is a method for producing an electrostatic adsorption electrode for adsorbing and holding a substrate in a substrate processing apparatus, comprising: forming a surface on a surface of the substrate 1 engineering of an insulating layer; and a process of forming an electrode on the first insulating layer; and a process of forming a second insulating layer to cover the electrode; and The insulating layer and the side portion of the second insulating layer are formed by spraying -10-200826226 to form a linear expansion coefficient having an absolute 値 of 14×10_6 [ / ° C] or less with a difference in linear expansion coefficient from the substrate. [Effect of the Invention] According to the present invention, the absolute enthalpy having a difference from the linear expansion coefficient of the substrate is 1 4 X 1 (Γ6 [/ ° C] or less. The ceramic sprayed film having a linear expansion coefficient forms part or all of the insulating layer of the electrostatic adsorption electrode, so that the thermal stress between the substrate and the substrate is relaxed, and the occurrence of cracks can be suppressed. Therefore, the followability of the thermal expansion of the substrate is high. Further, the electrostatic adsorption electrode having excellent adsorption ability. Further, the substrate is a divided structure of the upper member and the lower member, and the upper member is disposed adjacent to the insulating layer. A part or all of the insulating layer is formed by the ceramic sprayed film. And the absolute enthalpy of the difference between the linear expansion coefficients of the upper member and the ceramic sprayed film is 1 4 X 1 〇_6 [ / ° C] or less, whereby the thermal stress of the substrate and the insulating layer can be alleviated. Further, with such a configuration, it is possible to use aluminum oxide 'a lower member using aluminum as a base material' in the spray coating film to have a shape and a function substantially equivalent to those of a conventional electrostatic adsorption electrode. [Best Mode for Carrying Out the Invention] Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. Fig. 1 is a view showing the first embodiment of the present invention -11 - 200826226 A cross-sectional view of a plasma etching apparatus which is an example of a substrate processing apparatus for an electrostatic chuck of an electrostatic adsorption electrode. As shown in Fig. 1, the plasma etching apparatus is a board for a glass substrate for FPD which is a rectangular object to be processed. G is a capacitive coupling type parallel plate plasma etching apparatus for performing uranium engraving. Here, examples of the FPD include a liquid crystal display (LCD), an electroluminescence display (EL), and a plasma display panel (PDP). Furthermore, the substrate processing apparatus of the present invention is not limited to the plasma etching apparatus. The plasma etching apparatus 1 has, for example, a rectangular tubular reaction chamber 2 formed of aluminum whose surface is treated by anodizing (aluminum oxide treatment). The bottom of the reaction chamber 2 is provided with an insulating material. The prismatic edge plate 3 is provided with a crystal holder 4 on which the substrate G is placed on the insulating plate 3, and the crystal holder 4 belonging to the substrate mounting table has a crystal substrate 4a and a crystal substrate 4a. Electrostatic chuck 40 on. Further, on the outer periphery of the base substrate, an insulating film 5a is formed by being insulated and covered, and an insulating material 5b is provided on the outer side. The electrostatic chuck 40 has a rectangular shape in plan view, and has a substrate 41 made of a conductive material such as aluminum stainless steel or metal matrix composite (MMC: Metal Matrix Composil). On the substrate 40, a first insulating layer 42, an electrode 43 and a second insulating layer 44 are laminated in this order. The electrostatic chuck 40 electrostatically adsorbs the substrate G by applying a current voltage from the true current source 26 to the electrode 43 between the first insulating layer 42 and the second insulating layer 44 via the power supply line, for example, by Coulomb force. The base structure of the electrostatic chuck is shown on the top surface of the 4th es having the es edge 27 straight disk-12-200826226 40 (the upper surface of the second insulating layer 44), and the substrate for adsorbing and holding the substrate G is formed. The holding surface 50 (see FIGS. 2 to 7). The size of the substrate holding surface 20 is such that the length of the long side (the longest part) is 450 mm or more, for example, 450 mm to 3500 mm. Further, the detailed structure of the electrostatic chuck 40 will be described later. The insulating plate 3 and the base substrate 4a are formed with the gas passages 9 penetrating through the electrostatic chuck 40. A heat transfer gas such as He gas or the like is supplied to the inside of the substrate G of the object to be processed via the gas passage 9. That is, the heat transfer gas supplied to the gas passage 9 is temporarily diffused to the horizontal direction via the gas storage tank 9a' formed at the boundary between the base substrate 4a and the base material 41 of the electrostatic chuck 40, and is formed in the electrostatic chuck. The gas supply communication hole 9b in 40 is ejected from the surface of the electrostatic chuck 40 to the back side of the substrate G. In this manner, the cold heat of the crystal holder 4 is transmitted to the substrate G, and the substrate G 6 is maintained at a predetermined temperature. A refrigerant chamber 10 is provided inside the crystal base substrate 4a. In the refrigerant chamber 10, a refrigerant such as a fluorine-based liquid is introduced through the refrigerant introduction pipe 1A, and is discharged through the refrigerant discharge pipe 1b, and the cold heat is passed from the crystal holder 4a via the heat transfer gas pair. Substrate G heat transfer. Above the crystal holder 4, a shower head 11 which functions in parallel with the crystal holder 4 as an upper electrode is provided. The shower head 11 is supported by the upper portion of the reaction chamber 2, and has an internal space 12 therein, and a plurality of discharge holes 13 for discharging the processing gas are formed on the surface opposite to the crystal holder 4. The shower head 11 is grounded, and together with the crystal holder 4, a pair of parallel plate electrodes 0-13-200826226. A gas introduction port 14 is provided on the upper surface of the shower head 11, and a processing gas supply pipe is connected to the gas introduction port 14 15. The process gas supply pipe 15 is connected to the process gas supply source 18 via a valve 16 and a mass flow controller 17. The processing gas for etching is supplied from the processing gas supply source 18. As the processing gas, for example, a halogen-based gas, a helium gas, an Ar gas, or the like, a gas generally used in the field can be used. An exhaust pipe 19 is connected to a lower portion of the side wall of the reaction chamber 2, and an exhaust device 20 is connected to the exhaust pipe 19. The exhaust device 20 is provided with a vacuum pump such as a turbo pump, thereby constituting the vacuum in the reaction chamber 2 to a predetermined reduced pressure environment. Further, a side wall of the reaction chamber 2 is provided with a substrate carry-in/out port 21 and a gate valve 22 for opening and closing the substrate carry-in/out port 21, and in a state in which the gate valve 22 is opened, adjacent to the substrate G The load lock chamber (not shown) is transported. A power supply line 23' for supplying high-frequency power is connected to the crystal holder 4, and an integrator 24 and a high-frequency power supply 25 are connected to the power supply line 23, and high-frequency power of, for example, 13.56 MHz is supplied from the high-frequency power supply 25 to the crystal holder. 4 ° Next, the processing operation of the plasma etching apparatus 1 configured as described above will be described. First, the substrate G of the object to be processed is carried into the reaction chamber 2 through the substrate carry-in/out port 21 from the sample introduction chamber (not shown) after the gate valve 22 is opened, and is placed on the electrostatic chuck formed on the crystal holder 4. 40 on. At this time, the delivery of the substrate G is performed via a top pin (not shown) provided to be inserted into the inside of the crystal holder 4 and protruding from the crystal holder 4. Thereafter, the gate valve 22 is closed, and the vacuum in the reaction chamber 2 is sucked by the exhaust unit 20 to a predetermined degree of vacuum of -14 to 200826226. Thereafter, the valve 16 is opened, and the processing gas is supplied from the processing gas supply source 18 to the shower head through the processing gas supply pipe 15 and the gas introduction port 14 while adjusting the flow rate thereof by the mass flow controller 17. The internal space 12 of the 1 1 is evenly discharged to the substrate G through the discharge hole 13 to maintain the pressure in the reaction chamber 2 at a predetermined enthalpy. In this state, high-frequency power is applied from the high-frequency power source 25 to the crystal holder 4 via the integrator 24, whereby a high frequency is generated between the crystal seat 4 as the lower electrode and the shower head 11 as the upper electrode. The electric field is subjected to dissociation of the processing gas to be electrified, whereby the substrate G is subjected to an etching treatment. At this time, a predetermined voltage is applied from the DC power source 26 to the electrode 43 of the electrostatic chuck 40, whereby the substrate G is adsorbed and held by the electrostatic chuck 40 by, for example, Coulomb force. Further, the heat transfer gas is supplied to the back side of the substrate G via the gas passage 9, whereby the temperature adjustment is performed efficiently. After the etching treatment is performed as described above, the application of the high-frequency power from the high-frequency power source 25 is stopped, and after the gas introduction is stopped, the pressure in the reaction chamber 2 is extinguished to a predetermined pressure. Then, the gate valve 22 is opened, the substrate G is carried out through the substrate 21, and the load lock chamber (not shown) is carried out from the reaction chamber 2, thereby completing the etching process of the substrate G. As described above, while the substrate G is electrostatically adsorbed by the electrostatic chuck 40, the etching process of the substrate G can be performed while adjusting the temperature. Next, a configuration example of the electrostatic chuck 40 as the electrostatic adsorption electrode according to the first embodiment will be described with reference to Figs. 2 to 7 . -15- 200826226 <First Example> First, the electrostatic chuck 40a of the first example of the first embodiment will be described. Fig. 2 is a cross-sectional view of the electrostatic chuck 40a. In the electrostatic chuck 40a, a first insulating layer 42a is provided on the substrate 41, an electrode 43 is provided on the first insulating layer 42a, and a second insulating layer 44a is provided on the electrode 43. The material of the substrate 41 is exemplified by aluminum. Further, the material of the electrode 43 is preferably a metal material such as tungsten or molybdenum. In the second drawing, reference numeral 50 denotes a substrate holding surface, and reference numeral 50a denotes a plurality of convex portions formed on the substrate holding surface 50 (the same applies to Figs. 3 to 7). The convex portions 50a support the substrate G on the top surface thereof, and supply a heat transfer gas such as He gas to the gap between the convex portions 50a via the gas passage 9 (see Fig. 1) (substrate G) Inside the side space). In the electrostatic chuck 40a, the first insulating layer 42a and the second insulating layer 44a have a linear expansion coefficient of 14 x 10_6 [ / ° C] or less, which has a difference in linear expansion coefficient from the base material 4 1 . Formed by a ceramic spray film. In the case where the material of the base material 41 is aluminum (linear expansion coefficient 23·8 χ 10_6 [ / ° C]), for example, a lanthanum fluoride spray film (YF3: linear expansion coefficient 13 χ 1 (Γ6 [ / t:]), magnesium oxide spray film (MgO: linear expansion coefficient 1 1 X 10_6~15xl (T6 [ / °C]), forsterite spray film (2MgO · Si02: linear expansion coefficient 10·2χ10_6 [ / ° C 〕), etc. In this way, a ceramic spray film having a linear expansion coefficient of 14x1 with respect to the substrate 41 (a coefficient of linear expansion of Γ6 or less is used as the first insulating layer 42a and the insulating layer 44a of the -16-200826226 2), thereby mitigating heat The stress can increase the heat resistance of the electrostatic chuck 40a, and the occurrence of cracks can be suppressed. The size of the substrate holding surface 50 is the size of the long side, and in the electrostatic chuck 40a of 45 mm or more, for example, 450 mm to 3500 mm, in order to improve heat resistance, The film thickness is also an important factor, and the film thickness of the first insulating layer 42a is preferably 250 to 600 μm, more preferably 300 to 550 μm. Further, the film thickness of the second insulating layer 44a is preferably 250 to 600 μm, more preferably 3 00 to 5 5 0 μιη. The electrostatic chuck 40a can be utilized on the surface of the substrate 41 first. After the first insulating layer 42a is formed by spraying, the electrode 43 is placed on the layer, and the second insulating layer 44a is formed by spraying so as to cover the electrode 43. Further, the electrode 43 can be formed by spraying. Further, in the first example, the material of the base material 41 is a stainless steel having a linear expansion coefficient of 1 7 · 3 X 1 (Γ6 [/ t]. In the case of the first insulating layer 42a and the second insulating layer 44a, for example, a linear expansion coefficient of 6.4 x 1 (T6 [ / ° C] can be used, and the difference in linear expansion coefficient from the substrate 41 is 10·9 χ 1 ( Al6 [ / °C] Al2〇3 sprayed film, etc. Further, when titanium having a linear expansion coefficient of 8.9x1 (Γ6 [/ °C] is used, as the first insulating layer 42a and the second insulating layer 44a, For example, an ai2o3 sprayed film having a coefficient of linear expansion of 6.4 χ1 (Γ6 [/°C] and a difference in linear expansion coefficient of the substrate 41 of 2·5 χ 10_6 [ /° C.] can be used. <Second Example> Next, the electrostatic chuck -17-200826226 40b of the second example of the first embodiment will be described in detail. Fig. 3 is a cross-sectional view of the electrostatic chuck 40b. In the electrostatic chuck 40b, a first insulating layer 42b is provided on the substrate 41, an electrode 43 is provided on the first insulating layer 42b, and a second insulating layer 44b is provided on the electrode 43. The material of the substrate 41 is exemplified by aluminum. Further, the material of the electrode 43 is preferably a metal material such as tungsten or molybdenum. In the electrostatic chuck 4 Ob, the first insulating layer 42b is a ceramic having a linear expansion coefficient of an absolute enthalpy of 1 4 X 1 0_6 [/° C] or less with a difference in linear expansion coefficient from the base material 4 1 . The spray film is formed. When the material of the ceramic spray coating film is the same as that of the first example, for example, when the material of the substrate 4 1 is aluminum, a sprayed film of YF3, MgO, 2MgO · SiO 2 or the like can be used. On the other hand, the second insulating layer 44b is formed by spraying a film of alumina (Al2?3). In the case where the linear expansion coefficient of the alumina sprayed film is 6.4 χ 1 (Γ6 [ / ° C], and the material of the substrate 41 has a linear expansion coefficient of 23·8 χ 10_6 [ / ° C], the linear expansion between the two is caused. The coefficient is greatly different, so if an aluminum oxide sprayed film is formed directly on the substrate 41, cracks are easily generated due to thermal stress. Thus, in this example, the difference between the linear expansion coefficients and the substrate 41 is interposed. The absolute 値 is a structure of the first insulating layer 42b formed by the ceramic sprayed film having a coefficient of linear expansion of 1 4 X 1 0_6 [/° C.]. Thus, the function of the first insulating layer 42b as a buffer layer is borrowed. This improves the heat resistance of the electrostatic chuck 40b and suppresses the occurrence of cracks. Further, the material of the second insulating layer 44b (Al2〇3) has high volume resistivity, excellent insulation resistance, and hardness and thermal conductivity. Since the alumina (Al2〇3) is used to form the substrate holding surface 50, the electrostatic chuck 40b can be obtained from -18 to 200826226 to excellent adsorption performance. The size of the substrate holding surface 50 is the size of the long side. In the electrostatic chuck 40b of 45 mm or more, for example, 450 mm to 3500 mm, The film thickness is preferably an important factor, and the film thickness of the first insulating layer 42b is preferably 250 to 600 μm, more preferably 300 to 5 50 μm. Further, the film thickness of the second insulating layer 44b is preferably 250. 〜600μπι, more preferably 3〇〇~5 5 0μπι° The electrostatic chuck 40b can be disposed on the surface of the substrate 41 by spraying to form the first insulating layer 42b, and then the electrode 43 is disposed on the layer. The method of covering the electrode 43 is performed by spraying to form the second insulating layer 44b. Further, the electrode 43 may be formed by spraying. Further, it may include a shape processing project by an appropriate cutting process or the like. In the case of the case where the material of the base material 41 is stainless steel having a linear expansion coefficient of 17.3 χΙΟ·6 [/ ° C], the linear insulating coefficient of the first insulating layer 42b can be, for example, 6.4 xl (Γ6[ /°C], an Al2〇3 sprayed film having a difference in linear expansion coefficient from the substrate 41 of 10.9x1 〇_6 [/ ° C], etc., and a linear expansion coefficient of 8.9×10 −6 [ /° C ] In the case of titanium, as the first insulating layer 42a and the second insulating layer 44a, for example, a linear expansion coefficient of 6 can be used. [4χ1 0 · 6 / ° C] 'and the linear expansion coefficient difference between the substrate 41 is 2 · 5χ1 (Γ6 [/ ° C] is Ah〇3 spray coating, etc. <Third example> Next, the electrostatic chuck 40c of the third example of the first embodiment will be described in detail. Fig. 4 is a cross-sectional view of the electrostatic chuck 40c. The static -19-200826226 electric chuck 40c is provided with a first insulating layer 42c on the substrate 41, an electrode 43 is provided on the first insulating layer 42c, and a second insulating layer is provided on the electrode 43. Layer 44c. The material of the substrate 41 is exemplified by aluminum. Further, the material of the electrode 43 is preferably a metal material such as tungsten or an anchor. In the electrostatic chuck 40c, the first insulating layer 42c is formed by spraying a film of aluminum oxide (Al2?3). On the other hand, the second insulating layer 44c is formed of a ceramic sprayed film having a linear expansion coefficient of an absolute enthalpy of 14 x 10_6 [ / ° C] or less which is different from the linear expansion coefficient of the base material 4 1 . When the material of the ceramic sprayed film is the same as that of the first example, for example, the material of the substrate 41 is aluminum, a sprayed film of YF3, MgO, 2MgO, Si〇2 or the like can be used. In the present embodiment, the second insulating layer of the surface layer which is a starting point of the crack is formed by using a ceramic spray film having a linear expansion coefficient of an absolute enthalpy which is different from the linear expansion coefficient of the substrate 41 to 14x1 0_6 or less. The layer 44c is thereby used to improve the heat resistance of the electrostatic chuck 40c to suppress the occurrence of cracks. Further, an alumina (ai2o3) sprayed film having a large volume resistivity is used as the first insulating layer 42c, thereby ensuring sufficient withstand voltage performance. The size of the substrate holding surface 50 is the size of the long side. In the electrostatic chuck 40c of 45 mm or more, for example, 450 mm to 3500 mm, in order to improve heat resistance, the film thickness is also an important factor, and the film thickness of the first insulating layer 42c is preferably the film thickness. It is 250 to 600 μm, more preferably 3 0 0 to 5 5 0 μιη. Further, the film thickness of the second insulating layer 44c is preferably from 25 to 600 μm, more preferably from 300 to 550 μm. The electrostatic chuck 40c can be formed by spraying the surface of the substrate 41 to form the first insulating layer 42c, and then the electrode 43 is disposed on the layer, and the electrode 43 is covered by the coating -20-200826226. 2 is made of insulating layer 44c. Further, the electrode 43 can also be formed by spraying. Further, it may include a shape processing project using an appropriate cutting process or the like. In the third example, when a material having a linear expansion coefficient of 17.3 χ 1 (Γό [ / ° C] is used as the material of the base material 41, as the second insulating layer 44c, for example, a linear expansion coefficient can be used. It is 6·4 XI 0_6 [ /°C], and the difference in linear expansion coefficient from the substrate 41 is 10.9x1 (Γ6[/ °C] of the Al2〇3 sprayed film, etc. Further, the linear expansion coefficient is 8· In the case of the titanium of 9χ1 (Γ6 [ / °C], as the first insulating layer 42a and the second insulating layer 44a, for example, a line having a coefficient of linear expansion of 6·4χ1 0_6 [/ ° C] and the substrate 41 can be used. Al2〇3 spray film with a difference in expansion coefficient of 2·5χ10_6 [ / °C] <Fourth Example> Next, the electrostatic chuck 40d of the fourth example of the first embodiment will be described in detail. Fig. 5 is a cross-sectional view of the electrostatic chuck 40d. The electrostatic chuck 40d is provided with a first insulating layer 42d on the substrate 41, an electrode 43 on the first insulating layer 42d, and a second insulating layer 44d on the electrode 43. A third insulating layer 45 as a surface layer is provided on the second insulating layer 44d. The material of the substrate 41 is exemplified by aluminum. Further, the material of the electrode 43 is preferably a metal material such as tungsten or molybdenum. In the electrostatic chuck 40d, the first insulating layer 42d and the second insulating layer 44d are formed by spraying an oxide film (Al2〇3). On the one hand, the third insulating layer 45 is a ceramic coating having a linear expansion coefficient of an absolute enthalpy of -1 to 14 x 1 (Γ6 [ / °c] or less) having a difference in linear expansion coefficient from the substrate 41 of 21 - 200826226. In the case of the material of the ceramic sprayed film, when the substrate 41 is made of aluminum, the same material as the first example can be used, for example, YF3, MgO, 2MgO.SiO2, etc. In the present embodiment, by using The ceramic sprayed film (third insulating layer 45) having an absolute enthalpy of the difference from the linear expansion coefficient of the substrate 41 is 14χ1 (the coefficient of linear expansion of Γ6 or less), and the surface layer which is a starting point of the crack is formed into a film, thereby Compared with the electrostatic chuck 40c of the third embodiment, the heat resistance of the electrostatic chuck 40d can be further improved, and the cracking effect can be further suppressed. In this case, an aluminum oxide (Al2〇3) sprayed film having a large volume resistivity is used as the sprayed film. Since the first insulating layer 42d and the second insulating layer 44d can ensure sufficient withstand voltage performance, even if the third insulating layer 45 is thinned, abnormal discharge or the like is less likely to occur, and the reliability of the electrostatic chuck 40d can be ensured. The size of the face 50 is the size of the long side. In the electrostatic chuck 40d of 450 mm or more, for example, 45 0 mm to 3500 mm, in order to improve heat resistance, the film thickness is also an important factor, and the film thickness of the first insulating layer 42d is preferably 250 to 600 μm, more preferably 300 to Further, the film thickness of the second insulating layer 44d is preferably 150 to 500 μm, more preferably 200 to 450 μm. Further, the film thickness of the third insulating layer 45 is preferably 50 to 250 μm, more preferably 75 to 2. The 2 5 μm 〇 electrostatic chuck 40d can be formed by first spraying the first insulating layer 42d on the surface of the substrate 41, and then placing the electrode 43 on the layer, and then coating the electrode 43 to form the second layer by spraying. The insulating layer 44d' is manufactured by spraying to form the third insulating layer -22-200826226 45 so as to cover the second insulating layer 44d. Further, the 'electrode 43 can also be formed by spraying. Further, it can include appropriate cutting processing. In the fourth example, the material of the base material 41 is used as the third insulating layer 4 in the case where stainless steel having a linear expansion coefficient of 17·3χ1 (γ6 [ / ° C] is used. 5 'For example, a linear expansion coefficient of 6.4 X 1 0 _6 [/ °C can be used. The difference between the linear expansion coefficients of the substrate 4 1 is 1 〇· 9 X 1 0·6 [ / ° C], the Al 2 〇 3 spray film, etc., and the linear expansion coefficient is 8·9 χ 1 (Γ6 [ / In the case of titanium of °C, as the first insulating layer 42a and the second insulating layer 44a, for example, a linear expansion coefficient of 6·4 χ 10_6 [ / ° C]' and a linear expansion coefficient of the substrate 41 can be used as 2 ·5χ10_6 [ / °C] Al2〇3 spray film, etc. <Fifth Example> Next, the electrostatic chuck 4〇e of the fifth example of the first embodiment will be described in detail. Fig. 6 is a cross-sectional view of the electrostatic chuck 40e. The electrostatic chuck 40e is provided with a first insulating layer 42e on the substrate 41, an electrode 43 on the first insulating layer 42e, and a second insulating layer 44e on the electrode 43. The peripheral portion coating layer 46 is provided so as to surround the first insulating layer 42e and the second insulating layer 44e. A peripheral trapezoidal portion 47 is formed on the upper portion of the peripheral portion coating layer 46. The peripheral trapezoidal portion 47' forms an outermost region of the substrate holding surface 50, and supports a peripheral portion of the lower surface of the substrate G at the top thereof, and a space is formed on the back side of the substrate G, and He gas or the like is passed through the gas passage 9. The heat transfer gas is supplied to the space to adjust the temperature of the substrate G to -23-200826226 degrees. The height of the peripheral trapezoidal portion 47 can be, for example, 5 〇 to 250 μηη. The material of the substrate 41 is exemplified by aluminum. Further, the material of the electrode 43 is preferably a metal material such as tungsten or molybdenum. In the electrostatic chuck 4〇e, the first insulating layer 42e and the second insulating layer 44e are formed by spraying a film of alumina (a1203). On the other hand, the peripheral portion coating layer 46 is formed by a ceramic f'sprayed film having a linear expansion coefficient of an absolute enthalpy of a difference from the linear expansion coefficient of the substrate 41 of 1 4 X 1 0_6 [/ ° C] or less. . When the substrate 41 is made of aluminum, the material similar to that of the first embodiment can be used. For example, when the material of the substrate 41 is aluminum, YF3, MgO, 2MgO 2 and so on. The peripheral trapezoidal portion 47 provided on the peripheral edge portion of the substrate holding surface 50 is likely to be the starting point of the crack. Therefore, in the electrostatic chuck 40e of the present embodiment, the ceramic coating film (the peripheral portion coating layer 46 having a linear expansion coefficient of T6 or less) having an absolute enthalpy having a difference from the linear expansion coefficient of the base material 4 1 is used. The coating includes a peripheral portion including the peripheral trapezoidal portion 47 provided on the peripheral edge portion of the substrate holding surface 50, thereby improving the heat resistance of the electrostatic chuck 40e, thereby suppressing the occurrence of cracks starting from the peripheral trapezoidal portion 47. The first insulating layer 42e and the second insulating layer 44e around the electrode 43 are sprayed with aluminum oxide (A1203) having a large volume resistivity to ensure sufficient withstand voltage performance. The substrate holding surface 50 is long in size. In the electrostatic chuck 40e of 450 mm or more, for example, 450 mm to 3500 mm, in order to improve heat resistance, the film thickness is also an important factor, and the film thickness of the first insulating layer 42e is preferably -24 - 200826226 250 - 600 μηι, more The film thickness of the second insulating layer 44e is preferably from 250 to 600 μm, more preferably from 300 to 5 50 μm. The electrostatic chuck 40 e can be sprayed on the surface of the substrate 41 first. After the first insulating layer 42e is formed, The electrode 43 is disposed on the layer, and then the second insulating layer 44e is formed by spraying so as to cover the electrode 43, and the peripheral portion coating layer is formed by spraying so as to cover the side portions of the first insulating layer 42e and the second insulating layer 44e. Further, the electrode 43 may be formed by spraying. Further, it may include a shape forming process by forming a peripheral trapezoidal portion 47 or the like by an appropriate cutting process. Further, in the fifth example, When the material of the base material 41 is made of stainless steel having a linear expansion coefficient of 17.3 XI (T6 [ / ° C], as the peripheral portion coating layer 46, for example, a linear expansion coefficient of 6.4 x 10 6 ( / ° C) can be used. The difference in linear expansion coefficient of the material 41 is 1 〇·9 χ 1 (Γ6 [ /°C] Al 2 〇 3 sprayed film, etc. Further, in the case of using titanium having a linear expansion coefficient of 8.9 x 10_6 [ / ° C], For example, the first insulating layer 42a and the second insulating layer 44a may have a linear expansion coefficient of 6.4 χ1 (Γ6 [ / ° C], and the difference in linear expansion coefficient from the substrate 41 is 2·5 χ 1 (Γ6 [ / ° C Al2〇3 spray film, etc. <Sixth example> Next, the electrostatic chuck 40f of the sixth example of the first embodiment will be described in detail. Fig. 7 is a cross-sectional view of the electrostatic chuck 40f. In the electrostatic chuck 40f, a first insulating layer 42f is provided on the substrate 41, an electrode 43 is provided on the first insulating layer 42f, and a second insulating layer 44f is provided on the electrode 43. The trapezoidal portion coating layer 48 is formed to be formed on the top of the trapezoidal portion 47 around the periphery -25 to 200826226 of the second insulating layer 44f. The peripheral edge forms a region on the outermost side of the substrate holding surface 50, and the heat transfer gas space such as He gas is adjusted in the space of the substrate G through the gas passage 9 while the peripheral portion of the lower surface of the substrate G is disposed, and the substrate G is adjusted. temperature. The peripheral trapezoidal portion 47 may be 50 to 2 50 μm. The aluminum alloy is exemplified as the substrate 4 1 . The material of the electrode 43 is preferably, for example, a metal such as tungsten or molybdenum. In the electrostatic chuck 40 f, the first insulating layer 42 f is made of alumina (Al 2 〇 3 ). The trapezoidal portion formed by the surface layer formed as a top portion of the trapezoidal portion 47 of the substrate holding surface 50 of the electrostatic chuck 40f is formed by the absolute ίί of the difference in linear expansion coefficient from the substrate 41. [/ °C] The material of the ceramic sprayed film of the ceramic spray film having the following linear expansion coefficient is the same as the first example, such as YF3, MgO, and 2MgO, when the substrate 41 is made of aluminum. Since the peripheral edge I of the peripheral edge of the surface 50 is in the form of a crack, in the present embodiment, the linear enamel coating film (the trapezoidal coating layer 48) having an absolute enthalpy of a difference from the basic expansion coefficient of 14x1 0·6 or less is used. The peripheral trapezoidal portion 47 provided on the peripheral portion of the 50 is coated to improve the electrostatic heat resistance, thereby suppressing the occurrence of the first insulating layer 42f and 44f' around the electrode 43 by the peripheral trapezoidal portion 47. Oxidation of the volume resistivity (a12〇3) spray ensures charging Voltage resistance. The trapezoidal portion 47 has a top portion for supporting the inner side body to be supplied to the height, for example, a material. Also f material. And the second insulation. On the one hand, the periphery of the perimeter is 4, 8, and I is 14χ10·6. As a result, Si02 and the like can be used. The roll portion 47 is a material of the linear expansion coefficient of the material 41. The substrate holding surface is a crack of a point of the chuck 40 f. The coating film of the second insulating layer can be -26-200826226. The size of the substrate holding surface 50 is the long side. In the electrostatic chuck 40f of 450 mm or more, for example, 45 0 mm to 3500 mm, the film thickness is also improved in order to improve heat resistance. The film thickness of the first insulating layer 42f is preferably 25 0 to 600 μm, more preferably 3 0 0 to 5 5 0 μηη. Further, the film thickness of the second insulating layer 4 4 f is preferably from 2,500 to 600 μm, more preferably from 300 to 5,500 μm. Further, the thickness of the trapezoidal portion coating layer 48 is preferably 50 to 250 μm, more preferably 75 to 225 μm. In the present embodiment, since the trapezoidal portion coating layer 48 can be formed into a film as described above, the electrostatic chuck 40 f is excellent in heat resistance. The electrostatic chuck 40f can be formed by disposing the first insulating layer 42f on the surface of the substrate 41, and then the electrode 43 is disposed on the layer, and then the second insulating layer 44f is formed by spraying so as to cover the electrode 43. Further, a peripheral trapezoidal portion 47 is formed on the periphery of the substrate holding surface 50 of the second insulating layer 44f. Then, the trapezoidal portion coating layer 48 is formed by spraying so as to cover the top of the peripheral trapezoidal portion 47, whereby the electrostatic chuck 40f can be manufactured. At this time, the second insulating layer 44f is directly sprayed, whereby a ceramic spray film having a linear expansion coefficient of an absolute enthalpy of a difference from the linear expansion coefficient of the substrate 4 1 of 1 4 X 1 0_6 [/° C] or less is used. All of the peripheral trapezoidal portion 47 is formed. Further, the electrode 43 can also be formed by spraying. Further, a shape forming process for forming the peripheral trapezoidal portion 47 or the like by an appropriate cutting process may be included. In the sixth example, when a material having a linear expansion coefficient of 17.3 XI (Γ6 [ /°C] is used as the material of the base material 41, as the trapezoidal portion coating layer 48, for example, a linear expansion coefficient can be used. It is 6·4χ 1 (Γ6 [ / °C], and the difference between the linear expansion coefficients of the substrate 41 is 1〇.9χ1 (Γ6[ / °C] of Al2〇3 -27- 200826226 sprayed film, etc. When titanium having a linear expansion coefficient of 8·9 χ 10_6 [ / ° C] is used, as the first insulating layer 42a and the second insulating layer 44a, for example, a linear expansion coefficient of 6.4 XI 0_6 [ / ° C] can be used. The Al2〇3 sprayed film of the material 41 has a difference in linear expansion coefficient of 2.5ΧΗΓ6 [ /°C]. Next, the electrostatic chuck 40 of the plasma uranium engraving apparatus 1 having the same configuration as that shown in Fig. 1 is The heat resistance test was carried out in the following manner. The electrostatic chucks A to C produced by combining the substrate 41 of the material shown in Table 1 and the sprayed film (the first insulating layer 42 and the second insulating layer 44) were repeated five times. The temperature rise of the secondary temperature-cooling is performed to confirm the presence or absence of cracks. The first insulating layer 42 and the second insulating layer 44 of the sprayed film are made of the same material. The chiller setting temperature, temperature cycling conditions and surface temperature of the electrostatic chuck 40 are shown in Table 1. Further, according to the dark detection (c ο 1 〇rcheck) method, the presence or absence of cracks is determined. The results are shown in Table 1. - 28- 200826226 < 嫉Η S doctor 1 ^ Lin paste crack generation full grid-like gas supply communication hole around the linear gas supply communication hole around the line I 1 1 side 壊壊 壊晅 c c 撇 μ % 13⁄4 edge r- S f - Η ITi 00 # 1® M 幼 g g rH 〇\ CN VO οο (N ό 上 (N 丄 N N N N N ό fi fi fi fi fi 个 1 1 II « « « 1 - Η 'w^ 1 ο (N 1 ο 1 〇in g ^ M τ—1 〇g ο τ-Η $ si m Sword m Secret Substrate Μ Stainless Steel (SUS304) Size of Electrostatic Chuck Long side 1 § 00 〇〇〇rH 〇(N 〇\ short side g 〇rH 〇C^j distinguish chicken 鸡 < If Test CWJ 鎞鉴-29- 200826226 According to the test results, although the crack is formed regardless of the electrode size in the combination of the aluminum substrate and the alumina spray film, in the case of the stainless steel substrate combined with the alumina spray film No cracks were observed. From this result, it was confirmed that the stainless steel having a linear expansion coefficient of 17·3 χ 10_6 [/ ° C] as a material of the substrate was used by using a linear expansion coefficient of 1 〇·9 χ 1 〇 _6 [ / ° C]. The absolute 値 of the difference in the linear expansion coefficient of the material is 14χ1 (Γ6 [ / °c] of the αι2ο3 sprayed film to prevent the occurrence of cracks. Next, the electrostatic chuck as the electrostatic adsorption electrode according to the second embodiment of the present invention is provided. A plasma etching of an example of a substrate processing apparatus for a disk will be described. Fig. 8 is a cross-sectional view showing the plasma etching apparatus. The electrostatic chuck 40 of the first embodiment mainly shows a substrate for mounting. The plasma etching apparatus 101 of the electrostatic chuck 140 having a different structure is basically the same, and the same components as those in the first embodiment are denoted by the same reference numerals and will not be described. The electrostatic chuck 1 40 of the present embodiment is the same. The base material 41 is formed of a conductive material, and the base material 41 is formed into a divided structure having an upper member 141a and a lower member 141b. On the upper surface of the base material 141, the lower layer is sequentially laminated. : the first insulating layer 142, The electrode 143 and the second insulating layer 144. The electrostatic chuck 140 applies a DC voltage from the DC power source 26 to the electrode 143 between the first insulating layer 142 and the second insulating layer 144 via the power supply line 27, for example, due to Coulomb force. In the upper surface of the electrostatic chuck 140 (the upper surface of the second insulating layer 144), the substrate holding surface 150 of the adsorption holding substrate G is formed in the same manner as in the first embodiment (see FIG. 9). The size of the substrate holding surface 150 is such that the length of the long side (the longest portion -30 - 200826226) is 450 mm or more, for example, 3500 mm. Next, the electrostatic chuck 1 4 of the present embodiment will be described. Fig. 9 is a cross-sectional view showing the electrostatic chuck 14A in an enlarged manner. The electrostatic chuck i 40 is shown on the outer periphery of the convex portion 1 4 1 c 'the convex portion 1 4 丨 ^ on the upper surface of the substrate 141. The flange portion i41d (threaded) is formed by screwing the electrostatic chuck 14A for the phase substrate 4a. Then, the 142th and second insulating layers 丨44 and the like are formed on the upper surface of the convex portion 141c. Between the electrodes ι43 and the insulating layer 14 4, a substrate holding surface 丨5 形成 is formed. The surface of the convex portion i 4 1 c is formed on the side surface of the convex portion i 4 1 c. The electrode 1 43 is similar to the electrode 4 3 of the first embodiment, and as shown in Fig. 9, a substrate 150a is formed on the substrate holding surface 15? The convex portions 150a support the substrate G body passage 9 by the top surface thereof to supply a heat transfer gas such as He gas to the adjacent ones. In the present embodiment, the size of the substrate holding surface 150 is inch. In the case of 450 mm or more, for example, 450 mm to 3 500 mm, in order to improve heat resistance, the film thickness is also important. The film thickness of the insulating layer 142 is preferably 250 to 600 μm, more preferably 550 μm. Further, the thickness of the second insulating layer 144 is preferably 250 Å or more preferably 30,000 〜 5 5 0 μηη. The base material 141 is divided into the upper member as described above, and the upper member 1 4 1 a includes the convex portion 1 4 1 c 4 5 0 mm ~ More specifically, as shown in the center of Fig. 9 It has an insulating layer for the crystal of the crystal holder, and a material of the second insulating layer, which is made of tungsten or molybdenum. a plurality of convex portions, a static electrostatic chuck through the long side of the air convex portion 150, a first 300~ -6 Ο Ο μιη » 41a and lower; a part of the flange portion -31 - 200826226 1 4 1 . The lower member 1 4 1 b is disposed below the upper member 1 4 1 a, and a concave portion 141e in which the upper member 141a is fitted is formed in the center upper portion thereof. Then, a portion outside the concave portion 1 4 1 e of the lower member 141b constitutes the remaining portion of the flange portion 141d. The upper member 1 4 1 a and the lower member 1 4 1 b are mechanically screwed by a screw 161, between which the sealing member 162 is interposed. The upper member 141a and the lower member 141b form a gas reservoir l〇9a for temporarily storing a heat transfer gas such as He. In the gas storage tank 10a, a gas passage 9 that extends through the insulating plate 3 and the base substrate 4a and extends the electrostatic chuck 140 is connected in the same manner as in the above-described first embodiment. Further, a plurality of gas supply communication holes l〇9b are formed upward from the gas storage tank l〇9a, and a heat transfer gas such as He gas is supplied to the inside of the substrate G. At this time, since the upper member 141a includes the flange portion 141d, the sump 109a can be extended to the vicinity of the outer periphery of the convex substrate holding surface 150, and He gas or the like for the heat transfer gas can be supplied to The peripheral portion of the inside of the substrate G. In the electrostatic chuck 140, the first insulating layer 142 and the second insulating layer 144 are formed by using a ceramic spray coating. Further, on the side surface of the convex portion 1 4 1 c of the base material 141, a side insulating layer 142a formed of a ceramic sprayed film is formed so as to be continuous with the insulating layers 142 and 144. Then, the ceramic sprayed film of the upper member 141a, the first insulating layer 142, and the second insulating layer 144 of the substrate 141 is formed, and the difference in linear expansion coefficient is obtained from the viewpoint of preventing cracks in the insulating layer. The absolute enthalpy is formed by 1 4 X 1 (Γ6 [ / ° C]. Specifically, as the upper member 1 4 1 a ', aluminum is used as the material of the conventional substrate 141 (linear expansion coefficient 23.8x1 (Γ6) [/ °C]) -32- 200826226 Stainless steel with lower thermal expansion material (linear expansion coefficient 1 7 · 8 χ 1 (Γ6 [ /.〇)) or Qin (linear expansion coefficient 8 · 9 x 1 〇 _ 6 [ / °C]), as the ceramic spray coating constituting the insulating layers 142 and 144, a lanthanum fluoride sprayed film (Yf3: linear expansion coefficient 13x ΗΓ 6 [/ ° C]), a magnesium oxide sprayed film (MgO: linear expansion coefficient Πχΐ) can be used. 〇_6~15χ10_6[ /°C]), forsterite spray film (2MgO · Si02: linear expansion coefficient 1〇·2χ1〇-6[/.(:)), antimony trioxide spray film (Y2〇3 : linear expansion coefficient 8·2χ1 (Γ6 [ /.〇)), alumina spray film (Al2〇3 ·• linear expansion coefficient 6·4χ10·6 [ /°C]) ο like this The absolute 値 of the difference between the linear expansion coefficients of the ceramic spray coatings constituting the insulating layers 144, 144 and the upper member 141a of the substrate 141 adjacent thereto is 1 4 X 1 0·6 [ / ° C hereinafter, the thermal stress is relieved, and the heat resistance of the electrostatic chuck 140 is improved, and the occurrence of cracks in the insulating layer can be suppressed. Here, as described above, the first insulating layer 14 2 is formed on the substrate. The side surface of the convex portion 1 4 1 c of 1 4 1 extends to a portion corresponding to the flange portion 14 1 d of the upper member 1 4 1 a. On the other hand, the ceramic is not formed in the lower member 1 4 1 b The film is sprayed, whereby the peeling and reprocessing of the ceramic sprayed film can be performed by removing only the upper member 14 1 a. Thus, in the present embodiment, the insulating layer 1 42 formed by the ceramic sprayed skin is adjacent to the insulating layer. 1 44 upper member 141a is stainless steel or titanium which is lower than the conventional thermal expansion material, and the absolute 差 of the difference in linear expansion coefficient between the two is 14xl 〇6 [ / ° C] or less In order to suppress the crack of the insulating layer, the thermal expansion coefficient of the lower member 14 1 b can be large, and it can be used as a substrate. Aluminum. Because aluminum has a small specific gravity, it is more advantageous than -33-200826226, which is all stainless steel or titanium. The lower member 1 4 1 b is aluminum, which is the same as the conventional substrate, and is preferably anodized (aluminum film treatment). ), even if it is sprayed, it can maintain high food resistance. In the case where the anodized aluminum is conventionally used to constitute the substrate, the anodized film of the substrate is peeled off and reprocessed during the peeling treatment of the ceramic spray, but in the present embodiment, as described above As described above, since the ceramic sprayed skin is not formed in the lower member 141b in which the epipolar oxide film is formed, peeling and reprocessing of the anodized film is not required. In the present embodiment, it is particularly preferable that the insulating layer 142, 144 formed by spraying the ceramic film with an ai2o3 spray film to form the upper member 141a of the substrate 141 with stainless titanium is anodized. Aluminum is formed to form the lower member 1 4 1 b. With such a member, the upper member can have a shape and a function substantially the same as that of the conventional chuck as long as the stainless steel or the titanium is changed, and the design is not required to be changed greatly. In the same manner as the second example of the second embodiment of the first embodiment, a ceramic sprayed film formed of a material having mutually different linear expansion coefficients is used as the first insulating layer 142 and the second insulating layer 144. In the same manner as in the fourth example of the first embodiment, the ceramic film having an absolute 値 of 14×1 (Γ6 [/ ° C] or less with respect to the linear expansion coefficient of the upper member 141a may be provided on the second insulator 144. The insulating layer is formed as a surface layer. Further, in the fifth example of the first embodiment, a ceramic film having an absolute difference of 14 x 1 (T6 [ / ° C] or less) from the linear expansion coefficient of the upper member 1 4 1 a can be provided. The formed peripheral portion is not shaped like a film on the surface, and a positive film is required to form a steel or a 141a. The third and the edge layer are different from the edge layer, and the coating is -34-200826226 and the periphery. Further, as in the sixth example of the first embodiment, a ceramic film having an absolute 値 of 14 χ 1 (T6 [ / ° C] or less) which is different from the linear expansion coefficient of the upper member 141a may be provided. The formed trapezoidal portion coating layer is described above, but the embodiment of the present invention will be described. However, the present invention is not limited thereto, and various modifications are possible. For example, the processing apparatus according to the present invention exemplifies the lower electrode. RIE type capacitive coupling type to which high frequency power is applied Although the arc plate type plasma etching apparatus is described, it is not limited to an etching apparatus, and can be applied to other types of plasma processing apparatuses such as ashing, CVD film formation, and the like, or a type in which high frequency power is supplied to the upper electrode. The substrate to be processed is not limited to the capacitive coupling type, and may be an inductive coupling type. The substrate to be processed is not limited to the glass substrate G for FPD, and may be a semiconductor wafer. Further, in the above embodiment, the substrate is applied to the electrostatic adsorption electrode. 41 is defined by the linear expansion coefficient of the ceramic sprayed film of the coated substrate. However, the present invention is not limited to the electrostatic adsorption electrode, and can be applied to other members used in the reaction chamber of the substrate processing apparatus. [Simplified Schematic] FIG. A cross-sectional view of a plasma etching apparatus which is an example of a substrate processing apparatus which is an electrostatic chuck as an electrostatic adsorption electrode according to the first embodiment of the present invention. Fig. 2 is a view showing a first example of the first embodiment. Fig. 3 is a cross-sectional view showing an electrostatic chuck according to a second example of the first embodiment. Fig. 4 is a view showing the first embodiment. Fig. 5 is a cross-sectional view showing an electrostatic chuck according to a fourth example of the first embodiment. Fig. 6 is a cross-sectional view showing a fifth example of the first embodiment. Fig. 7 is a cross-sectional view showing an electrostatic chuck according to a sixth example of the first embodiment. Fig. 8 is a view showing an electrostatic chuck as an electrostatic adsorption electrode according to a second embodiment of the present invention. Fig. 9 is a cross-sectional view showing an electrostatic chuck according to a second embodiment in an enlarged manner. [Description of main components] 1 : Plasma etching apparatus 2: Reaction chamber 3: Absolute plate 4: Crystal holder 5 a : Insulation film 1 1 : Shower head 2 〇: Exhaust device - 36 - 200826226 2 5 : High-frequency power supply 26: DC power supply 40, 140: Electrostatic chuck 4 1 1 4 1 : base material 42 , 142 : first insulating layer 43 , 143 : electrode 44 , 144 : second insulating layer 4 5 : third insulating layer 46 : peripheral portion coating layer 47 : peripheral trapezoidal portion 4 8 : trapezoid Part coating layer 50, 150+: substrate holding surface 1 4 1 a : upper member 1 4 1 b : lower member 1 4 1 c : Convex 1 4 1 d : Flange 1 6 1 · Screw -37-

Claims (1)

200826226 十、申請專利範圍 1·-種靜電吸附電極,係爲在基板處理裝置中具備藉 由靜電力來吸附保持基板之基板保持面的靜電吸附電極, 其特徵爲: 具備:基材;和 設置在該基材上的絕緣層;和 配設在前述絕緣層中的電極; 藉由與前述基材之線膨脹係數之差的絕對値爲14x1 〔/ °C〕以下的線膨脹係數之陶瓷噴塗膜來形成前述絕緣 層的一部分或全部。 2 ·如申請專利範圍第1項所記載的靜電吸附電極,其 中, 在形成前述基板保持面的前述絕緣層表面的一部分或 全邰’形成具有與則述基材之線膨脹係數之差的絕對値爲 14xl(T6〔 / °C〕以下的線膨脹係數之陶瓷噴塗膜。 3 ·如申請專利範圍第2項所記載的靜電吸附電極,其 中, 在前述基板保持面的周緣部,形成具有與前述基材之 線膨脹係數之差的絕對値爲14x1 (Γ6〔 /°C〕以下的線膨 脹係數之陶瓷噴塗膜。 4.如申請專利範圍第1項所記載的靜電吸附電極,其 中, 前述絕緣層,係以包含:比前述電極更下層的第1絕 緣層;和比前述電極更上層的第2絕緣層所構成; -38- 200826226 藉由具有與前述基材S 14χ1(Γ6〔 / °C〕以下的線 I 至少前述第1絕緣層或前述 5 .如申請專利範圍第1 中, 前述絕緣層,係以包含 緣層;和比前述電極更上層 緣層更上層的表面層所構成 藉由具有與前述基材;; 14xl0_6〔 / °C〕以下的線 I 前述表面層。 6.如申請專利範圍第5 中, 前述表面層的膜厚爲 7 .如申請專利範圍第1 中, 藉由具有與前述基材;; 14χ1(Γ6〔 / °C〕以下的線月 前述基板保持面的周緣部及 8 .如申請專利範圍第1 中, 在前述基板保持面的周 梯形部,藉由具有與前述基 爲 14xl(T6〔 / °C〕以下的 L線膨脹係數之差的絕對値爲 髮脹係數之陶瓷噴塗膜來形成 第2絕緣層的任一層。 項所記載的靜電吸附電極,其 :比前述電極更下層的第1絕 的第2絕緣層;和比該第2絕 L線膨脹係數之差的絕對値爲 赛脹係數之陶瓷噴塗膜來形成 項所記載的靜電吸附電極,其 > 〜2 5 0 μιη ° 項所記載的靜電吸附電極,其 L線膨脹係數之差的絕對値爲 髮脹係數之陶瓷噴塗膜來形成 側部。 項所記載的靜電吸附電極,其 緣部,係設有段差並形成周緣 材之線膨脹係數之差的絕對値 線膨脹係數之陶瓷噴塗膜來形 -39- 200826226 成該周緣梯形部。 9·如申請專利範圍第1項所記載的靜電吸附電極,其 中, 在前述基板保持面的周緣部,係設有段差並形成周緣 梯形部’藉由具有與前述基材之線膨脹係數之差的絕對値 爲14x1 0_6〔/ °C〕以下的線膨脹係數之陶瓷噴塗膜來被 覆該周緣梯形部的頂面。 1 0 ·如申請專利範圍第9項所記載的靜電吸附電極, 其中, 具有與前述基材之線膨脹係數之差的絕對値爲14x1 0_6 〔/ °C〕以下的線膨脹係數之陶瓷噴塗膜之膜厚爲50〜 2 5 0 μηι 〇 1 1 ·如申請專利範圍第1項至第1 0項之任一項所記載 的靜電吸附電極,其中, 前述基材爲鋁,具有與前述基材之線膨脹係數之差的 絕對値爲14x1 (Γ6〔/ °c〕以下的線膨脹係數之陶瓷噴塗 膜,係爲 YF3 (氟化釔)、MgO (氧化鎂)及2MgO · Si〇2 (鎂橄欖石)之任一種。 1 2 ·如申請專利範圍第1 1項所記載的靜電吸附電極, 其中, 藉由A1203 (氧化鋁)的噴塗膜來形成,藉由具有與 前述基材之線膨脹係數之差的絕對値爲14χ1 (Γ6〔/ °C〕 以下的線膨脹係數之陶瓷噴塗膜所形成之部分以外的絕緣 層。 -40- 200826226 1 3 ·如申請專利範圍第1項至第丨〇項之任一 的靜電吸附電極,其中, Bit述基材爲不鎌鋼或欽’具有與則述基材之 數之差的絕對値爲1 4 X 1 0_6〔 / °c〕以下的線膨 陶瓷噴塗膜,係爲Al2〇3 (氧化鋁)、γ2〇3 (三 )、YF3 (氟化釔)、MgO (氧化鎂)及2MgO · 橄欖石)之任一種。 1 4 . 一種靜電吸附電極,係爲在基板處理裝 藉由靜電力來吸附保持基板之基板保持面的靜電 ,其特徵爲: 具備:基材;和 設置在該基材上的絕緣層;和 配設在前述絕緣層中的電極; 前述絕緣層的一部分或全部’是藉由陶瓷噴 成, 前述基材,係具有與前述絕緣層鄰接的上部 支承該上部構件的下部構件’ ft述部構件與即述陶瓷噴塗膜’係線膨張 的絕對値爲l4Xl0·6〔 / °C〕以下。 15•如申請專利範圍第14項所記載的靜電吸 其中, 在形成前述基板保持面的前述絕緣層表面的 全部,形成前述陶瓷噴塗膜。 1 6·如申請專利範圍第1 4項所記載的靜電吸 項所記載 線膨脹係 脹係數之 氧化二釔 Si〇2 (鎂 置中具備 吸附電極 塗膜所形 構件、和 係數之差 附電極, 一部分或 附電極, -41 - 200826226 其中, 在前述基板保持面的周緣部,形成前述陶瓷噴塗膜。 1 7 ·如申請專利範圍第1 4項所記載的靜電吸附電極, 其中, 前述絕緣層,係以包含:比前述電極更下層的第1絕 緣層;和比前述電極更上層的第2絕緣層所構成; 藉由前述陶瓷噴塗膜來形成至少前述第1絕緣層或前 述第2絕緣層的任一層。 1 8 ·如申請專利範圍第1 4項所記載的靜電吸附電極, 其中, 前述絕緣層,係以包含:比前述電極更下層的第1絕 緣層;和比前述電極更上層的第2絕緣層;和比該第2絕 緣層更上層的表面層所構成; 藉由前述陶瓷噴塗膜來形成前述表面層。 1 9 .如申請專利範圍第1 8項所記載的靜電吸附電極, 其中, 前述表面層的膜厚爲50〜250μπι。 20.如申請專利範圍第14項所記載的靜電吸附電極, 其中, 藉由前述陶瓷噴塗膜來形成前述基板保持面的周緣部 及側部。 2 1 .如申請專利範圍第1 4項所記載的靜電吸附電極, 其中, 在前述基板保持面的周緣部,係設有段差並形成周緣 -42- 200826226 梯形部,藉由前述陶瓷噴塗膜來形成前述周緣梯形部。 22 ·如申請專利範圍第1 4項所記載的靜電吸附電極, 其中, 在前述基板保持面的周緣部,係設有段差並形成周緣 梯形部,藉由前述陶瓷噴塗膜來被覆該周緣梯形部的頂面 〇 23.如申請專利範圍第22項所記載的靜電吸附電極, 其中, 前述陶瓷噴塗膜的膜厚爲50〜25 0μηι。 24 ·如申請專利範圍第1 4項所記載的靜電吸附電極, 其中, 前述基材係在其上面之中央具有凸狀部,該凸狀部的 外周側形成凸緣部,前述絕緣層係形成在前述凸狀部的頂 面及側面,前述絕緣層之前述頂面部分的表面是構成前述 基板保持面。 2 5.如申請專利範圍第24項所記載的靜電吸附電極, 其中, 前述基材的前述上部構件,係包含:前述凸狀部、和 其外周部的前述凸緣部的一部分。 26·如申請專利範圍第14項至第25項之任一項所記 載的靜電吸附電極,其中, 前述上部構件與前述下部構件係被螺固。 27·如申請專利範圍第14項至第26項之任一項所記 載的靜電吸附電極,其中, -43- 200826226 前述基材的前述上部構件爲不鏽鋼或鈦,前述陶瓷噴 塗膜爲 Al2〇3 (氧化鋁)、Υ2〇3 (三氧化二釔)、yf3 ( 氟化釔)、MgO (氧化鎂)及2Mg0,Si02(鎂橄欖石) 之任一種。 2 8.如申請專利範圍第27項所記載的靜電吸附電極, 其中, 前述上部構件爲不鏽鋼,前述下部構件爲鋁,前述陶 瓷噴塗膜爲ai2o3 (氧化鋁)。 2 9 .如申請專利範圍第2 8項所記載的靜電吸附電極, 其中, 在前述下部構件的表面,形成有陽極氧化被膜。 3 0.如申請專利範圍第1項至第29項之任一項所記載 的靜電吸附電極,其中, 在前述基板保持面,係最長部分尺寸爲450mm以上 〇 3 1·—種基扳處理裝置,其特徵爲具備: 收容基板的反應室;和 上述第1或第3 0觀點的靜電吸附電極;和 對保持在前述靜電吸附電極的基板施行既定處理的處 理機構。 3 2·如申請專利範圍第31項所記載的基板處理裝置, 其中, 應用於平板顯示器的製造。 3 3 ·如申請專利範圍第31項或第3 2所記載的基板處 -44 - 200826226 理裝置,其中, 前述處理機構,係對基板實行電漿蝕刻處理。 34·—種靜電吸附電極的製造方法,係爲在基板處理 裝置中,用來吸附保持基板之靜電吸附電極的製造方法, 其特徵爲= 包含:在基材之表面形成第1絕緣層之工程;和 在前述第1絕緣層之上形成電極之工程;和 以覆蓋前述電極的方式形成第2絕緣層之工程; 在形成前述第1絕緣層之工程及/或形成前述第2絕 緣層之工程中,藉由噴塗來形成具有與前述基材之線膨脹 係數之差的絕對値爲1 4 X 1 (Γ6〔/ °c〕以下的線膨脹係數 之陶瓷噴塗膜。 3 5 . —種靜電吸附電極的製造方法,係爲在基板處理 裝置中,用來吸附保持基板之靜電吸附電極的製造方法, 其特徵爲包含: 在基材之表面形成第1絕緣層之工程;和 在前述第1絕緣層之上形成電極之工程;和以覆蓋前 述電極的方式形成第2絕緣層之工程;和 在前述第2絕緣層之基板保持面的一部分或全部,藉 由噴塗來形成以具有與前述基材之線膨脹係數之差的絕對 値爲1 4 X 1 0_6〔/ °C〕以下的線膨脹係數之陶瓷噴塗膜所 形成的被覆層之工程。 3 6. —種靜電吸附電極的製造方法,係爲在基板處理 裝置中,用來吸附保持基板之靜電吸附電極的製造方法, -45- 200826226 其特徵爲: 包含:在基材之表面形成第1絕緣層之工 在前述第1絕緣層之上形成電極之工程; 以覆蓋前述電極的方式形成第2絕緣層之 在前述第1絕緣層及前述第2絕緣層之側 塗來形成以具有與前述基材之線膨脹係數之差 14xl(T6〔 / °C〕以下的線膨脹係數之陶瓷噴 的被覆層之工程。 程;和 和 工程;和 部,藉由噴 的絕對値爲 塗膜所形成 -46-200826226 X. Patent Application Section 1 - An electrostatic adsorption electrode comprising a substrate for holding and holding a substrate holding surface of a substrate by an electrostatic force, characterized in that: a substrate; and a setting An insulating layer on the substrate; and an electrode disposed in the insulating layer; a ceramic coating having a linear expansion coefficient of an absolute enthalpy of 14×1 [/° C.] or less The film forms part or all of the aforementioned insulating layer. The electrostatic adsorption electrode according to the first aspect of the invention, wherein a portion of the surface of the insulating layer on the substrate holding surface or an entire surface of the insulating layer is formed to have an absolute difference from a linear expansion coefficient of the substrate. The electrostatically-adsorbed electrode of the above-mentioned substrate holding surface is formed in the peripheral portion of the substrate holding surface, and is a ceramic-coated film having a coefficient of linear expansion of 14x1 (T6 [ / ° C] or less. The electrostatically-applied electrode according to the first aspect of the invention, wherein the electrostatic absorbing electrode according to the first aspect of the invention is the above-mentioned substrate, wherein the absolute enthalpy of the difference in the linear expansion coefficient of the substrate is 14x1 (Γ6 [ /°C] or less). The insulating layer is composed of: a first insulating layer lower than the electrode; and a second insulating layer higher than the electrode; -38-200826226 by having a substrate S 14χ1 (Γ6[ / ° C] the following line I is at least the aforementioned first insulating layer or the above 5. In the first application scope, the insulating layer is provided with a layer comprising a layer and a surface higher than the layer of the electrode The surface layer is formed by having a line I with the substrate; 14x10_6 [ / ° C] or less. 6. In the fifth aspect of the patent application, the film thickness of the surface layer is 7. The peripheral portion of the substrate holding surface of the substrate with the substrate; 14χ1 (Γ6[ / °C] or less) and the circumferential portion of the substrate holding surface of the substrate holding surface Any layer of the second insulating layer is formed by a ceramic sprayed film having an absolute enthalpy of the difference between the L-line expansion coefficient of 14×l (T6 [ / ° C] or less). An adsorption electrode comprising: a first insulating second insulating layer lower than the electrode; and a ceramic spray film having an absolute enthalpy of a difference from the second absolute L-linear expansion coefficient as a coefficient of expansion to form the static electricity described in the item In the electrostatic adsorption electrode of the above-mentioned electrostatic adsorption electrode, the absolute adsorption difference of the L-line expansion coefficient is a ceramic sprayed film having a swelling coefficient to form a side portion. , its edge, department The ceramic sprayed film having an absolute 値 linear expansion coefficient which has a step difference and a difference in linear expansion coefficient of the peripheral material is formed into a trapezoidal portion of the circumference. 9· The electrostatic adsorption electrode according to the first aspect of the patent application, In the peripheral portion of the substrate holding surface, a step is formed to form a circumferential trapezoidal portion. The linear expansion coefficient of the absolute 値 having a difference from the linear expansion coefficient of the substrate is 14×10 −6 [/° C ] or less. The ceramic sprayed film covers the top surface of the peripheral trapezoidal portion. The electrostatically-adsorbed electrode according to claim 9, wherein the ceramic coating film having a linear expansion coefficient of an absolute enthalpy of a difference from a linear expansion coefficient of the substrate of 14x1 0_6 [/° C] or less The electrostatic adsorption electrode according to any one of the items 1 to 10, wherein the substrate is aluminum and has the same substrate as the substrate. The ceramic spray film with a linear expansion coefficient of the difference between the linear expansion coefficients of 14x1 (Γ6[/ °c] or less is YF3 (yttrium fluoride), MgO (magnesium oxide) and 2MgO · Si〇2 (magnesium) An electrostatic adsorption electrode according to the invention of claim 1, wherein the electrostatic adsorption electrode is formed by a spray coating of A1203 (alumina), and has a linear expansion with the substrate. The absolute 値 of the difference between the coefficients is an insulation layer other than the portion formed by the ceramic spray film having a linear expansion coefficient of 14 χ 1 (Γ6 [/ ° C] or less. -40- 200826226 1 3 · If the patent application range is from item 1 to item 丨Electrostatic adsorption electrode of any of the items, wherein, Bit The base material is a linear expanded ceramic sprayed film having an absolute enthalpy of 1 4 X 1 0_6 [ / °c] or less, which is a difference between the number of the base materials and the base material, and is Al2〇3 (alumina). Any one of γ2〇3 (3), YF3 (yttrium fluoride), MgO (magnesium oxide), and 2MgO · olivine. 1 4. An electrostatic adsorption electrode which is electrostatically applied to a substrate processing apparatus. Electrostatically adsorbing and holding the substrate holding surface of the substrate, comprising: a substrate; and an insulating layer provided on the substrate; and an electrode disposed in the insulating layer; a part or all of the insulating layer is When the ceramic substrate is sprayed, the substrate has an upper portion of the upper member adjacent to the insulating layer, and the absolute member of the lower member of the upper member, which is the portion of the ceramic sprayed film, is expanded to be l4X10. The above-mentioned ceramic sprayed film is formed on all of the surface of the insulating layer on which the substrate holding surface is formed, as in the electrostatic absorption described in claim 14 of the patent application. Electrostatic absorption recorded in 4 items The osmium oxide Si钇2 of the linear expansion coefficient of the item described in the item (the magnesium-containing member having the shape of the adsorption electrode coating film, and the difference between the coefficients of the electrode, a part or the electrode, -41 - 200826226 wherein, the substrate is held The electrostatically-adsorbed electrode according to the above aspect of the invention, wherein the insulating layer comprises a first insulating layer lower than the electrode; And a second insulating layer that is higher than the electrode; and at least one of the first insulating layer or the second insulating layer is formed by the ceramic sprayed film. The electrostatic adsorption electrode according to claim 14, wherein the insulating layer includes a first insulating layer that is lower than the electrode; and a second insulating layer that is higher than the electrode. And a surface layer higher than the second insulating layer; the surface layer is formed by the ceramic sprayed film. The electrostatic adsorption electrode according to claim 18, wherein the surface layer has a film thickness of 50 to 250 μm. The electrostatic adsorption electrode according to claim 14, wherein the peripheral portion and the side portion of the substrate holding surface are formed by the ceramic sprayed film. The electrostatic adsorption electrode according to the above aspect of the invention, wherein the peripheral portion of the substrate holding surface is provided with a step and a peripheral portion - 42 - 200826226 trapezoidal portion is formed by the ceramic spray film. The aforementioned peripheral trapezoidal portion is formed. The electrostatic adsorption electrode according to the above aspect of the invention, wherein the peripheral portion of the substrate holding surface is provided with a step and a peripheral trapezoidal portion is formed, and the peripheral trapezoidal portion is covered by the ceramic sprayed film. The electrostatic adsorption electrode according to claim 22, wherein the ceramic sprayed film has a film thickness of 50 to 25 μm. The electrostatic adsorption electrode according to the above aspect of the invention, wherein the substrate has a convex portion at a center of the upper surface thereof, a flange portion is formed on an outer peripheral side of the convex portion, and the insulating layer is formed. The surface of the top surface portion of the insulating layer constitutes the substrate holding surface on the top surface and the side surface of the convex portion. The electrostatic adsorption electrode according to claim 24, wherein the upper member of the base material includes a part of the convex portion and the flange portion of the outer peripheral portion. The electrostatic adsorption electrode according to any one of the items 14 to 25, wherein the upper member and the lower member are screwed. The electrostatic adsorption electrode according to any one of claims 14 to 26, wherein the upper member of the substrate is stainless steel or titanium, and the ceramic sprayed film is Al2〇3. (Alumina), Υ2〇3 (antimony trioxide), yf3 (yttrium fluoride), MgO (magnesium oxide), and 2Mg0, SiO2 (forsterite). The electrostatic adsorption electrode according to claim 27, wherein the upper member is stainless steel, the lower member is aluminum, and the ceramic sprayed film is ai2o3 (alumina). The electrostatic adsorption electrode according to the invention of claim 2, wherein an anodized film is formed on a surface of the lower member. The electrostatic adsorption electrode according to any one of the preceding claims, wherein the substrate holding surface has a longest portion size of 450 mm or more. The present invention is characterized in that it includes: a reaction chamber for accommodating a substrate; and an electrostatic adsorption electrode according to the first or third aspect; and a processing means for performing a predetermined process on the substrate held by the electrostatic adsorption electrode. The substrate processing apparatus according to claim 31, which is applied to the manufacture of a flat panel display. The substrate according to claim 31, wherein the processing means performs a plasma etching treatment on the substrate. A method for producing an electrostatic adsorption electrode, which is a method for producing an electrostatic adsorption electrode for adsorbing and holding a substrate in a substrate processing apparatus, characterized in that: ???including: forming a first insulating layer on a surface of the substrate And a process of forming an electrode on the first insulating layer; and a process of forming a second insulating layer so as to cover the electrode; a process of forming the first insulating layer and/or forming a second insulating layer A ceramic sprayed film having a linear expansion coefficient of an absolute enthalpy of 1 4 X 1 (Γ6 [/ °c] or less) having a difference from a linear expansion coefficient of the substrate is formed by spraying. 3 5 . The method for producing an electrode is a method for producing an electrostatic adsorption electrode for adsorbing and holding a substrate in a substrate processing apparatus, comprising: a process of forming a first insulating layer on a surface of the substrate; and the first insulating layer a process of forming an electrode on the layer; and a process of forming the second insulating layer so as to cover the electrode; and spraying a part or all of the substrate holding surface of the second insulating layer by spraying A process of forming a coating layer formed of a ceramic sprayed film having a linear expansion coefficient of an absolute enthalpy of 1 4 X 1 0_6 [/° C. or less) having a difference from a linear expansion coefficient of the substrate is formed. The method for producing an electrostatic adsorption electrode is a method for producing an electrostatic adsorption electrode for adsorbing and holding a substrate in a substrate processing apparatus, and the method includes: forming a first insulating layer on a surface of a substrate. a step of forming an electrode on the first insulating layer; forming a second insulating layer on the side of the first insulating layer and the second insulating layer so as to cover the electrode, and forming a line with the substrate The difference between the expansion coefficients is 14xl (T6[ / °C] below the coefficient of linear expansion of the ceramic spray coating. The process; and the engineering; and the part, formed by the absolute spray of the film -46-
TW096129451A 2006-08-10 2007-08-09 An electrostatic adsorption electrode, a substrate processing device, and an electrostatic adsorption electrode TWI423380B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006218457 2006-08-10
JP2007153792A JP4994121B2 (en) 2006-08-10 2007-06-11 Electrostatic chucking electrode, substrate processing apparatus, and method of manufacturing electrostatic chucking electrode

Publications (2)

Publication Number Publication Date
TW200826226A true TW200826226A (en) 2008-06-16
TWI423380B TWI423380B (en) 2014-01-11

Family

ID=39289092

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096129451A TWI423380B (en) 2006-08-10 2007-08-09 An electrostatic adsorption electrode, a substrate processing device, and an electrostatic adsorption electrode

Country Status (4)

Country Link
JP (1) JP4994121B2 (en)
KR (1) KR100921836B1 (en)
CN (1) CN101188207B (en)
TW (1) TWI423380B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI549221B (en) * 2010-12-28 2016-09-11 Tokyo Electron Ltd Electrostatic fixture
TWI574294B (en) * 2013-12-25 2017-03-11 A method of manufacturing a plasma processing chamber and an electrostatic chuck thereof
TWI578365B (en) * 2013-12-25 2017-04-11 A method of manufacturing a plasma processing chamber and an electrostatic chuck thereof
TWI631658B (en) * 2016-03-17 2018-08-01 荷蘭商Asm知識產權私人控股有限公司 Substrate supporting plate and thin film deposition apparatus including the same

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI475594B (en) 2008-05-19 2015-03-01 Entegris Inc Electrostatic chuck
JP5025576B2 (en) * 2008-06-13 2012-09-12 新光電気工業株式会社 Electrostatic chuck and substrate temperature control fixing device
US8861170B2 (en) 2009-05-15 2014-10-14 Entegris, Inc. Electrostatic chuck with photo-patternable soft protrusion contact surface
JP5612300B2 (en) * 2009-12-01 2014-10-22 東京エレクトロン株式会社 Substrate mounting table, manufacturing method thereof, and substrate processing apparatus
US9048276B2 (en) * 2010-05-28 2015-06-02 Axcelis Technologies, Inc. Matched coefficient of thermal expansion for an electrostatic chuck
KR101353157B1 (en) * 2010-12-28 2014-01-22 도쿄엘렉트론가부시키가이샤 Electrostatic chuck
JP6296770B2 (en) * 2013-11-29 2018-03-20 日本特殊陶業株式会社 Substrate mounting device
JP6230477B2 (en) * 2014-04-25 2017-11-15 株式会社ディスコ Cutting equipment
JP2016065302A (en) * 2014-09-17 2016-04-28 東京エレクトロン株式会社 Component for plasma treatment apparatus and manufacturing method of the component
CN104576490A (en) * 2014-12-31 2015-04-29 上海卡贝尼精密陶瓷有限公司 Electrostatic chuck and manufacturing method thereof
JP6639657B2 (en) * 2015-10-04 2020-02-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Pressurized chamber with small thermal mass
JP2017147278A (en) * 2016-02-15 2017-08-24 東京エレクトロン株式会社 Substrate mounting table and substrate processing apparatus
JP6854600B2 (en) * 2016-07-15 2021-04-07 東京エレクトロン株式会社 Plasma etching method, plasma etching equipment, and substrate mount
KR102630782B1 (en) * 2016-08-19 2024-01-31 삼성전자주식회사 Substrate treating apparatus
WO2019026818A1 (en) 2017-07-31 2019-02-07 株式会社 東芝 Component and semiconductor manufacturing device
JP7239935B2 (en) 2017-09-01 2023-03-15 学校法人 芝浦工業大学 Components and semiconductor manufacturing equipment
JP6967944B2 (en) * 2017-11-17 2021-11-17 東京エレクトロン株式会社 Plasma processing equipment
JP7140329B2 (en) 2018-08-10 2022-09-21 地方独立行政法人山口県産業技術センター Anodized titanium material and its manufacturing method
JP7241519B2 (en) 2018-12-04 2023-03-17 東京エレクトロン株式会社 Substrate mounting table, substrate processing apparatus, and method for manufacturing substrate mounting table
CN111613563B (en) * 2019-02-26 2024-02-27 芯恩(青岛)集成电路有限公司 Electrostatic chuck and wafer testing method
KR102635168B1 (en) * 2021-04-26 2024-02-13 주식회사 이에스티 Coating type high temperature electrostatic chuck
US20230009692A1 (en) * 2021-07-07 2023-01-12 Applied Materials, Inc Coated substrate support assembly for substrate processing
CN114457300B (en) * 2022-02-10 2022-12-20 重庆臻宝实业有限公司 Preparation process of lower electrode with cross loop
WO2023163472A1 (en) * 2022-02-28 2023-08-31 주식회사 이에스티 Low-temperature electrostatic chuck

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3225850B2 (en) * 1995-09-20 2001-11-05 株式会社日立製作所 Electrostatic attraction electrode and method of manufacturing the same
JPH09213777A (en) * 1996-01-31 1997-08-15 Kyocera Corp Electrostatic chuck
JPH11157953A (en) * 1997-12-02 1999-06-15 Nhk Spring Co Ltd Structure composed of ceramic and metal and electrostatic chuck device produced by using the structure
JPH11168134A (en) * 1997-12-03 1999-06-22 Shin Etsu Chem Co Ltd Electrostatic attracting device and manufacture thereof
JPH11176919A (en) * 1997-12-08 1999-07-02 Sony Corp Electrostatic chuck
JP2000021962A (en) * 1998-07-03 2000-01-21 Hitachi Ltd Electrostatic chuck device
EP1193751B1 (en) * 1999-04-06 2006-05-17 Tokyo Electron Limited Electrode and method of manufacturing an electrode
TW541586B (en) * 2001-05-25 2003-07-11 Tokyo Electron Ltd Substrate table, production method therefor and plasma treating device
JP2003060019A (en) * 2001-08-13 2003-02-28 Hitachi Ltd Wafer stage
US7175737B2 (en) * 2002-04-16 2007-02-13 Canon Anelva Corporation Electrostatic chucking stage and substrate processing apparatus
JP2004247387A (en) * 2003-02-12 2004-09-02 Sumitomo Electric Ind Ltd Wafer holder for semiconductor production system and semiconductor production system mounting it
JP4421874B2 (en) * 2003-10-31 2010-02-24 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP2006049483A (en) * 2004-08-03 2006-02-16 Canon Inc Electrostatic chucking device and manufacturing equipment of electronic source
JP2006060040A (en) * 2004-08-20 2006-03-02 Rasa Ind Ltd Electrostatically chucking plate, and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI549221B (en) * 2010-12-28 2016-09-11 Tokyo Electron Ltd Electrostatic fixture
TWI574294B (en) * 2013-12-25 2017-03-11 A method of manufacturing a plasma processing chamber and an electrostatic chuck thereof
TWI578365B (en) * 2013-12-25 2017-04-11 A method of manufacturing a plasma processing chamber and an electrostatic chuck thereof
TWI631658B (en) * 2016-03-17 2018-08-01 荷蘭商Asm知識產權私人控股有限公司 Substrate supporting plate and thin film deposition apparatus including the same
US10876218B2 (en) 2016-03-17 2020-12-29 Asm Ip Holding B.V. Substrate supporting plate, thin film deposition apparatus including the same, and thin film deposition method
US11965262B2 (en) 2016-03-17 2024-04-23 Asm Ip Holding B.V. Substrate supporting plate, thin film deposition apparatus including the same, and thin film deposition method

Also Published As

Publication number Publication date
JP2008066707A (en) 2008-03-21
KR100921836B1 (en) 2009-10-13
TWI423380B (en) 2014-01-11
KR20080014673A (en) 2008-02-14
JP4994121B2 (en) 2012-08-08
CN101188207B (en) 2011-01-12
CN101188207A (en) 2008-05-28

Similar Documents

Publication Publication Date Title
TW200826226A (en) Electrostatic attraction electrode, substrate processor, and manufacturing method for electrostatic attraction electrode
TWI559357B (en) Electrode generation electrode and plasma processing device
JP5224855B2 (en) Electrode unit, substrate processing apparatus, and temperature control method for electrode unit
KR100978957B1 (en) Substrate mounting stage and substrate processing apparatus
JP4272786B2 (en) Electrostatic chuck member and manufacturing method thereof
JP4657824B2 (en) Substrate mounting table, substrate processing apparatus, and method for manufacturing substrate mounting table
JP6010433B2 (en) Substrate mounting table and substrate processing apparatus
JP5361119B2 (en) Reduction of electrostatic charge by roughening the susceptor
TW200935512A (en) Apparatus and methof for plasma treatment
TWI532118B (en) Electrostatic adsorption electrode and manufacturing method thereof, and substrate processing device
JP2008294042A (en) Placing table, and plasma treatment equipment using the same
JP5281811B2 (en) Annular parts for plasma processing, plasma processing apparatus, and outer annular member
JP2009521311A (en) Ultrasonic agitation and cleaning of electrostatic chuck using electric field
KR20100128229A (en) Electrode for electrostatic attraction, manufacturing method therefor and substrate processing apparatus
TW200903627A (en) Plasma processing apparatus and structure therein
JP2012036487A (en) Yttria-containing film and forming method thereof, and semiconductor manufacturing apparatus and plasma treatment apparatus
JP4493863B2 (en) Plasma processing apparatus, cleaning method thereof, and electrostatic chuck static elimination method
JP6727338B2 (en) Non-shadow flame plasma processing chamber
TW201933471A (en) Plasma treating apparatus which increases the tolerance of a loading table to plasma even when dry cleaning is performed
KR20100002173A (en) Processing apparatus
JP5390657B2 (en) Substrate mounting table and substrate processing apparatus
JP6048667B2 (en) Sputtering equipment
JP2000345319A (en) Manufacture of transmission window, transmission window, and processing device using the same
JP2004071791A (en) Substrate placement member and substrate treatment apparatus using same
JP2013110440A (en) Electrode unit and substrate processing apparatus