TWI240295B - Manufacturing method for cathode of carbon nanotube field emission display and carbon nanotube field emission display - Google Patents

Manufacturing method for cathode of carbon nanotube field emission display and carbon nanotube field emission display Download PDF

Info

Publication number
TWI240295B
TWI240295B TW93110134A TW93110134A TWI240295B TW I240295 B TWI240295 B TW I240295B TW 93110134 A TW93110134 A TW 93110134A TW 93110134 A TW93110134 A TW 93110134A TW I240295 B TWI240295 B TW I240295B
Authority
TW
Taiwan
Prior art keywords
carbon
carbon tube
nano
coating
emission display
Prior art date
Application number
TW93110134A
Other languages
Chinese (zh)
Other versions
TW200534323A (en
Inventor
Yi-Shou Tsai
Tian-Gan Jung
Wang-Lin Liou
Tz-Chi Jan
Original Assignee
Prec Machinery Res & Dev Cen
Yi-Shou Tsai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prec Machinery Res & Dev Cen, Yi-Shou Tsai filed Critical Prec Machinery Res & Dev Cen
Priority to TW93110134A priority Critical patent/TWI240295B/en
Application granted granted Critical
Publication of TWI240295B publication Critical patent/TWI240295B/en
Publication of TW200534323A publication Critical patent/TW200534323A/en

Links

Abstract

The present invention provides a manufacturing method for cathode of carbon nanotube field emission display, which includes the following steps of: (A) providing an impression plate, and a carbon nanotube coating formed on a first plate having a conductive layer; (B) at the time of pressing the impression plate and the carbon nanotube coating, forming an electrical field therebetween to generate a plurality of carbon tube areas arranged separately and having a plurality of carbon nanotubes in orientation arrangement; and (C) curing the carbon nanotube coating, and separating the impressing plate and the first plate having the carbon nanotube coating to complete the cathode.

Description

1240295 玖、發明說明: 【發明所屬之技術領域】 本發明是有關於一種製作場效發射顯示器(field emission display;簡稱 FED)之陰極板(cath〇de)及場效 發射顯示器的方法,特別是指一種製作奈米碳管場效發射 顯示器(carbon Nanotube field emission display;簡 稱CNTFED)之陰極板及奈米碳管場效發射顯示器的方法。 【先前技術】 近年來,在半導體薄膜製程等相關領域的技術開發 下,使得當下的電子用品日趨輕薄短小化,此種現象也可 見於顯示器等相關產業,例如:液晶顯示器〇iquid crystal display ;簡稱 LCD)、電漿顯示器(^狀抓 dispiay ;簡稱PDP)、有機發光二極體(卿仏工咖 emitting diode)顯示器及奈米碳管場效發射顯示器等。 一般地,目前CNTFED之相關業界大致上是藉由薄膜 製程製作CNTFED t陰極板,亦或是將藉由薄膜沉積让匕 Him deposition)所製得的CNT製備成網印膠 print ing paste),配合網印及薄膜製程等方法製作⑶吓肋 之陰極板。 在第428189號之中華民國專利中,揭露出一種冷卜 極陣列之製造方法(圖未示),首先,提供一具有電路設計 之複數陰極線、複數與該等陰極線相互交錯並位在該等陰 極線上的絕緣層(insulator),及複數形成在該等絕緣= 上的閘極(邮)線之基板。接續,於該等陰極線的一裸露 1240295 區進行一陽極處理(anodizing)以在該等陰極線之裸露區 分別形成一陽極處理膜(anodized film),使每一陽極處 理膜具有複數孔洞。進一步地,將觸媒(catalyst)分別形 成於該等孔洞内。最終,再將該基板設置在一電漿(plasma) 5 系統中,利用含碳氣體與該觸媒反應,以使得複數毫微米 碳管自該等孔洞内成長出來。 前面所提及的電漿系統,是藉含碳氣體經由電漿系統 解離出碳離子,進而使得被解離的碳離子可藉由催化劑形 成過飽和析出(oversaturation precipitation)以產生石 10 墨化(graphitization)的碳管。 其中,含碳氣體可以有甲烷(CH4)、乙炔(C2H2)等,電 漿系統解可以是電漿辅助化學氣相沉積(plasma enhanced chemical vapor deposition;簡稱 PECVD)系統、微波電 % 漿辅助化學氣相沉積(microwave plasma enhanced 15 chemical vapor deposit ion ;簡稱 MPECVD)系統,及電子 迴旋共振化學氣相沉積(electron cyclotron resonance chemical vapor deposition;簡稱 ECRCVD)系統。 熟知場效發射技術領域者皆知,場效發射率是與長寬 比(aspect ratio)、場效發射面積(field emission 20 area)、真空度等因素成正比,且與兩極板間的距離成反 比。然而,此種藉由薄膜沉積完成冷陰極陣列之製造方 法,雖然可製備出具有陣列式(array)順向(orientation) 排列的奈米碳管,但所需的真空(vacuum)鍍膜週邊設備昂 貴,且抽真空時間耗時久,因此具有設備成本及時間成本 1240295 高等缺點。 参閱圖1A至圖1E,一種奈米碳管場發射顯示器之陰 極板的製作方法(中華民國專利公告案號為518632),依序 包含下列步驟: a)準備一透明基板1〇1,該透明基板1〇1備有一表 面及一下表面; 10 151240295 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a method for manufacturing a cathode plate (field emission display) of a field emission display (FED) and a field emission display, in particular, It refers to a method for manufacturing a cathode plate of a carbon nanotube field emission display (CNTFED) and a field emission display of a carbon nanotube. [Previous technology] In recent years, under the technological development of semiconductor film manufacturing and other related fields, the current electronic products are becoming thinner and shorter, and this phenomenon can also be seen in related industries such as liquid crystal displays. LCD), plasma display (PDP); organic light emitting diode (LED) diode display and nanometer carbon field emission display. In general, the current industry of CNTFED is generally to make CNTFED t cathode plates by thin film processes, or to prepare CNTs made by thin film deposition by Him deposition), and cooperate with Screen printing and thin film manufacturing methods are used to fabricate dreaded cathode plates. In the Republic of China Patent No. 428189, a method for manufacturing a cold array (not shown) is disclosed. First, a plurality of cathode lines with a circuit design are provided, and a plurality of the cathode lines are interleaved with each other and located on the cathode lines. An insulating layer (insulator), and a plurality of substrates of gate (post) lines formed on the insulation =. Next, anodizing is performed on an exposed 1240295 area of the cathode lines to form an anodized film respectively on the exposed areas of the cathode lines, so that each anode processing film has a plurality of holes. Further, catalysts are formed in the holes. Finally, the substrate is set in a plasma 5 system, and a carbon-containing gas is used to react with the catalyst, so that a plurality of nanometer carbon tubes grow out of the holes. The aforementioned plasma system uses carbon-containing gas to dissociate carbon ions through the plasma system, so that the dissociated carbon ions can form oversaturation precipitation through the catalyst to produce stone 10 graphitization Carbon tube. Among them, the carbon-containing gas can be methane (CH4), acetylene (C2H2), etc., the plasma system solution can be plasma enhanced chemical vapor deposition (plasma enhanced chemical vapor deposition (PECVD) system, microwave electricity% plasma-assisted chemical gas) Phase deposition (microwave plasma enhanced 15 chemical vapor deposit ion; MPECVD) system, and electron cyclotron resonance chemical vapor deposition (ECRCVD) system. Those who are familiar with field-effect emission technology know that field-effect emissivity is directly proportional to factors such as aspect ratio, field emission area (field emission 20 area), and degree of vacuum, and is proportional to the distance between the two plates. Inversely. However, although this method of manufacturing a cold cathode array by thin film deposition can produce nano carbon tubes with an array orientation, the required vacuum coating peripheral equipment is expensive And, it takes a long time to evacuate, so it has the disadvantage of high equipment cost and time cost of 1240295. Referring to FIG. 1A to FIG. 1E, a method for manufacturing a cathode plate of a nano-carbon tube field emission display (Republic of China Patent Publication No. 518632) includes the following steps in order: a) preparing a transparent substrate 101, which The transparent substrate 101 has a surface and a lower surface; 10 15

(b) 將一感光性(口以·^ sensitivi_)導電漿料塗佈 於該透明基板101的一表面上,再利用微影製程 (Photol i thography)及燒結(sintering)製程完 成一具有一圖案之底電極層1〇2(如圖1A所示); (c) 利用一網印方式將一奈米碳管層1〇3印製於該底 電極層102之圖案上(如圖1B所示); (d) 王面丨生塗佈一層可以蝕刻(etchi叫)之介電材料 (dielectric)作為一介電層1〇4(如圖1(:所示) (e) 於該介電層1G4上方全面性塗佈—層感光性間極(b) coating a photosensitive conductive paste on a surface of the transparent substrate 101, and then using a photolithography process and a sintering process to complete a pattern Bottom electrode layer 102 (as shown in FIG. 1A); (c) using a screen printing method to print a nano carbon tube layer 103 on the pattern of the bottom electrode layer 102 (as shown in FIG. 1B) ); (D) Wang Miansheng applied a layer of dielectric material (etchi) that can be etched (dielectric) as a dielectric layer 104 (as shown in Figure 1 (:)) (e) on the dielectric layer Comprehensive coating on top of 1G4-layer photosensitive

(gate)材料,再利用微影製程及燒結製程形成一 閘極圖案1〇5(如圖1D所示);及 ⑴以該閘極圖案1Q5作為—具有圖案之保護層,結 δ钱刻製备姓刻掉未被該閘極圖案1 〇 $保護之 介電層104,並在一燒結製程後完成該陰極板結 構(如圖1Ε所示)。(gate) material, and then a lithography process and a sintering process are used to form a gate pattern 105 (as shown in FIG. 1D); and the gate pattern 1Q5 is used as a protective layer with a pattern and engraved with δ. Bei Xing engraved the dielectric layer 104 that was not protected by the gate pattern 10 $, and completed the cathode plate structure after a sintering process (as shown in FIG. 1E).

此種搭配薄膜沉積製程及網印製程所製得的奈 管場發射顯示器之陰極板,雖然可降低部分耗時㈣程二 間及節省部分不必要的麵週邊設^但是藉由網印H 20 1240295 的奈米碳管層103,容易因網版本身的乳劑(6腿丨3丨〇11)厚 度設計不佳、於網印過程壓力控制不當、含有奈米碳管之 網印膠之黏度(viscosity)與網版網目(mesh)尺寸大小益 ^ 4、、、 法配合等因素’而造成陰極板解析度不良等問題。 5 再者,藉由網印形成在該底電極層102之圖案上的奈 米碳管層103,所呈現出的排列方式是呈一毛球狀的不規 則(random)外觀,因此,無法形成呈現一陣列式順向排列 的奈米碳管以符合場效發射率的需求。 以上所提到的所有前案專利,在此併入本案作為參考 10 文獻。 因此’如何簡化製作奈米碳管陰極板之製程的同時, 又能兼具製作出具有順向排列的奈米碳管,是開發奈米碳 管陰極板相關領域人士所應克服的一大難題。 【發明内容】 15 因此,本發明之目的,即在提供一種製作奈米碳管場 效發射顯示器之陰極板的方法。 本發明之另一目的,即在提供一種製作奈米碳管場效 發射顯示器的方法。 本叙明製作奈米碳管場效發射顯示器之陰極板的方 20 法,包含以下步驟: (A) 提供一壓印模板(Impressi〇n plate)及一形成在 一具有一導電層的第一板體上的奈米碳管塗層; (B) 藉由壓合該壓印模板及該奈米碳管塗層的同 日守’於兩者間形成一電場(electric field),以 1240295 使垓不米奴官塗層上形成有複數相間隔設置並 具有複數呈順向排列之奈米碳管的碳管區;及 化(curing)忒奈米碳管塗層並分離該壓印模 5 10 15 20 板及具有該奈米碳管塗層的第—板體,以完成該 陰極板。 另外,配合本發明製作奈米碳管場效發射顯示器之陰 極板的方法可完成—製作奈米碳管場效發射顯示器的方 法。遠製作奈米碳管場效發射顯示器的方法,包含以下步 驟: (I) 提供一陰極板; (II) 於該陰極板上設置一空間支撐器(spacer); (III) 形成複數絕緣層及複數分別形成在該等絕緣層 上的閘極層;及 (IV) 於忒二間支撐器的一頂緣設置一陽極板 (anode)’使該空間支撐器介於該陰極板及該陽 極板之間。 /、中於。亥步驟(I )中的陰極板是藉由前面發明内容 所提及的方法製作而成。藉由該步驟u)中的空間支撐器 之一底緣將該等碳管區相間隔開’且每一絕緣層是形成在 每一碳管區的外圍處並位在該奈米碳管塗層上。 本發明之功效在於簡化製作奈米碳管陰極板之製程 的同時’又能兼具製作出具有順向排列的奈米碳管。 【實施方式】 參閱圖2及圖3(圖3A至圖D),本發明之奈米碳管場 10 1240295 效發射顯示器之陰極板的製作方法,包含以下步驟: (A) 提供一壓印模板3及一形成在一具有一導電層μ 的第-板體21上的奈米碳管塗層23(如圖3a所 示); (B) 藉由壓合該壓印模板3及該奈米碳管塗層23的同 時,於兩者間形成一電場,以使該奈米碳管塗層 23上形成有複數相間隔設置並具有複數呈順向排 列之奈米碳管232的碳管區231(如圖3B至圖3C 所示);及 (C) 固化該奈米碳管塗層23並分離該壓印模板3及具 有忒奈米破管塗層23的第一板體21 (如圖3C至圖 3D所示),以完成該陰極板2。 其中’該奈米奴管塗層23是將一含有奈米碳管之塗 料(slurry)形成在該導電層22上所製成。在本發明中, 該導電層22是由選自於下列所構成之群組的方法製成: 濺鍍法(sputtering)、蒸鍍法(evaporati〇n)、浸鍍法 (dip-coating)及凝膠(gel)法。在一具體例中,該導電層 22是利用濺鍍法將一氧化錮錫(IT〇)透明導電層形成於該 第一板體21上。 較佳地,該步驟(Α)中的壓印模板3是具有複數呈一 陣列式排列的盲孔31。適用於本發明之形成該等盲孔3】 的方法是選自於下列所構成之群組的加工法:反應式離子 蝕刻法(reactive ionic etching;簡稱RIE)、電子束直 寫法(e-beam writing)、雷射光束直寫法(iase:r beam 11 5 10 15 20 1240295 writing)及微精密鑽孔加工(precisi〇n drilling)。在一 具體例中,是使用電子束直寫法形成該等盲孔31。每一盲 孔31的一封閉端311是分別呈一選自於下列所構成之群 、的幵/狀平面(planar)狀、錐狀(awl-shaped)及弧狀。 在具體例中,該等封閉端311是分別呈一平面狀。 適用於本發明之該壓印模板3的材質是選自於下列所 構成之群組··透明材料及熱傳導體材料“以㈣“ conductor)材料。較佳地,本該壓印模板3的材質是透明 材料。在一具體例中,該壓印模板3的該透明材料是一透 明石英玻璃(quartz)。 ^較佳地’於該壓印模板3之每一盲孔31的封閉端311 提供稷數第-型電荷’並於該含有奈米碳管之塗料提供複 數相反於該等第-型電荷的第二型電荷,使位於該等碳管 區231内的奈米碳管232,藉由呈相反電性的電荷於相互 吸引下形成該電場,以使該等奈米碳管232呈現順向排列。 較佳地,對㈣印模板3提供一外加電場Ε且於每一 盲孔31的封閉端311形成一誘導層32,以形成該等第一 型電荷。在-具體例中,於該等誘導^ 32上提供一負電 壓’並於沒有形成該等盲孔31的平面上形成一透明導電 膜33’且於該透明導電膜33上提供—正電壓以形成該外 加電場Ε,使形成在該等誘導層32上的該等第一型電荷為 負電荷(elect·)。較佳地,該誘導層是由選自於;列所 構成之群組的材料所製成:導體材料及半導體 (semiconductor)材料。更佳地,該誘導層是由導體材料 12 1240295 所製成。在一具體例中,該誘導層是由呈透明的氧化銦錫 (ΙΤ0)所製成。 . 另外,值得一提的是,在不限該壓印模板3材質的情 況下,該外加電場E的連接方式,是可將該正電壓連接該 5 陰極板2的導電層22上(圖未示),也可使該正電壓形成 在4陰極板2的另一面以形成該外加電場,並於該等誘導 層32上形成該等負電荷(圖未示)。 較佳地,該塗料内所含的複數奈米碳管是呈一絕緣 性。該等第二型電荷是藉由靜電(static electricity)原 1〇 王里形成。在-具體例中,是將該等奈米碳管靠近一帶有負 電何的物體,以使形成在該含有奈米碳管之塗料的第二型 電荷為正電荷(Positive charge)。 較佳地,該塗料内所含的複數奈米碳管是呈一非絕緣 1將該等奈米碳管暴露在—溶液(sQlutiQn)中以形成該 15 2第—型電荷°該溶液是選自於下列所構成之群組:酸性 夜及驗。在_具體例中’是將該等奈米碳管暴露 在-酸性溶液中,以使形成在該含有奈米碳管之塗料的第 二型電荷為正電荷。 車乂佳地’該塗料内所含的複數奈米碳管是呈-非絕緣 2將違寻奈米碳管暴露在一含有分散劑⑷叩㈣如)之 溶液中以形成該等第二型電荷。在一具體例中,將該等奈 米碳管放置入一含有疏水型分散劑,以使形成在該含有奈 米碳管之塗料的第二型電荷為正電荷。前面所提及的粒子 表面4的方法,為膠體化學相關領域者所熟知,因此, 13 1240295 因此在此不再多加詳述。 適用於本發明之該固化是選自於下列所構成之群組 的固化法:熱固化(Thermal Curing)、光固化 Curing)及化學固化(Chemical Curing)。在一具體例中, 該光固化是使用紫外線(簡稱uv)照射固化法。值得一提的 是,該熱固化所配合使用的壓印模板是具有光源穿透性 (transmittance characteristic)的透明材料,也可是熱 ίο 15 20 傳導體材料。適用於本發明之該熱傳導體材料是選自於下 列所構成之群組:不鏽鋼(stainless steel)、鋁合金 (aluminum an〇y)及鎂合金(magnesium aU〇y)。 在一具體例中,是於未形成有該等盲孔31的壓印模 板3之一上表面提供一肝光源以使該奈米碳管塗層μ完 成該UV照射固化法。另外值得一提的是,該㈣光曰源是 以由該第-板Μ 21的-下表面往上照射以使該奈米碳管 塗層23完成該UV照射固化法,該υν光源也可以是由該 壓印模板3之上表面及該第一板體21之下表面同時向; 及向上照射,以使該奈米碳管塗層23完成該Μ照射固化 法。 值得-提的是,由於在本發明之塗料内所含有複數太 米碳管之長度是介於〇·99⑽至1·〇1 μ,。然而,在該: 印模板3以緩慢速度相互壓合時,該等不等長度之夺米石山 管會因為所帶的第二型電荷被該等盲31之封閉端= ㈣一型電荷所吸引’以使得該等奈米碳管可沿著該等封 ]而311的形狀形成該等碳管區。因此,利用在—具 14 1240295 體例中的平面式封閉端311所壓合出來的兮山一 ]w亥寺石厌管區231 疋分別呈一平面狀齊頭式排列。 藉由本發明之製作奈米碳管場效—顯示器之陰極 板的方法,可進-步地完成製作本發明之奈以管場好 射顯示器的方法。參閱圖4(圖4A至圖4D),本發明之製 作奈米碳管場效發射顯示器的方法,包合 、 u各Μ卜步驟: (I) 供一陰極板2 (如圖4 A所示); (II) 於該陰極板2上設置-空間支標器4(如圖4β 所不); ίο 20 (III)形成複數絕緣層5及減分卿成在該等絕緣 層5上的閘極層6 (如圖4C所示);及 頂緣設置一陽極板7, (IV)於該空間支標器4的一 使該空間支㈣4介於該陰極板2及該陽極板 7之間(如圖4D所示)。 其中,於該步驟⑴中的陰極板是藉由前面實施方式 所提及的方法製作而成,在此不再多加詳述之。藉由該步 驟(Π )中的空間支樓器4之一底緣將該等碳管區饥相間 、] 每、、、巴緣層5是形成在每一碳管區231的外圍處 並位在該奈米碳管塗層23上。 /較佳地,該陽極板7具有一呈透明的第二板體71、一 ^/成在,亥第一板體71的一下表面的透明導電層72、一形 成在該透明導電層72之一下表面並用以增強對比 (contrast)的吸收層73,及複數形成於該吸收層之一 下表面且與違等碳管區231相對應的螢光帥。叩_)塗層 15 74 ° 1240295 適用於本發明之該陽極板的透明導電層72是選自於 下列所構成之群組:氧化銦錫(Indium Tin Oxide,簡稱 ITO)、氧化銻錫(Antimony Tin Oxide,簡稱 ΑΤΟ)、氧化 5 氟錫(F!uorine-Doped Tin Oxide,簡稱 FTO),以及氧化 錶錫(Iridium Tin Oxide,簡稱IRTO)。在一具體例中, 该第二基板71及該透明導電層72分別為一透明玻璃基板 及一 ΙΤ0導電層。 值得一提的是,該等螢光塗層74是可因應電路 10 (electric circuit)設計的需求,而為下述兩種型態:第 種疋形成呈紅綠藍(間稱RGB )三原色之螢光粉,且分別 獨立设置,第二種是將RGB三原色同時形成在單一螢光塗 層74上。 較佳地,該步驟(IV )之後更包含一步驟(v )。將該陰 15 極板2、空間支撐器4及陽極板7相配合界定出的一容置 空間8於予減壓,以使該容置空間8達_至少低於〇〇ι mTorr的壓力環境,並進一步地封裝該陰極板2、空間支 撑器4及陽極板7以完成該步驟(v )。 有關本發明之前述及其他技術内容、特點與功效,在 20 以下配合參考圖式之三個具體例的詳細說明中,將可清楚 的明白。 在本發明被詳細描述之前,要注意的是,在以下的說 明中’類似的元件是以相同的編號來表示。 〈具體例一〉 16 1240295 以下就本發明之一具體例一說明之。 提供一帶有正電荷的含有奈米碳管(可簡稱CNT)之塗 料。參閱圖5(圖5A至圖5C),首先將複數呈絕緣性的奈 米碳管230a(在此為簡化繪製於圖示中的奈米碳管之數 i圖5A至圖5C是僅以一奈米碳管表示於圖示中)靠近 一帶複數負電荷的物體9(如圖5A所示),使靠近該物體9 之不米奴管230a表面藉由靜電原理帶有複數正電荷。參 閱圖5B,對該等奈米碳管230a接地(gr〇unding)使藉由靜 電原理形成於該等奈米碳管230a的負電荷被電性中和, 1〇 以形成複數帶有正電荷的奈米碳管230a,(如圖5C所示), 並將該等帶有正電荷的奈米碳管23〇a,製備成該帶有正電 荷的含有CNT之塗料。 另外,該具體例一中的壓印模板是先利用電子束直寫 法於一透明玻璃壓印模板的一第一表面上,形成複數呈一 15 陣列式排列的盲孔,並於該透明玻璃壓印模板的第一表面 形成一 ITO導電層。進一步地,在形成有該IT0導電層的 表面形成一絕緣層,並利用微影蝕刻法將每一盲孔的一封 閉端之絕緣層移除,以定義出位在每一盲孔之封閉端的 ΙΤΟ導電層為複數誘導層。在該具體例一中,該等封閉端 20 是分別呈一平面狀。 利用濺鍍法將ΙΤΟ透明導電膜形成於一透明玻璃陰極 基板上以形成一陰極導電層,將該帶有正電荷的含有CNT 之塗料利用旋塗法(spin coating)塗佈在陰極導電層上以 形成一 CNT塗層。 17 1240295 壓合該CNT塗層及該壓印模板的同時,於該壓印模板 之ΙΤ0導電層上提供一負電壓,以在該等誘導層上提供複 數負電荷,使包含在該CNT塗層内的CNT藉由正負電荷的 吸引下,於該CNT塗層上形成有複數相間隔設置並具有複 5 數呈順向排列之CNT的碳管區。接著,於相反於該壓印模 板之第一表面的第二表面提供一 UV光源,對該CN.T塗層 予以硬化。最後,分離該壓印模板及具有該CNT塗層的透 明玻璃陰極基板以完成本發明之製作該陰極板的方法。 於該陰極板上提供一空間支撐器,藉該空間支撐器之 10 一底緣將該等碳管區相間隔開。 利用半導體製程於該CNT塗層上形成複數設置於該等 碳管區外圍的絕緣層,及複數分別形成在該等絕緣層上的 閘極層。 於該空間支撐器的一頂緣設置一陽極板,使該空間支 15 撐器介於該陰極板及該陽極板之間。該陽極板具有一透明 玻璃陽極基板、一形成在該透明玻璃陽極基板的一下表面 的ΙΤ0陽極導電層、一形成在該ΙΤ0陽極導電層之一下表 面並用以增強對比的吸收層,及複數形成於該吸收層之一 下表面且與該等碳管區相對應的螢光塗層。 20 最終,將該陰極板、空間支撐器及陽極板相配合界定 出的一容置空間於予減壓,以使該容置空間達一 1 X 10_7 Torr的壓力環境,並進一步地對該陰極板、空間支撐器及 陽極板進行封裝,以完成製作本發明之奈米碳管場效發射 顯示器的方法。 18 l24〇295 〈具體例二〉 5 10 15 20 本發明之-具體例二的製作方法大致上是與該具體 才同其不同處在於,形成該帶有正電荷的含有CNT 0塗料的方法。參閱圖6(圖6A至圖6C),首先將複數呈 ¥電性的奈米碳管23Gb放置於酸性溶液9,中(如圖Μ】 )以使β亥等奈米奴官23()b藉由該酸性溶液9,形成複 數帶有正電荷的奈米碳管23〇b,,並將該等帶有正電荷的 奈米石炭管230b,製備成該帶有正電荷的含有cnt之塗料。 (在此為簡化繪製於圖示中的奈米碳管之數量,圖Μ至圖 6C疋僅以一奈米碳管表示於圖示申)。 〈具體例三〉 溶液9”形成複數帶有正電荷的奈米碳管23()e,,並將該等 帶有正電荷的奈米碳管230c,製備成該帶有正電荷的‘有 CNT之塗料。(在此為簡化緣製於圖示中的奈米碳管之數 量,圖7A至圖7C是僅以一奈米碳管表示於圖示中)。 發明之-具體例三的製作方法大致上是與該具體 例二相同。其不同處在於,形成帶有正電荷的含有cnt之 塗料的方法。參關7(圖7A至圖7G),首先將複數呈導 電性的奈米碳管2,放置人—含有疏水型分散劑之溶液 9”中’以使該等奈米碳管23Gc藉由該含有疏水型分散劑之 本發明之製作奈米碳管場效發射顯示器之陰極板及 奈米碳管場效發射顯示器的方法,可降低在真空鑛膜製程 中所需耗費的抽氣時間。另外,比傳統網印過程中,藉由 本發明之製作方法所形成的CNT塗層,不會因為在網㈣ 19 1240295 2中網版本身的乳劑厚度設計不佳、壓力控制不當、含有 :米碳管之網印膠的黏度與網版網目尺寸大小無法配合 等口素,而造成陰極板解析度不良等問題。再者,藉由本 5 =之製作方法所製得的陰極板,是具有呈順向排列且可 提高場效發射效率的⑶丁。 縱上所述本發明之製作奈米碳管場效發射顯示器之 陰極板及奈米碳管場效發射顯示器的方法,可在簡化製作 奈米碳管陰極板之製程的同時,又能兼具製作出具有順向 排列的奈米碳管,確實達到本發明之目的。 10 ㈣上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請:利 範圍及發明說明書内容所作之簡單的等效變化與修娜,皆 應仍屬本發明專利涵蓋之範圍内。 【圓式簡單說明】 15 圖1A至1U-元件製作流程側視示意圖,說明習知 一種奈米碳管場發射顯示器之陰極板的製作方法; 圖1A是一側視示意圖,說明該習知於一透明基板上 形成一具有一圖案之底電極層; 圖1B是一側視示意圖’說明該習知於該底電極層之 20 圖案上形成一奈米碳管層; 曰 圖ic是-側視示意圖,說明該習知於該奈米碳 上形成一介電層; 曰 圖是-側視示意圖,說明該習知於該介電層切 成一閘極圖案; / 20 1240295 圖1E是一側視示意圖,說明完成該習知之方法後所 形成的奈米碳管場發射顯示器之陰極板的結構; 圖2 —流程圖’說明本發明之製作奈米碳管場效發射 顯示器之陰極板的方法; 5 10 15 2〇 圖3A至3D是一元件製作流程側視示意圖,說明本發 明之製作奈米石炭管場效發射顯示器之陰極板的方法; 圖3A疋一側視不意圖,說明提供一壓印模板及一形 成在具有一導電層的第一板體上的奈米碳管塗層; 圖3B是-側視示意圖,說明產合㈣印模板及該奈« ^炭管塗層的同時,於兩者間形成一電場,以使該奈米碳 官塗層上形成有複數相間隔設置並具有複數呈順向排列. 之奈米碳管的碳管區; , 圖3C是-.側視示意圖,說明固化該奈米碳管塗層,· 圖3D是-側視示意圖,說明分離該塵印模板及具有 該奈米碳管塗層的第一板體; 固Μ王⑽是一元件製作流程側視示意圖 W ΤΑ小The cathode plate of the nanotube field emission display produced by using the thin film deposition process and the screen printing process can reduce part of the time-consuming process and save unnecessary surface peripherals ^, but by screen printing H 20 The 1240295 nano carbon tube layer 103 is easily due to poor thickness design of the emulsion of the screen body (6 legs 丨 3 丨 〇11), improper pressure control during the screen printing process, and the viscosity of the screen printing adhesive containing the nano carbon tube ( viscosity and the mesh size (mesh) size and benefits ^ 4, 4, and other factors, and other factors caused the poor resolution of the cathode plate and other problems. 5 Furthermore, the nano-carbon tube layer 103 formed on the pattern of the bottom electrode layer 102 by screen printing exhibits a random appearance with a hair-ball shape, and therefore cannot be formed. An array of carbon nanotubes arranged in a forward direction is presented to meet the field emissivity requirements. All previous patents mentioned above are incorporated herein by reference. Therefore, 'how to simplify the manufacturing process of the carbon nanotube cathode plate, and at the same time can also produce the carbon nanotubes with a forward alignment, is a major problem that people in the field of developing carbon nanotube cathode plates should overcome. . [Summary of the Invention] Therefore, an object of the present invention is to provide a method for manufacturing a cathode plate of a nano-carbon tube field emission display. Another object of the present invention is to provide a method for manufacturing a field emission display of a carbon nanotube. This narrative method for manufacturing a cathode plate of a nano carbon tube field emission display includes the following steps: (A) providing an impressing template and forming a first plate with a conductive layer Nano carbon tube coating on the board; (B) An electric field is formed between the embossing template and the nano carbon tube coating on the same day by using 1240295 A carbon tube region having a plurality of nano carbon tubes arranged in a spaced relationship and having a plurality of nano carbon tubes arranged in a forward direction is formed on the coating of the minion officer coating; and the carbon nanotube coating is coated to separate the stamper 5 10 15 20 plates and a first plate body with the nano carbon tube coating to complete the cathode plate. In addition, the method for manufacturing a cathode plate of a nano-carbon tube field emission display in accordance with the present invention can be completed-a method of manufacturing a nano-carbon tube field emission display. A method for remotely manufacturing a nano-carbon tube field emission display includes the following steps: (I) providing a cathode plate; (II) providing a space holder on the cathode plate; (III) forming a plurality of insulating layers and A plurality of gate layers respectively formed on the insulating layers; and (IV) an anode plate is provided on a top edge of the two supporters so that the space supporter is interposed between the cathode plate and the anode plate between. /, In. The cathode plate in the step (I) is manufactured by the method mentioned in the foregoing summary. The carbon tube regions are spaced apart by a bottom edge of the space supporter in step u), and each insulating layer is formed at the periphery of each carbon tube region and is positioned on the nanometer carbon tube coating. . The effect of the present invention is to simplify the manufacturing process of the cathode plate of the nano carbon tube, and at the same time, it can also produce the nano carbon tube with the forward alignment. [Embodiment] Referring to FIG. 2 and FIG. 3 (FIG. 3A to FIG. D), a method for manufacturing a cathode plate of a nano carbon tube field 10 1240295 effect emission display of the present invention includes the following steps: (A) providing an imprint template 3 and a nano-carbon tube coating layer 23 formed on a first-plate body 21 having a conductive layer μ (as shown in FIG. 3 a); (B) by pressing the imprint template 3 and the nano At the same time as the carbon tube coating layer 23, an electric field is formed between the two, so that the carbon nanotube coating layer 23 is formed with a carbon tube region 231 having a plurality of spaced-apart carbon nanotubes 232 arranged in a forward direction. (As shown in FIG. 3B to FIG. 3C); and (C) curing the nano carbon tube coating 23 and separating the imprint template 3 and the first plate body 21 with the nano tube breaking coating 23 (as shown in FIG. 3B) 3C to 3D) to complete the cathode plate 2. Among them, the nano-nano tube coating layer 23 is made by forming a slurry containing a nano carbon tube on the conductive layer 22. In the present invention, the conductive layer 22 is made of a method selected from the group consisting of a sputtering method, an evaporation method, a dip-coating method, and Gel method. In a specific example, the conductive layer 22 is formed on the first board 21 by a transparent conductive layer of hafnium tin oxide (IT0) by a sputtering method. Preferably, the imprint template 3 in this step (A) is a plurality of blind holes 31 arranged in an array. The method for forming the blind holes 3] suitable for the present invention is a processing method selected from the group consisting of: reactive ion etching (reactive ionic etching; RIE for short), e-beam writing), laser beam direct writing (iase: r beam 11 5 10 15 20 1240295 writing) and micro precision drilling (precisión drilling). In a specific example, the blind holes 31 are formed using an electron beam direct writing method. A closed end 311 of each blind hole 31 is in a shape selected from the group consisting of the following, a planer-like shape, an awl-shaped shape, and an arc shape. In a specific example, the closed ends 311 are respectively planar. The material of the embossing template 3 suitable for the present invention is selected from the group consisting of a transparent material and a "conductor" material which is a heat conductive material. Preferably, the material of the imprint template 3 is a transparent material. In a specific example, the transparent material of the imprint template 3 is a transparent quartz glass. ^ Preferably, 'the first end-type charge is provided at the closed end 311 of each blind hole 31 of the embossing template 3' and the coating of the carbon nanotube-containing coating is provided with a plurality of opposite-type charges. The second type of charge causes the carbon nanotubes 232 located in the carbon tube regions 231 to form the electric field under the mutual attraction of the electric charges, so that the carbon nanotubes 232 are arranged in a forward direction. Preferably, an external electric field E is provided to the imprint template 3 and an induction layer 32 is formed at the closed end 311 of each blind hole 31 to form the first type charges. In a specific example, a negative voltage 'is provided on the induction ^ 32 and a transparent conductive film 33' is formed on a plane where the blind holes 31 are not formed, and a positive voltage is provided on the transparent conductive film 33- The external electric field E is formed so that the first-type charges formed on the induction layers 32 are negative charges (elect ·). Preferably, the induction layer is made of a material selected from the group consisting of: a conductor material and a semiconductor material. More preferably, the induction layer is made of a conductive material 12 1240295. In a specific example, the inducing layer is made of transparent indium tin oxide (ITO). In addition, it is worth mentioning that, in the case of the material of the imprint template 3, the connection method of the external electric field E can connect the positive voltage to the conductive layer 22 of the 5 cathode plate 2 (not shown in the figure). (Shown), the positive voltage can also be formed on the other side of the 4 cathode plate 2 to form the applied electric field, and the negative charges can be formed on the induction layers 32 (not shown). Preferably, the plurality of carbon nanotubes contained in the coating are insulating. These second type charges are formed by the static electricity of the original Wangli. In the specific example, the nano carbon tubes are brought close to an object having a negative charge so that the second type of charge formed on the nano carbon tube-containing coating is a positive charge. Preferably, the plurality of carbon nanotubes contained in the coating are non-insulated. The carbon nanotubes are exposed to a solution (sQlutiQn) to form the 15 2 type-type charge. The solution is selected. From the group consisting of: acidic night and test. In the specific example, 'the carbon nanotubes are exposed to an acidic solution so that the second type charge formed on the coating material containing the carbon nanotubes is positive. Che Jiajiadi 'The plural carbon nanotubes contained in the coating are-non-insulating. 2 Exposing the nano carbon nanotubes to a solution containing a dispersant such as) to form the second type. Charge. In a specific example, the carbon nanotubes are placed in a dispersant containing a hydrophobic type so that the second-type charge formed on the coating containing the carbon nanotubes is positive. The method of particle surface 4 mentioned above is well known to those in the field of colloid chemistry. Therefore, 13 1240295 will not be described in detail here. The curing suitable for the present invention is a curing method selected from the group consisting of: thermal curing, light curing, and chemical curing. In a specific example, the photo-curing method is an ultraviolet curing method (abbreviated as UV). It is worth mentioning that the embossing template used in the heat curing is a transparent material with a light source transmission characteristic (transmission characteristic), but also a heat conductive material. The heat conductor material suitable for the present invention is selected from the group consisting of stainless steel, aluminum anoy, and magnesium aoy. In a specific example, a liver light source is provided on an upper surface of one of the embossed mold plates 3 on which the blind holes 31 are not formed, so that the nano-carbon tube coating µ completes the UV irradiation curing method. It is also worth mentioning that the light source is irradiated upward from the lower surface of the first plate M 21 so that the carbon nanotube coating layer 23 completes the UV irradiation curing method. The νν light source can also The upper surface of the embossing template 3 and the lower surface of the first plate body 21 are directed simultaneously; and upward irradiation is performed, so that the carbon nanotube coating layer 23 completes the M irradiation curing method. It is worth mentioning that the length of the carbon nanotubes contained in the coating of the present invention is between 0.999 and 1.01 μ. However, in this case: when the printing plates 3 are pressed to each other at a slow speed, these unequal-length rice stone mountain tubes will be attracted by the closed end of the blind 31 because of the second-type charge. 'So that the carbon nanotubes can follow the seal] and 311 form the carbon tube area. Therefore, the use of the Xishan yi compressed by the flat closed end 311 in the system of 14 1240295] Whai Temple stone anaerobic tube area 231 疋 are arranged in a flat shape. With the method of manufacturing a cathode plate of a nano-carbon tube field effect-display of the present invention, the method of manufacturing a nano-tube field-emitting display of the present invention can be further completed. Referring to FIG. 4 (FIG. 4A to FIG. 4D), the method for manufacturing a nanometer carbon tube field emission display according to the present invention includes the following steps: (I) A cathode plate 2 (as shown in FIG. 4A) ); (II) a space marker 4 is provided on the cathode plate 2 (as shown in FIG. 4β); 20 (III) forming a plurality of insulating layers 5 and reducing the gates on the insulating layers 5 An electrode layer 6 (as shown in FIG. 4C); and an anode plate 7 is provided at the top edge, (IV) a space support 4 is provided between the cathode plate 2 and the anode plate 7 (As shown in Figure 4D). The cathode plate in this step (2) is made by the method mentioned in the previous embodiment, and it will not be described in detail here. With the bottom edge of one of the space supporting devices 4 in this step (Π), the carbon tube regions are hungry, and the edge layer 5 is formed at the periphery of each carbon tube region 231 and is located at the Nano carbon tube coating 23. / Preferably, the anode plate 7 has a transparent second plate body 71, a transparent conductive layer 72 formed on the lower surface of the first plate body 71, and a transparent conductive layer 72 formed on the transparent conductive layer 72. The absorption layer 73 on the lower surface is used to enhance the contrast, and a plurality of fluorescent lamps are formed on the lower surface of one of the absorption layers and correspond to the non-compliant carbon tube region 231.叩 _) Coating 15 74 ° 1240295 The transparent conductive layer 72 suitable for the anode plate of the present invention is selected from the group consisting of: Indium Tin Oxide (ITO), Antimony (Antimony) Tin Oxide (referred to as ATTO), F! Uorine-Doped Tin Oxide (referred to as FTO), and Iridium Tin Oxide (referred to as IRTO). In a specific example, the second substrate 71 and the transparent conductive layer 72 are a transparent glass substrate and an ITO conductive layer, respectively. It is worth mentioning that these fluorescent coatings 74 can respond to the requirements of the design of the electric circuit 10, and are of the following two types: the first type is formed into three primary colors of red, green, and blue (sometimes referred to as RGB). Fluorescent powders are separately set. The second is to form three primary RGB colors on a single fluorescent coating 74 at the same time. Preferably, the step (IV) further comprises a step (v). An accommodating space 8 defined by the combination of the female 15 electrode plate 2, the space support 4 and the anode plate 7 is decompressed, so that the accommodating space 8 reaches a pressure environment of at least less than 0 mTorr And further package the cathode plate 2, the space supporter 4, and the anode plate 7 to complete the step (v). The foregoing and other technical contents, features, and effects of the present invention will be clearly understood in the detailed description of the three specific examples with reference to the drawings below. Before the present invention is described in detail, it is to be noted that in the following description, 'similar elements are represented by the same reference numerals. <Specific Example 1> 16 1240295 A specific example of the present invention will be described below. Provide a positively charged coating containing carbon nanotubes (can be referred to as CNTs). Referring to FIG. 5 (FIG. 5A to FIG. 5C), firstly, a plurality of nano carbon tubes 230a (here, the number of nano carbon tubes simplified in the figure) that are insulating is shown in FIG. 5A to FIG. 5C. The carbon nanotube is shown in the figure) near an object 9 with a complex negative charge (as shown in FIG. 5A), so that the surface of the tube 230a near the object 9 has a complex positive charge by electrostatic principle. Referring to FIG. 5B, the nano carbon tubes 230a are grounded so that the negative charges formed on the nano carbon tubes 230a by the electrostatic principle are electrically neutralized, and 10 is formed to form a complex with a positive charge. The carbon nanotubes 230a, as shown in FIG. 5C, and the positively charged nanocarbon tubes 23a are prepared into the positively charged CNT-containing coating. In addition, the embossing template in the first specific example is firstly forming a plurality of blind holes arranged in an array of 15 arrays on a first surface of a transparent glass embossing template by using electron beam direct writing method, and pressing the transparent glass on the transparent glass. An ITO conductive layer is formed on the first surface of the printing plate. Further, an insulating layer is formed on the surface where the IT0 conductive layer is formed, and a lithographic etching method is used to remove the insulating layer at a closed end of each blind hole to define a closed end located at each closed hole. The ITO conductive layer is a plural induction layer. In the first specific example, the closed ends 20 are respectively planar. A ITO transparent conductive film is formed on a transparent glass cathode substrate by a sputtering method to form a cathode conductive layer. The positively charged CNT-containing coating is coated on the cathode conductive layer by a spin coating method. To form a CNT coating. 17 1240295 While laminating the CNT coating and the imprint template, a negative voltage is provided on the ITO conductive layer of the imprint template to provide a plurality of negative charges on the induction layers, so that the CNT coating is included in the CNT coating. The CNTs inside are attracted by positive and negative charges to form a carbon tube region on the CNT coating layer having a plurality of CNTs spaced apart and arranged in a forward direction. Then, a UV light source is provided on a second surface opposite to the first surface of the embossed mold plate, and the CN.T coating is hardened. Finally, the imprint template and the transparent glass cathode substrate with the CNT coating are separated to complete the method of manufacturing the cathode plate of the present invention. A space support is provided on the cathode plate, and the carbon tube regions are separated by a bottom edge of the space support. A semiconductor process is used to form a plurality of insulating layers disposed on the periphery of the carbon tube regions on the CNT coating layer, and a plurality of gate layers respectively formed on the insulating layers. An anode plate is provided on a top edge of the space supporter, so that the space supporter 15 is interposed between the cathode plate and the anode plate. The anode plate has a transparent glass anode substrate, an ITO anode conductive layer formed on a lower surface of the transparent glass anode substrate, an absorption layer formed on a lower surface of one of the ITO anode conductive layers and used to enhance contrast, and a plurality of A fluorescent coating on a lower surface of the absorbing layer and corresponding to the carbon tube regions. 20 Finally, a containing space defined by the combination of the cathode plate, the space support and the anode plate is pre-depressurized, so that the containing space reaches a pressure environment of 1 X 10_7 Torr, and further the cathode The plate, the space support and the anode plate are packaged to complete the method for manufacturing the nano-carbon tube field emission display of the present invention. 18 l24〇295 <Specific Example 2> 5 10 15 20 The manufacturing method of the present invention-Specific Example 2 is basically different from the specific one in that the method for forming the positively charged CNT 0-containing coating is formed. Referring to FIG. 6 (FIG. 6A to FIG. 6C), firstly, a plurality of nano carbon nanotubes 23Gb are placed in an acidic solution 9 (as shown in FIG. M) so that the nano slave 23 () b such as βH With the acidic solution 9, a plurality of positively charged nano carbon tubes 23b are formed, and the positively charged nano carbon tubes 230b are prepared into the positively charged cnt-containing coating. . (In order to simplify the number of carbon nanotubes drawn in the illustration, Figures M to 6C (only one carbon nanotube is shown in the illustration). <Specific Example 3> Solution 9 "forms a plurality of positively-charged carbon nanotubes 23 () e, and prepares these positively-charged carbon nanotubes 230c into the CNT coating. (To simplify the number of carbon nanotubes produced in the picture, Figures 7A to 7C are shown in the picture with only one carbon nanotube.) Invention-Specific Example 3 The manufacturing method is roughly the same as that of the specific example 2. The difference lies in the method of forming a coating with cnt with a positive charge. For reference 7 (Figures 7A to 7G), first, the nanometer with a plurality of conductive particles is conductive. The carbon tube 2 is placed in a person—a solution 9 ”containing a hydrophobic dispersant so that the carbon nanotubes 23Gc are made of the cathode of the nano-carbon tube field emission display by the present invention containing the hydrophobic dispersant. The panel and nanometer carbon tube field emission display method can reduce the evacuation time required in the vacuum ore film manufacturing process. In addition, compared with the traditional screen printing process, the CNT coating formed by the manufacturing method of the present invention will not be caused by poor design of the emulsion thickness, improper pressure control, and: The viscosity of the tube screen printing glue cannot match the size of the screen mesh size, causing problems such as poor cathode plate resolution. In addition, the cathode plate produced by the manufacturing method of 5 = is a d-plate having a forward arrangement and which can improve the field emission efficiency. The method for manufacturing a cathode plate of a nano carbon tube field-effect display and a method of producing a nano-carbon tube field-effect display according to the present invention can simplify the manufacturing process of a nano-carbon tube cathode plate and simultaneously have both The purpose of the present invention is indeed achieved by making a carbon nanotube with a forward alignment. 10 The above is only a preferred embodiment of the present invention. When the scope of implementation of the present invention cannot be limited by this, that is, the simple equivalent changes made according to the scope of the invention and the contents of the invention specification, and Shuna should still fall within the scope of the invention patent. [Circular brief description] 15 Figures 1A to 1U- side view schematic diagram of the component manufacturing process, illustrating the manufacturing method of the cathode plate of a nano carbon tube field emission display; Figure 1A is a schematic side view illustrating the knowledge of A bottom electrode layer having a pattern is formed on a transparent substrate; FIG. 1B is a schematic side view 'illustrating that it is known to form a carbon nanotube layer on the 20 pattern of the bottom electrode layer; FIG. 1 is a side view Schematic diagram illustrating the formation of a dielectric layer on the nano-carbon by the conventional method; the diagram is a schematic view from the side, which illustrates that the dielectric is cut into a gate pattern by the dielectric layer; / 20 1240295 FIG. 1E is one side The schematic diagram illustrates the structure of the cathode plate of a nano-carbon tube field emission display formed after the completion of the conventional method; FIG. 2-a flowchart illustrating the method of manufacturing the cathode plate of a nano-carbon tube field emission display according to the present invention 5 10 15 2 0 FIGS. 3A to 3D are schematic side views of a component manufacturing process, illustrating a method for manufacturing a cathode plate of a nano-carbon tube field effect emission display according to the present invention; FIG. Embossed templates and A nano carbon tube coating formed on a first plate having a conductive layer; FIG. 3B is a schematic side view illustrating the production of a stamped template and the carbon coating of the carbon tube, in between An electric field is formed so that a plurality of phase intervals are formed on the nano-carbon official coating and a plurality of carbon nanotubes are arranged in a forward direction. FIG. 3C is a schematic side view illustrating curing the Nano carbon tube coating, Figure 3D is a schematic side view illustrating the separation of the dustprint template and the first plate body with the nano carbon tube coating. Gu Wang is a schematic side view of a component manufacturing process. ΤΑ 小

明之製作奈求碳管場效纟射顯示器的方法 圖4Α是一側視示意圖,說明提供一藉由本發明4 作奈米碳管場效發射顯示器之陰極板的方法所製得自 極板; 間支撐器 圖:Β是一側視示意圖’說明於該陰極板上設置一空 21 1240295 圖4D是一側視示意圖,說明於該空間支撐器的一頂 緣設置一陽極板; 圖5A至5C是本發明之一具體例一的部分流程示意 圖,說明利用靜電原理製作一帶有正電荷的含有奈米碳管 5 之塗料; 圖6A至6C是本發明之一具體例二的部分流程示意 圖,說明利用一酸性溶液製作一帶有正電荷的含有奈米碳 管之塗料;及 圖7A至7C是本發明之一具體例三的部分流程示意 10 圖,說明利用疏水性分散劑溶液製作一帶有正電荷的含有 奈米碳管之塗料。 22 1240295 【圖式之主要元件代表符號簡單說明】 2…… 陰極板 32 * 21… 第一板體 33 * 22 · * · 導電層 4 · · 23… 奈米碳管塗層 5… 230 · * 奈米碳管 6 · · 230a - · 呈絕緣性的奈米碳管 Ί ♦ · 230a, · 帶有正電荷的奈米碳管 71 · 230b·* 呈導電性的奈米碳管 72 - 230b, · 帶有正電荷的奈米碳管 73 * 230c· · 呈導電性的奈米碳管 74 · 230c,. 帶有正電荷的奈米碳管 8 · · 231 · · 碳管區 9… 232 . · 順向排列的奈米礙管 9,· · 3 · * * · 壓印模板 9,,· 3卜.· 盲孔 311 · * 封閉端 •誘導層 •透明導電膜 •空間支撐器 •絕緣層 *閘極層 •陽極板 •第二板體 •透明導電層 •吸收層 •螢光塗層 •容置空間 •物體 •酸性溶液 •含有疏水型分散劑之溶液 23Ming Zhi Method for Making Carbon Tube Field Effect Emission Display Figure 4A is a schematic side view illustrating a method for providing a cathode plate of a nano carbon tube field emission display according to the present invention; Supporter diagram: B is a schematic diagram of a side view 'illustrating that a space 21 1240295 is provided on the cathode plate. Fig. 4D is a schematic diagram of a side view illustrating an anode plate provided on a top edge of the space supporter. Figures 5A to 5C are Partial flow diagram of a specific example 1 of the invention, illustrating the use of electrostatic principles to make a coating with a positive charge containing the carbon nanotube 5; Figures 6A to 6C are partial flow diagrams of a specific example 2 of the invention, illustrating the use of a An acidic solution is used to make a positively charged coating containing carbon nanotubes; and Figures 7A to 7C are schematic diagrams of part of a specific example 3 of the present invention. Figure 10 illustrates the use of a hydrophobic dispersant solution to make a positively charged containing Coatings for carbon nanotubes. 22 1240295 [Simplified explanation of the main symbols of the drawings] 2 ... Cathode plate 32 * 21 ... First plate body 33 * 22 · * · Conductive layer 4 · · 23 ... Nano carbon tube coating 5 ... 230 · * Nano carbon tube 6 · 230a-· Nano carbon tube with insulation Ί · 230a , · Nano carbon tube with positive charge 71 · 230b · * Nano carbon tube with conductivity 72-230b , · Positively charged carbon nanotubes 73 * 230c · · Electrically conductive carbon nanotubes 74 · 230c,. Positively charged carbon nanotubes 8 · · 231 · · Carbon tube area 9… 232. · · Nano-blocking tube 9, arranged in the forward direction, ·· 3 · * * · Embossed template 9, 3 · Blind hole 311 · * Closed end • Induction layer • Transparent conductive film • Space supporter • Insulating layer * Gate layer • Anode plate • Second plate body • Transparent conductive layer • Absorption layer • Fluorescent coating • Storage space • Object • Acid solution • Solution containing hydrophobic dispersant 23

Claims (1)

1240295 拾、申請專利範圍: 1· 一種製作奈米碳管場效發射顯示器之陰極板的方法,包 含以下步驟: (A) 提供一壓印模板及一形成在一具有一導電層的第一 板體上的奈米碳管塗層; (B) 藉由壓合該壓印模板及該奈米碳管塗層的同時,於兩 者間形成一電場,以使該奈米碳管塗層上形成有複數 相間隔設置並具有複數呈順向排列之奈米碳管的碳 管區;及 (C) 固化該奈米碳管塗層並分離該壓印模板及具有該奈 米碳管塗層的第一板體,以完成該陰極板。 2.依據申請專利範圍第1項之製作奈米碳管場效發射顯示 器之陰極板的方法,其中,該奈米碳管塗層是將一含有 奈米碳管之塗料形成在該導電層上所製成。 3·依據申請專利範圍第2項之製作奈米碳管場效發射顯示 為之陰極板的方法,其中,該步驟(A )中的壓印模板是具 有複數呈一陣列式排列的盲孔。 4·依據申請專利範圍第3項之製作奈米碳管場效發射顯示 器之陰極板的方法,其中,於該壓印模板之每一盲孔的 一封閉端提供複數第一型電荷,並於該含有奈米碳管之 塗料k供複數相反於該等第一型電荷的第二型電荷,使 位於遠專碳管區内的奈米碳管,藉由呈相反電性的電荷 於相互吸引下形成該電場,以使該等奈米碳管呈現順向 排列。 24 1240295 5.依據申請專利範圍第4 , 器之陰極板的方法,发:之製作奈米碳管場效發射顯示 場且於每-盲孔的封閉該㈣模板提供—外加電 -型電荷,該誘導層是由:成一編,以形成該等第 料所製成:導趙材料及半導^列所構成之群組的材 6·依據申請專利範圍第5 芎之^、製作不米碳管場效發射顯示 為之陰極板的方法,苴φ ^ /、r ’该塗料内所含的複數杏半石声 管是呈一絕緣性,該等第二刑士― 〇複數不未石反 7 ^ ^ ^ ^ ^ 1電何是藉由靜電原理形成。 7·依據申請專利範圍第5項 5〇 . ^ ^ 、製作示米碳管場效發射顯示 斋之陰極板的方法,1中, ^ Η- 、 該塗料内所含的複數奈米碳 g疋呈一非絕緣性,將該 W 专不木石反官暴露在一溶液中以 形成該等第二型電荷,該溶 T 〜合液疋選自於下列所構成之群 組:酸性溶液及鹼性溶液。 8·,據中請專利範圍第5項之製作奈米碳管場效發射顯示 二Η陰極板的方去’其中’該塗料内所含的複數奈米碳 &amp;疋呈-非絕緣性,將該等奈米碳管暴露在〆含有分散 劑之溶液中以形成該等第二型電荷。 9·,據申請專利範㈣丨項之製作奈米碳管場效發射顯示 盗之陰極板的方法’其中,該固化是選自於下列所構成 之群組的固化法··熱固化、光固化及化學固化。 •種製作奈米碳管場效發射顯示器的方法,包含以下步 驟: (I) 提供一陰極板; (Π )於該陰極板上設置一空間支撐器; 25 (III)1240295 /成複數 '纟巴緣層及複數分別形成在該等絕緣層上 的閘極層;及 支撐裔的一頂緣設置一陽極板,使該空 (IV) 於該空間 支撐器介於該陰極板及該陽極板之間; 々/、 Λ v驟(1 )中的陰極板是藉由申請專利範圍 第項所述之方法製作而成,藉由該步驟(Η )中的空間 支撐器之-底緣將該等碳管區相間隔開,且每一絕緣層 是形成在每一碳管區的外圍處並位在該奈求碳管塗層 上。 11. 依據中請專利範圍第1Q項之製作奈米碳管場效發射顯示 器之的方法,其中’該奈米碳管塗層是將一含有奈米碳 管之塗料形成在該導電層上所製成。 12. ㈣中請專利範圍第u項之製作奈米碳管場效發射顯示 器之的方丨其中,該步驟(&quot;中的壓印模板是具有複 數呈一陣列式排列的盲孔。 13. ㈣申請專利範圍第12項之製作奈米碳管場效發射顯示 器之的方’缶其中’於該壓印模板之每一盲孔的一封閉 端提ί、複數第-型電荷,並於該含有奈米碳管之塗料提 仏複數相反於4等第一型電荷的第二型電荷,使位於該 等碳管區㈣奈米碳f ’藉由呈相反電性的電荷於相互 吸引下形成該電場,以使該等奈米碳管呈現順向排列。 14·依據申請專利範圍第13項之製作奈米碳管場效發射顯示 器之的方法,其中,對該壓印模板提供一外加電場且於 母一盲孔的封閉端形成一誘導層,以形成該等第一型電 26 1240295 荷’該誘導層是由選自於下列所構成之群組的材料所製 成:導體材料及半導體材料。 .依射請專利範㈣14項之製作奈米碳管場效發射顯示 器之的方法’其中,該塗料内所含的複數奈米碳管是呈 -絕緣性,該等第二型電荷是藉由靜電原理形成。 16.依射請專利範圍第14項之製作奈米碳管場效發射顯示 益之的方法’其中’該塗料内所含的複數奈米碳管是呈 -非絕緣性,將該等奈米碳管暴露在—溶液中以形成該 專第二型電荷’該溶液是選自於下列所構成之群組:酸 性溶液及驗性溶液。 Π.依據中請專利範圍第14項之製作奈米礙管場效發射顯示 益之的方法,其中,該塗料内所含的複數奈米礙管是呈 -非絕緣性,將該等奈米碳管暴露在一含有分散劑之溶 液中以形成該等第二型電荷。 18. 依射請專利範圍㈣項之奈米碳㈣效發射顯示器之 的製作方法,其中,該固化是選自於下列所構成之群組 的固化法:熱固化、光固化及化學固化。 19. :據申請專利範圍第10項之製作奈米碳管場效發射顯示 2之的方法,其中,該陽極板具有_呈透明的第二板體、 形成在该第二板體的一下表面的透明導電層、一形成 在該透明導電層之一下表面並用以增強對比的吸收層, 及複數形成於該吸收層之—下表面且與該等碳管區相對 應的螢光塗層。 2〇.依據申請專利範圍第1〇項之製作奈米碳管場效發射顯示 27 1240295 為之的方法’其中’該步驟Ον)之後更包含一步驟(v ), 將该陰極板、空間支撐器及陽極板相配合界定出的一容 置空間於予減壓’以使該容置空間達一至少低於〇. 〇1 mTorr的壓力環境,並進一步地封裝該陰極板、空間支撐 器及陽極板以完成該步驟(V )。 281240295 Patent application scope: 1. A method for manufacturing a cathode plate of a nano carbon tube field emission display, comprising the following steps: (A) providing an imprint template and a first plate formed with a conductive layer Nano carbon tube coating on the body; (B) By pressing the imprint template and the nano carbon tube coating at the same time, an electric field is formed between the two to make the nano carbon tube coating on A carbon tube region having a plurality of nano carbon tubes arranged in a spaced relationship and formed in a forward direction; and (C) curing the nano carbon tube coating and separating the embossing template and the nano carbon tube coating. A first plate body to complete the cathode plate. 2. A method for manufacturing a cathode plate of a nano-carbon tube field-effect display according to item 1 of the scope of patent application, wherein the nano-carbon tube coating is a coating containing a nano-carbon tube formed on the conductive layer. Made of. 3. The method for making a cathode plate of nanometer carbon tube field emission display device according to item 2 of the scope of patent application, wherein the embossing template in this step (A) has a plurality of blind holes arranged in an array. 4. The method for manufacturing a cathode plate of a nano-carbon tube field emission display according to item 3 of the scope of patent application, wherein a plurality of first-type charges are provided at a closed end of each blind hole of the imprint template, and The coating k containing the nano-carbon tube is provided with a second type of charge having a plurality of opposites to the first-type charges, so that the nano-carbon tubes located in the distant carbon tube area are attracted to each other by the electric charges having opposite electrical properties. The electric field is formed so that the carbon nanotubes are aligned. 24 1240295 5. According to the method of the cathode plate of the scope of the patent application, the method of making a nano-carbon tube field emission display field is provided and closed in each blind hole. The induction layer is made of: a series of materials to form the first material: the material of the group consisting of the guide material and the semi-conductor ^ 6 according to the scope of the patent application No. 5 芎, making carbon The field emission method of the tube is shown as the method of the cathode plate. 苴 φ ^ /, r 'The plural apricot and half stone sound tubes contained in the coating are insulative. 7 ^ ^ ^ ^ ^ 1 Electricity is formed by the principle of static electricity. 7. According to the scope of the patent application No. 5 50. ^ ^, a method of making a cathode plate for field emission display display of carbon nanotubes, in 1, ^ Η-, the complex nano-carbon g contained in the coating It is non-insulating. The W-special stone is exposed to a solution to form the second-type charges. The solution T ~ the mixture is selected from the group consisting of an acidic solution and an alkaline solution. Solution. 8. · According to the request, the field emission of the production of nanometer carbon tubes in the scope of the patent No. 5 shows that the cathode of the second carbon cathode plate 'wherein' the plurality of nanocarbons contained in the coating is non-insulating, The carbon nanotubes are exposed to a solution containing a dispersant to form the second type charges. 9. · According to the method of the patent application, the method of making a cathode plate of nanometer carbon tube field emission display shows that the curing is a curing method selected from the group consisting of: heat curing, light Curing and chemical curing. • A method for manufacturing a nanometer carbon tube field emission display, comprising the following steps: (I) providing a cathode plate; (Π) providing a space supporter on the cathode plate; 25 (III) 1240295 / in plurals' 纟A rim layer and a plurality of gate layers respectively formed on the insulating layers; and an anode plate is provided on a top edge of the support, so that the space (IV) in the space support is interposed between the cathode plate and the anode plate Between; 々 /, Λ v step (1) The cathode plate is made by the method described in the scope of the patent application, and the bottom edge of the space support in this step (Η) The equal carbon tube regions are spaced apart, and each insulating layer is formed at the periphery of each carbon tube region and is located on the carbon nanotube coating. 11. A method for manufacturing a nano-carbon tube field-effect display according to item 1Q of the patent, wherein 'the nano-carbon tube coating is a coating comprising a nano-carbon tube formed on the conductive layer. production. 12. The method of making nanometer carbon tube field emission display in item u of the patent is requested. Among them, the embossing template in this step (&quot; is a blind hole with a plurality of arrays. 13.的 The method of making nanometer carbon tube field emission display for applying the scope of patent No. 12 '缶 where' is put at the closed end of each blind hole of the imprint template, a plurality of first-type charges, and Coatings containing nanometer carbon tubes have a second type charge that is opposite to the first type charges such as 4, so that the nanometer carbon f 'located in these carbon tube regions is formed by the opposite electrical charges under mutual attraction. An electric field so that the carbon nanotubes are arranged in a forward direction. 14. The method for manufacturing a field emission display of a carbon nanotube according to item 13 of the scope of the patent application, wherein an external electric field is provided to the imprint template and An induction layer is formed at the closed end of a female blind hole to form the first type electric charge 26 1240295. The induction layer is made of a material selected from the group consisting of a conductor material and a semiconductor material. .. Please ask for 14 of the patent scope Method for making nanometer carbon tube field emission display 'wherein, the plurality of nanometer carbon tubes contained in the coating are -insulating, and these second type charges are formed by the principle of static electricity. The method of making nanometer carbon tube field emission display in patent scope No. 14 'wherein' the plurality of nanometer carbon tubes contained in the coating are non-insulating, and the nanometer carbon tubes are exposed to— The solution is to form the second type of charge in the solution. The solution is selected from the group consisting of: acidic solution and test solution. A method is shown in which the plurality of nanotubes contained in the coating are non-insulating, and the carbon nanotubes are exposed to a solution containing a dispersant to form the second type charges. 18. A method for manufacturing a nano-carbon-effect emission display according to the scope of the patent claim, wherein the curing is a curing method selected from the group consisting of thermal curing, light curing, and chemical curing. 19 .: Production according to item 10 of the scope of patent application The method of nanometer carbon tube field emission display 2 wherein the anode plate has a transparent second plate body, a transparent conductive layer formed on a lower surface of the second plate body, and a transparent conductive layer One of the lower surface and an absorption layer for enhancing contrast, and a plurality of fluorescent coatings formed on the lower surface of the absorption layer and corresponding to the carbon tube regions. 20. Production according to item 10 of the scope of patent application The field-effect emission display of the meter carbon tube shows the method of 27 1240295 'wherein' the step 0ν) further includes a step (v), and an accommodation space defined by the combination of the cathode plate, the space support and the anode plate is Pre-decompression 'to make the accommodating space reach a pressure environment of at least less than 0.01 mTorr, and further encapsulating the cathode plate, space support and anode plate to complete the step (V). 28
TW93110134A 2004-04-12 2004-04-12 Manufacturing method for cathode of carbon nanotube field emission display and carbon nanotube field emission display TWI240295B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93110134A TWI240295B (en) 2004-04-12 2004-04-12 Manufacturing method for cathode of carbon nanotube field emission display and carbon nanotube field emission display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93110134A TWI240295B (en) 2004-04-12 2004-04-12 Manufacturing method for cathode of carbon nanotube field emission display and carbon nanotube field emission display

Publications (2)

Publication Number Publication Date
TWI240295B true TWI240295B (en) 2005-09-21
TW200534323A TW200534323A (en) 2005-10-16

Family

ID=37007714

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93110134A TWI240295B (en) 2004-04-12 2004-04-12 Manufacturing method for cathode of carbon nanotube field emission display and carbon nanotube field emission display

Country Status (1)

Country Link
TW (1) TWI240295B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927652B2 (en) 2006-11-15 2011-04-19 Tsinghua University Method for manufacturing field emission electron source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927652B2 (en) 2006-11-15 2011-04-19 Tsinghua University Method for manufacturing field emission electron source

Also Published As

Publication number Publication date
TW200534323A (en) 2005-10-16

Similar Documents

Publication Publication Date Title
CN102654672B (en) Display device and array substrate as well as color filter substrate and manufacturing method thereof
KR101220421B1 (en) Method of forming graphene pattern utilizing imprint
TWI544645B (en) Thin film transistor and method of making the same
US8033881B2 (en) Method of manufacturing field emission device
TW200305187A (en) Fed cathode structure using electrophoretic deposition and method of fabrication
EP1283541B1 (en) Method of fabricating field emission display employing carbon nanotubes
CN105489784B (en) Electrode and its application prepared by the preparation method and this method of compliant conductive electrode
US20130168229A1 (en) Method of preparing graphene layer
Jeong et al. Flexible field emission from thermally welded chemically doped graphene thin films
US20120164317A1 (en) Method for fabricating polarizer
CN111427111A (en) Quantum dot patterning method, device and system
TWI223308B (en) Manufacturing process of carbon nanotube field emission transistor
US7371696B2 (en) Carbon nanotube structure and method of vertically aligning carbon nanotubes
Jung et al. Fabrication and properties of under-gated triode with CNT emitter for flat lamp
TWI240295B (en) Manufacturing method for cathode of carbon nanotube field emission display and carbon nanotube field emission display
KR20110027182A (en) Carbon nanotube film patterning method
CN104945014A (en) Patterning method of graphene-based transparent conducting film
TWI248630B (en) Method for fabricating cathode of carbon nanotube field effect emission display and the carbon nanotube field effect emission display
CN100437880C (en) Cathode plate of nanometer carbon tube field effect transmissive display device and production of display device
TWI244106B (en) Triode CNT-FED structure gate runner and cathode manufactured method
US20060213774A1 (en) Method for enhancing homogeneity and effeciency of carbon nanotube electron emission source of field emission display
TWI321123B (en) A method for implanting carbon nanotube
US20180329251A1 (en) Manufacturing method of display substrate, display substrate and liquid crystal display panel
CN108919999A (en) Touch panel and preparation method thereof, display device
TWI404450B (en) Method of implanting nano carbon tube

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees