TW200538840A - Wavelength conversion device - Google Patents

Wavelength conversion device Download PDF

Info

Publication number
TW200538840A
TW200538840A TW094104086A TW94104086A TW200538840A TW 200538840 A TW200538840 A TW 200538840A TW 094104086 A TW094104086 A TW 094104086A TW 94104086 A TW94104086 A TW 94104086A TW 200538840 A TW200538840 A TW 200538840A
Authority
TW
Taiwan
Prior art keywords
light
wavelength conversion
adjustment
conversion device
basic wave
Prior art date
Application number
TW094104086A
Other languages
English (en)
Other versions
TWI380118B (zh
Inventor
Tadashi Okuno
Akira Watanabe
Original Assignee
Photo Physics Lab Inc
Cyber Laser Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photo Physics Lab Inc, Cyber Laser Inc filed Critical Photo Physics Lab Inc
Publication of TW200538840A publication Critical patent/TW200538840A/zh
Application granted granted Critical
Publication of TWI380118B publication Critical patent/TWI380118B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3546Active phase matching, e.g. by electro- or thermo-optic tuning

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

200538840 (1) 九、發明說明 【發明所屬之技術領域】 本發明係有關於一種利用非線性光學效果而能夠得到 一與輸入光(被轉換光)的波長不同之波長的輸出光(轉 換光)的裝置。特別是有關於一種能夠經常安定地將從輸 入光轉換到輸出光的能量轉換效率保持在極大的波長轉換 裝置。 【先前技術】 在利用非線性光學效果的波長轉換裝置中,則重要的 乙點是在將被轉換光輸入到已發現非線性光學效果的非線 性光學結晶中,而能夠有效率地將由非線性光學效果所產 生的轉換光安定地加以輸出。 其中一例則是舉利用產生第2高諧波(SHG: Second-Harmonic Generation) 的 波長轉 換裝置 爲例子 。因 此在以 後的說明中也有將輸入光稱爲基本波光、而將輸出光稱爲 轉換光或SH光的情形。當然被應用在進行波長轉換的非 線性光學效果並不限定於SHG效果,則除了產生差頻率 (DFG: Differential Frequency Generation)或產生和頻率 (SFG: Sum Frequency Generation)等與 SHG 同樣地利用 2次的非線性光學效果的方法外,也可以是一利用3次以 上的非線性光學效果的方法。在利用以下所說明的S H G 的波長轉換裝置中,有效率地產生轉換光的原理上的構成 則在利用上述之DFG或SHG般的2次的非線性光學效果 200538840 (2) 的波長轉換裝置中自不待言,其並不限定於此,同樣地也 能夠應用在利用3次以上的非線性光學效果的波長轉換裝 置中。 在利用上述的SHG的波長轉換裝置中,則必須以相 對於發現非線性光學效果(在此爲SHG )的 LiNB03 (Lithium Niobate)或 BBO ( β -BaB2〇4 : Beta Barium Borate )等的結晶的結晶軸在滿足相位整合條件的角度 0 (相位整合角度)的情形下將基本波光入射。亦即,在上 述的波長轉換裝置中,基本波光相對於非線性光學結晶的 結晶軸的傳播方向必須要形成爲滿足相位整合條件的角 度。以後則能夠簡單地在滿足相位整合角度的條件下入 射。若能夠在滿足相位整合角度的條件下入射時,則能夠 使得SHG效率、亦即,波長轉換效率成爲極大。 爲了要在滿足相位整合角度的條件下入射到非線性光 學結晶,則在產生基本波光的光源(雷射光源)與非線性 • 先學結晶之間設置一由將反射鏡或稜鏡、或透鏡等適當地 組合所構成的光路徑調整部,而在該光路徑調整部中調整 基本波光的傳播方向。之後則將產生基本波光的光源設爲 雷射光源’而非線性光學結晶、反射鏡則包含稜鏡、或透 鏡等在內’而將該些的配置形態稱爲波長轉換裝置的光學 系統。 相位整合條件則是根據非線性光學結晶所具有的針對 基本波光的折射率檐圓體的形狀所規定,該折射率橋圓體 的形狀則是與非線性光學結晶的溫度相關。在波長轉換裝 -6 - 200538840 (3) 置動作中,則非線性光學結晶的溫度會受到周圍溫度等的 變化而經常變動。因此爲了要將波長轉換裝置的 SHG轉 換效率經常保持在極大,則必須要經常調整基本波光相對 於非線性光學結晶的結晶軸的入射角度。 又,在波長轉換裝置的製造過程中,即使是在將該光 學系統調整爲最佳狀態而完成的作業中,爲了要使波長轉 換效率成爲極大,則必須調整構成光學系統的反射鏡等的 配置及方向等,而調整基本波光的光路徑(基本波光的傳 播方向)。此外,連在該波長轉換裝置被極大化而被調整 完成後,當讓該波長轉換裝置作動而結束該作動,之後再 度使其作動時,則該波長轉換裝置的波長轉換效率無法再 現該被極大化的狀態。亦即,在組立過程中自不待言,除 了在每次開始運轉時不得不將波長轉換裝置的光學系統調 整成使其波長轉換效率成爲極大外,即使在運轉中也必須 經常地調節光學系統。 在上述光路徑調整部中,爲了要調整基本波光的光路 徑,亦即,爲了調整輸入到非線性光學結晶之基本波光的 傳播方向,則利用已經裝塡了反射鏡等的光學微動裝置、 例如半A少微動裝置來調整反射鏡的反射面與基本波光 針對該反射鏡面的入射角度。該微動調整裝置則能夠使反 射鏡的反射面相對於入射到反射鏡的反射面的基本波光產 生旋轉或是平行移動。對於平行移動則必須進行在直交的 χ-y方向上之移動的2軸的控制,又,對於旋轉則必須要 進行以X軸及y軸作爲中心之各自旋轉的2軸的控制。亦 200538840 (4) 即,必須要進行合計4軸的控制。 上述的作業一般則稱爲對位(a 1 i g n m e n t )作業、或是 調芯作業。又,上述的光路徑調整部則是將多個的反射 鏡、或多個的稜鏡等組合而構成。因此,對位 (alignment )作業則必須要針對多個的光學微動裝置來實 施。操作多個的光學微動裝置來決定對於基本波光最適當 的光路徑的作業則非常的難,一般必須仰賴已經累積了許 多經驗之作業者的手工作業。而之所以操作多個的光學微 B 動裝置來調整基本波光的光路徑是一高度困難的技術則是 因爲在光學微動裝置中之多個位置的調整行爲並非個別獨 立地決定基本波光的光路徑,而是彼此關連地而並非是個 別獨立地來決定光路徑。 上述的對位(alignment )作業,則如上所述般,不只 是在製作波長轉換裝置的階段,在每次利用波長轉換裝置 皆必要。而此是因爲波長轉換裝置之光學系統的微妙的位 置關係等會因爲設置波長轉換裝置的場所的環境溫度的變 ^ 化等而變化。由於基本波光對於非線性光學結晶的入射角 度會隨著該微妙的變化而變動而偏離相位整合條件,因此 波長轉換效率會降低。因此必須要經常實施對位 (alignment )作業。當然爲了要在經常滿足相位整合要件 的條件下讓波長轉換裝置作動,因此基於與上述同樣的理 由(波長轉換裝置的周圍溫度的變化等)必須要有對位 (alignment )作業。 在此,在製造波長轉換裝置時,爲了要有效率地調整 200538840 (5) 光路徑調整部、或爲了在波長轉換裝置作動中或再作動時 能夠實現最大的波長轉換效率,則希望實現一藉由設置光 路徑調整部能夠實現自動控制的波長轉換裝置。 並不限於上述的波長轉換裝置,也有爲了要調整雷射 光束的位置及傳播方向而呈平行地實施多個的調整位置的 調整的情形。而爲了要調整光學系統而不得不呈平行地實 施多個位置的調整的情形,則已知有被組入到被應用於在 I 半導體製造時的曝光裝置(有時也稱爲stepper )內的光 學系統、或被組裝到原稿讀取裝置而包含行圖像感測器 (line image sensor)在內的光學系統等。 對於針對被組入到在半導體製造時所利用的曝光裝置 內的光學系統進行自動調整的方法或裝置,則已揭露有一 將光照射在被形成在半導體晶圓上的對位標誌(alignment mark ),而根據將來自對位標誌的反射光進行光電轉換所 得到的信號,而自動地來檢測對位標誌的位置的方法及裝 _ 置(例如參照專利文獻1及2 )。 又,對於被組入到原稿讀取裝置而包含行圖像感測器 在內的光學系統,則已揭露一針對利用成像透鏡讓原稿的 畫像成像於行圖像感測器而讀取畫像的裝置中的焦點位 置、原稿的邊緣驗證(side registration)、歪斜(skew) 或畫像之傾倒程度而能夠自動地進行對位的裝置(例如參 照專利文獻3 )。 不管是那一個發明,當讓對位自動化時,則採取根據 模糊(fuzzy )理論而來的控制方法,藉此實現~簡單且 -9- 200538840 (6) 高精度的對位。 與本發明的基礎技術有關的文獻則能夠舉出有特許第 2 5 1 7 6 3 7號公報、特開平9-23 22 3 2號公報及特許第 3 07 7 3 03號公報。 【發明內容】 然而,根據構成元件包含了非線性光學結晶或成爲雷 g 射活性媒質的光學結晶在內之裝置的光學系統的模糊 (fuzzy )理論能夠實現自動調整的裝置則目前仍未實 現。在此,則希望實現一根據模糊(fuzzy )理論,藉由 實施光學系統的對位而使得從基本波光轉換爲轉換光的能 »轉換效率能經常保持安定而能夠保持在極大的波長轉換 裝置。 爲了要達到上述的目的,本發明的波長轉換裝置則具 備有雷射光源、非線性光學結晶、光路徑調整部、光檢測 φ 器、調整値算出手段、光路徑調整部控制裝置。雷射光源 則輸出入射到非線性光學結晶而作爲被轉換光的基本波 入調入本結測別 光徑下基學檢分 波路態及光光出 本光狀向性由算 基。的方線從而 的光件播非則論 光換條傳從段理 換轉合的測手糊 轉的整光檢出模 被同位波來算據 爲不相本用値根 作長足基則整 , 讓波滿整器調値 由的在調測。的 藉光光而檢度度 則波波,光強強 晶本本晶。的的 結基基結置光光 學與讓學位換換 光長要光的轉轉 性波了性束的的 線生爲線光出出 非產則非的輸輸 。 而部到光所所 光射整射波晶器 -10- 200538840 (7) 與被設在光路徑調整部的多個調整位置呈對應的調整値。 光路徑調整部控制裝置則根據在調整値算出手段中所算出 的調整値來控制被設在的多個的調整位置。 若根據本發明的波長轉換裝置,則如上所述般,藉由 調整値算出手段針對來自非線性光學結晶的轉換光的強度 之一個資訊算出分別與由光路徑調整部所執行的多個位置 呈對應的調整値,而能夠安定地實現轉換效率的極大化。 亦即,在波長轉換裝置的輸出部中,藉由只在一個位置檢 測轉換光的強度來計算分別與多個的調整位置呈對應的調 整値、亦即,多個的調整値。而此當以調整値算出手段作 爲中心來看時,則構成一可針對由光檢測器所檢測出來的 轉換光的強度之一個的輸入値輸出分別與多個調整位置呈 對應的多個調整値之所謂的一輸入多輸出系統。結果可以 將用來檢測輸入値的檢測位置只設在一個位置,而能夠使 得整個波長轉換裝置的構成得以簡單化。 又’若根據本發明的波長轉換裝置,則在該光學系統 的調整過程中不需要所謂的原點回復動作。而此雖然之後 會詳述’但起因於能夠實現根據模糊理論之控制方法的裝 置。結果如來自光路徑調整部控制裝置的控制信號般,即 使在光路徑調整部不知何原因(例如backlash等)而無法 正確地被調整時,藉由再度將控制信號傳送到光路徑調整 部’則任何一者均能夠完成滿足最佳條件的對位 (alignment ) ° 又’即使在非線性光學結晶內產生結晶缺陷,也會如 -11 - 200538840 (8) 可避開該缺陷般地發現非線性光學效果般地將基本波光的 光束導引到在非線性光學結晶內的其他的位置地而進行對 位。在非線性光學結晶內有時會因爲基本波光的光電場而 產生結晶缺陷,而在發生該缺陷的位置則無法產生所希望 的非線性光學效果。因此,必須要避免該結晶缺陷而在非 線性光學結晶內的其他的位置發現非線性光學效果。 藉由 PID 控制(Proportionallntegral and Derivative Control ),一般而言如上所述般很難變更在非線性光學結 晶內發現非線性光學效果的位置。但是若是實施根據模糊 理論的對位時,則不需要在非線性光學結晶內的同一位置 使非線性光學效果再現,而只要是能夠使轉換效率成爲極 大’則即使是在非線性光學結晶內的任何位置均能夠實現 非線性光學效果。因此,即使是在非線性光學結晶內產生 結晶缺陷,則由於能夠實現波長轉換,因此結果能夠延長 波長轉換裝置的壽命。 【實施方式】 以下請參照圖面來說明本發明的實施形態。此外,各 圖只是在能夠理解本發明的情形下槪略地來表示各構成部 分的形狀、大小及該些的位置關係,因此本發明並不限定 於圖示的例子。又,在以下的說明中,雖然是利用特定的 材料及條件等,但該些的材料及條件只不過是最佳例的其 中一者,因此並不限定於該些。又,在各圖中,則針對同 樣的構成元件附加相同的符號,至於該些的功能則省略其 -12- 200538840 (9) 重覆的說明。在以下的圖中則以粗線來表示光路徑,而以 細線來表示電氣信號的路徑。又,針對該些粗線及細線所 附加的編號則分別意味著在光路徑中傳播的光束或電氣信 號。 (實施例1 ) 〈波長轉換裝置的構成〉 B 請參照圖1來說明利用SHG之本發明的波長轉換裝 置的槪略的構成。該波長轉換裝置是一將波長λ i的基本 波先轉換成爲其一半的波長λ2 (=λ ι/2)的裝置。具備有: 產生波長爲λ 1的基本波光的雷射光源1 0、讓該基本波光 入射而產生與基本波光的波長A !不同的波長λ 2之轉換光 的非線性光學結晶1 6、爲了要滿足相位整合條件而將該基 本波光入射到非線性光學結晶1 6,乃調整基本波光的傳播 方向及基本波光的光束的位置的光路徑調整部3 0。 g 光路徑調整部3 0具備有第1反射鏡丨2及第2反射鏡 1 4 ’第1反射鏡1 2則具有爲馬達μ 1及Μ 2所驅動的驅動 部’而第2反射鏡1 4則具有爲馬達Μ 3及Μ 4所驅動的驅 動部。從雷射光源1 〇所輸出的基本波光則能夠根據第j 反射鏡1 2及第2反射鏡1 4來改變入射到非線性光學結晶 1 6的角度及其位置,藉此,能夠以滿足相位整合條件的角 度將基本波光入射到非線性光學結晶1 6,第1反射鏡! 2 及第2反射鏡丨4的反射鏡的方向的調整則可藉由驅動馬 達Μ 1至Μ 4來執行。 -13- 200538840 (10) 而被調整爲在以滿足相位整合條件的角度下入射到非 線性光學結晶非線性光學結晶1 6的基本波光1 5則在非線 性光學結晶16中藉由SHG而產生SH光(轉換光)。SH 光則從非線性光學結晶1 6當作輸出光1 7而朝與基本波光 相同的方向而輸出。亦即,輸出光17是一混雜有波長入, 的基本波光與波長λ 2的S Η光的光束。因此當只要讓作爲 轉換光的波長λ 2的SH光輸出時,則必須利用一會遮斷波 _ 長λ 1的基本波光,但只讓波長λ 2的SH光透過的波長濾 波裕’而只選擇波長λ2的SH光加以輸出。在圖1中,則 將用於此的波長濾波器當作波長濾波器2 0而設置在光檢 測器22與半透鏡18之間。 從非線性光學結晶1 6所輸出的輸出光1 7則藉由半透 鏡1 8將其中一部分分割爲監視用,而該被分割的光束則 藉由作爲光電轉換器的光檢測器(例如光二極體)22而被 實施光電轉換。在入射到光檢測器2 2之前,則藉由波長 _ 濾波器20針對作爲混雜有波長λ 1的基本波光與波長λ 2 的S Η光的光束的輸出光1 7實施過濾,而只選擇波長入2 的S Η光而入射到光檢測器2 2。而藉由該半透鏡1 8與波 長濾波器20來構成光分岐裝置44。 若設爲上述的構成時,則能夠檢測出從非線性光學結 晶1 6所輸出而作爲轉換光的波長λ 2的S Η光的強度。亦 即,藉由光檢測器22可得到與作爲轉換光的波長λ 2的 SH光的強度呈比例的電氣信號23。該電氣信號23則因應 必要在放大器24中放大而當作電氣信號25而被輸出,而 -14- 200538840 (11) 成爲一被輸入到調整値算出手段2 6的構成。由於電氣信 號2 3是一非常弱的信號,因此在藉由後述的模糊理論所 實施的光路徑調整控制中,則必須將混入到電氣信號2 3 的雜音的強度放大到不會造成問題的程度。 在調整値算出手段26中,則根據模糊理論來計算對 於調整在作爲被設在光路徑調整部3 0的多個調整位置之 第1反射鏡1 2及第2反射鏡1 4的反射面的方向爲必要的 | 馬達Ml至M4的驅動量而當作輸出信號27而輸出,且將 該輸出信號27輸入到光路徑調整部控制裝置28。輸出信 號2 7則對應於分別與圖1所示的馬達Μ 1至M4對應的値 (在圖1中爲Ml至Μ4與在箭頭的前端所記述的4個信 號)而被輸出。光路徑調整部控制裝置2 8則根據輸出信 號2 7分別將驅動信號送到馬達Μ 1至M4。在圖1中記爲 Μ 1至Μ4的箭頭則分別表示爲被送到光路徑調整部3 0的 馬達Ml至Μ4的信號。 | 在參照圖1所說明的波長轉換裝置中,雖然光路徑調 整部3 0具備有第1反射鏡1 2及第2反射鏡1 4,但並不限 定於該構造,例如光路徑調整部3 0也能夠當作設成圖2 所示之構造的光路徑調整部40來構成。在該圖2所示之 構造的光路徑調整部40中則是取代在構成光路徑調整部 3 〇時所使用的第1反射鏡1 2及第2反射鏡1 4,而是改將 4個的稜鏡3 2、3 4、3 6及3 8呈串聯地配列而構成。4個 的稜鏡3 2、3 4、3 6及3 8則以作爲從雷射光源1 0所輸出 的基本波光Π的光軸(在圖2中則將該光軸記爲1 1 )爲 -15- 200538840 (12) 中心而構成可分別藉由馬達Μ 5至Μ 8而旋轉。 若設爲如此的構成時,藉由讓馬達Μ 5至Μ 8適當地 旋轉,則能夠與藉由構成上述的光路徑調整部3 0的2個 的反射鏡1 2及1 4來調整基本波光Π的傳播方向的情形 同樣地來調整光路徑。而光路徑調整部40相較於光路徑 調整部3 0所具有的優點則如下。在光路徑調整部40中, 即使4個的稜鏡3 2、3 4、3 6及3 8以作爲基本波光的傳播 中心的光軸1 1作爲中心而旋轉一圈以上時,則在功能上 也不會產生障礙。亦即,雖然是將旋轉角度限定在〇到2 7Γ的範圍,但由於即使未限定於該範圍,而藉由2 7Γ到4 7Γ的範圍的旋轉也能夠得到相同的效果,因此即使是不知 何種原因而無法設定在0到2 7Γ的範圍時,則即使是在2 7Γ到4 7Γ的範圍也能夠得到相同的效果。因此,在每次進 行基本波光的光路徑調整時,則不需要將4個的稜鏡3 2、 3 4、3 6及3 8的旋轉角度的設定位置限定在0到2 7Γ的範 圍。而此則成爲一在設計光路徑調整部時之非常便利的乙 點。 換言之,在光路徑調整部30中的第1反射鏡1 2及第 2反射鏡1 4的反射面的方向則必須要限定其範圍。而此是 因爲一般來說無法製作出第1反射鏡1 2及第2反射鏡14 的反射面能夠旋轉多次的構造使然。 〈波長轉換裝置的光路徑調整功能〉 請參照圖3依序說明本發明之波長轉換裝置的光路徑 -16- 200538840 (13) 調整功能。 (1 )從雷射光源1 0所輸出的基本波光則藉由在光 路徑調整部3 0中調整對於非線性光學結晶1 6的入射角度 及入射位置而來調整入射光路徑。光路徑調整部3 0的光 路徑調整功能則是從波長轉換裝置的動作即將開始前之第 1及第2反射鏡的設定位置處開始進行調整而開始。亦 即,在藉由光路徑調整部3 0開始調整基本波光的光路徑 之前,並非事先回到第1及第2反射鏡的基準的設定位置 才開始。
(2 )當藉由光路徑調整部3 0而在滿足相位整合條 件的條件下將基本波光輸入到非線性光學結晶1 6時,則 會在非線性光學結晶1 6中藉由SHG而產生作爲轉換光的 SH光。因此從非線性光學結晶1 6輸出基本波光與SH 光。 (3 )來自非線性光學結晶1 6的輸出光則藉由由半透 鏡18與波長濾波器20所構成的光分岐裝置44而只將SH 光的一部分予以分岐而取出,且將其輸入到光檢測器22。 而被轉換爲與藉由光檢測器2 2所分岐而取出的S Η光的強 度呈比例的電氣信號而被輸出。由於與由光檢測器22所 分岐而取出的SH光的強度呈比例的電氣信號的強度一般 較弱,因此藉由放大器24加以放大而被輸入到調整値算 出手段2 6。 (4 )調整値算出手段26則根據藉由放大器24加以 放大而輸入的電氣信號會利用模糊理論而分別算出馬達 -17- 200538840 (14) Μ 1至M4的旋轉量(調整値)。至於利用模糊理論分別算 出馬達Μ 1至M4的旋轉量的方法則請容後述。在調整値 算出手段2 6中所算出的馬達μ 1至μ 4的旋轉量則被送到 用來控制馬達Μ 1至Μ 4的光路徑調整部控制裝置2 8,而 藉由馬達Μ 1至Μ4驅動手段來驅動馬達Μι至Μ4。如上 述般藉由驅動馬達Ml至Μ4來調整第1及第2反射鏡之 各自的反射面的方向,而調整對於非線性光學結晶1 6的 入射光路徑。 (5 )在上述的(4 )中所示的步驟中調整基本波光對 於非線性光學結晶1 6的入射光路徑的結果,則是反覆地 調整上述基本波光對於非線性光學結晶1 6的入射光路徑 直到在光檢測器22中所檢測的SH波的強度成爲極大値爲 止。 圖4爲表示在光路徑調整部30中藉由調整基本波光 的光路徑而進行控制直到轉換光的強度安定成爲極大値爲 止的結果,以定性的方式來描繪該轉換光的強度隨著時間 而變化的情形的圖形。橫軸爲時間,而縱軸爲轉換光的強 度,分別以任意的刻度來測量。 實施在上述的(1 )至(5 )中所說明的步驟的結果, 在波長轉換裝置的開始作動時刻後經過t /後,則轉換光 的強度會達到極大値,之後只要是在容許可當作轉換光的 強度變化所設定的容許範圍(在圖4中爲以箭頭來挾持而 表示爲P的範圍)內變動,則能夠使波長轉換裝置的輸出 強度得以安定化。而爲了要持續地得到輸出強度的安定 -18- 200538840 (15) 化,則在驅動該波長轉換裝置的期間內可以繼續地實施在 上述的(1 )至(5 )中所說明的步驟。 接著請參照圖5所示的流程圖更詳細地說明在上述的 (1 )至(5 )中所說明的步驟。 步驟S-10:該步驟是一控制開始步驟。根據來自該波 長轉換裝置的操作者或個人電腦等的指示開始將轉換光的 強度安定化成極大値的控制。 步驟S-12:該步驟是一由調整値算出手段26取得來自 光檢測器22的輸出的步驟。但是當設置放大器24時,則 是一由調整値算出手段26取得來自放大器24的輸出的 步驟。以後爲了要簡單起見則記爲「來自光檢測器22的 輸出」,而當設置放大器24時,則意味著放大器24的輸 出。在該步驟中則測量在剛開始控制基板波光的光路徑後 由光檢測器22所取得的轉換光的強度。 步驟S-14:該步驟是一依序驅動馬達Ml至M4的步 驟。雖然可以從馬達Μ 1至M4的任何一個馬達開始,但 首先要選擇其中一者。根據最初所選擇的馬達(在此設爲 Ml),藉由讓第1反射鏡12的反射面的方向變化,而將 馬達Μ 1的旋轉固定在轉換光的強度會成爲極大的位置, 根據下一個的馬達(在此設爲M2 ),藉由同樣地讓第1 反射鏡1 2的反射面的方向變化,而將馬達M2的旋轉固定 在轉換光的強度會成爲極大的位置。同樣地藉由根據馬達 M3及Μ4讓第2反射鏡1 4的反射面的方向變化,而如將 第2反射鏡1 4的反射面的方向固定在轉換光的強度會成 -19- 200538840 (16) 爲極大的位置般地來固定馬達Μ 3及Μ 4的旋轉。 根據上述的馬達Μ 1至Μ 4的旋轉來決定第1及第2 反射鏡1 2及1 4的反射面的方向的馬達的旋轉量則是根據 後述的模糊理論而決定。在此所使用的模糊理論的算法, 則即使是控制上述的第1及第2反射鏡1 2及1 4的反射面 的方向而算出馬達Μ 1至Μ 4的旋轉量的情形、或是即使 是藉由讓參照圖2中所說明的4個的稜鏡旋轉而分別算出 當將轉換光的強度設定在極大値時之4個稜鏡之各自的旋 轉量的情形,基本上並沒有改變。亦即,只是給予馬達 Μ 1至Μ4的旋轉量的參數與給予4個稜鏡的旋轉量的參數 的値產生差異而已,至於算法則不管是那一種情形皆使用 相同的算法。因此,在與圖5所示的流程圖相關的以後的 說明中則將馬達Μ 1至Μ4的旋轉量當作參數來說明。 步驟S-16:該步驟是一只是讓馬達Ml至Μ4稍微地旋 轉之試驅動步驟。該步驟則是爲了要確定馬達的旋轉方 向。 步驟S-18:該步驟是一藉由光檢測器22而取得與轉換 光的強度呈比例的信號的步驟。 根據上述的步驟S-16及S-18,若判斷出藉由讓馬達 朝著某個方向旋轉而使得爲光檢測器22所接收的轉換光 的強度增加時,則表示該旋轉方向是一轉換光的強度會成 爲極大的方向。相反地若判斷出爲光檢測器2 2所接收的 轉換光的強度減少時,則表示該旋轉方向是一與轉換光的 強度會成爲極大的方向呈相反的方向。 -20- 200538840 (17) 步驟S - 2 0 :該步驟是一用來計算距光檢測器2 2的輸出 信號的時間微分値、目標値(極大値)的偏移量的步驟。 在該步驟中則計算在模糊理論中當作輸入値來利用的輸出 信號的時間微分(差分)値,而計算距目標値(極大値) 的偏移量。若將在來自光檢測器2 2之時刻t!時的輸出信 號的値當作s ,,將在時刻t2時的輸出信號的値當作S2 時’若設爲t! < t2,則輸出信號的時間差分値S >成爲 s ^ = ( S2-SJ ) / ( t2-t,)。而當將目標値(極大値)設爲 s〇時,則計算距以△ S= ( Sl/SG ) -1所給予的目標値的偏移 量(距目標値的偏移的比例)△ s。利用s/及△ S來進 行模糊理論。 步驟S-22:該步驟是一計算根據模糊理論所得到之馬 達的驅動量(旋轉量)的步驟。其詳細內容雖然容後述, 但是在該步驟中則利用上述的S >及△ S的値進行模糊理 論’而計算馬達的驅動量(旋轉量)的絕對値Μ。 步驟S-24:該步驟是一求取馬達的驅動方向(旋轉方 向)的步驟。若在上述的步驟S-20中所求得的S —的値爲 負的時,則必須讓馬達的驅動方向(旋轉方向)反轉。另 〜方面,若s/的値爲正的時,則維持馬達的旋轉方向。 #該步驟中則根據以下的順序來求取上述馬達的旋轉方 向。亦即,將決定馬達的旋轉方向的參數設爲α。α則取 値1或値_ 1。又,參數5則如下來決定。若在上述的步驟 S-20中所求得的s >的値爲負的時,則設爲5 ,而若 S —的値爲正的時,則設爲6 = 1。因此,馬達的下一次的 -21 - 200538840 (18) 旋轉方向是由α x d所決定。亦即,藉由將該α x j的個 定爲下一個的新的參數α的値,則能夠確定馬達的下一 的旋轉方向。而當包含馬達的旋轉方向在內而來表示旋 量時,則成爲α X Μ。 步驟S - 2 6 ··該步驟是一驅動馬達的步驟,而只讓馬 旋轉上述的α X Μ。 步驟S - 2 8 ··該步驟則與上述的步驟s - 1 8同樣地是一 由光檢測器22而取得與轉換光的強度呈比例的信號的 驟。 步驟S - 3 0 :在該步驟中,則根據在上述的步驟s - 2 8 所取得之與轉換光的強度呈比例的信號的値,而結束根 至此爲止的步驟所控制而經過調整的馬達的調整作業, 判斷是否要前進到控制下一個馬達的步驟。若在上述的 驟S- 28中所取得之與轉換光的強度呈比例的信號的値 斂在可視爲目標値(極大値)之大小的範圍(在圖4中 以箭頭所挾持而記爲Ρ的値的範圍)內時,則爲了要控 下一個馬達,則切換成爲控制對象的馬達。因此,前進 作爲下一步驟的步驟S - 3 2。另一方面,若判斷爲在上述 步驟S - 2 8中所取得之與轉換光的強度呈比例的信號的 未達到目標値時,則回到步驟S-20。 步驟S - 3 2 :該步驟是一用來判斷在光路徑調整部3 0 的調整作業是否已經結束的步驟。若確定針對馬達Ml M4的調整作業全部結束時,則前進到下一個的步驟s _ 而結束調整作業。另一方面,若未結束而要繼續控制時 設 個 轉 達 藉 步 中 據 而 步 收 爲 制 到 的 値 中 至 -22- 34 200538840 (19) 則回到上述的步驟S -1 4。而即使是確認出針對馬達Μ 1至 Μ4的調整作業全部結束時,爲了要因應經時變化,則在 驅動該波長轉換裝置的期間,有時候也會有不讓在光路徑 調整部3 0中的調整作業結束的判斷。 步驟S - 3 4 :該步驟是一讓在光路徑調整部3 0中的調整 作業結束的步驟。 〈模糊理論〉 請參照圖6(Α1)至(Α4)及(Β1)至(Β4)與圖7 (Α1)至(A3)及(Β1)至(Β3)來說明在該光轉換裝 置中所執行的模糊理論所利用的隸屬函數(membership function )。以後當指圖 6 ( A1 )至(A4 )及(B1 )至 (B4 )的所有的圖時則只記爲圖6。又,同樣地指圖7 (A 1 )至(A 3 )及(B 1 )至(B 3 )的所有的圖時則只記 爲圖7。 圖6爲表示由光檢測器22所檢測出的輸出信號相對 於時間微分(差分)値 S >的隸屬函數(membership function )的說明圖。圖7爲表示當光檢測器22的目標輸 出値接近於最大輸出値時的輸出信號相對於値△ S的隸屬 函數(membership function)的說明圖。圖 6中所示的 (A1 )至(A4 )表示模糊理論的前件部,而(B 1 )至 (B4 )表示分別與前件部(A1 )至(A4 )對應的後件 部。又,在圖7中同樣地(A1 )至(A3 )表示模糊理論 的前件部,而(B 1 )至(B 3 )表示分別與前件部(A 1 ) -23- 200538840 (20) 至(A3 )對應的後件部。 當在光路徑調整部3 0中進行光路徑調整時,由於基 本波光對於非線性光學結晶的入射角度會變化,因此會距 相位整合條件或遠或近。因此轉換光的強度會隨著時間而 變動。如上所述般’該強度之隨著時間的變化的情形可藉 由光檢測器2 2來觀測。而由光檢測器2 2所觀測的強度之 隨著時間的變化的情形則是以上述的輸出信號的時間差分 値 S /、亦即,S / = ( S 2 - s ! ) / ( 12 -1 i )來表現。 在此根據以下的規則(以後稱爲「模糊規則」)來定 義成爲模擬理論的基礎的隸屬函數(membership function ) 〇 規則11:若s /取正的値而該値大時,則馬達的旋轉 量的絕對値大。 規則1 2 :若S >取正的値而該値小時,則馬達的旋轉 量的絕對値小。 規則1 3 ··若S —取0的値,則馬達的旋轉量的絕對値 爲〇〇 規則1 4 :若S /取負的値時’則馬達的旋轉量的絕對 値小。 請參照圖6在視覺上說明上述的規則。圖6所示的 (A 1 )至(A4 )則表示上述的模糊規則的各規則n至μ 的前件部。在圖6(A1)至(A4)中,橫軸表示s^、縱 軸表不一致度程度(取0到1的値的範圍)。另一方面, 圖6所示的(B 1 )至(B 4 )表示上述的模糊規則的各規則 -24· 200538840 (21 ) 1 1至1 4的後件部。橫軸表示馬達的驅動量(旋轉量)的 絕對値Μ、.縱軸表示一致度程度。 接著則針對在光檢測器2 2的輸出信號値的目標輸出 値接近於最大輸出値時將目標値(極大値)設爲so時之相 對於以△ S= ( Sl/SG ) -1所給予的目標値△ s的隸屬函數 (m e m b e r s h i p f u n c t i ο η )來說明。在此,s】爲在時刻t i的 輸出信號的値。而利用相對於△ S 的隸屬函數 (membership function )的理由則基於以下的2點。 B 首先說明第1點。入射到非線性光學結晶1 6的基本 波光或從非線性光學結晶1 6所射出的轉換光是一高斯光 束(Gaussian beam )。該高斯光束在性質上其相對於光束 的中心附近的強度的徑向的微分値小。此外,連位於距光 束的中心足夠遠的位置的強度的徑向的微分値也會小。亦 βΡ,當基本波光對於非線性光學結晶1 6的入射角度大約 與相位整合條件爲一致時(當對位幾乎爲正確時)、與產 g 生很大的偏移時(對位產生很大的偏移時),則不管是那 一種情形,在光路徑調整部3 0中所進行的基本波光的光 路徑的調整效果則成爲相同程度的大小,因此其效果小。 換言之,在光路徑調整部3 0中爲了要調整基本波光的光 路徑而變化的反射鏡的反射面的方向的變化量、或稜鏡的 旋轉角度的變化量之各單位變化量之爲光檢測器2 2所檢 測出的轉換光的強度變化的比例則小到相同程度。 亦即,當對位產生很大的偏移時,則雖然應該設定成 使馬達的旋轉角度的絕對値變大,但是當只是利用上述的 -25- 200538840 (22) 規則Π至1 4來進行模糊理論時,則馬達的旋轉角度會被 計算成變小。在此,藉由針對相對於△ S的隸屬函數 (m e m b e r s h i p f u n c t i ο η )設定新的規則,則能夠將馬達的 旋轉角度的大小予以最佳化。但是即使是不設定該新的規 則也能夠調整作爲目標的光學系統。但是由於所計算的馬 達的旋轉角度的値小,因此要將光學系統調整到最佳狀態 爲止的時間需要更長(控制的步驟多)。 接著說明第2點。當在光檢測器22中所檢測的轉換 光的強度混入任何的雜音時,則藉由設定上述的新的規則 可以具有光路徑調整功能且能提高對於雜音的耐性。當在 由光檢測器2 2所檢測的轉換光的強度的値混入有雜音 時,則s/的値成爲一非常大的値。因此,假設只是根據 規則1 1至規則1 4而未設定其他新的規則時,則當算出馬 達的旋轉角度的値爲不適當的大的値時,則有可能無法進 行適當的控制。 在此’若是設定以下所示的新的規則,則即使是發生 在轉換光的強度的値混入有雜音的情形,也能夠排除上述 的可能性。 在此’則根據以下的模糊理論(新的規則)來定義作 爲模糊理論的基礎之與AS有關的隸屬函數(membership function ) ° 規則2 1 ··當由光檢測器所檢測出來的強度信號遠較於 目標値(極大値)s〇爲小時(△ s的値爲負的値,其絕對 値大),則馬達的旋轉角度大。 -26- 200538840 (23) 規則22 :當由光檢測器所檢測出來的強度信號大約與 目標値(極大値)s〇相等時(△ S的値爲負的値,其絕對 値小),則馬達的旋轉角度小。 規則23 :當由光檢測器所檢測出來的強度信號到達目 標値(極大値)sG或超過時(△ S的値較0爲大),則馬 達的旋轉角度爲〇。 請參照圖7在視覺上說明上述的新的規則。圖7所示 的(A1 )至(A3 )表示上述的模糊理論的各規則21至23 的前件部。在(A1)至(A3)中,橫軸表示AS、縱軸表 示一致度程度(取〇到1的値的範圍)。另一方面,圖7 所示的(B 1 )至(B3 )表示上述的模糊規則的各規則2 1 至2 3的後件部。橫軸表示馬達的驅動量(旋轉量)的絕 對値Μ、縱軸表示一致度程度。 藉由模糊理論來計算馬達的驅動量(旋轉量)的方法 在此則利用min-max合成重心法。若藉由光檢測器來檢測 轉換光的強度時,則根據該値來求取s-及△ S。現在假 設求取S — 1及八81作爲及AS。 圖8爲根據規則1 1至1 4來說明統合化的過程的說 明圖。在該圖8中,與規則1 1至1 4對應的隸屬函數 (membership function)則是採用與圖6所示的隸屬函數 (membership function)爲相同。 若S /= S ^,則在表示圖8之規則1 1至1 4對應的隸 屬函數(membership function )的前件部的圖中,藉由縱 的虛線來表示S ’之橫軸與S 接觸的位置。由該圖可 •27- 200538840 (24) 知,在上述的規則1 3及規則1 4中,由於前件部的適合度 爲〇,因此連後件部也是〇。而在上述的規則Π及規則1 2 中,由於前件部的適合度不是〇,因此對應於該適合度切 除隸屬函數(m e m b e r s h i p f u n c t i ο η )的頭部。結果,進行 規則1 1至1 4的模糊理論,而求取在圖8中表示爲統合化 1之後件部的邏輯和(統合化1 )以作爲該些的結果。此 外,作爲統合化1來表示之後件部之邏輯和的函數則是藉 由將已經進行完規則1 1及規則1 2之後件部之去頭的隸屬 函數(membership function)加以合成而求得。 圖9爲根據規則2 1至2 3來說明統合化的過程的說 明圖。在該圖中,與規則2 1至23對應的隸屬函數 (membership function )則是採用與圖7所示的隸屬函數 (membership function )爲相同者。 若AS ,則在表示圖9之規則21至23對應的 隸屬函數(membership function )的前件部的圖中,藉由 g 縱的虛線來表示△ S之橫軸之與△ s !接觸的位置。由該圖 可知,由於上述的規則2 1的適合度爲〇,因此連後件部也 是〇。而在上述的規則2 2及規則2 3中,由於前件部的適 合度不是0 ’因此對應於該適合度切除隸屬函數 (membership function )的頭部。結果,進行規則 21至 2 3的模糊理論,而求取在圖9中表示爲統合化2之後件部 的邏輯和(統合化2 )以作爲該些的結果。作爲統合化2 來表示之後件部的邏輯和的函數則與上述的統合化1同樣 地藉由將已經進行完規則2 1及規則2 3之後件部之去頭的 -28- 200538840 (25) 隸屬函數(m e m b e r s h i p f u n c t i ο η )加以合成而求得。 接著則進行相較於規則Π至1 4 (以後稱爲「第1規 則系列」)到底要多重視規則2 1至2 3 (以後稱爲「第2 規則系列」)或是針對第1及第2系列等同等地重視的加 權比重處理。藉由分別將求取作爲上述的統合化1及統合 化2的結果(在圖8及圖9中分別求取作爲統合化1及統 合化 2而作爲後件部的邏輯和的合成隸屬函數 (m e m b e r s h i p f u n c t i ο η ))設爲 r 倍及(1 - r )倍,而針對 各函數賦予加權比重,而如圖1 〇 ( A )至(d )所示般地 將兩者予以統合化。 在此,r取從0到1的値的範圍的實數値。例如所謂 的選擇ι·= 1則是對應於只取入第1規則系列,但是忽視第 2規則系列的情形。又,所謂的選擇r = 0.5則是意味著針 對第1規則系列與第2規則系列同等地進行處理。又,所 謂的選擇r = 0則是對應於只取入第2規則系列,但是忽視 _ 第1規則系列的情形。 圖1 0 ( A )至(D )爲將分別針對上述的圖8及圖9 表示作爲統合化1及統合化2而求得作爲後件部之邏輯和 的合成隸屬函數(m e m b e r s h i p f u n c t i ο η )加以統合以作爲 統合化1及統合化2之隸屬函數(membership function) 的邏輯和來求取統合化3之過程的說明圖。圖1 〇 ( a )爲 求取作爲統合化1而合成的隸屬函數(membership function)的槪略的形狀、圖ι〇(Β)爲求取作爲統合化2 而合成的f隶屬函數(ni e m b e r s h i p f u n c t i ο η )的槪略的形 -29- 200538840 (26) 狀、圖1 0 ( C )爲將求取作爲統合化1而合成的隸屬函數 (m e m b e r s h i p f u n c t i ο η )設爲r倍,將求取作爲統合化2 而合成的隸屬函數(membership function)設爲(l-r)倍 而加以合成作爲統合化 3的隸屬函數(membership function )的槪略的形狀。圖1〇 ( D )爲求取由圖10 (C)所給予的隸屬函數(membership function)的合成 重心的値,而將該合成重心的値採用作爲馬達的驅動量 (旋轉角度)之順序的說明圖。在圖1 〇 ( D )中在橫軸上 B 以箭頭表示爲Μ的橫軸的値則是由圖1 〇 ( C )所示的隸屬 函數(membership function)所求得的合成重心的位置, 而該位置則表示馬達的旋轉角度。 亦即,藉由進行上述的模糊理論可知能夠求取爲了要 調整基本波光的光路徑而驅動以讓反射面等的角度變化之 馬達的旋轉角度。 在上述的說明中,雖然是針對作爲第1規則系列的規 0 則1 1至1 4的各規則或是作爲第2規則系列的規則21至 23的各規則同等地處理,但是即使是在該些規則之間也能 夠賦予輕重以作爲所重視的程度。此時,則在與作爲第i 規則系列的規則1 1至1 4的各規則或是作爲第2規則系列 的規則21至23的各規則對應的隸屬函數(membership function)乘上相當於上述的,的參數而進行統合化。 又’在上述的模糊理論中,雖然是利用min-max合成 重心法來求取馬達的旋轉角度的値,但是並不限定於該方 法’也能夠採用作爲已爲人知之代數積-加法重心法等模 -30- 200538840 (27) 糊理論的方法之其他的方法。而要採用那一個方法則可以 針對成爲模糊理論控制對象的各波長轉換裝置而根據經驗 等採用最適當的方法。 接著分別將與在上述的模糊理論中所使用的第1規則 系列及第2規則系列的參數一起表示在表1及表2。由在 表1及表2所示的參數可知並沒有設定特別複雜的模糊規 則。儘管如此,若根據上述的模糊理論來實施控制時,則 能夠確認出波長轉換裝置之光學系統的對位(alignment ) 可以簡單地實現。 表1 與光檢測器的時間有關的微分値和驅動量的絕對値及旋轉 反轉參數的關係 _ 規則編號 感測器微分値 驅動的絕對量 旋轉反轉5 11 LP LP + 1 12 SP SP + 1 13 ZE ZE + 1 14 NE SP -1
表2 針對目標輸出的比△ S與驅動量的絕對値的關係
規則編號 △ S 驅動的絕對量 2 1 NL PL 22 NS SP 23 ZP ZE -31 - 200538840 (28) 該表1及表2所示的內容則分別是在數學上與由圖6 及圖7所示的隸屬函數(membership function)所表示者 相同値的內容。在此’在該表1及表2所示的隸屬函數 (m e m b e r s h i p f u n c t i ο η )所表示的意義如下。[p ··大的正 的値、SP:小的正的値、ΖΕ:0、ΝΕ:負的値、NS:負的小的 値、NL:絕對値大的負的値。 由以上的說明可知在本發明之波長轉換裝置之光學系 統的調整過程中不需要進行所謂的回復原點動作。而此是 因爲作爲上述的模糊理論的基礎所使用的値只是一相對於 光檢測窃的輸出丨g號的時間差分値S ' = ( s 2 - S 1 ) / ( 12 _ t 1 )及目標値(極大値)S 〇是由△ S = ( S ! / S 〇 ) - 1所給予的 △ S使然。亦即,爲了要得到S ’及△ s的値不管是對誰皆 能夠在不需要進行回復原點動作下即能求得的値。結果, 雖然是反覆地說明,但如來自光路徑調整部控制裝置的控 制信號般即使光路徑調整部不知何種原因(例如backlash 等)而無法被正確地被調整時,藉由再度將控制信號送到 光路徑調整部’則不管是何者均能夠完成滿足最佳條件的 對位(a 1 i g n m e 111 )。 又,在本發明之波長轉換裝置之光學系統的調整過程 中,如上所述般,針對於所謂的由光檢測器所檢測出的轉 換光的強度的一個資訊,藉由以調整値算出手段算出由光 路徑調整部所執行之分別與多個調整位置呈對應的光路徑 調整値,而能夠安定地實現轉換效率的極大化,亦即,可 -32· 200538840 (29) 知能夠實現一將用來檢測輸入値的檢測位置只設在一個位 置之構造簡單的波長轉換裝置。 又,如上所述般,由於利用不需要進行所謂的回復原 點動作所求得的S ’及△ S來構成光路徑調整,因此假使在 非線性光學結晶內產生結晶缺陷,也會如避開該缺陷部而 發現非線性光學效果般將基本波光的光束導引到在非線性 光學結晶內的其他的位置地進行對位。亦即,藉由回復原 點動作也可以不設定將入射光入射到產生結晶缺陷的位置 ’的初期條件。 此外,若是不利用模糊理論來實現光路徑控制時,則 必須在對位作業中設置錯誤產生處理(routine )或防止暴 走處理(routine )。而爲了要執行該些的錯誤產生處理或 防止暴走處理的程式量則必須與用於上述模糊理論的處理 同等或在其之上。因此,連在設計裝置的機構時,也必須 要準備好如極限開關等之防止暴走的機構。而用來防止暴 _ 走的機構對於構成雷射裝置則特別的重要,當假使發生暴 走情形時,則會對作爲雷射活性媒質的光學結晶帶來損傷 等的重大的後果。 在上述的實施例中所揭露的模糊理論程式則是根據非 常單純的算術(algorithm )而製作。而爲了要以單純的算 術作爲基礎,因此從程式的性質來看會成爲一較難產生波 長轉換裝置的暴走情形的構造。亦即,藉由利用模糊理論 能夠使程式單純化,由於利用模糊理論,因此能夠以單純 的算術進行複雜的作業。 -33- 200538840 (30) 更且,針對s ’與△ S所執行的2種的判斷則有助於抑 制發生上述暴走狀態。而若只是判斷S ’或△ S的其中一者 而想要控制對位作業時,則混入到控制信號的雜音等會成 爲一原因而導致發生暴走狀態的危險變大。而當進行S ’與 △ S的2種的判斷時,則若在S ’與△ s兩者皆未發生發現 暴走狀態的原因時,則在裝置即不會發生暴走狀態。因 此,藉由執行針對S ’與△ S的2種的判斷,可以使得發生 暴走狀態的機率變得非常的小。 又,設置利用圖2所示的稜鏡所構成的光路徑調整部 而組立波長轉換裝置,則能夠使得發生上述的暴走狀態的 機率變得更小。而稜鏡只有在被限定的領域才會調整光路 徑。若是將該被限定的領域設計成與未發生暴走狀態的領 域爲一致’即使是程式發生暴走的狀態,則整個系統也絕 不會發生暴走的情形。 如_L所述般’本發明的波長轉換裝置,則即使是以整 個控制系統來看時,可知會成爲一難以發生暴走狀態的構 造。 又’在上述的波長轉換裝置中,即使是存在了多個以 波長轉換效率而存在的極大値,則在上述的實施例中所揭 露的算術中也只找到1個的極大値。在此爲了要應付此一 情形’則有隨機地設定最初旋轉的馬達的旋轉角度(驅動 量)的方法。亦即,當初始値不同時,則找到不同的最大 値的可能性闻。因此,在圖5所示的流程圖中,可將程式 設定爲會隨機地來設定在步驟s-〗6中的馬達的旋轉角 -34- 200538840 (31)
又’在圖5所示的流程圖中,在步驟s _! 4中則依序 地來切換馬達。但是基於上述的理由當存在有多個極大値 時’則只會應付某個特定的極大値。在此,藉由隨機地來 切換所要驅動的馬達的順序,則有可能跑到其他的極大 値。亦即’相較於隨機地設定上述的馬達的旋轉角度而想 要藉由改變其初始値來找到其他的極大値,則此例是藉由 隨機地來切換所要驅動的馬達的順序而想要找到其他的極 大値。 當隨機地設定上述的馬達的旋轉角度、或是隨機地切 換所要驅動的馬達的順序時,而到底需要什麼程度的隨機 性,則是針對各波長轉換裝置個別地存在有其最佳値。 當然當存在有多個極大値時,則也會有接下來所找到 的極大値的値是一較最初所找到的極大値爲小的値的情 形。此時,則可將程式設定爲會再度回到步驟s -1 4的常 式(routine )。又,當進行如上述的隨機的設定時,則在 步驟S - 3 2中的控制結束的判斷會變得重要。此時也針對 各波長轉換裝置個別地決定適當的判斷基準而製作其程 式。 上述的實施例是一與根據SHG的波長轉換裝置有關 的實施例。在此,利用模糊理論而調整的項目則是調整將 基本波光入射到非線性光學結晶的入射角度。亦即,該調 整如參照圖1所說明般是一在光路徑調整部中讓基本波光 的傳播方向能夠與符合相位整合條件的方向成爲一致的調 -35- 200538840 (32) 整。如上所述般,可以確認出檢測從非線性光學結晶所輸 出的轉換光(在此爲S Η光)的強度,而從該値求取必要 的參數(在此爲S ’及△ S ),藉由針對該參數進行模糊理 論可以計算出對於產生必要的光路徑變更爲必要的馬達的 旋轉角度。 作爲實施例的裝置是則一入射到非線性光學結晶的被 轉換光爲1種基本波光而根據S H G實現波長轉換的裝 置。但是並不限定於該實施例,入射到非線性光學結晶的 Β 光也可以不是1種,而是將波長不同的2種以上當作入射 光,利用所謂的該些不同波長的多個入射光的產生和頻率 光(SFG )或是產生差頻率光(DFG )的非線性光學效 果,而進行波長轉換的波長轉換裝置。爲了要讓該些的入 射光入射到非線性光學結晶而發揮非線性光學效果,則必 須還是與S H G的情形同樣地要在滿足相位整合條件的入 射角度下入射到非線性光學結晶。 _ 當爲利用上述的S F G或D F G的波長轉換裝置時,則 可以分別針對入射到非線性光學結晶之不同波長的2種的 入射光(被轉換光)利用模糊理論來進行光路徑調整。此 時’相較於在被轉換光爲1種的實施例中所說明的波長轉 換衣置’則2彳於g周整該光路徑的調整位置會成爲2倍。亦 即’即使如參照圖1所說明般利用反射鏡、或即使是參照 圖2所說明般讓多個的稜鏡彼此地旋轉,則調整位置,由 於被轉換光有2種’因此連其調整位置也變成2倍。 然而’相較於入射到非線性光學結晶之不同波長的2 -36- 200538840 (33) 種的入射光(被轉換光),則由於同樣地可進行與在本發 明的實施例中所示的波長轉換裝置同樣的光路徑調整,因 此很明顯地基本上可以直接利用根據本發明的模糊理論所 實施的光路徑調整技術。 又,也有將雷射光束設作爲激發(pumping )光源的 雷射裝置。例如讓從Ar離子雷射所輸出的光束(激發 光)入射到作爲Ti··藍寶石雷射的活性媒質的Ti:藍寶石結 晶’而實現Ti ··藍寶石雷射之振盪的裝置。當然,雷射活 性媒質並不限於Ti:藍寶石結晶,已知也有將YAG結晶當 作雷射活性媒質的YAG雷射等的多種的雷射裝置。 當製作或是操作上述的雷射裝置時,則必須要進行使 所產生的雷射光的強度相較於作爲激發光的入射光能成爲 最大之針對雷射裝置的光學系統的對位(alignment )。在 此所進行的對位則是一用來滿足一挾著Ti:藍寶石結晶或 YAG結晶等的雷射活性媒質而在兩側配置有凹面反射鏡所 g 構成的共振器光學系統的共振條件的調整。在該對位中則 調整挾著雷射活性媒質而被配置在兩側的凹面反射鏡的傾 斜度。亦即,以光檢測器來檢測所產生的雷射光的強度, 而如使該強度成爲極大地來調整2個凹面反射鏡的傾斜 度。 該2個凹面反射鏡的傾斜度的調整機構,則在原理上 與構成本發明之波長轉換裝置的光路徑調整部的2個反射 鏡的反射面的傾斜度的調整機構爲相同。因此,即使是上 述的雷射裝置,則很明顯地能夠以與在本發明之波長轉換 -37- 200538840 (34) 裝置的光路徑調整同樣的方法來實現根據模糊理論的光路 徑調整機構。 如上所述般,爲了要實現一在構成要素中包含非線性 光學結晶或是成爲雷射活性媒質的光學結晶在內之裝置的 光學系統的自動調整’可知利用根據模糊理論的方法乃非 常的有效。 【圖式簡單說明】 圖1爲本發明之波長轉換裝置的槪略的構成圖。 圖2爲光路徑調整部的槪略的構成圖。 圖3爲用來說明本發明之波長轉換裝置的光路徑調整 功能的槪略的方塊構成圖。 圖4爲用來說明轉換光的強度變化的說明圖。 圖5爲表示根據模糊理論的光路徑調整步驟的流程 圖。 圖 6 表示針對 S >的隸屬函數 (memb ership f u n c t i ο η )的說明圖。 圖 7 表示針對△ S 的隸屬函數(memb ership f u n c t i ο η )的說明圖。 圖8爲用來說明由規則1丨至! 4而來的統合化的過程 的說明圖。 圖9爲用來說明由規則2 1至2 3而來的統合化的過程 的說明圖。 圖1 〇爲用來說明求取統合化3的過程以作爲統合化1 -38- 200538840 (35) 及統合化2之隸屬函數(m e m b e r s h i p f u n c t i ο η )的邏輯和 的說明圖。 【主要元件符號1兌明】 10 雷射光源 12 第1反射鏡 14 第2反射鏡 16 非線性光學結晶 17 輸出光 18 半透鏡 20 波長濾波器 22 光檢測器 23 電氣信號 24 放大器 25 電氣信號 26 調整値算出手段 2 7 輸出信號 28 光路徑調整部控制裝置 30 光路徑調整部 32、 34、 36、 38 稜鏡 40 光路徑調整部 44 光分歧裝置 -39-

Claims (1)

  1. 200538840 (1) 十、申請專利範圍 1. 一種波長轉換裝置,其特徵在於:具備有 用來輸出基本波光的雷射光源; 讓該基本波光入射,而產生波長與該基本波光的波長 不同的轉換光的非線性光學結晶; 爲了要滿足相位整合條件而讓該基本波光入射到該非 線性光學結晶,而調整該基本波光的傳播方向及該基本波 光的光束的位置的光路徑調整部; » 用來檢測上述轉換光的強度的光檢測器; 從該光檢測器所輸出的上述轉換光的強度的値中,根 據模糊理論來算出分別與設在上述光路徑調整部的多個調 整位置對應的調整値的調整値算出手段;及、 根據由上述調整値算出手段所算出的該調整値來控制 設在上述光路徑調整部的調整位置的光路徑調整部控制裝 置。 -40-
TW094104086A 2004-02-06 2005-02-05 Wavelength conversion device TW200538840A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004030236A JP4806781B2 (ja) 2004-02-06 2004-02-06 波長変換装置

Publications (2)

Publication Number Publication Date
TW200538840A true TW200538840A (en) 2005-12-01
TWI380118B TWI380118B (zh) 2012-12-21

Family

ID=34835985

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094104086A TW200538840A (en) 2004-02-06 2005-02-05 Wavelength conversion device

Country Status (5)

Country Link
US (1) US7457030B2 (zh)
JP (1) JP4806781B2 (zh)
KR (1) KR20060135788A (zh)
TW (1) TW200538840A (zh)
WO (1) WO2005076066A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101104223B (zh) * 2006-07-10 2012-05-23 彩霸阳光株式会社 激光加工装置
JP5088684B2 (ja) * 2007-02-07 2012-12-05 セイコーエプソン株式会社 光源装置、照明装置、画像表示装置及びモニタ装置
US8038305B2 (en) * 2007-02-07 2011-10-18 Seiko Epson Corporation Light source unit, illumination device, image display apparatus, and monitor apparatus
US7756170B2 (en) * 2007-07-20 2010-07-13 Corning Incorporated Frequency modulation in the optical alignment of wavelength-converted laser sources
US7542492B2 (en) * 2007-08-01 2009-06-02 Corning Incorporated Controlled misalignment in wavelength-converted laser sources
JP5545830B2 (ja) * 2010-03-31 2014-07-09 協和ファインテック株式会社 各段がモジュール化された多段増幅式レーザーシステムの自動最適化システム
KR101524556B1 (ko) * 2013-04-25 2015-05-29 한국화학연구원 광대역 필터를 이용하여 빛의 파장을 선택할 수 있는 단색화 장치
US10101181B1 (en) * 2017-03-30 2018-10-16 Mitutoyo Corporation Linear displacement sensor using a position sensitive detector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2800949B2 (ja) * 1990-05-11 1998-09-21 株式会社アマダ レーザ加工機のノズル芯出し装置
JP3105662B2 (ja) * 1992-10-13 2000-11-06 ローム株式会社 網膜ディスプレー装置
JPH08234144A (ja) * 1994-09-12 1996-09-13 Ricoh Co Ltd レーザ焦点位置調整装置
JPH1021558A (ja) * 1996-07-03 1998-01-23 Toshiba Corp 原盤記録装置及び位置制御方法
JP3313049B2 (ja) * 1997-03-26 2002-08-12 理化学研究所 広帯域高速波長変換方法およびその装置
JP2003057696A (ja) * 2001-08-20 2003-02-26 Sumitomo Heavy Ind Ltd レーザ波長変換方法、レーザ光源及びそれを用いたレーザ加工装置
JP2007029627A (ja) * 2005-07-29 2007-02-08 Nidek Co Ltd 医療用レーザ装置

Also Published As

Publication number Publication date
WO2005076066B1 (ja) 2005-10-06
WO2005076066A1 (ja) 2005-08-18
JP2005221807A (ja) 2005-08-18
US7457030B2 (en) 2008-11-25
TWI380118B (zh) 2012-12-21
KR20060135788A (ko) 2006-12-29
JP4806781B2 (ja) 2011-11-02
US20080175282A1 (en) 2008-07-24

Similar Documents

Publication Publication Date Title
TW200538840A (en) Wavelength conversion device
US6781682B1 (en) Optical apparatus, optical apparatus adjustment method, and storage medium recorded with a processing program that executes said adjustment method
Vorontsov et al. Laser beam projection with adaptive array of fiber collimators. I. Basic considerations for analysis
Geng et al. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control
JP5898957B2 (ja) 強力レーザビームの放射にさらされる非線形光学系の寿命を伸ばす装置及び前記装置を含む非線形光源
JP6816192B2 (ja) 深紫外線連続波レーザー、システム、及び方法
JP5802110B2 (ja) 光変調制御方法、制御プログラム、制御装置、及びレーザ光照射装置
CN105379032A (zh) 具有改进的稳定性的cw duv激光
JP6879950B2 (ja) 出力スケーリング可能な非線形光波長コンバータ
JP6600312B2 (ja) ビーム伝播カメラ及び光ビーム解析の方法
JP2008141054A (ja) レーザ周波数安定化装置、レーザ周波数安定化方法、及びレーザ周波数安定化プログラム
JP5646040B2 (ja) レーザービームの周波数変換のための装置及び方法
JP5362254B2 (ja) 計測システム及び計測方法
Maák et al. Acousto-optic deflector configurations optimized for multiphoton scanning microscopy
Liu et al. A broadband low-chromatic-aberration single grating Offner stretcher by 3D analysis
US20200249095A1 (en) System for Measuring Optical Phase of a Specimen Using Defocused Images Thereof
JP7132455B1 (ja) 光源装置、検査装置、および調整方法
JP2013044764A (ja) レーザ装置、疑似位相整合型の波長変換光学素子のフォトリフラクティブ効果抑制方法、露光装置及び検査装置
JPH11344734A (ja) 光軸位置補正装置及び第2高調波発生装置
TWI802893B (zh) 消除零階繞射光線的方法與系統
JP2009271325A (ja) レーザ強度分布変換装置
WO2024034193A1 (ja) レーザ加工装置及びレーザ加工方法
JP2898720B2 (ja) 光非線形性発生装置
JP7046613B2 (ja) 光源装置、検査装置、及び光源装置の制御方法
CN118244589A (zh) 一种激光直写装置及激光直写方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees