TW200534323A - Manufacturing method for cathode of carbon nanotube field emission display and carbon nanotube field emission display - Google Patents

Manufacturing method for cathode of carbon nanotube field emission display and carbon nanotube field emission display Download PDF

Info

Publication number
TW200534323A
TW200534323A TW93110134A TW93110134A TW200534323A TW 200534323 A TW200534323 A TW 200534323A TW 93110134 A TW93110134 A TW 93110134A TW 93110134 A TW93110134 A TW 93110134A TW 200534323 A TW200534323 A TW 200534323A
Authority
TW
Taiwan
Prior art keywords
carbon
nano
coating
carbon tube
emission display
Prior art date
Application number
TW93110134A
Other languages
Chinese (zh)
Other versions
TWI240295B (en
Inventor
yi-shou Cai
Tian-Gan Zhong
Wang-Lin Liu
zi-qi Zhan
Original Assignee
Prec Machinery Res & Dev Ct
yi-shou Cai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prec Machinery Res & Dev Ct, yi-shou Cai filed Critical Prec Machinery Res & Dev Ct
Priority to TW93110134A priority Critical patent/TWI240295B/en
Application granted granted Critical
Publication of TWI240295B publication Critical patent/TWI240295B/en
Publication of TW200534323A publication Critical patent/TW200534323A/en

Links

Abstract

The present invention provides a manufacturing method for cathode of carbon nanotube field emission display, which includes the following steps of: (A) providing an impression plate, and a carbon nanotube coating formed on a first plate having a conductive layer; (B) at the time of pressing the impression plate and the carbon nanotube coating, forming an electrical field therebetween to generate a plurality of carbon tube areas arranged separately and having a plurality of carbon nanotubes in orientation arrangement; and (C) curing the carbon nanotube coating, and separating the impressing plate and the first plate having the carbon nanotube coating to complete the cathode.

Description

200534323 玖、發明說明: 【發明所屬之技術領域】 本發明是有關於一種製作場效發射顯示器(field emission display;簡稱 fed)之陰極板(cathode)及場效 發射顯示器的方法,特別是指一種製作奈米碳管場效發射 顯示器(carbon Nanotube field emission display;簡 稱CNTFED)之陰極板及奈米碳管場效發射顯示器的方法。 【先前技術】 近年來,在半導體薄膜製程等相關領域的技術開發 下,使得§下的電子用品日趨輕薄短小化,此種現象也可 見於顯示器等相關產業,例如·、夜晶顯示器(Hquid crystal display;簡稱 LCD)、電漿顯示器(plasmadisplay Panel ;簡稱PDP)、有機發光二極體(〇rganic nght emitting diode)顯示器及奈米碳管場效發射顯示器等。 一般地,目前CNTFED之相關業界大致上是藉由薄膜 製程製作CNTFED之陰極板,亦或是將藉由薄膜沉積tMn film depositlon)所製得的CNT製備成網印膠(screen printing paste),配合網印及薄膜製程等方法製作cntf肋 之陰極板。 在第428189號之中華民國專利中,揭露出一種冷卜 極陣列之製造方法(圖未示),首先,提供一具有電路設計 之複數陰極線、複數與該等陰極線相互交錯並位在該等陰 極線上的絕緣層(i職lator),及複數形成在該等絕緣層 上的閘極(gate)線之基板。接續,於該等陰極線的__ 200534323 區進行一陽極處理(anod i z i ng)以在該等陰極線之裸露區 分別形成一陽極處理膜(anodized film),使每一陽極處 理膜具有複數孔洞。進一步地,將觸媒(catalyst)分別形 成於該等孔洞内。最終,再將該基板設置在一電漿(plasma) 5 系統中,利用含碳氣體與該觸媒反應,以使得複數毫微米 碳管自該等孔洞内成長出來。 前面所提及的電漿系統,是藉含碳氣體經由電漿系統 解離出碳離子,進而使得被解離的碳離子可藉由催化劑形 成過飽和析出(oversaturat ion precipi tat ion)以產生石 10 墨化(graphitization)的碳管。 其中,含碳氣體可以有甲烷(CHU)、乙炔(C2H2)等,電 漿系統解可以是電漿輔助化學氣相沉積(plasma enhanced chemical vapor deposition;簡稱 PECVD)系統、微波電 漿辅助化學氣相沉積(microwave plasma enhanced 15 chemical vapor deposition ;簡稱 MPECVD)系統,及電子 迴旋共振化學氣相沉積(electron cyclotron resonance chemical vapor deposition;簡稱 ECRCVD)系統。 熟知場效發射技術領域者皆知,場效發射率是與長寬 比(aspect ratio)、場效發射面積(field emission 20 area)、真空度等因素成正比,且與兩極板間的距離成反 比。然而,此種藉由薄膜沉積完成冷陰極陣列之製造方 法,雖然可製備出具有陣列式(array)順向(orientation) 排列的奈米碳管,但所需的真空(vacuum)鍍膜週邊設備昂 貴,且抽真空時間耗時久,因此具有設備成本及時間成本 200534323 高等缺點。 芩閱圖1A至圖1E,一種奈米碳管場發射顯示器之陰 極板的製作方法(中華民國專利公告案號為518632) ,依序 包含下列步驟: (a)準備一透明基板1〇1,該透明基板1〇1備有一表 面及一下表面; (b) 將感光性(photo sensitivity)導電漿料塗佈 於名透明基板101的一表面上,再利用微影製程 (Photol i th〇graphy)及燒結(sintering)製程完 ίο 15 成一具有一圖案之底電極層1〇2(如圖u所示); (c) 利用網印方式將一奈米碳管層1〇3印製於該底 電極層102之圖案上(如圖1β所示); w全面性塗佈—層可以㈣j(etching)之介電材料 (dielectric)作為一介電層1〇4(如圖1C所示); (e)於遠介電層1Q4上方全面性塗佈―層感光性間極 (gate)材料,再利用微影製程及燒結製程形成一 閘極圖案1〇5(如圖1D所示);及 ⑴以該閘極圖案1G5作為一具有圖案之保護層,結 合一蝕刻製程蝕刻掉未被該閘極圖案1〇5保護之 I電層104 ’並在一燒結製程後完成該陰極板結 構(如圖1E所示)。 ………傾衣狂汉網叩裂程所製得的奈 g场^射顯不③之陰極板,雖然可降低部分耗時的製 間及即$部分不必要的鍍膜週邊設備。但是藉由網印 20 200534323 的奈米礙管層103,容易因網版本身的乳劑(emulsi〇n)厚 度設計不佳、於網印過程壓力控制不#、含有奈米碳管之 網印膠之黏度(viscosity)與網版網目(mesh)尺寸大小無 法配合等因素,而造成陰極板解析度不良等問題。 5 再者,藉由網印形成在該底電極層102之圖案上的奈 米石炭管層103 ’所呈現出的排列方式是呈一毛球狀的不規 則(rand〇m)外觀,因此,無法形成呈現一陣列式順向排列 的奈米碳管以符合場效發射率的需求。 以上所提到的所有前案專利,在此併入本案作為參考 10 文獻。 口此如何簡化製作奈米碳管陰極板之製程的同時, 又能兼具製作出具有順向排列的奈米石炭管,是開發奈米碳 官陰極板相關領域人士所應克服的一大難題。 【發明内容】 15 因此’本發明之目的,即在提供-種製作奈米碳管場 效發射顯示器之陰極板的方法。 本發明之另一目的,即在提供一種製作奈米碳管場效 發射顯示器的方法。 本發明製作奈米碳管場效發射顯示器之陰極板的方 20 法,包含以下步驟: (A) 提供一壓印模板(Impressi〇n “犲幻及一形成在 具有一導電層的第一板體上的奈米碳管塗層; (B) 藉由壓合該壓印模板及該奈米碳管塗層的同 牯,於兩者間形成一電場(electric field),以 200534323 使該奈米碳管塗層上形成有複數相間隔設置並 具有複數呈順向排狀奈/切管的碳管區;及 (◦固化(_)該奈米複管塗層並分離該剛 板及具有該奈米碳管塗層的第—板體,以完成該 5 陰極板。 另外,配合本發明製作奈米碳管場效發射顯示器之陰 極板的方法可完成—製作奈㈣管場效發射顯示器的方 法。該製作奈米礙管場效發射顯示器的方法,包含以 驟: / 10 (I) 提供一陰極板; (Π)於該陰極板上設置—^間支撐器⑽⑽); (III)形成複數絕緣層及複數分別形成在該等絕緣層 上的閘極層;及 15 (ΙΌ於該空間支標器的—頂緣設置一陽極板 (anode)’㈣”切时於職極板及該陽 極板之間。 20 其中,於該步驟⑴中的陰極板是藉由前面發明内容 所提及的方法製作而成。藉由該步驟⑴中的空間支擇哭 底緣將該等碳管區相間隔開,且每-絕緣層是形成在 母-碳管區的外圍處並位在該奈米碳管塗層上。 本么明之功效在於簡化製作奈米碳管陰極板之製程 的同時,又能兼具製作出具有順向排列的奈米碳管。 【實施方式】 參閲圖2及圖3(圖3Α至圖D),本發明之奈米碳管場 10 200534323 效發射顯示器之陰極板的製作方法,包含以下步驟: ⑴提供—壓印模板3及-形成在―具有-導電層22 的第-板體21上的奈米碳管塗層23(如圖3a所 示); 嶋由壓合該壓印模板3及該奈米碳管塗層Μ的同 時,於兩者間形成一電場’以使該奈米碳管塗層 23上形成有複數相間隔設置並具有複數呈順向: 列之奈米碳管232的碳管區231(如圖3B至圖3c 所示);及 籲 ίο 15 20 (C)固化該奈米碳管塗層23並分離該壓印模板3及具 有該奈米碳管塗層23的第一板體21(如圖3C至圖 3D所示),以完成該陰極板2。 其中,該奈米碳管塗層23是將一含有奈米碳管之塗 料(slurry)形成在該導電層22上所製成。在本發明中, 該導電層22是由選自於下列所構成之群組的方法製成: 濺鍍法(sputtering)、蒸鍍法(evaporati〇n)、浸鍍法 (dip-coating)及凝膠(gel)法。在一具體例中,該導電層籲 22是利用濺鍍法將一氧化銦錫(no)透明導電層形成於該 第一板體21上。 較佳地,該步驟(A)中的壓印模板3是具有複數呈一 陣列式排列的盲孔31。適用於本發明之形成該等盲孔3 j 的方法是選自於下列所構成之群組的加工法:反應式離子 I虫刻法(reactive ionic etching ;簡稱 rie)、電子束直 寫法(e-beam writing)、雷射光束直寫法(iaser beam 11 200534323 5 10 15 20 writing)及微精密鑽孔加工(precisi〇n drUling)。在一 具體例中’是使用電子束直寫法形成該等盲孔31。每一盲 孔31的一封閉端311是分別呈一選自於下列所構成之群 、、且的幵^狀·平面(planar)狀、錐狀以叩以)及弧狀。 在-具體例中,該等封閉端311是分別呈一平面狀。 適用於本發明之該壓印模板3的材質是選自於下列所 構成之群組:透明材料及熱傳導體材料(丨以㈣“ conductor)材料。較佳地,本該壓印模板3的材質是透明 材料。在一具體例中,該壓印模板3的該透明材料是一透· 明石英玻璃(quartz)。 較佳地,於該壓印模板3之每一盲孔31的封閉端 提供複數第-型電荷’並於該含有奈米碳管之塗料提供複 數相反於該等第-型電荷的第二型電荷,使位於該等碳管 區231内的奈米碳管232,藉由呈相反電性的電荷於相I 吸引下形成該電場,以使該等奈米碳管232呈現順向排列。 亡較佳地,對該壓印模板3提供一外加電場£且於每一 盲孔31的封閉端311形成—誘導層犯,以形成該等第—修 型電荷。在一具體例中,於該等誘導層32上提供—負電 ®,並於沒有形成該等盲孔31的平面上形成—透明導I 膜33 ’且於該透明導電膜33上提供—正電壓以形成^ 加電場E,使形成在該等誘導層32上的該等第―型電^ 負電荷(electron)。較佳地,該誘導層是由選自於下^所 構成之群組的材料所製成:導體材料及半導體 (semiconductor)材料。更佳地,該誘導層是由導體材 12 200534323 所製成。在-具體例中,該誘導層是由呈透明的氧化鋼錫 (no)所製成。 . 5 10 20 另外,值侍一提的是,在不限該壓印模板3材質的情 况下.亥外加弘E的連接方式,是可將該正電壓連接該 陰極板2的導電層22上(圖未示),也可使該正電壓形成 在该陰極板2的另一面以形成該外加電場,並於該等誘導 層32上形成該等負電荷(圖未示)。 較佳地,該塗料内所含的複數奈米碳管是呈一絕緣 性:該等第二型電荷是藉由靜電(static electricity)原鲁 理^成。在-具體例中,是將該等奈米碳管靠近一帶有負 電何的物體’以使形成在該含有奈米碳管之塗料的第二型 電荷為正電荷(Positive charge)。 較佳地’該塗料内所含的複數奈米碳管是呈一非絕緣 ^將該等奈米碳管暴露在一溶液(solution)中以形成該 等第二型電荷。該溶液是選自於下列所構成之群組:酸性 溶液及鹼性溶液。在一具體例中,是將該等奈米碳管暴露 在一酸性溶液中,以使形成在該含有奈米碳管之塗料的第Φ 二型電荷為正電荷。 較佳地’該塗料内所含的複數奈米碳管是呈一非絕緣 將該等奈米碳管暴露在一含有分散劑(diSpersant)之 溶=以形成該等第二型電荷。在一具體例中,將該等奈 米碳管放置入一含有疏水型分散劑,以使形成在該含有夺 米碳管之塗料的第二型電荷為正電荷。前面所提及的粒子 表面帶電的方法,為膠體化學相關領域者所熟知,因此, 13 200534323 因此在此不再多加詳述。 適用於本發明之該固化是選自於下列所構成之群組 的固化法:熱固化(Thermal Curing)、光固化(LigM Curing)及化學固化(Chemical Curing)。在一具體例中, 5 該光固化是使用紫外線(簡稱UV)照射固化法。值得一提的 是,該熱固化所配合使用的壓印模板是具有光源穿透性 (transmittance characteristic)的透明材料,也可是熱 傳導體材料。適用於本發明之該熱傳導體材料是選自於下 列所構成之群組··不鏽鋼(stainless steel)、鋁合金_ 10 (alumin⑽ alloy)及鎂合金(magnesium aU〇y)。 在一具體例中,是於未形成有該等盲孔31的壓印模 板3之一上表面提供一肝光源以使該奈米碳管塗層23完 成該UV照射固化法。另外值得一提的是,該⑽光源是可 以由該第一板體21的一下表面往上照射以使該奈米碳管 15 、塗層23完成該UV照射固化法,該UV光源也可以是由該 壓印模板3之上表面及該第一板體21之下表面同時向下 及向上照射,以使該奈米碳管塗層23完成該照射固化鲁 法。 值得一提的是,由於在本發明之塗料内所含有複數奈 20 米石厌官之長度是介於0_ 99 μπι至丨· 01 μιη。然而,在該壓 ㈣板3以緩慢速度相互壓合時,該等不等長度之奈米碳 吕會因為所帶的第二型電荷被該等盲孔31之封閉端Mi 的第S電荷所吸引’以使得該等奈米石炭管可沿著該等封 閉鳊311的形狀形成该等碳管區1。因此,利用在一具 14 200534323 體例中的平面式封閉端311所壓合出來的 θ 个日7遠寺碳官區231 疋为別呈一平面狀齊頭式排列。 5 10 15 20 藉由本發明之製作奈米碳管場效發射顯示器之險極 板的方法’可進-步地完成製作本發日月之奈米碳管場二發 射顯示器的方法。參閱圖4(圖4Α至圖4D),本發明之製 作奈米碳管場效發射顯示器的方法,包含以下步驟: (I) 提供一陰極板2 (如圖4 A所示);200534323 (1) Description of the invention: [Technical field to which the invention belongs] The present invention relates to a method for manufacturing a cathode plate of a field emission display (fed) and a field emission display, particularly to a method Method for manufacturing cathode plate of carbon nanotube field emission display (CNTFED for short) and method of nanometer carbon tube field emission display. [Previous technology] In recent years, under the technological development of semiconductor film manufacturing and other related fields, electronic products under § have become thinner and shorter, and this phenomenon can also be seen in related industries such as displays, night crystal displays (Hquid crystal display (abbreviated as LCD), plasma display panel (abbreviated as PDP), organic light emitting diode (〇rganic nght emitting diode) display and nano carbon tube field emission display. In general, the current CNTFED related industries generally use the thin film process to make the cathode plate of CNTFED, or prepare CNTs made by thin film deposition tMn film depositlon) into screen printing paste. Screen printing and thin film manufacturing methods are used to fabricate cntf ribbed cathode plates. In the Republic of China Patent No. 428189, a method for manufacturing a cold array (not shown) is disclosed. First, a plurality of cathode lines with a circuit design are provided, and a plurality of the cathode lines are interleaved with each other and located on the cathode lines. A substrate with a plurality of insulating layers thereon, and a plurality of gate lines formed on the insulating layers. Subsequently, an anode treatment (anod i z ing) is performed in the __200534323 area of the cathode lines to form an anodized film in the exposed areas of the cathode lines, respectively, so that each anode treatment film has a plurality of holes. Further, catalysts are formed in the holes. Finally, the substrate is set in a plasma 5 system, and a carbon-containing gas is used to react with the catalyst, so that a plurality of nanometer carbon tubes grow out of the holes. The aforementioned plasma system uses carbon-containing gas to dissociate carbon ions through the plasma system, so that the dissociated carbon ions can form oversaturat ion precipi tat ion through the catalyst to produce stone 10 inking (Graphitization) carbon tubes. Among them, carbon-containing gas can be methane (CHU), acetylene (C2H2), etc. The plasma system solution can be plasma enhanced chemical vapor deposition (PECVD) system, microwave plasma assisted chemical vapor phase Deposition (microwave plasma enhanced 15 chemical vapor deposition; MPECVD) system, and electron cyclotron resonance chemical vapor deposition (ECRCVD) system. Those who are familiar with field-effect emission technology know that field-effect emissivity is directly proportional to factors such as aspect ratio, field emission area (field emission 20 area), and degree of vacuum, and is proportional to the distance between the two plates. Inversely. However, although this method of manufacturing a cold cathode array by thin film deposition can produce nano carbon tubes with an array orientation, the required vacuum coating peripheral equipment is expensive And, the evacuation time takes a long time, so it has the high disadvantage of equipment cost and time cost 200534323. 1A to 1E, a method for fabricating a cathode plate of a nano-carbon tube field emission display (Republic of China Patent Publication No. 518632) includes the following steps in order: (a) preparing a transparent substrate 101, The transparent substrate 101 has a surface and a lower surface; (b) a photosensitizing conductive paste is coated on one surface of the transparent substrate 101, and then a photolithography process is used. And the sintering process is completed. Ο 15 is formed into a bottom electrode layer 10 with a pattern (as shown in Figure u); (c) a nano carbon tube layer 103 is printed on the bottom by screen printing. On the pattern of the electrode layer 102 (as shown in FIG. 1β); w comprehensive coating—the layer can be a dielectric material (etching) as a dielectric layer 104 (as shown in FIG. 1C); ( e) Comprehensive coating on the remote dielectric layer 1Q4-a layer of photosensitive gate material, and then using a lithography process and a sintering process to form a gate pattern 105 (as shown in FIG. 1D); and ⑴ The gate pattern 1G5 is used as a protective layer with a pattern, and the gate pattern 1 is not etched away in combination with an etching process. 5 protection of the electrical layer 104 'and complete the cathode plate structure after a sintering process (as shown in FIG. 1E). ……… the cathode plate produced by the cracking process of the netting cracking process in the nano-g field, though it can reduce some time-consuming manufacturing processes and unnecessary coating peripheral equipment. However, with the nano-blocking layer 103 of the screen printing 20 200534323, it is easy to be poorly designed due to the thickness of the emulsion of the screen body, the pressure control during the screen printing process, and the screen printing glue containing the carbon nanotubes. The factors such as poor viscosity and mesh size cannot be matched, which causes problems such as poor cathode plate resolution. 5 Furthermore, the arrangement of the nano-carbon tube layer 103 ′ formed on the pattern of the bottom electrode layer 102 by screen printing is an irregular (random) appearance with a hairball shape. Therefore, It is impossible to form nano-tubes that are arranged in an array to meet the requirements of field-effect emissivity. All previous patents mentioned above are incorporated herein by reference. How to simplify the manufacturing process of the carbon nanotube cathode plate, and at the same time have the ability to produce the nano-carbon tube with a forward alignment, is a major problem that people in the field related to the development of the carbon nanotube cathode plate should overcome. . [Summary of the Invention] Therefore, the object of the present invention is to provide a method for manufacturing a cathode plate of a nano-carbon tube field emission display. Another object of the present invention is to provide a method for manufacturing a field emission display of a carbon nanotube. The method for manufacturing a cathode plate of a nano-carbon tube field emission display according to the present invention includes the following steps: (A) providing an imprint template (Impression) and a first plate formed with a conductive layer Nano carbon tube coating on the body; (B) An electric field is formed between the embossing template and the nano carbon tube coating by laminating the nano-tube with 200534323. The carbon tube coating is formed with a plurality of carbon tube regions arranged at intervals and having a plurality of nano / cut tubes in a forward row shape; and (◦) curing (_) the nano multi tube coating and separating the rigid plate and having the Nano-tube coated first-plate body to complete the 5 cathode plate. In addition, the method for manufacturing a cathode plate of a nano-carbon tube field-effect display with the present invention can be completed—making a nano-tube field-effect display. Method. The method for making a nanometer obstructive field-effect emission display comprises the steps of: / 10 (I) providing a cathode plate; (Π) setting a cathode supporter on the cathode plate); (III) forming A plurality of insulating layers and a plurality of gate layers formed on the insulating layers, respectively; and 15 (Ι An anode plate (㈣node) is set at the top edge of the space support device. The anode plate is placed between the anode plate and the anode plate. 20 Among them, the cathode plate in this step (2) is invented by the foregoing invention. It is made by the method mentioned in the content. By the space in this step 择 the bottom edge of the carbon tube area is separated from each other, and each-insulation layer is formed at the periphery of the mother-carbon tube area and is located at The nano carbon tube is coated. The function of Benmemin is to simplify the manufacturing process of the cathode plate of the nano carbon tube, and at the same time, it can also produce the nano carbon tube with the forward alignment. [Embodiment] Refer to the figure 2 and FIG. 3 (FIG. 3A to FIG. D), the manufacturing method of the cathode plate of the nano-carbon tube field 10 200534323 of the present invention includes the following steps: ⑴Providing-imprinting template 3 and-forming on-has- Nano carbon tube coating 23 on the first plate body 21 of the conductive layer 22 (as shown in FIG. 3 a); 嶋 simultaneously pressing the imprint template 3 and the nano carbon tube coating M at the same time, An electric field is formed therebetween so that a plurality of phase intervals are formed on the nano-carbon tube coating layer 23 and have a plurality of forward directions: The carbon tube region 231 of the nano carbon tube 232 (as shown in FIG. 3B to FIG. 3 c); and ο 15 20 (C) curing the nano carbon tube coating 23 and separating the embossed template 3 and having the carbon The first plate body 21 of the carbon nanotube coating layer 23 (as shown in Figs. 3C to 3D) completes the cathode plate 2. The nano carbon tube coating layer 23 is a coating containing a nano carbon tube. (Slurry) is formed on the conductive layer 22. In the present invention, the conductive layer 22 is made by a method selected from the group consisting of: sputtering, evaporation ( evaporation), dip-coating, and gel methods. In a specific example, the conductive layer 22 is formed on the first plate body 21 by a sputtering method using an indium tin oxide (no) transparent conductive layer. Preferably, the imprint template 3 in the step (A) is a plurality of blind holes 31 arranged in an array. The method suitable for forming the blind holes 3 j in the present invention is a processing method selected from the group consisting of: reactive ionic etching (reactive ionic etching; abbreviated as rie), electron beam direct writing (e -beam writing), laser beam direct writing (iaser beam 11 200534323 5 10 15 20 writing) and micro precision drilling (precisión drUling). In a specific example, the blind holes 31 are formed using an electron beam direct writing method. A closed end 311 of each blind hole 31 has a shape selected from the group consisting of the following, and has a shape of a plane, a shape of a plane, a shape of a cone, and an arc. In the specific example, the closed ends 311 are respectively planar. The material of the imprint template 3 suitable for the present invention is selected from the group consisting of a transparent material and a heat conductor material (丨 "㈣ conductor) material. Preferably, the material of the imprint template 3 Is a transparent material. In a specific example, the transparent material of the imprint template 3 is a transparent quartz glass. Preferably, it is provided at the closed end of each blind hole 31 of the imprint template 3. The plurality of first-type charges' and the second-type charges opposite to the first-type charges are provided in the coating containing the carbon nanotubes, so that the carbon nanotubes 232 located in the carbon-tube regions 231 are rendered by On the contrary, the electric charge forms the electric field under the attraction of the phase I, so that the carbon nanotubes 232 are arranged in a forward direction. Preferably, an external electric field is provided to the imprint template 3, and each blind hole is provided. The closed end 311 of 31 forms an induced layer defect to form the first modified charge. In a specific example, a negative electricity is provided on the induced layer 32 and the plane where the blind holes 31 are not formed. Formed on the transparent conductive I film 33 'and provided on the transparent conductive film 33-positive charge To form an electric field E to make the first-type electrons negatively formed on the induction layers 32. Preferably, the induction layer is selected from the group consisting of Made of materials: conductor material and semiconductor material. More preferably, the induction layer is made of conductor material 12 200534323. In a specific example, the induction layer is made of transparent steel tin oxide (no ). 5 10 20 In addition, it is worth mentioning that, in the case that the material of the imprint template 3 is not limited. The connection method of Haiwai plus Hong E is that the positive voltage can be connected to the cathode plate 2 On the conductive layer 22 (not shown), the positive voltage can also be formed on the other side of the cathode plate 2 to form the applied electric field, and the negative charges can be formed on the induction layers 32 (not shown) Preferably, the plurality of carbon nanotubes contained in the coating are insulative: the second type charges are formed by static electricity. In a specific example, the The carbon nanotubes are close to a negatively charged object, so that The type charge is a positive charge. Preferably, the plurality of carbon nanotubes contained in the coating are non-insulating. The carbon nanotubes are exposed to a solution to form the carbon nanotubes. The second type of charge. The solution is selected from the group consisting of an acidic solution and an alkaline solution. In a specific example, the carbon nanotubes are exposed to an acidic solution so that The Φ type II charge of the coating containing the carbon nanotubes is positive. Preferably, the plurality of carbon nanotubes contained in the coating are non-insulated, and the carbon nanotubes are exposed to a dispersion containing the carbon nanotubes. The solubility of the agent (diSpersant) = to form these second type charges. In a specific example, the carbon nanotubes are placed in a hydrophobic dispersant so that the second type charge formed on the coating containing carbon nanotubes is positively charged. The aforementioned method of charging the surface of particles is well known to those in the field of colloid chemistry, so 13 200534323 will not be described in detail here. The curing suitable for the present invention is a curing method selected from the group consisting of: thermal curing, light curing (LigM Curing), and chemical curing (Chemical Curing). In a specific example, the photo-curing is a curing method using ultraviolet rays (abbreviated as UV). It is worth mentioning that the embossing template used with the thermal curing is a transparent material with a light source transmission characteristic, or a thermal conductor material. The heat conductor material suitable for use in the present invention is selected from the group consisting of stainless steel, aluminum alloy 10 and aluminum alloy. In a specific example, a liver light source is provided on an upper surface of one of the embossed mold plates 3 on which the blind holes 31 are not formed, so that the carbon nanotube coating layer 23 completes the UV irradiation curing method. It is also worth mentioning that the chirped light source can be irradiated upward from the lower surface of the first plate body 21 so that the carbon nanotube 15 and the coating 23 complete the UV irradiation curing method. The UV light source can also be The upper surface of the imprint template 3 and the lower surface of the first plate body 21 are irradiated downward and upward at the same time, so that the nano-carbon tube coating layer 23 completes the irradiation curing method. It is worth mentioning that the length of the complex nanometer 20-meter stone anorexia contained in the coating of the present invention is between 0-99 μm to 丨 · 01 μm. However, when the pressing plates 3 are pressed to each other at a slow speed, the nano-carbon ions of different lengths will be charged by the S-th charge of the closed end Mi of the blind holes 31 because of the second-type charge. Attract 'so that the carbon nanotubes can form the carbon tube regions 1 along the shape of the closed 鳊 311. Therefore, the θ-day 7 Yuansi Carbon Government Area 231 压, which is pressed together in a flat closed end 311 in a system of 14 200534323, is arranged in a flat and uniform manner. 5 10 15 20 By using the method of manufacturing the dangerous plate of the nano-carbon tube field emission display of the present invention ', the method of manufacturing the second carbon-carbon field emission display of the sun and the moon can be completed step by step. Referring to FIG. 4 (FIG. 4A to FIG. 4D), the method for manufacturing a field emission display of a carbon nanotube according to the present invention includes the following steps: (I) providing a cathode plate 2 (as shown in FIG. 4A);

(II) 於該陰極板2上設置一空間支撐器4(如圖4β 所示); (ΙΠ)形成複數絕緣層5及複數分別形成在該等絕緣 層5上的閘極層6(如圖4C所示);及 (IV)於該空間支撐器4的一頂緣設置一陽極板 使該空間支撐器4介於該陰極板2及該陽極板 7之間(如圖4D所示)。(II) A space supporter 4 is provided on the cathode plate 2 (as shown in FIG. 4β); (II) forming a plurality of insulating layers 5 and a plurality of gate layers 6 respectively formed on the insulating layers 5 (as shown in FIG. 4) 4C); and (IV) an anode plate is provided on a top edge of the space supporter 4 so that the space supporter 4 is interposed between the cathode plate 2 and the anode plate 7 (as shown in FIG. 4D).

其中’於该步驟(I )中的陰極板是藉由前面實施方式 所提及的方法製作而成,在此不再多加詳述之。藉由該步 驟(Π)中的空間支撐器4之一底緣將該等碳管區231相間 隔開’且每一絕緣層5是形成在每一碳管區231的外圍處 並位在該奈米碳管塗層23上。 較佳地,該陽極板7具有一呈透明的第二板體71、一 形成在該第二板體71的一下表面的透明導電層72、一形 成在該透明導電層72之一下表面並用以增強對比 (contrast)的吸收層73,及複數形成於該吸收層73之一 下表面且與該等碳管區231相對應的螢光(phosphor)塗層 15 200534323 74。 適用於本發明之該陽極板的透明導電層72是選自於 下列所構成之群組:氧化姻錫(I ndi um Tin Oxi de,簡稱 ITO)、氧化銻錫(Antimony Tin Oxide,簡稱 ΑΤΟ)、氧化 5 氟錫(Flu〇rine-Doped Tin Oxide,簡稱 FTO),以及氧化 銥錫(Iridium Tin Oxide,簡稱IRTO)。在一具體例中, 該第二基板71及該透明導電層72分別為一透明玻璃基板 及一 ΙΤ0導電層。 值得一提的是,該等螢光塗層74是可因應電路 10 (electric Clrcuit)設計的需求,而為下述兩種型態:第 一種是形成呈紅綠藍(簡稱RGB)三原色之螢光粉,且分別 獨立設置,第二種是將RGB三原色同時形成在單一螢光塗 層74上。 較佳地,該步驟(!V)之後更包含一步驟(V)。將該陰 15 極板2、空間支撐器4及陽極板7相配合界定出的一容置 空間8於予減壓,以使該容置空間8達一至少低於 mTorr的壓力環境,並進一步地封裝該陰極板2、空間支 樓态4及陽極板7以完成該步驟(v )。 有關本發明之前述及其他技術内容、特點與功效,在 20 U 了配口*考圖式之三個具體例的詳細說明巾,將可清楚 的明白。 月 在本發明被詳細描述之前,要注意的是,在以下的說 明中,類似的70件是以相同的編號來表示。 〈具體例一〉 16 200534323 以下就本發明之一具體例一說明之。 提供π有正電荷的含有奈米石炭管(可簡稱cnt)之塗 料。參M 5(W 5A至圖5〇 ’首先將複數呈絕緣性的奈 ,碳官230a(在此為簡化繪製於圖示中的奈米礙管之數 量,圖5A至圖5C是僅以一奈米石炭管表示於圖示中)靠近 -帶複數負電荷的物體9(如圖5A所示),使靠近該物體9 之奈米碳管230a表面藉由靜電原理帶有複數正電荷。參 閱圖5B’對該等奈米碳管23〇a接地(_祕⑻使藉由靜 電原理形成於該等奈米碳管23Qa的負電荷被電性巾和,« 以形成複數帶有正電荷的奈米碳管23〇a,(如圖冗所示), 並將該等帶有正電荷的奈米碳管23〇a,製備成該帶有正電 荷的含有CNT之塗料。 另外,該具體例一中的壓印模板是先利用電子束直寫 法於一透明玻璃壓印模板的一第一表面上,形成複數呈一 陣列式排列的盲孔,並於該透明玻璃壓印模板的第一表面 形成一 ΙΤ0導電層。進一步地,在形成有該IT〇導電層的 表面形成一絕緣層,並利用微影蝕刻法將每一盲孔的一封籲 閉端之絕緣層移除,以定義出位在每一盲孔之封閉端的 ΙΤ0導電層為複數誘導層。在該具體例一中,該等封閉端 是分別呈一平面狀。 利用濺鍍法將ΙΤ0透明導電膜形成於一透明玻璃陰極 基板上以形成一陰極導電層,將該帶有正電荷的含有CNT 之塗料利用旋塗法(spin coating)塗佈在陰極導電層上以 形成一 CNT塗層。 17 200534323 壓合該CNT塗層及該壓印模板的同時,於該壓印模板 之ΙΤ0導電層上提供一負電壓,以在該等誘導層上提供複 數負電荷,使包含在該CNT塗層内的CNT藉由正負電荷的 吸引下,於該CNT塗層上形成有複數相間隔設置並具有複 5 數呈順向排列之CNT的碳管區。接著,於相反於該壓印模 板之第一表面的第二表面提供一 UV光源,對該CNT塗層 予以硬化。最後,分離該壓印模板及具有該CNT塗層的透 明玻璃陰極基板以完成本發明之製作該陰極板的方法。 於該陰極板上提供一空間支撐器,藉該空間支撐器之 10 一底緣將該等碳管區相間隔開。 利用半導體製程於該CNT塗層上形成複數設置於該等 碳管區外圍的絕緣層,及複數分別形成在該等絕緣層上的 閘極層。 於該空間支撐器的一頂緣設置一陽極板,使該空間支 15 撐器介於該陰極板及該陽極板之間。該陽極板具有一透明 玻璃陽極基板、一形成在該透明玻璃陽極基板的一下表面 的ΙΤ0陽極導電層、·一形成在該ΙΤ0陽極導電層之一下表 面並用以增強對比的吸收層,及複數形成於該吸收層之一 下表面且與該等碳管區相對應的螢光塗層。 20 最終,將該陰極板、空間支撐器及陽極板相配合界定 出的一容置空間於予減壓,以使該容置空間達一 1 X 10_7 Torr的壓力環境,並進一步地對該陰極板、空間支撐器及 陽極板進行封裝,以完成製作本發明之奈米碳管場效發射 顯示器的方法。 18 200534323 〈具體例二〉Among them, the cathode plate in the step (I) is manufactured by the method mentioned in the previous embodiment, and will not be described in detail here. The carbon tube regions 231 are spaced apart by one of the bottom edges of the space support 4 in this step (Π), and each insulating layer 5 is formed at the periphery of each carbon tube region 231 and is located at the nanometer. Carbon tube coating 23. Preferably, the anode plate 7 has a transparent second plate body 71, a transparent conductive layer 72 formed on a lower surface of the second plate body 71, and a lower surface formed on one of the transparent conductive layers 72 and used for A contrast-enhancing absorption layer 73 and a plurality of phosphor coatings 15 200534323 74 formed on the lower surface of one of the absorption layers 73 and corresponding to the carbon tube regions 231. The transparent conductive layer 72 suitable for the anode plate of the present invention is selected from the group consisting of: Indium Tin Oxide (ITO), Antimony Tin Oxide (ATP) 5. Fluorine-Doped Tin Oxide (FTO) and Iridium Tin Oxide (IRTO). In a specific example, the second substrate 71 and the transparent conductive layer 72 are a transparent glass substrate and an ITO conductive layer, respectively. It is worth mentioning that these fluorescent coatings 74 can meet the design requirements of circuit 10 (electric clrcuit), and are of the following two types: the first is to form three primary colors of red, green and blue (RGB for short). Fluorescent powders are separately set. The second is to form three primary RGB colors on a single fluorescent coating 74 at the same time. Preferably, this step (! V) further includes a step (V). An accommodating space 8 defined by the combination of the female 15 electrode plate 2, the space supporter 4 and the anode plate 7 is decompressed so that the accommodating space 8 reaches a pressure environment at least lower than mTorr, and further Ground the cathode plate 2, space support 4 and anode plate 7 to complete the step (v). Regarding the foregoing and other technical contents, features, and effects of the present invention, detailed descriptions of the three specific examples of the pattern of the mouth * test pattern at 20 U will be clearly understood. Month Before the present invention is described in detail, it should be noted that in the following description, similar 70 items are denoted by the same reference numerals. <Specific Example 1> 16 200534323 A specific example of the present invention will be described below. Provide coatings containing π positively charged carbon nanotubes (can be referred to as cnt). Refer to M 5 (W 5A to FIG. 5 ′). First, the plural nano-carbon carbon 230a (the simplified number of nano-barrier tubes shown in the figure) is shown in FIG. 5A to FIG. 5C. The nano-carbon tube is shown in the figure) close to the object 9 with a complex negative charge (as shown in FIG. 5A), so that the surface of the nano-carbon tube 230a near the object 9 has a complex positive charge by the principle of electrostatics. Figure 5B 'grounding the nano-carbon tubes 23〇a (_Mystery makes the negative charge formed on the nano-carbon tubes 23Qa by the principle of static electricity and the electric towel, «to form a complex with a positive charge Nano carbon tube 23〇a (as shown in the figure), and the positively charged nano carbon tube 23Oa is prepared into the positively charged CNT-containing coating. In addition, the specific The embossing template in Example 1 is firstly formed on a first surface of a transparent glass embossing template by using an electron beam direct writing method to form a plurality of blind holes arranged in an array. An ITO conductive layer is formed on the surface. Further, an insulating layer is formed on the surface where the IT0 conductive layer is formed, and The shadow etching method removes a closed-end insulating layer of each blind hole to define the ITO conductive layer located at the closed end of each blind hole as a plurality of induced layers. In this specific example 1, the closed The ends are respectively flat. The ITO transparent conductive film is formed on a transparent glass cathode substrate by a sputtering method to form a cathode conductive layer, and the positively charged CNT-containing coating is spin-coated. ) Is coated on the cathode conductive layer to form a CNT coating. 17 200534323 While pressing the CNT coating and the imprint template, a negative voltage is provided on the ITO conductive layer of the imprint template to A plurality of negative charges are provided on the induction layer, so that the CNTs contained in the CNT coating are attracted by the positive and negative charges to form a plurality of CNTs arranged on the CNT coating with a phase interval and a plurality of CNTs arranged in a forward direction. Carbon tube region. Next, a UV light source is provided on a second surface opposite to the first surface of the imprint template to harden the CNT coating. Finally, the imprint template and a transparent glass cathode having the CNT coating are separated. Substrate to complete Invented method for manufacturing the cathode plate. A space support is provided on the cathode plate, and the carbon tube regions are spaced apart by a bottom edge of the space support. A semiconductor process is used to form a plurality on the CNT coating layer. An insulating layer provided on the periphery of the carbon tube regions, and a plurality of gate layers respectively formed on the insulating layers. An anode plate is provided on a top edge of the space supporter, so that the space supporter 15 supports are interposed therebetween. A cathode plate and the anode plate. The anode plate has a transparent glass anode substrate, an ITO anode conductive layer formed on a lower surface of the transparent glass anode substrate, and a lower surface formed on one of the ITO anode conductive layers and is used for A contrast-enhancing absorption layer, and a plurality of fluorescent coatings formed on a lower surface of the absorption layer and corresponding to the carbon tube regions. 20 Finally, a containing space defined by the combination of the cathode plate, the space support and the anode plate is pre-depressurized, so that the containing space reaches a pressure environment of 1 X 10_7 Torr, and further the cathode The plate, the space support and the anode plate are packaged to complete the method for manufacturing the nano-carbon tube field emission display of the present invention. 18 200534323 <Specific Example 2>

本發明之一具體例二的製作方法大致上是與該具體 例一相同。其不同處在於,形成該帶有正電荷的含有eNT 之塗料的方法。參閱圖6(圖6A至圖6C),首先將複數呈 5 導電性的奈米碳管230]3放置於酸性溶液9,中(如圖6A、6B 所示),以使該等奈米碳管230b藉由該酸性溶液9,形成複 數帶有正電荷的奈米碳管230b,,並將該等帶有正電荷的 奈米碳管230b’製備成該帶有正電荷的含有CNT之塗料。 (在此為簡化繪製於圖示中的奈米碳管之數量,圖Μ至圖 10 6C是僅以一奈米碳管表示於圖示中)。 〈具體例三〉 本發明之一具體例三的製作方法大致上是與該具體 例二相同。其不同處在於,形成帶有正電荷的含有cNT之 塗料的方法。參閱圖7(圖7A至圖7〇,首先將複數呈導 15 1性的奈米碳管23Gc放置入一含有疏水型分散劑之溶液 9中,以使该等奈米碳管23〇c藉由該含有疏水型分散劑之 溶液9”形成複數帶有正電荷的奈米碳管23〇c,,並將該等 帶有正電荷的奈米碳管230c,製備成該帶有正電荷的含有 CNT之塗料。(在此為簡化繪製於圖示中的奈米碳管之數 20 量,圖7A至圖%是僅以一奈米碳管表示於圖示中)。 本發明之製作奈米碳管場效發射顯示器之陰極板及 奈米碳官場效發射顯示器的方法,可降低在真空鍍膜製程 中所而耗費的抽氣時間。另外,比傳統網印過程中,藉由 本發明之製作方法所形成的CNT塗層,不會因為在網印過 19 200534323 程令網版本身的乳劑厚度設計不佳、壓力控制不當、含有 奈米石炭管之網印谬的黏度與網版網目尺寸大小無法配合 等因素,而造成陰極板解析度不良等問題。再者,藉由本 發,之製作方法所製得的陰極板,是具有呈順向㈣且可 5 提高場效發射效率的CNT。 縱上所述,本發明之製作奈米碳管場效發射顯示器之 陰極板及奈米碳管場效發射顯示器的方法,可在簡化製作 奈米碳管陰極板之製程的同時,又能兼具製作出具有順向 排列的奈米碳管,確實達到本發明之目的。 春 10 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明書内容所作之簡單的等效變化與修倚,皆 應仍屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 15 _ 1Α^1Ε是一元件製作流程側視示意圖,說明習知 一種奈米碳管場發射顯示器之陰極板的製作方法; 圖1A是一侧視示意圖’說明該習知於一透明基板上鲁 形成一具有一圖案之底電極層; 圖1B是-側視示意圖’說明該習知於該底電極層之 2〇 圖案上形成一奈米峻管層; 圖ic是一侧視示意圖’說明該習知於該奈米碳管層 上形成一介電層; 9 圖1D是一側視示意圖,說明該習知於該介電層上形 成/閘極圖案; 20 200534323 圖1E是一側視示意圖,說明完成該習知之方法後所 形成的奈米碳管場發射顯示器之陰極板的結構; 圖2 —流程圖,說明本發明之製作奈米碳管場效發射 顯示器之陰極板的方法; 5 10 15 20 圖3A至3D疋一元件製作流程側視示意圖,說明本發 明之製作奈米碳管場效發射顯示器之陰極板的方法; 圖3A是一側視示意圖,說·明提供一壓印模板及一形 成在一具有一導電層的第一板體上的奈米碳管塗層; 圖3B是-側視示意圖,說明壓合該壓印模板及該奈_ =碳管塗層的同時’於兩者間形成一電場,以使該奈米碳 官塗層上形成有複數相間隔設置並具有複數呈順向排列 之奈米碳管的碳管區; v 圖3C是一側視示意圖,說明固化該奈米碳管塗層; 圖3D是一側視示意圖,說明分離該壓印模板及具有 該奈米碳管塗層的第一板體; 圖4A至4D疋-元件製作流程側視示意圖,說明本發 月之‘作奈米碳管場效發射顯示器的方法; _ 圖4A是-側視示意圖,說明提供一藉由本發明之努 作奈米碳管場效發射顯示器之陰極板的方法所製得⑽ 極板; κ 間支撐器; 圖4C是-側視示意圖,說明於該奈米碳管塗層上形 设數絕緣層及複數分卿成在該等絕緣層Μ閘極層; 21 200534323 圖4D是一側視示意圖,說明於該空間支撐器的一頂 緣設置一陽極板; 圖5A至5C是本發明之一具體例一的部分流程示意 圖,說明利用靜電原理製作一帶有正電荷的含有奈米碳管 5 之塗料; 圖6A至6C是本發明之一具體例二的部分流程示意 圖,說明利用一酸性溶液製作一帶有正電荷的含有奈米碳 管之塗料;及 圖7A至7C是本發明之一具體例三的部分流程示意 10 圖,說明利用疏水性分散劑溶液製作一帶有正電荷的含有 奈米碳管之塗料。The manufacturing method of the second specific example of the present invention is substantially the same as that of the first specific example. The difference lies in the method of forming the positively charged eNT-containing coating. Referring to FIG. 6 (FIG. 6A to FIG. 6C), firstly, a plurality of nano-carbon tubes 230 with a conductivity of 5 are placed in an acidic solution 9, as shown in FIGS. 6A and 6B, so that the nano-carbon The tube 230b uses the acidic solution 9 to form a plurality of positively charged nano carbon tubes 230b, and prepares the positively charged nano carbon tubes 230b 'into the positively charged CNT-containing coating. . (To simplify the number of carbon nanotubes drawn in the illustration, Figures M to 10C are shown in the illustration with only one carbon nanotube). <Specific Example 3> The manufacturing method of the specific example 3 of the present invention is substantially the same as that of the specific example 2. The difference lies in the method of forming a cNT-containing coating with a positive charge. Referring to FIG. 7 (FIG. 7A to FIG. 70), first, a plurality of nano carbon tubes 23Gc having a derivative of 15 1 are placed in a solution 9 containing a hydrophobic dispersant, so that the nano carbon tubes 23 oc borrow A plurality of positively-charged carbon nanotubes 23c are formed from the solution 9 "containing the hydrophobic dispersant, and the positively-charged carbon nanotubes 230c are prepared into the positively-charged carbon nanotubes 230c. Coatings containing CNTs. (To simplify the drawing, the number of carbon nanotubes in the figure is 20, and Figures 7A to% are shown in the figure with only one carbon nanotube.) Manufacture of the present invention The cathode plate of nanometer carbon field emission display and the method of nanometer carbon field effect emission display can reduce the evacuation time consumed in the vacuum coating process. In addition, compared with the traditional screen printing process, the method is produced by the present invention. The CNT coating formed by the method will not make the emulsion thickness of the screen body poorly designed, the pressure control improper, the viscosity of the screen printing containing the nano-carbon tube and the size of the screen mesh due to screen printing. Unable to cooperate and other factors, resulting in poor cathode plate resolution, etc. In addition, the cathode plate produced by the production method of the present invention is a CNT having a forward chirp and a field emission efficiency that can be improved by 5. According to the foregoing description, the production of the nano-carbon tube field of the present invention The cathode plate of a high-efficiency emission display and the field emission display method of a nano-carbon tube can simplify the manufacturing process of a nano-carbon tube cathode plate and simultaneously produce a nano-carbon tube with a forward arrangement. The purpose of the present invention is achieved. Spring 10 However, the above are only the preferred embodiments of the present invention. When the scope of implementation of the present invention cannot be limited by this, that is, what is generally done according to the scope of the patent application and the description of the invention Simple equivalent changes and repairs should still fall within the scope of the invention patent. [Simplified description of the drawing] 15 _ 1Α ^ 1Ε is a schematic side view of a component manufacturing process, which shows how a carbon nanotube field is known. Method for manufacturing a cathode plate of an emission display; FIG. 1A is a schematic side view 'illustrating the conventional method of forming a bottom electrode layer having a pattern on a transparent substrate; FIG. 1B is a schematic side view' illustrating the conventional method. It is known that a nano tube layer is formed on the 20 pattern of the bottom electrode layer; FIG. Ic is a schematic side view 'showing that the conventional method forms a dielectric layer on the carbon nanotube layer; FIG. 1D is a A schematic side view illustrating the conventional formation / gate pattern on the dielectric layer; 20 200534323 FIG. 1E is a schematic side view illustrating the cathode plate of a carbon nanotube field emission display formed after completing the conventional method Structure; Figure 2-Flow chart illustrating the method of manufacturing the cathode plate of a nano-carbon tube field emission display according to the present invention; 5 10 15 20 Figure 3A to 3D side view schematic diagram of a component manufacturing process, illustrating the manufacturing of the present invention Method for cathode plate of nanometer carbon field emission display; FIG. 3A is a schematic side view showing that an imprint template and a nanometer carbon tube formed on a first plate body having a conductive layer are provided. Coating; FIG. 3B is a schematic side view illustrating the simultaneous pressing of the embossing template and the carbon nanotube coating to form an electric field therebetween, so that the nano-carbon carbon coating is formed Plurality of nano carbons spaced and arranged in a forward direction The carbon tube area of the tube; v FIG. 3C is a schematic side view illustrating the curing of the carbon nanotube coating; FIG. 3D is a schematic side view illustrating the separation of the imprint template and the first carbon nanotube coating. Board; Figures 4A to 4D 疋-Side view schematic diagram of the component manufacturing process, illustrating the method of making a carbon nanotube field-effect display in the current month; _ Figure 4A is a side view schematic illustrating the use of the present invention. ⑽ electrode plate produced by the method of making a cathode plate of a nano carbon tube field emission display; an inter-kappa supporter; FIG. 4C is a schematic side view illustrating that several insulating layers are formed on the nano carbon tube coating And a plurality of branches are formed on the insulation layer M gate layer; 21 200534323 FIG. 4D is a schematic side view illustrating that an anode plate is provided on a top edge of the space supporter; FIGS. 5A to 5C are specific examples of the present invention Partial flow diagram of Example 1 illustrates the use of the electrostatic principle to make a coating with nano-carbon tube 5 with a positive charge; Figures 6A to 6C are partial schematic diagrams of a specific example 2 of the present invention, illustrating the use of an acidic solution to make a belt Positively charged nano Coatings for carbon tubes; and Figures 7A to 7C are partial schematic diagrams of a specific example 3 of the present invention. 10 illustrates the use of a hydrophobic dispersant solution to make a coating containing carbon nanotubes with a positive charge.

22 200534323 【圖式之主要元件代表符號簡單說明】 2» « · « 陰極板 32 - • *誘導層 21… 第一板體 33 * ••透明導電膜 22…· 導電層 4 · · •,空間支撐器 23 * · * 奈米破管塗層 5… • ·絕緣層 230 · * 奈米$炭管 6… • *閘極層 230a*· 呈絕緣性的奈米碳管 7… * ·陽極板 230a,, 帶有正電荷的奈米礙管 71 · ••第二板體 230b … 呈導電性的奈米碳管 Ί2 ♦ ••透明導電層 230b, · 帶有正電荷的奈米碳管 73 * …吸收層 230c· · 呈導電性的奈米碳管 74 · ••螢光塗層 230c? * 帶有正電荷的奈米碳管 8… ••容置空間 231 · · 石炭管區 9 · * …物體 232 · · 順向排列的奈米峻管 9,… ••酸性溶液 3 * * * * 壓印模板 9,,· ••含有疏水型分散劑之溶液 3卜· * 盲孔 311 · * 封閉端22 200534323 [Simplified description of the main components of the figure] 2 »« · «Cathode plate 32-• * Induction layer 21… First plate body 33 * •• Transparent conductive film 22… · Conductive layer 4 Supporter 23 * · * Nano tube break coating 5… • • Insulation layer 230 • * Nano $ carbon tube 6… • * Gate layer 230a * • Insulating nano carbon tube 7… * • Anode plate 230a ,, Nano tube with positive charge 71 · •• Second plate 230b… Nano carbon tube with conductivity 2 ♦ •• Transparent conductive layer 230b, · Nano carbon tube with positive charge 73 *… Absorptive layer 230c ·· Nanocarbon tube 74 which is conductive 74 · •• Fluorescent coating 230c? * Nanocarbon tube with positive charge 8… •• Accommodation space 231 ·· Carbon tube area 9 · * … Object 232 · · Nami tube 9, which are arranged in a forward direction, ... •• Acid solution 3 * * * * Imprint template 9 ,, • •• Solution containing a hydrophobic dispersant 3 Bu * * Blind hole 311 · * Closed end

23twenty three

Claims (1)

200534323 拾、申請專利範圍: 1· 一種製作奈米碳管場效發射顯示器之陰極板的方法,包 含以下步驟: / (A) 提供一壓印模板及一形成在一 板體上的奈米;5炭管塗層; 具有一導電層的第一 (B)藉由壓合該壓印模板及該奈米碳管塗層的同時,於兩 者間形成-電場,以使該奈米碳管塗層上形成有複數200534323 Pick up and apply for patent scope: 1. A method of manufacturing a cathode plate of a nano carbon tube field emission display, comprising the following steps: / (A) providing an imprint template and a nano formed on a plate body; 5 carbon tube coating; the first (B) with a conductive layer forms an electric field between the embossing template and the coating of the carbon nanotube while pressing it to make the carbon nanotube Plural forms formed on the coating 相間隔設置並具有複數呈順向排列之奈米石炭管的碳 管區;及 (C)固化該奈米碳管塗層並分離該壓印模板及具有該奈 米碳管塗層的第一板體,以完成該陰極板。 2·依據申請專利範圍第丨項之製作奈米碳管場效發射顯示 器之陰極板的方法,其中,該奈米碳管塗層是將一含有 奈米碳管之塗料形成在該導電層上所製成。 3·依據申請專利範圍第2項之製作奈米碳管場效發射顯示 器之陰極板的方法,其中,該步驟(A)中的壓印模板是具 有複數呈一陣列式排列的盲孔。 4.依據申請專利範圍第3項之製作奈米碳管場效發射顯示 器之陰極板的方法,其中,於該壓印模板之每一盲孔的 一封閉端提供複數第一型電荷,並於該含有奈米碳管之 塗料k供複數相反於該等第一型電荷的第二型電荷,使 位於該等碳管區内的奈米碳管,藉由呈相反電性的電荷 於相互吸引下形成該電場,以使該等奈米碳管呈現噸 排列。 σ 24 200534323 5. «巾請專利範圍第4項之製作奈米唆管場效發射顧示 器之陰極板的方法’其中’對該壓印模板提供一外加電 場且於每一盲孔的封閉端形成一誘導層,以形成該等第 -型電荷’該誘導層是由選自於下列所構成之群組的材 料所製成:導體材料及半導體材料。 6·:據中請專利範圍第5項之製作奈米碳管場效發射顯示 器之陰極板的方法,其中,該塗料内所含的複數奈米碳 管是呈一絕緣性,該等第二型電荷是藉由靜電原理形成。 7. ,射請專利範圍第5項之製作奈米碳管場效發射顯示 =陰極板的方法,其中,該塗料内所含的複數奈米碳 &amp;是主非絕緣性,將該等奈米碳管暴露在一溶液中以 形成該等第二型電荷,該溶液是選自於下列所構成之群 組··酸性溶液及鹼性溶液。 8. 依據申請專利範圍帛5敎製作奈米碳管場效發射顯示 器之陰極板的方法,其中,該塗料内所含的複數奈米碳 管是呈一非絕緣性,將該等奈米碳管暴露在一含有分散 劑之溶液中以形成該等第二型電荷。 9·依據申請專利範圍第i項之製作奈米碳管場效發射顯示 為之陰極板的方法,其中,該固化是選自於下列所構成 之群組的固化法··熱固化、光固化及化學固化。 10· —種製作奈米碳管場效發射顯示器的方法,包含以下步 驟: (Ϊ ) 提供一陰極板; (π)於该陰極板上設置一空間支撐器·, 25 200534323 (III) 形成複數絕緣層及複數分別形成在該等絕緣層上 的閘極層;及 (IV) 於邊空間支撐器的一頂緣設置一陽極板,使該空間 支樓器介於該陰極板及該陽極板之間; 其中,於該步驟(1 )中的陰極板是藉由申請專利範圍 第1項所述之方法製作而成,藉由該步驟(Π)中的空間 支撐器之一底緣將該等碳管區相間隔開,且每一絕緣層 是形成在每一碳管區的外圍處並位在該奈米碳管塗層 上。 11·依據申請專利範圍第10項之製作奈米碳管場效發射顯示 器之的方法,其中,該奈米碳管塗層是將一含有奈米碳 管之塗料形成在該導電層上所製成。 人 12·依據中請專利範圍第u項之製作奈米碳管場效發射顯示 器之的方法,其中,該步驟⑴中的壓印模板是具有複 數呈一陣列式排列的盲孔。 13. ,據巾請專利範圍第12項之M作奈米碳管場效發射顯示 15之的方法’其中,於該壓印模板之每-盲孔的-封閉 端提供複數第-型電荷,並於該含有奈米碳管之塗料提 供複數相反於該等第—型電荷的第二型電荷,使位於該 等碳管區内的奈米碳管,藉由呈相反電性的電荷於相^ 吸引下形成該電場,以使該等奈米碳管呈現順向排列。 14. 依據中請專利範圍第13項之製作奈米碳管場效發射顯示 器之的方法’其中’對該壓印模板提供一外加電場且於 每-盲孔的封閉端形成一誘導層,以形成該等第, 26 200534323 荷’該誘導層是由選自於下列所構成之群組的材料所製 成:導體材料及半導體材料。 衣 15. 依射請專利範圍第14項之製作奈㈣管場效發射顯示 器之的方法,其中,該塗料内所含的複數奈米碳管是呈 緣性’ §亥等第二型電荷是藉由靜電原理形成。 16. 依據中請專利範圍第14項之製作奈米碳管場效發射顯示 器之的方法,其中,該塗料内所含的複數奈米碳管是呈 -非絕緣性,將該等奈米碳管暴露在一溶液中以形成該 等第二型電荷’該溶液是選自於下列所構成之群組:酸 性溶液及驗性溶液。 π,依據巾請專利範圍第14項之製作奈米碳管場效發射顧示 益之的方法,其中,該塗料内所含的複數奈米碳管是呈 =絕緣性,將該等奈米碳管暴露在—含有分散劑之溶 液中以形成該等第二型電荷。 18. =請專利範圍第丨。項之奈米碳管場效發射顯示器之 的固化Γ卜其中’該固化是選自於下列所構成之群組 勺口化去.熱固化、光固化及化學固化。 19. 專利範圍第10項之製作奈米碳管場效發射顯示 '之的方法,其中,該陽極板具有—呈透明的第二板體、 第二板體的一下表面的透明導電層、-形成 及複數層之&quot;&quot;下表面並用以增強對比的吸收層, 數形成於該吸收層之一下表面 應的螢光塗層。 …亥寺奴官區相對 20. 依據申請專利範圍第1〇項之製作奈米碳管場效發射顯示 27 200534323 器之的方法,其中,該步驟(ιν)之後更包含一步驟(v) 將該陰極板、空間支撐器及陽極板相配合界定出的/谷 置空間於予減壓,以使該容置空間達一至少低於〇 · 〇 1 mTorr的壓力環境,並進一步地封裝該陰極板、空間支撐 器及陽極板以完成該步驟(V )。Carbon nanotube regions arranged in a spaced relationship with a plurality of carbon nanotubes arranged in a forward direction; and (C) curing the carbon nanotube coating and separating the embossing template and the first plate having the carbon nanotube coating Body to complete the cathode plate. 2. A method for manufacturing a cathode plate of a nano-carbon tube field-effect display according to item 丨 of the patent application scope, wherein the nano-carbon tube coating is a coating containing a nano-carbon tube formed on the conductive layer. Made of. 3. The method for manufacturing a cathode plate of a nano-carbon tube field emission display according to item 2 of the scope of the patent application, wherein the embossing template in step (A) has a plurality of blind holes arranged in an array. 4. The method for manufacturing a cathode plate of a nano-carbon tube field emission display according to item 3 of the patent application scope, wherein a plurality of first-type charges are provided at a closed end of each blind hole of the imprint template, and The coating k containing nano carbon tubes is provided with a second type charge having a plurality of opposites to the first type charges, so that the nano carbon tubes located in the carbon tube area are attracted to each other by the charges having opposite electrical properties. The electric field is formed so that the carbon nanotubes are arranged in tons. σ 24 200534323 5. «Method for making cathode plate of nanometer tube field effect emission display device in the scope of patent No. 4 'wherein' an external electric field is provided to the imprint template and each blind hole is closed. An induction layer is formed at the end to form the first-type charges. The induction layer is made of a material selected from the group consisting of a conductive material and a semiconductor material. 6 ·: According to the method of claim 5, the method of manufacturing a cathode plate of a nanometer carbon tube field emission display is described, wherein the plurality of nanometer carbon tubes contained in the coating is an insulating material. The type charge is formed by the electrostatic principle. 7. The method of making nanometer carbon field emission display = cathode plate by applying the fifth item of the patent scope, wherein the plurality of nanometer carbon & contained in the coating is the main non-insulating property. The carbon tube is exposed to a solution to form the second type charges, and the solution is selected from the group consisting of an acidic solution and an alkaline solution. 8. A method for manufacturing a cathode plate of a nanometer carbon tube field emission display according to the scope of the applied patent (5), wherein the plurality of nanometer carbon tubes contained in the coating are non-insulating, and the nanometer carbon The tube is exposed to a solution containing a dispersant to form these second type charges. 9 · A method for producing a cathode plate of nanometer carbon tube field emission display according to item i of the scope of patent application, wherein the curing is a curing method selected from the group consisting of: · thermal curing, light curing And chemical curing. 10 · —A method for manufacturing a nanometer carbon tube field emission display, comprising the following steps: (Ϊ) providing a cathode plate; (π) providing a space supporter on the cathode plate, 25 200534323 (III) forming a plurality An insulating layer and a plurality of gate layers respectively formed on the insulating layers; and (IV) an anode plate is provided at a top edge of the side space supporter so that the space supporting device is interposed between the cathode plate and the anode plate Among them, the cathode plate in this step (1) is made by the method described in item 1 of the scope of patent application, and the bottom edge of one of the space supports in this step (Π) The equal carbon tube regions are spaced apart, and each insulating layer is formed at the periphery of each carbon tube region and is positioned on the nanometer carbon tube coating. 11. The method for producing a nano-carbon tube field-effect display according to item 10 of the scope of patent application, wherein the nano-carbon tube coating is made by forming a coating containing a nano-carbon tube on the conductive layer. to make. Person 12. The method for producing a nano-carbon tube field emission display according to item u of the patent application, wherein the embossing template in step (2) has a plurality of blind holes arranged in an array. 13. According to the patent, the method of item 12 of the patent scope of the method of field emission display of carbon nanotubes 15 is provided, wherein a plurality of -type charges are provided at the -closed end of each -blind hole of the imprint template, And the coating containing the nano-carbon tube is provided with a second type of charge opposite to the first-type charge, so that the nano-carbon tube located in the region of the carbon tube has opposite electric charges in the phase ^ The electric field is formed under the attraction, so that the carbon nanotubes are arranged in a forward direction. 14. The method of making a nano-carbon tube field-effect display according to item 13 of the Chinese patent, wherein 'there is providing an impressed electric field to the imprint template and forming an induction layer at the closed end of each blind hole, in order to Forming the first, 26 200534323, the induction layer is made of a material selected from the group consisting of a conductive material and a semiconductor material. 15. The method for manufacturing a field emission display of a nano tube according to item 14 of the patent scope, wherein the plurality of carbon nanotubes contained in the coating are marginal. Formed by electrostatic principle. 16. The method for manufacturing a nano-carbon tube field emission display according to item 14 of the patent application, wherein the plurality of nano-carbon tubes contained in the coating are non-insulating, and the nano-carbons are The tube is exposed to a solution to form the second type of charge. The solution is selected from the group consisting of an acidic solution and a test solution. π, according to the method of patent application No. 14 of the scope of production of carbon nanotube field emission emission method Gu Xiyi, wherein the coating of the plurality of carbon nanotubes contained in the coating is = insulation, these nanometers The carbon tube is exposed to a solution containing a dispersant to form these second type charges. 18. = Please Patent No. 丨. The curing of the nanometer carbon tube field emission display of the item is ‘wherein the curing is selected from the group consisting of heat curing, light curing and chemical curing. 19. The method of making a nano-carbon tube field emission display according to item 10 of the patent, wherein the anode plate has-a transparent second plate body, a transparent conductive layer on the lower surface of the second plate body,- An absorption layer is formed on the lower surface of the multiple layers and used to enhance the contrast, and a fluorescent coating is formed on the lower surface of one of the absorption layers. … Hai Si Nu official area is relatively 20. The method of making nano carbon tube field emission display 27 200534323 according to the scope of patent application No. 10, wherein this step (ιν) includes a step (v) after The space defined by the cathode plate, the space supporter and the anode plate / valley space is pre-decompressed so that the accommodation space reaches a pressure environment of at least less than 0.001 mTorr, and the cathode is further encapsulated. Plate, space support and anode plate to complete this step (V). 2828
TW93110134A 2004-04-12 2004-04-12 Manufacturing method for cathode of carbon nanotube field emission display and carbon nanotube field emission display TWI240295B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93110134A TWI240295B (en) 2004-04-12 2004-04-12 Manufacturing method for cathode of carbon nanotube field emission display and carbon nanotube field emission display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93110134A TWI240295B (en) 2004-04-12 2004-04-12 Manufacturing method for cathode of carbon nanotube field emission display and carbon nanotube field emission display

Publications (2)

Publication Number Publication Date
TWI240295B TWI240295B (en) 2005-09-21
TW200534323A true TW200534323A (en) 2005-10-16

Family

ID=37007714

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93110134A TWI240295B (en) 2004-04-12 2004-04-12 Manufacturing method for cathode of carbon nanotube field emission display and carbon nanotube field emission display

Country Status (1)

Country Link
TW (1) TWI240295B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188179B (en) 2006-11-15 2010-05-26 清华大学 Making method for field emission electron source

Also Published As

Publication number Publication date
TWI240295B (en) 2005-09-21

Similar Documents

Publication Publication Date Title
US20040195950A1 (en) Field emission display including electron emission source formed in multi-layer structure
JP4881079B2 (en) Nano pattern forming method and thin film transistor manufacturing method
TWI378155B (en) Enhanced electron field emission from carbon nanotubes without activation
CN101192490A (en) Surface conductive electronic emission element and electronic source applying same
US6935915B2 (en) Method of fabricating field emission display employing carbon nanotubes
TW502395B (en) Manufacturing method for large-area carbon nano-tube field emission display in low cost
CN105489784B (en) Electrode and its application prepared by the preparation method and this method of compliant conductive electrode
JP2003203557A (en) Complex for paste including carbon nanotube and electron emitting element using this complex and method of manufacture
CN111427111A (en) Quantum dot patterning method, device and system
US7147534B2 (en) Patterned carbon nanotube process
Jung et al. Fabrication and properties of under-gated triode with CNT emitter for flat lamp
KR20050106670A (en) Manufacturing method of carbon nano tube field emission device
US20060246810A1 (en) Method of manufacturing field emission device (FED) having carbon nanotube (CNT) emitter
JP2011505055A (en) Cathode assembly including an ultraviolet blocking dielectric layer
TW200534323A (en) Manufacturing method for cathode of carbon nanotube field emission display and carbon nanotube field emission display
US7432217B1 (en) Method of achieving uniform length of carbon nanotubes (CNTS) and method of manufacturing field emission device (FED) using such CNTS
CN100437880C (en) Cathode plate of nanometer carbon tube field effect transmissive display device and production of display device
TWI248630B (en) Method for fabricating cathode of carbon nanotube field effect emission display and the carbon nanotube field effect emission display
CN207818517U (en) Photoemission ionization source based on graphene
US20060213774A1 (en) Method for enhancing homogeneity and effeciency of carbon nanotube electron emission source of field emission display
TWI328246B (en) Method for manufacturing electron emitters and electron sources using the same
CN111552148A (en) Light shield structure
KR100784997B1 (en) Method of manufacturing electron emission device, electron emission device prepared using the method, and backlight unit and electron emission display device adopting the electron emission device
TWI310202B (en) Method for manufacturing cathode structure of field emission display
KR100874453B1 (en) Method of forming electron emission source of field emission display

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees