TW200422410A - Age-hardening copper-base alloy and processing - Google Patents

Age-hardening copper-base alloy and processing Download PDF

Info

Publication number
TW200422410A
TW200422410A TW092125248A TW92125248A TW200422410A TW 200422410 A TW200422410 A TW 200422410A TW 092125248 A TW092125248 A TW 092125248A TW 92125248 A TW92125248 A TW 92125248A TW 200422410 A TW200422410 A TW 200422410A
Authority
TW
Taiwan
Prior art keywords
alloy
copper
annealing
temperature
hours
Prior art date
Application number
TW092125248A
Other languages
Chinese (zh)
Inventor
Ronald N Caron
Peter W Robinson
Derek E Tyler
Andreas Boegel
Hans-Achim Kuhn
Seeger Joerg
Original Assignee
Olin Corp
Wieland Werke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olin Corp, Wieland Werke Ag filed Critical Olin Corp
Publication of TW200422410A publication Critical patent/TW200422410A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Abstract

An age-hardening copper-base alloy and processing method to make a commercially useful strip product for applications requiring high yield strength and moderately high electrical conductivity, in a strip, plate, wire, foil, tube, powder or cast form. The alloys are particularly suited for use in electrical connectors and interconnections. The alloys contain Cu-Ti-X where X is selected from Ni, Fe, Sn, P, Al, Zn, Si, Pb, Be, Mn, Mg, Ag, As, Sb, Zr, B, Cr and Co. and combinations thereof. The alloys offer excellent combinations of yield strength, and electrical conductivity, with excellent stress relaxation resistance. The yield strength is at least of 724 Mpa (105 ksi) and the electrical conductivity is at least 50% IACS.

Description

200422410 玖、發明說明: 【發明所屬之技術領域】 本發明係有關一種時效硬化之銅基合金,及一種自該合 金製造商業有用產物之加工方法。更特定言之,一種含〇·35 至5重量%鈦之銅合金係藉一種包括一製程内溶液退火 (m-pr〇Cess solution anneal)及至少一時效退火&訌 anneal) 之方法鍛造至完成厚度。所得產物具有電導度超過5〇% IACS及屈伏強度超過724 Mpa (105 ksi)。 【先前技術】 ——: ί 、· 在此一整個專利說明書中,全部組成都以重量%計,及 全部機械及電試驗均在室溫(公稱22。〔〕)下進行,除非另有註 明。"約,,一字暗示土10%,及”基”一字,如在銅基中,係意 指合金含有至少50重量%之指定基本元素。,,滾軋”或,、滾 軋”二詞意欲涵蓋拉伸或己拉伸或任何形式之冷縮㈧W reduction),例如,如用於線、棒或管之製造及加工。 許多不同種類的電連接器都是由銅基合金形成。對電連 接器很重要的性質包括屈伏強度、彎曲可形成性、咐應力 鬆弛性、彈性模量、最終抗張強度及電導度。 ^ 這些性質之目標值及性質之相對重要性端視由主題銅合 金製造之產物之預定用途而定。以下性質說明在許多用途 係通用性,但目標值在引擎蓋下汽車用途則係專用性。’、 屈伏強度係材料呈現偏離應力與應變比例性之指明如差 (-般為偏糊之應力。這表示相對於彈性變形塑:變 形變為顯著之應力。用作為連接器之銅合金宜具有200422410 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to an age-hardened copper-based alloy, and a method for manufacturing a commercially useful product from the alloy. More specifically, a copper alloy containing 0.35 to 5% by weight of titanium is forged to a method including an in-process solution annealing (m-prO Cess solution anneal) and at least one aging annealing & anneal. Finish thickness. The resulting product has an electrical conductivity of more than 50% IACS and a flexural strength of more than 724 Mpa (105 ksi). [Prior art] ——: In this entire patent specification, all compositions are based on weight%, and all mechanical and electrical tests are performed at room temperature (nominal 22. []), unless otherwise noted . " About ,, the word implies 10% soil, and the word "base", as in copper base, means that the alloy contains at least 50% by weight of the specified basic element. The term "rolled" or "rolled" is intended to cover stretched or stretched or any form of cold reduction (W reduction), for example, as used in the manufacture and processing of wires, rods, or tubes. Many different kinds of electrical connectors are formed from copper-based alloys. Important properties for electrical connectors include yield strength, bendability, stress relaxation, elastic modulus, ultimate tensile strength, and electrical conductivity. ^ The target values of these properties and the relative importance of the properties depend on the intended use of the products made from the subject copper alloy. The following properties show that it is universal in many applications, but the target value is specific in automotive applications under the hood. ′, The buckling strength is a material that shows a deviation from stress and strain proportionality, such as poor (-generally uneven stress. This means that compared to elastic deformation: deformation becomes a significant stress. Copper alloys used as connectors should have

O:\88\880O9.DOC 200422410 度為至少724 MPa。 在外應力施加至使用t之金屬條時,如當金屬條在響曲 成為連接器後負重日寺,應力鬆弛會變成很明顯。金屬會反 應而發生相等而相反之内應力。若金屬保持在變形位置, 則内應力會隨時間和溫度而減少。此—現象是@為金屬之 彈性應變因微塑性流動轉變為塑性或永久應變而發生。 銅基電連接器 構件上維持閾接觸力量以 觸力量降低至閥值以下, 為了長時間的良好電連接,必須在配對 上之接觸力量。應力鬆弛會將接 導致產生開放電路。用於連类著· 用途之銅合金,在曝露於溫度1()5t:T1_小時,需能維持 初始應力之至少95%,及在曝露於温度丨5〇艺下1〇〇〇小時, 需能維持初始應力之至少85%。 彈性模量,又稱揚氏模量,係金屬之剛硬性或硬挺性之 1度,且係彈性區内應力與對應應變之比。由於彈性模量 係材料之硬挺性之量度,故需要14〇 Gpa (2〇χ1〇3 k屮之譜 之南模量。 可彎、曲性決定最小彎曲半徑(Minimum bend ra(Hus : MBR),其確定一金屬條所可形成而不致沿彎曲之外半徑破 裂之最大彎曲程度。MBRs連接器之一重要性質,在此用 途日守必須以各種角度之彎曲形成不同的形狀。 琴曲可形成性可用MBR/t表示,其中t係金屬條之厚度。 MBR/t係金屬條可繞其彎曲而不破裂之心軸之最小曲率半 徑與條之厚度之比。,’心軸(mandrel)"試驗在ASTM (美國材 料試驗學會)代號E290-92,名稱為金屬材料延展性半導引O: \ 88 \ 880O9.DOC 200422410 degrees is at least 724 MPa. When external stress is applied to a metal bar using t, such as when the metal bar is loaded with a weight after the rattle becomes a connector, the stress relaxation becomes obvious. Metals react in equal and opposite internal stresses. If the metal remains in the deformed position, the internal stress will decrease with time and temperature. This—phenomenon is that @ 为 metal's elastic strain occurs as a result of the transition from microplastic flow to plastic or permanent strain. The copper-based electrical connector maintains the threshold contact force on the component to reduce the contact force below the threshold value. For a good electrical connection for a long time, the contact force on the mating must be. Stress relaxation can lead to open circuits. For copper alloys used for similar applications, it must be able to maintain at least 95% of the initial stress when exposed to a temperature of 1 () 5t: T1_ hours, and exposed to a temperature of 500 hours for 1000 hours. It must be able to maintain at least 85% of the initial stress. The modulus of elasticity, also known as Young's modulus, is 1 degree of stiffness or stiffness of the metal, and is the ratio of the stress in the elastic region to the corresponding strain. Because the modulus of elasticity is a measure of the stiffness of the material, it requires a 14 Gpa (20 × 103 k 屮) south modulus. Bend and bend determine the minimum bending radius (Minimum bend ra (Hus: MBR) It determines the maximum degree of bending that a metal strip can form without breaking along the outer radius of the bend. One of the important properties of MBRs connectors is that in this application, Nisshou must be bent to form different shapes at various angles. Formability It can be expressed as MBR / t, where t is the thickness of the metal bar. MBR / t is the ratio of the minimum radius of curvature of the mandrel that the metal bar can bend without breaking to the thickness of the bar. "Mandrel" " The test is in ASTM (American Society for Testing and Materials) code E290-92.

O:\88\88009.DOC 200422410 彎曲試驗之標準試驗方法(Standard Test Method forO: \ 88 \ 88009.DOC 200422410 Standard Test Method for Bend Test

Semi-Guided Bend Test for Ductility of Metallic materials) 中已有詳述。 MBR/t必須實質上各向同性,即,,良法(g〇〇d way),,一彎曲 軸垂直於金屬條之滾軋方向,以及,,劣法(bad way)” —彎曲 軸平行於金屬條之滾軋方向,其值都類似。MBR/t在90。彎 曲時必須為約1.5或以下,而在18〇。彎曲時必須為約2或以 下。 或者,90。彎曲之彎曲可形成性可利用具有v_形凹部乏塊: 及工作表面具有所要半徑之衝頭評估。在” V形塊”方法中, 係將欲試驗之回火銅合金條放置於塊與衝頭之間,並在衝 頭衝入凹部中時,即在長條形成所要彎曲。 與V-形塊方法有關的是180。”型衝頭(f〇rm punch),,方 法’其法係利用4有圓柱狀工作表面之衝頭將銅合金條形 成180。彎曲。 V-形塊方法及型衝頭方法二者己詳述於代號 B820-98中,名稱為銅合金彈簧材料可形成性之彎曲試驗之 標準試驗方法(Standard Test Method f〇r Bend 丁如 f〇r Formability of Copper A11〇y Spnng matenai)。 就即定金屬樣本而言,二種方法都可獲得可定量化之可 ¥曲性結| ’且任- $法都可用於涓j定相對可彎曲性。 最終抗張強度係一長條在抗張試驗時斷裂前可忍受之最 大負荷除以該長條之初始剖面積之比。最終抗張強度必須 為約 760 MPa。Semi-Guided Bend Test for Ductility of Metallic materials). The MBR / t must be substantially isotropic, that is, the good way, a bending axis perpendicular to the rolling direction of the metal strip, and, the bad way "—the bending axis is parallel to The rolling direction of the metal bars has similar values. MBR / t is 90. It must be about 1.5 or less when bending, and about 18 or less when bending. Or, 90. Bending can be formed. The properties can be evaluated by using a punch with a v-shaped recess: and a working surface with a desired radius. In the "V-shaped block" method, the tempered copper alloy strip to be tested is placed between the block and the punch. And when the punch is punched into the recess, it is to be bent in the formation of the strip. The V-shaped block method is 180. "type punch (F〇rm punch), the method of which uses 4 cylinders The punch of the shaped working surface forms a copper alloy strip 180. bending. Both the V-shaped block method and the punch method have been detailed in code B820-98. The standard test method is the standard test method for bendability test of copper alloy spring material (Standard Test Method f0r Bend DING Ruf. r Formability of Copper A11〇y Spnng matenai). As far as fixed metal samples are concerned, both methods can be used to obtain a quantifiable bendability knot | and any-$ method can be used to determine relative bendability. The final tensile strength is the ratio of the maximum load that a strip can tolerate before breaking during the tensile test divided by the initial cross-sectional area of the strip. The final tensile strength must be about 760 MPa.

O:\88\88009.DOC 200422410 電導度係以% IACS [國際退火銅標準(InternationalO: \ 88 \ 88009.DOC 200422410 Conductivity is in% IACS [International Annealed Copper Standard (International

Annealed Copper Standard)]表示,其中未合金之銅係定義 為在20°C下具有電導度為100% IACS。 含鈦之銅基合金已揭示於美國專利第4,601,879及 4,612,167號中,還有其他。第4,601,879號專利揭示一種含 0.25%至3.0%鎳、0.25%至3.0%錫及0.12%至1.5%鈦之銅基 合金。代表性合金具有電導度介於48.5%與5 1.4% IACS之間 及屈伏強度介於568.8 MPa與579.2 MPa之間(82.5 ksi與84 ^ 應 ksi之間)。 ’:二·- 第4,612,167號專利揭示一種含0.8%至4.0%鎳及0.2%至 4.0%鈦之銅基合金。代表性合金具有電導度為51% IACS及 屈伏強度介於663.3MPa與679.2 MPa之間(96.2. ksi至98.5 ksi) 〇 AMAX銅公司(Greenwich,CT)己將具有標稱組成為 Cu-2%Ni_l%Ti及 Cu-5°/c)Ni-2.5%Ti之銅-錄-鈦合金商業化。 所揭示的Cu-2%Ni-l%Ti的性質為屈伏強度441.3 ❿ MPa-551.6 MPa (64-80 ksi);最終抗張強度 503.3 MPa-655.0 MPa (73-95 ksi);伸長率 9% ;及電導度 50-60% IACS。所揭 示的Cu-5%Ni-2.5%Ti的性質為屈伏強度620.6 MPa_689.5 MPa (90-100 ksi);最終抗張強度 744.7 MPa (108 ksi)UTS ; 伸長率10% ;及電導度40-53% IACS。 這些銅合金之許多目前及將來用途將需要電導度為至少 5 0% IACS及屈伏強度為至少724 MPa (105 ksi)。還需要有 銅-欽合金及製造能達到所需電導度及強度程度之銅-鈦合Annealed Copper Standard)], where unalloyed copper is defined as having 100% IACS conductivity at 20 ° C. Copper-based alloys containing titanium have been disclosed in U.S. Patent Nos. 4,601,879 and 4,612,167, among others. Patent No. 4,601,879 discloses a copper-based alloy containing 0.25% to 3.0% nickel, 0.25% to 3.0% tin, and 0.12% to 1.5% titanium. Representative alloys have electrical conductivity between 48.5% and 5 1.4% IACS and yield strength between 568.8 MPa and 579.2 MPa (between 82.5 ksi and 84 ^ should ksi). ': II.- Patent No. 4,612,167 discloses a copper-based alloy containing 0.8% to 4.0% nickel and 0.2% to 4.0% titanium. Representative alloys have a conductivity of 51% IACS and yield strength between 663.3 MPa and 679.2 MPa (96.2. Ksi to 98.5 ksi). AMAX Copper (Greenwich, CT) has a nominal composition of Cu-2% Ni_l% Ti and Cu-5 ° / c) Ni-2.5% Ti copper-record-titanium alloys are commercialized. The properties of the disclosed Cu-2% Ni-l% Ti are yield strength 441.3 ❿ MPa-551.6 MPa (64-80 ksi); final tensile strength 503.3 MPa-655.0 MPa (73-95 ksi); elongation 9% ; And electrical conductivity of 50-60% IACS. The properties of the disclosed Cu-5% Ni-2.5% Ti are yield strength 620.6 MPa_689.5 MPa (90-100 ksi); final tensile strength 744.7 MPa (108 ksi) UTS; elongation 10%; and electrical conductivity 40 -53% IACS. Many current and future uses of these copper alloys will require a conductivity of at least 50% IACS and a yield strength of at least 724 MPa (105 ksi). There is also a need for copper-chin alloys and copper-titanium alloys capable of achieving the required degree of conductivity and strength.

O:\88\88009 DOC 200422410 金之方法。 【發明内容】 一根據本發明,其提供者係一種時效_硬化之銅基合金及此 合金形成商業有用產品(以供需要高屈伏強度及中高電 導度之任何用途用)之加工方法。典型產品形式包括長條、 板、線、泊、官、粉或鑄型。當根據本發明之方法加工時, 合金可達成屈伏強度至少724 MPa _叫及電導度至少 50 /〇 IACS ’使得含合特別適合用於電連接器及互連。、: a金主要係由〇·35至5重量。/。鈦、〇 〇〇1至1〇重量% χΓ(苴 中 X 係選自 Nl、Fe、Sn、p、AhZn、Si、pb、Be、Mi;、'O: \ 88 \ 88009 DOC 200422410 gold method. [Summary of the Invention] According to the present invention, the supplier is a processing method for aging-hardened copper-based alloy and this alloy to form a commercially useful product (for any application requiring high yield strength and medium to high electrical conductivity). Typical product forms include strips, boards, lines, moorings, official, powder or cast. When processed according to the method of the present invention, the alloy can achieve a yield strength of at least 724 MPa _ and an electrical conductivity of at least 50 / 〇 IACS ′ making the inclusion particularly suitable for use in electrical connectors and interconnections. : A gold is mainly from 0.35 to 5 weight. /. Titanium, 0.001 to 10% by weight χΓ (where X is selected from Nl, Fe, Sn, p, AhZn, Si, pb, Be, Mi;, '

Mg Bi S、Te、Se、Ag、As、Sb、Zr、B、Cr及 Co及其 組合)及其餘為銅與不可避免的不純物所組成。合金之電導 度為至少50°/〇 IACS及屈伏強度至少1〇5 ksi。 在本發明之一較佳方面,合金主要係由〇 35%至2·5%鈦、 0·5/〇至5.0/〇鎳、〇·5%至〇 8%鐵、鈷及其組合、〇 至 鎂、咼達l%Cr、Zr、Ag及其組合、及其餘為銅與不可避免 的不純物所組成。 這些合金,當無鈹存在時,可避免與目前鈹-銅合金相關 連的’曰在危險健康問題,而同時提供類似的強度及电導度 組合。 【實施方式】 具有強度與電導度,以及良好可形成性與耐應力鬆弛性 組合之銅合金在許多通電流之用途上有其需要。二種代表 11用返為引擎盍下汽車用途及多媒體用途(如電腦、播Mg Bi S, Te, Se, Ag, As, Sb, Zr, B, Cr and Co and combinations thereof) and the rest are composed of copper and unavoidable impurities. The electrical conductivity of the alloy is at least 50 ° / 〇 IACS and the yield strength is at least 105 ksi. In a preferred aspect of the present invention, the alloy is mainly composed of 0.35 to 2.5% titanium, 0.5 / 0 to 5.0 / 0 nickel, 0.5 to 0.88% iron, cobalt, and combinations thereof. Magnesium, Trent 1% Cr, Zr, Ag and combinations thereof, and the rest are made of copper and unavoidable impurities. These alloys, when free of beryllium, can avoid the health risks associated with current beryllium-copper alloys while providing similar strength and conductivity combinations. [Embodiment] A copper alloy having a combination of strength and electrical conductivity, as well as good formability and resistance to stress relaxation, has its needs for many current-carrying applications. Two kinds of representatives are used under the engine for automobile use and multimedia use (such as computer, broadcast

O:\88\88009.DOC -10- 200422410 放機、CD閱讀機及類似者)。 就汽車用途而言,需用具有良好可形成性、電導度至少 5 0% I ACS及耐應力鬆弛性高達200 °C之銅合金。就多媒體 互連用途而言,需用具有屈伏強度超過724 MPa (105 ksi)、 電導度超過50% I ACS、及在室溫及稍高使用溫度下有機械 穩定性(特徵為在約100°C下有優異之耐應力鬆弛性)之鋼合 金。 當利用本發明方法加工時,合金組成令人意外地可提供 最理想之性質組合以符合汽車及多媒體二者之用途,以及 其他電氣及電子用途之需求。合金可提供中高強度以及高 電導度與中高傳導度及極高強度。 本發明之合金具有含有Cu-Ti-X之組成,其中X係選自O: \ 88 \ 88009.DOC -10- 200422410 player, CD reader, and the like). For automotive applications, copper alloys with good formability, electrical conductivity of at least 50% I ACS, and stress relaxation resistance up to 200 ° C are required. For multimedia interconnect applications, it is necessary to have a flexural strength of more than 724 MPa (105 ksi), a conductivity of more than 50% I ACS, and mechanical stability at room temperature and slightly higher operating temperatures (characterized at about 100 ° Steel alloy with excellent stress relaxation resistance under C). When processed by the method of the present invention, the alloy composition surprisingly provides the optimal combination of properties to meet the needs of both automotive and multimedia applications, as well as other electrical and electronic applications. The alloy provides medium to high strength as well as high electrical conductivity and medium to high conductivity and very high strength. The alloy of the present invention has a composition containing Cu-Ti-X, where X is selected from

Ni、Fe、Sn、P、A卜 Zn、Si、Pb、Bi、S、Te、Se、Be、Ni, Fe, Sn, P, Ab Zn, Si, Pb, Bi, S, Te, Se, Be,

Mn、Mg、Ag、As、Sb、Zr、B、Cr 及 Co,及其組合。鈦含 里為自0.35%至5%,而”χπ元素之總和為〇·〇〇 1 %至1 〇%。 當X自Ni、Fe、Co、Mg、Cr、Zr、Ag及其混合物所組成 之族群所選出時,強度及電導度可達到最大。 氧、硫及碳可存在於本發明之合金中,其存在量為電解 (陰極)銅或再熔解銅或銅合金廢料中一般所存在的量。一般 而s,這些元素母一種之量將在約2 ppm至約5〇沖顶,每一 種之存在量較佳為少於2〇 ppm。 也可包含會影響合金性質之其他添加物。此等添加物包 括可改進合金自由機械加工性者,如鉍、鉛、碲、硫及硒。 當加入以增強自由機械加工性時,這些添加物的存在量可Mn, Mg, Ag, As, Sb, Zr, B, Cr, and Co, and combinations thereof. The titanium content is from 0.35% to 5%, and the sum of the "χπ elements" is from 0.001% to 10%. When X is composed of Ni, Fe, Co, Mg, Cr, Zr, Ag and mixtures thereof When the group is selected, the strength and electrical conductivity can be maximized. Oxygen, sulfur, and carbon can be present in the alloy of the present invention in the amount that is generally present in electrolytic (cathode) copper or remelted copper or copper alloy waste. In general, the amount of one of these elemental mothers will be topped from about 2 ppm to about 50, and each is preferably present in an amount of less than 20 ppm. Other additives that may affect the properties of the alloy may also be included. These additives include those that improve the free machinability of the alloy, such as bismuth, lead, tellurium, sulfur, and selenium. When added to enhance free machinability, these additives can be present in amounts

O:\88\88009.DOC -11- 422410 較佳為介於約0.8% 高達2%。自由機械加工性添加物之總量 與1.5%之間。 銅合金,尤其係自回收戋廢 別 飞曆銅形成之鋼合金中存在的血 型不純物,可以總量高達約1%之 一 w 存在。作為非全包性清 早,此專不純物包括鎮、链 ^ i r y 鉍、鉍、錳、鈷、 錯、珅、金、翻、Λ 銓鍅、銦、銻、鉻、釩及鈹。每 種不純物之存在量庫少於。Q . ^ 里應乂於〇.35%,較佳應少於0.1%。 應έ忍知的是,一也以卜又α私7 4+ —以上不純物,或其他,其存在量與以 上詳述不純物範圍重疊時,對本發明鋼合金會有有利的影: 響。例如’強度或沖壓性可獲得改進。本發明將涵蓋此等 低量添加物。 在本I明之一更佳具體例中,鈦含量為自〇 35%至^5%, 而在最佳具體例中,鈦含量為自0.8%至1.4%。 當鈦在銅合金基質中為溶液時,電導度會受到嚴重創 备因此X較佳應能有效引起鈦在時效退火時自溶液中 沉殿。增強此種沉澱之適當,,χ”元素包括州、Fe、Sn、ρ、 Si S、Mg、Cr、Co及這些元素之組合。 較佳添加物為鎳。沁及Ti之組合會產生CuNiTi沉澱 物’而Fe與丁1之存在會產生Fe2Ti之沉澱物。 另較佳添加物為鎮。鎂的添加會增加完成厚度及回火 產物之耐應力鬆弛性及耐軟化性。Mg也可在製程内時效退 火熱處理時提供耐軟化性。 當存在量低時,Cr、Zr及/或Ag之添加可提供增加的強化 而不會不當地降低電導度。O: \ 88 \ 88009.DOC -11- 422410 is preferably between about 0.8% and 2%. The total amount of free machinability additives is between 1.5%. Copper alloys, especially those that are self-recycling and scrapped, can be present in up to about 1% of the blood group impurities in steel alloys formed by Feifei copper. As a non-inclusive early morning, this specific impurity includes town, chain, bismuth, bismuth, bismuth, manganese, cobalt, erbium, thorium, gold, turn, Λ 铨 鍅, indium, antimony, chromium, vanadium, and beryllium. Each impure has less than a stockpile. Q. ^ should be less than 0.35%, preferably less than 0.1%. It should be understood that, when the impurities of the above, or other impurities, or other, the presence of the amount of impurities and the range of impurities in the above details overlap, it will have a beneficial effect on the steel alloy of the present invention. For example, 'strength or punchability can be improved. The invention will cover such low amounts of additives. In one more specific embodiment of the present invention, the titanium content is from 0.35% to 5%, and in the most preferred embodiment, the titanium content is from 0.8% to 1.4%. When titanium is a solution in a copper alloy matrix, the electrical conductivity will be severely compromised. Therefore, X should preferably effectively cause titanium to sink from the solution during aging annealing. Appropriate to enhance such precipitation, the χ "elements include states, Fe, Sn, ρ, Si S, Mg, Cr, Co and combinations of these elements. The preferred additive is nickel. The combination of Qin and Ti will produce CuNiTi precipitation The presence of Fe and D1 will cause the precipitation of Fe2Ti. Another preferred additive is the town. The addition of magnesium will increase the finished thickness and the stress relaxation resistance and softening resistance of the tempered product. Mg can also be used in the manufacturing process Softening resistance is provided during the internal aging annealing heat treatment. When the amount is low, the addition of Cr, Zr and / or Ag can provide increased strengthening without unduly lowering the conductivity.

O:\88\88009 DOC -12- WU422410 根據本發明具有改 、耐應力鬆弛 主要係由以下 性LV U山# 出仇強度、電導屬 丨生以及㈠T.f㈣之心之 所組成·· 佳3孟, 約 0·5_5·0%鎳 約 〇.35_2.5%鈦 約〇·5-〇·8%鐵或鈷 約 0.0M ·〇%鎂 視需要高達約1 .〇〇/0之一哎多 4 夕種之 Sn、p、A1:、、:O: \ 88 \ 88009 DOC -12- WU422410 According to the present invention, the stress relaxation resistance is mainly composed of the following properties: LV U Mountain #, the strength of the vengeance, the conductance, and the heart of ㈠T.f㈣. Meng, about 0.5-5. 0% nickel about 0.35-2.5% titanium about 0.5-5. 8% iron or cobalt about 0.0M · 0.0% magnesium as needed up to about one of 1.00 / 0 More than 4 evening species of Sn, p, A1: ,,:

Zn、Si、Pb、Bi、s、Te、r> 一 ie Se、Be、Μη、Mg、:Zn, Si, Pb, Bi, s, Te, r >-ie Se, Be, Mη, Mg ,:

Ag、As、Sb、Zr、B、Cr及 其混合物, 及其餘為銅及不純物。Ag, As, Sb, Zr, B, Cr and their mixtures, and the rest are copper and impurities.

Zr及 Ag 〇 可選用元素較佳包含高達1%之一或多種之Cr 此一合金之更佳範圍為: 約 0.8-1.7%鎳 約 0.8-1.4%鈦 約〇·9(Μ.1〇%鐵或鈷 約 0.10-0.40%鎂 高達約1.0%之一或多種之Cr、Zr、Ag或Sn 及其混合物, 及其餘為銅及不純物。 在本發明之第一具體例中,合金組成及加工處理可提供 屈伏強度為至少約793 MPa (115 ksi),而較佳屈伏強产為至 少約827 MPa (120 ksi)。就此一具體例而言,電導度為高達 O:\88\88009.DOC -13 - 200422410 約40% IACS。在本發明之第二具體例中,組成及加工可提 供屈伏強度為高於約724 MPa (105 ksi),而較佳高達約793 MPa (115 ksi)。在此一第二具體例中,合金之電導度較佳 為約45%至約5 5% IACS。在一第三具體例中,組成及加工 可提供屈伏強度為約552MPa (80 ksi)至約690 MPa (100 ksi),及電導度為介於約55%至約65% IACS之間。 圖1以流程圖格式顯示根據本發明之第一具體例之方 法。本發明之合金係根據習知作法熔解及澆鑄丨〇。澆鑄会 金係在約750°C至約1,00(TC下熱軋12。在碾磨移除氧彳:匕物· 後,即將合金冷軋14至橫向於滾軋方向之剖面積縮小(π面 積縮小約50%至約99%。然後,可在溶液退火溫度約85〇 至約l,000t:下使合金溶液化16約1〇秒至約i小時,繼之驟 冷18或快速冷却至室溫以獲得具有平均粒度為約5及2〇 之等軸顆粒。其後,可將合金第一次冷乳2〇至面積縮小高 達約20%,較佳面積縮小約3〇%至約8〇%。第一次冷軋汕之 後為第—次退火22,其係在溫度約至約65〇。(:\㈣ 約峨至約下進行叫鐘至㈣小肖,較佳約㈠、 %至約8小時。然後’可將合金第二次冷軋約H)%至約50% 面積縮小至完成厚度。第-+ ^ 弟一一人冷軋之後可為第二次退火 Λ、係在約15〇C至約6〇〇t,較佳約200°C至約500t下 進行約15秒至約1〇小時。 用製程内溶液化熱處 成厂予度而不 央冷作之猶環加……利用低溫退火加工及 至凡“度。此—替代方法Zr and Ag 〇 The optional elements preferably include up to 1% or more of Cr. A better range of this alloy is: about 0.8-1.7% nickel about 0.8-1.4% titanium about 0.9 (M.10% About 0.10-0.40% of iron or cobalt, up to about 1.0% of one or more kinds of Cr, Zr, Ag or Sn and mixtures thereof, and the rest are copper and impurities. In the first specific example of the present invention, the alloy composition and processing The treatment can provide a yield strength of at least about 793 MPa (115 ksi), and a preferred yield strength of at least about 827 MPa (120 ksi). For this specific example, the electrical conductivity is as high as O: \ 88 \ 88009.DOC -13-200422410 about 40% IACS. In the second specific example of the present invention, the composition and processing can provide yield strength above about 724 MPa (105 ksi), and preferably up to about 793 MPa (115 ksi). In this second specific example, the electrical conductivity of the alloy is preferably about 45% to about 55% IACS. In a third specific example, the composition and processing can provide a yield strength of about 552 MPa (80 ksi) to about 690 MPa (100 ksi), and the electrical conductivity is between about 55% and about 65% IACS. Figure 1 shows a method according to a first specific example of the present invention in a flowchart format. The alloy of the present invention is melted and cast according to a conventional method. The cast alloy is hot-rolled at about 750 ° C to about 1,000 ° C (12 ° C). After the oxygen is removed by milling: That is, the cold-rolled alloy 14 is reduced to a cross-sectional area transverse to the rolling direction (the π area is reduced by about 50% to about 99%. Then, the alloy can be solutionized at a solution annealing temperature of about 85 to about 1,000 tons: about 16 10 seconds to about i hours, followed by quenching 18 or rapid cooling to room temperature to obtain equiaxed particles having an average particle size of about 5 and 20. Thereafter, the alloy can be cold-emulsified for the first time to 20 to area Shrinking is up to about 20%, and the preferred area is about 30% to 80%. After the first cold rolling, it is the first annealing 22, which is at a temperature of about 65. (: \ ㈣ 约 埃Call the bell to ㈣Xiaoxiao, preferably about ㈠,% to about 8 hours. Then 'the second cold rolling of the alloy can be reduced to about 50% to about 50% of area to complete thickness. Section-+ ^ After the cold rolling, the younger one can perform the second annealing Λ, and perform it at about 150 ° C to about 600t, preferably about 200 ° C to about 500t, for about 15 seconds to about 10 hours. Heat of solution Chengchang of cold without the central cyclooxygenase ...... still using a low temperature annealing process and to all "of this - Alternative Method

O:\88\88009.DOC -14- 製造具有較高電導度水準之產物。 圖2係以流程圖表示本發明之_替代方法。本發明之合金 係根據習知作法料及㈣1Q。“合金在約7赃至約 l’OOOC下熱軋12 ’然後驟冷或快速冷却。在碾磨移除氧化 物後’即將經熱軋之合金再冷軋14至面積縮小約·至約 99%。然後,可將合金在退火溫度約4〇〇ι至約65〇。〇下第 一次退火28約15秒至約1G小時。如有需要,冷軋及第一次 退火步驟可視需要重覆。然後,將合金冷軋%約牝%至約 50%面積縮小,繼之在約4〇〇它至約65〇它,較佳約45〇^至_: 、’勺600 C下第一次退火約丨至約丨〇小時。然後將合金冷軋% 、’’勺10 /〇至約50%面積縮小至完成厚度。這之後可視需要在約 150C至約600。(:,較佳約200。(:至約50(rc下第三次退火26 約15秒至約1 〇小時。 本發明方法之第二替代較佳具體例係利用在較佳組成範 圍内之合金。此一方法可製造具有標稱性質約758 MPa(u〇 ksi) YS及約50°/。IACS電導度之本發明合金。請參考圖3, 合金係根據習知作法熔解及澆鑄1〇。澆鑄合金係在約75〇。〇 至約1,000 C下熱軋12。在碾磨移除氧化物後,即將經熱軋 之合金冷軋14至面積縮小約5〇%至99%。然後,在溫度約950°C 約1,000°C下將合金溶液化16約15秒至約}小時。接著,將 合金冷軋20至面積縮小約4〇%至6〇%,然後在約4〇(rc至約 650°C,較佳約450°C至約60(TC下第一次退火28約1至10小 時’較佳約1至約3小時。第一次退火28之後為冷軋30約40% 至約60%面積縮小。然後在較第一次退火28為低之溫度下, O:\88\88009.DOC -15- ^u42241〇 將。金第一次退火32。第二次退火係在約3乃。C至約下 進行、力1至約3小時。然後將經雙次退火之合金冷軋34至少 、、句30%面積縮小至完成厚度,其可在溫度約⑽。c至約_。〔, 車乂仏、’勺200 c至約5〇〇°c下退火第三次26約i至約3小時。 本發明之合金及本發明之方法,在參閱以下實例後將會 有更佳的了解。 實例 、在以下實例中,一些製程說明、性質及單位都以縮寫形、 式書寫。例如,吋,WQ=水驟冷,斜線符號/=關於, 溶液退火,CR=冷軋或冷縮,YS =屈伏強度,TS=抗拉強度, EL=伸長率,%IACS=電導度,MBR/t=最小彎曲半徑除以長 條厚度,SR=耐應力鬆弛性,Gs=粒度,μιη==微米,心心=開 始,reCr:=再結晶,n.c.r. =未完全再結晶,sec·或s=秒,hrs. 或小時,MS/m=兆西門子/米及ksi=每平方吋千磅。, 實例1 利用圖1所示方法,將一系列4.5 kg (1〇磅)具表}所列分析 組成之實驗室鑄錠放入矽坩堝中熔解並杜維利(Durville)洗 鑄於鋼模中。在澆口(gating)之後,鑄錠&1〇16cmxi〇i6 cm X 4.45 cm (4” X 4” X 1.75”)。在 95〇t 均熱3小時後,將 鑄錠熱軋三次至2.8 cm (1.1,,),在950°C再加熱1〇分鐘,及 進一步熱軋二次至1 ·27 cm (0.5 0接著水驟冷。將所得熱 軋板在l,〇〇〇°C下均熱2小時予以均質化,接著水驟冷。在 修整及碾磨移除氧化物塗層後,將合金冷軋至丨27 mm (0.050”)。然後,在溫度1,000°C下將合金溶液化2〇至6〇秒, O:\88\88009.DOC -16- 200422410 但合金J346係在950°C下溶液化60秒。在溶液化及驟冷後, 將合金冷軋50%至0.64 mm (0.025”)及在5 50°C下時效退火3 小時。然後,將合金冷軋50%至0.32 mm (0.0125”)厚並在275°C 下放鬆退火(relief anneal)及測量表2報告之性質。 表2數据顯示,得高屈伏強度值自621 MPa至765 MPa (90 ksi至 111 ksi)及高電導度值自 38.2% IACS至 63.8% IACS。 所得耐應力鬆弛性,在Cu-Ni-Ti-Mg合金J345及J346時,在 105 °C下1000小時後接近所欲值之95%。所欲值係由 Cu-Ni-Ti-]vlg合金 J354達成。 : 表1 -實例1合金 合金識別號(ID) 分析之組成,重量% J345 Cu-2.32Ni-l.96Ti-l.06Fe J346 Cu-l.16Ni-l.32Ti-0.92Fe J347 Cu-0.80Ni-0.80Ti J348 Cu-0.89Ni-l.82Ti-l.04Fe J351 Cu-2.45Ni-l.16Ti J354 Cu-2.43Ni-l.18Ti-0.38Mg O:\88\88009.DOC -17- 表2 表1所列合金放鬆退火條件之性質 合金 識別 電導度 %IACS YS/TS/EI MPa/MPa/% ksi/ksi% 90°-MBR/t 良法/劣法 %SR 105°C 1,000 h %SR 105°C 3,000h J345 42.9 731/841/2 106/122/2 2.7/8.8 90.4 89.5 J346 56.1 669/703/3 97/102/3 1.4/2.9 88.2 87.3 J347 34.6 731/807/1 106/117/1 2.7/8.8 一 J348 38.2 765/855/4 111/124/4 1.9/7.5 麵 J351 63:8 621/641/1 90/93/1 1.4/2.2 r' J354 47.0 752/793/2 109/115/2 5.0/8.8 95.1 93.9 實例2 200422410 根據圖2顯示之方法,將表1之合金如實例1加工至通過熱 軋板厚度時之均質化熱處理。在此實例中,係將合金加工 至完成厚度而不經過製程内溶液化熱處理。在修整及碾磨 移除氧化物塗層後,將合金冷軋至2.54 mm(0.100”)並在550T: 下進行第一次時效退火3小時。然後將合金冷軋70%至0.76 mm (0.03 0”)並在525 °C下再經過第二次時效退火3小時。然 後將合金冷軋50%至0.38 mm (0.015”)厚並在275°C下放鬆 退火2小時,在此條件下測量表3所述性質。 與表2數据一致,本實例之合金具有高屈伏強度自676 MPa至73 8 MPa (98 ksi至107 ksi)及更高電導度介於49·9% 與69.7% IACS之組合。增加之耐應力鬆弛性係在Fe或Mg加 至基本Cu-Ni-Ti合金獲得。表3之數据顯示,最高耐應力鬆 弛性係由Mg加至Cu-Ni-Ti合金獲得;比較合金J354與合金J351。 O:\88\88009.DOC -18 - 表3 表1所列合金放鬆退火條件之性質 合金 識別 電導度 %IACS YS/TS/EI MPa/MPa/% ksi/ksi% 90°- MBR/t %SR 105°C 1,000 h %SR 105°C 3,000 h J345 57.8 738/93/4 107/115/4 3.1/4.2 86.9 85.9 J346 63.2 676/717/5 98/104/5 0.8/4.2 85.5 84.7 J347 49.9 724/765/3 105/111/3 0.8/5.2 J348 58.5 717/772/6 104/112/6 2.1/5.2 J351 69.7 676/717/4 98/104/4 0.8/0.8 82.7 80.8'·, J354 60.8 696/745/5 101/108/5 2.4/4.2 92.4 90.f * 實例3 200422410 根據圖1所示方法,將一系列4.5 kg (10磅)具表4所列分析 組成之實驗室鑄錠放入矽坩堝中熔解並杜維利澆鑄於鋼模 中。在洗 口(gating)之後,鑄鍵為 10· 16 cm X 10· 16 cm X 4.45 cm (4Π x 4” χ 1·75π)。在950°C下均熱3小時後,將鑄錠熱 軋三次至2.8 cm (1.Γ’)厚,在950°C下再加熱10分鐘,及進 一步熱軋三次至1.27 cm (0.50”)厚,接著水驟冷。在修整及 書 碾磨移除氧化物塗層後,將合金冷軋至0.127 mm (0.050”)。 然後,將M77以外的合金在1,000°C下溶液熱處理25秒, 接著水驟冷以產生直徑在12-24 μιη範圍内之經控制、微 細、再結晶粒度。合金J477係在950°C下溶液熱處理25秒+ 水驟冷,產生粒度為9 μιη。 然後,將全部合金冷軋50%至0.64 mm (0.025π)厚,並在 550°C下使其經歷一段可有效使電導度達到最高而不會不 當地軟化基質之時間。在550°C下之時間列示於表5。然後, O:\88\88009 DOC -19- 200422410 將合金冷軋50%至0·32 mm (0.0125”)厚並在275°C下放鬆退 火2小時,在此條件下測量表5之性質。 表5數据顯示,雖然基本合金J477提供634 MPa (92 ksi) YS與58.1%IACS電導度之良好組合,但卜添加可增加基本 合金(J483對J477)之強度至690 MPa (100 ksi)而電導度僅稍 微降低。而且,Mg添加--但為了提高i〇5°C下之耐應力鬆弛 性而維持一致量之Ni、Ti及Fe —之優點,係由比較合金J491 與J481顯示。Mg之優點也由合金J491 (表5)之性質與表:2考 J345及J346之性質比較顯示。 表4 實例3之合金 合金識別號(ID) 分析之組成,重量% J4-77 Cu-l.41Ni-0.71Ti J481 Cu-l.00Ni-0.98Ti-0.99Fe J483 Cu-l.42Ni-0.87Ti-0.53Fe J485 Cu-0.97Ni-l.40Ti-l.01Fe J486 Cu-l.86Ni-l.43Ti-0.98Fe J491 Cu-0.98Ni-0.94Ti-l.00Fe-0.35Mg O:\88\88009 DOC -20- 表4戶ϋ 表5 r列合金放鬆退火條件之性質 合金 識別 550〇C /No. hrs 電導度 %IACS YS/TS/EI MPa/MPa/% ksi/ksi% 90°- MBR/t %SR 15000 hrs/ 105°G %SR 1,000 hrs. 150°C J477 3 58.1 634/662/1 92/96/1 1.1/1.8 J481 5 56.6 662/690/4 96/100/4 1.1/1.8 92 90 J483 8 54.0 690/717/3 100/104/3 1.8/2/2 93 86 J485 8 53.6 696/731/5 101/106/5 0.8/2/1 J486 8 52.8 703/731/1 102/106/1 -'' s.、 J491 8 55.0 676/703/5 98/102/5 1.4/2.4 96 86 200422410 實例4 根據圖2所示方法,將表4合金加工成最後厚度而锍利用 製程内溶液化熱處理。在修整及碾磨移除氧化物塗層後, 將在熱軋條件下之合金冷却至0.050”厚,並在表6所示可有 效使電導度最大化之温度及時間下進行第一次時效退火。 然後,將合金冷却50%至0.025 ”厚,並在表6所示經選用以 使電導度最大化而不會不當地使基質軟化之溫度及時間下 經歷第二次時效退火。應用於每一合金之特定時效退火記 載於表6。然後,將合金冷却50%至0.0125’1厚,並在275°C 下放鬆退火2小時,在此條件下測量表7之性質。利用此一 方法,具有F e及M g添加物之合金提供較低,但仍然良好之 強度,以及較高電導度及良好耐應力鬆弛性。 O:\88\88009 DOC -21 - 表6 應用於實例4合金之時效退火 合金識別 陳化處理 0.050,丨厚 陳化處理 0.025,,厚 YS MPa/YS,ksi/電導性%IACS J477 550〇C/2 hrs 450〇C/1 hrs 524 / 76/69.4% J481 550〇C/2 hrs 500°C/1 hrs 427 / 62/69.4% J483 550〇C/2 hrs 500°C/1 hrs 522 / 80/65.1% J485 550〇C/4hrs 500°C/1 hrs 552 / 80/65.2% J486 550〇C/2 hrs 450〇C/1 hrs 483 / 70/66.6% J491 〜550〇C/4hrs 500°C/1 hrs 448 / 65/61.0% f ) 表7 表4所列合金之放鬆退火條件之性質 合金 識別 電導度 %IACS YS/TS/EI MPa/MPa/% ksi/ksi% 90°- MBR/t %SR 105°C l,000h %SR 150°C 1,000 h J477 64.1 579/627/3 84/91/3 1.8/3.8 J481 68.1 545/607/4 79/88/4 1.7/1.9 82 76 J483 62.5 607/648/4 88/94/4 1.8/2.2 86 82 J485 61.3 641/703/5 93/102/5 1.8/3.3 J486 64.8 572/634/5 83/92/5 J491 60.3 614/648/5 89/94/5 1.9/2.2 94 77 200422410 實例5 根據圖3所示方法,將一系列4.5 kg (10磅)具表8所列分析 組成之實驗室鑄錠放入矽坩堝中熔解並杜維利澆鑄於鋼模 中。在洗口(gating)之後,鑄錠為 10.16 cmx 10.16 cmx4.45 O:\88\88009.DOC -22- 200422410 cm (4M x 4” x 1.75”)。在950°C下均熱3小時後,將彼等熱 札二次至2.8 cm (1.Γ’)厚,在950°C下再加熱1〇分鐘,及進 一步熱軋三次至1·27 cm (0.50Π),接著水驟冷。在修整及碾 磨移除氧化物塗層後,將合金冷軋至2.54 mm(0.100”)厚並 在95 〇 C之爐中溶液熱處理40秒,接著水驟冷以產生在 8·(Μ2 μιη範圍内之經控制之微細再結晶粒度。然後,將彼 等冷軋50%至1.27 mm (0.05 0”)厚,並在565t下予以時效退 一 火3小時,此係為使電導度最大化而不會不當地軟化基質-没計。然後,將合金冷軋50%至0.64 mm (0.025")厚,並在> 41〇°C下進行第二次時效退火2小時,冷軋至〇 〇25 mm (0.010”)。之後在250°C下放鬆退火2小時,在此條件下測量 表9之性質。 表8 實例5合合 合金識別號 分析之組成,重量% J694 Cu-l.78Ni-l.34Ti-0.98Fe-0.24Mg J698 Cu-l.72Ni_l.42Ti-l.02_Fe-0.24Mg-0.06Zr J699 Cu-l.72Ni-l.3 5Ti-l.01-Fe-0.23Mg-0.60A2 J700 Cu-l.76Ni-l.37Ti-l.01-Fe-0.23Mg-0.53Cr O:\88\88009.DOC -23 - 表9 表8所列合金之放鬆退火條件之性質 410〇C2/ h, 0.64mm0.025,f) CR 0.25 mm (0.010’,)+ 250°C/2 hrs 合金 識別 Ni/Ti (Ni+Fe)/ Ti YS MPa Ksi 電導度 %IACS YS/TS/EI MPa/MPa% Ksi/ksi% 90°C -MBR/t J694 1.3 2.1 648 94 50.9 745/800/3 108/116/3 2.2/9.4 J698 0.8 1.9 641 93 51.3 765/821/3 111/119/3 2.6/7.8 J699 1.3 2.0 621 90 51.9 772/821/2 112/119/2 2.8/10.9 J700 1.3 2.0 641 93 49.5 758/814/2 110/118/2 2.6/6.2 200422410 比較基本合金J694與含鍅合金J698顯示,小量的锆可增 加屈伏強度而不影響電導度。合金J694與含銀合金J699顯 示,小量的銀可增加屈伏強度及電導度。合金J694與含鉻 合金J700顯示,添加小量的鉻可稍微增加屈伏強度,而同 時稍微減低電傳導度。 實例ό 根據圖3所示方法,將一系列4.5 kg (10磅)具表8所列分析 組成之實驗室鑄旋放入石夕掛禍中熔解並杜維利(Durville)洗 鑄於鋼模中。在洗口(gating)之後,鑄録:為10.16 cm X 10.16 cm x 4.45 cm (4'f x 4,f x 1.75n)。在 950°C 下均熱 3 小時後, 將彼等熱軋三次至2.8 cm (1.1")厚,在950°C下再加熱10分 鐘,及進一步熱軋三次至1.27 cm (0·5 0π),接著水驟冷。在 修整及碾磨移除氧化物塗層後,將合金冷軋至2.54 mm (0.100”)並在1,000°C之爐中溶液熱處理25-35秒,接著水驟 冷以產生在6-1 2 μιη範圍内之經控制之微細再結晶粒度。然 O:\88\88009.DOC -24- 200422410 後’將彼等冷軋 50% 至 1.27 111111(〇.〇5〇,,)厚,並在 550-600。〇 下進行時效退火3-4小時。然後,將合金冷軋5〇%至〇 64 mm (0.025”)厚,並在41〇-425ac下再度進行時效退火2小時,接 著冷軋至0.25 mm (0.010,,)及在250-275T:下放鬆退火2小 時。 列示於表11之最終厚度之性質顯示,使用Mg添加(J6〇4 與J603比較)及/或Zr添加(J644與J603比較),可得較佳屈伏 強度與電導度組合。 ^ 無Mg添加,Cr添加本身並不那樣有效(比較表i丨(橱> D)J646之低強度與表9 J700之較高強度)。也請注意表11 , 在0,0.16,0·31重量% Mg添加範圍内之Mg添加,如何增 加屈伏強度(及抗張強度)值分別至:703(758),710(772)、 745(772),745(800),758(814)MPa[102(110),103(112), 108(116),110(118)ksi],而電導度值接近固定於約48% IACS。 表10實 例6合金 合金識別號 分析之組成,重量% J603 Cu-l.86Ni-l.47Ti-0.99Fe J604 Cu-l.89Ni-l.3 3Ti-0.98Fe-0.25Mg J642 Cu-l.61Ni-l.42Ti-l.04Fe-0.16Mg J643 Cu-l.61Ni-l.40Ti-l.02Fe-0.31Mg J644 Cu-l.5 3Ni-l.3 7Ti-0.91Fe-0.19Zr J646 Cu-l.61Ni-l.43Ti-0.98Fe-0.5 2Cr O:\88\88009.doc -25- 200422410 表10所列合金0.25 mm (U010")厚放鬆退火條件之性質 -- YS, MPa / UTS,"MPa / Elong., % (YS, ksi / UTS, ksi / Elong., %) 電導度,%IACS _ ~w 程 合金識別 A B C D H F J603 607/669/4 627/690/4 696/758/4 ~~703/758/3~ 710/772/3 710/765/3 (88/97/4) (91/100/4) (101/110/4) (102/110/3) (103/112/3) (103/111/3) 62.4 56.0 53.4 48.1 ^ 50.3 46.9 J604 ^ 696/745/5 696/758/4 758/814/3 745/800/3 786/841/2 786/827/2 (101/108/5) (101/110/4) (110/118/3) (108/116/3) (114/122/2) (114/120/2) 54.2 50.0 49.9 48.2 v 46.6 43.9 J642 ^ 641/696/3 648/717/4 724/772/3 710/772/3 731/786/3 731/779/3 (93/101/3) (94/104 / 4) (105/112/3) (103/112/3) (106/114/3) (106/113/3) 60.1 56.0 53.9 51.3 53.8 50.6 J643 v 662/7105 662/738/4 738/793/4 758/814/3 752/800/3 758/814/3 (96 / 103 / 5) (96/107/4) (107/115/4) (110/118/3) (109/116/3) (110/118/3) 56.7 52.6 51.7 477 50.7 46.9 J644 600/676/4 669/738/4 724/786/3 738/800/4 745/807/3 745/800/3 (87/98/4) (97/107/4) (105/114/3) (107/116/4) (108/117/3) (108/116/3) 64.7 61.1 56.8 50.3 53.4 47.6 J646 524/579/4 524/593/5 607/662/2 600/662/3 607/676/4 621/690/4 (76/84/4) (76/86/5) (88/96/2) (87 / 96 / 3) (88/98/4) (90/100 / 4) 64.7 61.3 60.8 56.2 61.6 58.7 實例7 本實例顯示組成及加工如何影響屈伏強度及電導度。將 具有表12所列組成之合金J694及J709自10.16 cm X 10.16 (:11^4.45(:111(4’\4’11.75")鑄錠加工起,即在 950°(:下均熱3 小時並熱軋至1.27 cm (0.50吋),接著水驟冷。在修整及碾 磨移除氧化物後,將合金冷軋至2.54mm(0·10吋)並在1000°C下 溶液熱處理35秒及水驟冷。然後,將合金冷軋至1.27 mm (0.05吋),在950 °C下溶液化35秒及水驟冷。進一步之加工 如表13所示,性質則列於表14。O: \ 88 \ 88009.DOC -14- Manufactures products with higher conductivity levels. FIG. 2 is a flowchart showing an alternative method of the present invention. The alloy of the present invention is based on conventional methods and ㈣1Q. "The alloy is hot-rolled 12 'at about 7 to about 1'OOOC and then quenched or rapidly cooled. After milling to remove the oxide,' the hot-rolled alloy is cold-rolled again 14 to reduce the area to about · to about 99 %. Then, the alloy can be annealed at the annealing temperature of about 4,000 to about 650,000 for the first time of 28 for about 15 seconds to about 1 G hours. If necessary, the cold rolling and the first annealing steps can be repeated if necessary. Then, the area of the cold-rolled alloy is reduced from about 牝% to about 50%, and then the area is reduced from about 400 to about 65, preferably from about 45 to _ :, and the first at 600 C. The secondary annealing is about 丨 to about 丨 0 hours. Then, the area of the cold-rolled alloy%, Scoop 10/0 to about 50% is reduced to the completed thickness. After that, it may be about 150C to about 600. (:, preferably about 200. (: to about 50 (rc for the third annealing 26 about 15 seconds to about 10 hours. The second alternative preferred embodiment of the method of the present invention is to use an alloy in a preferred composition range. This method can Manufacture an alloy of the present invention with nominal properties of about 758 MPa (u〇ksi) YS and about 50 ° /. IACS conductivity. Please refer to FIG. 3, the alloy is melted according to conventional methods And casting 10. The cast alloy is hot-rolled 12 at about 75.0 to about 1,000 C. After the oxide is removed by milling, the hot-rolled alloy is cold-rolled 14 to reduce the area by about 50%. To 99%. Then, the alloy is solubilized at a temperature of about 950 ° C to about 1,000 ° C for about 15 seconds to about} hours. Then, the alloy is cold rolled 20 to reduce the area by about 40% to 60% , And then at about 40 ° C. to about 650 ° C., preferably about 450 ° C. to about 60 ° C., the first annealing 28 about 1 to 10 hours, preferably about 1 to about 3 hours. The first annealing After 28, the area of cold rolling 30 is reduced by about 40% to about 60%. Then, at a temperature lower than that of the first annealing 28, O: \ 88 \ 88009.DOC -15- ^ 4221 will be gold. For the first time Annealing 32. The second annealing is performed at about 3 ° C to about 3 ° C, and the force is 1 to about 3 hours. Then the double-annealed alloy cold-rolled 34 is reduced to at least 30%, and the area is reduced to the completed thickness It can be annealed at a temperature of about ⑽.c to about _. [, Ladle, 'spoon 200c to about 5000 ° C for a third time 26 about i to about 3 hours. The alloy of the present invention and the method of the present invention , You will have a better understanding after seeing the following examples Examples. In the following examples, some process descriptions, properties, and units are written in abbreviations. For example, inch, WQ = water quenching, slash symbol / = about, solution annealing, CR = cold rolling or cold shrinking, YS = flexural strength, TS = tensile strength, EL = elongation,% IACS = electrical conductivity, MBR / t = minimum bending radius divided by strip thickness, SR = stress relaxation resistance, Gs = particle size, μιη = = micron , Xinxin = start, reCr: = recrystallization, ncr = incomplete recrystallization, sec · or s = seconds, hrs. Or hours, MS / m = mega-Siemens / meter and ksi = thousand pounds per square inch. Example 1 Using the method shown in Figure 1, a series of 4.5 kg (10 lb) laboratory ingots with the composition listed in the table} were placed in a silicon crucible and melted, and Durville washes and casted into a steel mold. After gating, the ingot & 1016cmxi〇i6 cm X 4.45 cm (4 "X 4" X 1.75 "). After soaking at 95 ° for 3 hours, the ingot was hot rolled three times to 2.8 cm (1.1,), heated at 950 ° C for another 10 minutes, and further hot-rolled twice to 1.27 cm (0.5 0 followed by quenching with water. The resulting hot-rolled sheet was placed at 1,000 ° C Soak for 2 hours for homogenization, then quench with water. After trimming and grinding to remove the oxide coating, cold-roll the alloy to 27 mm (0.050 "). Then, at a temperature of 1,000 ° C, The alloy is solubilized for 20 to 60 seconds, O: \ 88 \ 88009.DOC -16- 200422410, but the alloy J346 is solutionized at 950 ° C for 60 seconds. After solutionization and quenching, the alloy is cold rolled 50% To 0.64 mm (0.025 ") and age-annealed at 5 50 ° C for 3 hours. Then, the alloy was cold-rolled 50% to 0.32 mm (0.0125") thick and relaxed at 275 ° C (relief anneal) and measurement table 2 Reported properties. The data in Table 2 show that high yield strength values from 621 MPa to 765 MPa (90 ksi to 111 ksi) and high electrical conductivity values from 38.2% IACS to 63.8% IACS. The resulting stress relaxation resistance is measured in Cu. -Ni-Ti-Mg For J345 and J346, after 1000 hours at 105 ° C, it is close to 95% of the desired value. The desired value is reached by Cu-Ni-Ti-] vlg alloy J354 .: Table 1-Example 1 Alloy alloy identification number (ID ) Analysis of composition, weight% J345 Cu-2.32Ni-l.96Ti-l.06Fe J346 Cu-l.16Ni-l.32Ti-0.92Fe J347 Cu-0.80Ni-0.80Ti J348 Cu-0.89Ni-l.82Ti -l.04Fe J351 Cu-2.45Ni-l.16Ti J354 Cu-2.43Ni-l.18Ti-0.38Mg O: \ 88 \ 88009.DOC -17- Table 2 Properties of alloys listed in Table 1 for relaxation annealing conditions Conductivity% IACS YS / TS / EI MPa / MPa /% ksi / ksi% 90 ° -MBR / t Good method / bad method% SR 105 ° C 1,000 h% SR 105 ° C 3,000h J345 42.9 731/841/2 106 / 122/2 2.7 / 8.8 90.4 89.5 J346 56.1 669/703/3 97/102/3 1.4 / 2.9 88.2 87.3 J347 34.6 731/807/1 106/117/1 2.7 / 8.8-J348 38.2 765/855/4 111 / 124/4 1.9 / 7.5 surface J351 63: 8 621/641/1 90/93/1 1.4 / 2.2 r 'J354 47.0 752/793/2 109/115/2 5.0 / 8.8 95.1 93.9 Example 2 200422410 According to Figure 2 In the method shown, the alloy of Table 1 was processed as in Example 1 to the homogenization heat treatment when it passed through the thickness of the hot-rolled sheet. In this example, the alloy is machined to a finished thickness without undergoing a solution heat treatment in the process. After trimming and milling to remove the oxide coating, the alloy was cold rolled to 2.54 mm (0.100 ") and subjected to the first aging annealing at 550T for 3 hours. Then the alloy was cold rolled 70% to 0.76 mm (0.03 0 ”) and then subjected to a second aging annealing at 525 ° C for 3 hours. The alloy was then cold rolled from 50% to 0.38 mm (0.015 ") thick and relaxed annealed at 275 ° C for 2 hours. Under these conditions, the properties described in Table 3 were measured. Consistent with the data in Table 2, the alloy of this example has high yield. Strength from 676 MPa to 73 8 MPa (98 ksi to 107 ksi) and higher. A combination of conductivity between 49.9% and 69.7% IACS. Increased stress relaxation resistance is added to Fe or Mg to basic Cu-Ni -Ti alloy obtained. The data in Table 3 show that the highest stress relaxation resistance is obtained by adding Mg to Cu-Ni-Ti alloy; compare alloy J354 and alloy J351. O: \ 88 \ 88009.DOC -18-Table 3 Table Properties of the alloys listed in the relaxation annealing conditions.Identification conductivity% IACS YS / TS / EI MPa / MPa /% ksi / ksi% 90 °-MBR / t% SR 105 ° C 1,000 h% SR 105 ° C 3,000 h J345 57.8 738/93/4 107/115/4 3.1 / 4.2 86.9 85.9 J346 63.2 676/717/5 98/104/5 0.8 / 4.2 85.5 84.7 J347 49.9 724/765/3 105/111/3 0.8 / 5.2 J348 58.5 717/772/6 104/112/6 2.1 / 5.2 J351 69.7 676/717/4 98/104/4 0.8 / 0.8 82.7 80.8 ',, J354 60.8 696/745/5 101/108/5 2.4 / 4.2 92.4 90 .f * Example 3 200422410 According to the method shown in Figure 1, a series of 4.5 kg (10 lbs) of laboratory ingots with the analytical composition listed in Table 4 were melted in a silicon crucible and Duvilli was cast into a steel mold. After gating, the cast key was 10 · 16 cm X 10 · 16 cm X 4.45 cm (4Π x 4 ”χ 1.75π). After soaking at 950 ° C for 3 hours, the ingot was hot rolled three times to a thickness of 2.8 cm (1.Γ '), heated at 950 ° C for another 10 minutes, and further hot rolled three times to 1.27 cm (0.50 "). Thick, followed by water quenching. After trimming and book milling to remove the oxide coating, the alloy was cold rolled to 0.127 mm (0.050 "). Then, alloys other than M77 were solution heat treated at 1,000 ° C for 25 seconds, and then quenched with water to produce a controlled, fine, recrystallized grain size in the range of 12-24 μm in diameter. Alloy J477 is heat treated at 950 ° C for 25 seconds and quenched with water to produce a particle size of 9 μηη. The entire alloy is then cold rolled from 50% to 0.64 mm (0.025π) thick and subjected to a period of time at 550 ° C that effectively maximizes the conductivity without unduly softening the matrix. The times at 550 ° C are shown in Table 5. Then, O: \ 88 \ 88009 DOC -19- 200422410 The alloy was cold-rolled 50% to 0.32 mm (0.0125 ") thick and relaxed annealed at 275 ° C for 2 hours. The properties of Table 5 were measured under these conditions. The data in Table 5 shows that although the basic alloy J477 provides a good combination of 634 MPa (92 ksi) YS and 58.1% IACS conductivity, the addition of the alloy can increase the strength of the basic alloy (J483 to J477) to 690 MPa (100 ksi) and conductance. The degree of reduction is only slightly. Moreover, the advantages of adding Mg--but maintaining consistent amounts of Ni, Ti, and Fe in order to improve the stress relaxation resistance at 105 ° C are shown by comparing alloys J491 and J481. The advantages are also shown by comparing the properties of alloy J491 (Table 5) with the properties of Table J2 and J345 in Table 2. Table 4 Composition of alloy identification number (ID) analysis of Example 3, weight% J4-77 Cu-l.41Ni -0.71Ti J481 Cu-l.00Ni-0.98Ti-0.99Fe J483 Cu-l.42Ni-0.87Ti-0.53Fe J485 Cu-0.97Ni-l.40Ti-l.01Fe J486 Cu-l.86Ni-l.43Ti -0.98Fe J491 Cu-0.98Ni-0.94Ti-l.00Fe-0.35Mg O: \ 88 \ 88009 DOC -20- Table 4 ϋ Table 5 Properties of alloys in column r in relaxation annealing conditions Identification of 550 ° C / No. hrs Conductivity% IACS Y S / TS / EI MPa / MPa /% ksi / ksi% 90 °-MBR / t% SR 15000 hrs / 105 ° G% SR 1,000 hrs. 150 ° C J477 3 58.1 634/662/1 92/96/1 1.1 /1.8 J481 5 56.6 662/690/4 96/100/4 1.1 / 1.8 92 90 J483 8 54.0 690/717/3 100/104/3 1.8 / 2/2 93 86 J485 8 53.6 696/731/5 101 / 106/5 0.8 / 2/1 J486 8 52.8 703/731/1 102/106/1-'' s., J491 8 55.0 676/703/5 98/102/5 1.4 / 2.4 96 86 200422410 Example 4 According to the figure In the method shown in 2, the alloy of Table 4 is processed to the final thickness, and then the solution heat treatment is performed in the process. After trimming and milling to remove the oxide coating, the alloy under cooling conditions is cooled to 0.050 "thick, and the first aging is performed at the temperature and time shown in Table 6 which can effectively maximize the conductivity. Annealing. Then, the alloy is cooled by 50% to 0.025 "thick, and subjected to a second aging annealing at the temperature and time shown in Table 6 to maximize the electrical conductivity without improperly softening the substrate. The specific aging annealing applied to each alloy is described in Table 6. Then, the alloy was cooled by 50% to 0.0125'1 thickness, and annealed at 275 ° C for 2 hours, and the properties of Table 7 were measured under these conditions. With this method, alloys with Fe and Mg additives provide lower but still good strength, as well as higher electrical conductivity and good stress relaxation resistance. O: \ 88 \ 88009 DOC -21-Table 6 Aging annealing treatment applied to Example 4 alloy identification aging treatment 0.050, 丨 thick aging treatment 0.025, thick YS MPa / YS, ksi / conductivity% IACS J477 550. C / 2 hrs 450〇C / 1 hrs 524/76 / 69.4% J481 550〇C / 2 hrs 500 ° C / 1 hrs 427/62 / 69.4% J483 550〇C / 2 hrs 500 ° C / 1 hrs 522 / 80 / 65.1% J485 550〇C / 4hrs 500 ° C / 1 hrs 552/80 / 65.2% J486 550〇C / 2 hrs 450〇C / 1 hrs 483/70 / 66.6% J491 ~ 550〇C / 4hrs 500 ° C / 1 hrs 448/65 / 61.0% f) Table 7 Properties of the alloys listed in Table 4 under relaxed annealing conditions. Identified conductivity% IACS YS / TS / EI MPa / MPa /% ksi / ksi% 90 °-MBR / t% SR 105 ° C 1,000h% SR 150 ° C 1,000 h J477 64.1 579/627/3 84/91/3 1.8 / 3.8 J481 68.1 545/607/4 79/88/4 1.7 / 1.9 82 76 J483 62.5 607/648/4 88/94/4 1.8 / 2.2 86 82 J485 61.3 641/703/5 93/102/5 1.8 / 3.3 J486 64.8 572/634/5 83/92/5 J491 60.3 614/648/5 89 / 94/5 1.9 / 2.2 94 77 200422410 Example 5 According to the method shown in Figure 3, a series of 4.5 kg (10 lb) laboratory ingots with the composition listed in Table 8 were placed in a silicon crucible and melted. And Du Weili cast in a steel mold. After gating, the ingot was 10.16 cmx 10.16 cmx4.45 O: \ 88 \ 88009.DOC -22- 200422410 cm (4M x 4 ”x 1.75”). After soaking at 950 ° C for 3 hours, they were heated twice to a thickness of 2.8 cm (1.Γ '), heated for another 10 minutes at 950 ° C, and further hot rolled three times to 1.27 cm. (0.50), followed by water quenching. After trimming and milling to remove the oxide coating, the alloy was cold rolled to a thickness of 2.54 mm (0.100 ") and heat-treated in a furnace at 95 ° C for 40 seconds, followed by quenching with water to produce a temperature of 8 · (Μ2 μιη Controlled fine recrystallization particle size within the range. Then, they were cold-rolled 50% to 1.27 mm (0.05 0 ”) thick and aged at 565t for 3 hours to maximize electrical conductivity. Without improperly softening the matrix-not counted. Then, the alloy is cold rolled 50% to 0.64 mm (0.025 ") thick and subjected to a second aging annealing at > 41 ° C for 2 hours, and cold rolled to 〇〇25 mm (0.010 ″). Then relax annealing at 250 ° C for 2 hours, under this condition the properties of Table 9 were measured. Table 8 Example 5 Composition of alloy identification number analysis, weight% J694 Cu-1. 78Ni-l.34Ti-0.98Fe-0.24Mg J698 Cu-l.72Ni_l.42Ti-l.02_Fe-0.24Mg-0.06Zr J699 Cu-l.72Ni-l.3 5Ti-l.01-Fe-0.23Mg- 0.60A2 J700 Cu-l.76Ni-l.37Ti-l.01-Fe-0.23Mg-0.53Cr O: \ 88 \ 88009.DOC -23-Table 9 Properties of relaxation annealing conditions of the alloys listed in Table 8410. C2 / h, 0.64mm0.025, f) CR 0.25 mm (0.010 ',) + 25 0 ° C / 2 hrs Alloy identification Ni / Ti (Ni + Fe) / Ti YS MPa Ksi Conductivity% IACS YS / TS / EI MPa / MPa% Ksi / ksi% 90 ° C -MBR / t J694 1.3 2.1 648 94 50.9 745/800/3 108/116/3 2.2 / 9.4 J698 0.8 1.9 641 93 51.3 765/821/3 111/119/3 2.6 / 7.8 J699 1.3 2.0 621 90 51.9 772/821/2 112/119/2 2.8 /10.9 J700 1.3 2.0 641 93 49.5 758/814/2 110/118/2 2.6 / 6.2 200422410 Comparing the base alloy J694 with the hafnium-containing alloy J698 shows that a small amount of zirconium can increase the yield strength without affecting the electrical conductivity. Alloy J694 and Silver-containing alloy J699 shows that a small amount of silver can increase yield strength and electrical conductivity. Alloys J694 and chromium-containing alloy J700 show that adding a small amount of chromium can slightly increase yield strength and at the same time slightly reduce electrical conductivity. Example: According to the method shown in Figure 3, a series of 4.5 kg (10 pounds) laboratory castings with the composition listed in Table 8 were placed in a Shixihang disaster and melted, and Durville washes and casted into a steel mold. After gating, cast: 10.16 cm x 10.16 cm x 4.45 cm (4'f x 4, f x 1.75n). After soaking at 950 ° C for 3 hours, they were hot-rolled three times to a thickness of 2.8 cm (1.1 "), heated at 950 ° C for another 10 minutes, and further hot-rolled three times to 1.27 cm (0.50 0π ), Then quenched with water. After trimming and milling to remove the oxide coating, the alloy is cold rolled to 2.54 mm (0.100 ") and heat treated in a furnace at 1,000 ° C for 25-35 seconds, followed by quenching with water to produce Controlled fine recrystallized particle size in the range of 1 2 μm. Then O: \ 88 \ 88009.DOC -24- 200422410 after 'cold rolling them 50% to 1.27 111111 (.0055 ,,) thick, Aging annealing is performed at 550-600 ° for 3-4 hours. Then, the alloy is cold-rolled by 50% to 064 mm (0.025 ") thick, and aging annealing is performed again at 41-425ac for 2 hours, and then Cold rolled to 0.25 mm (0.010,) and relaxed annealed at 250-275T: 2 hours. The properties of the final thicknesses listed in Table 11 show that using Mg addition (compared with J604 and J603) and / or Zr addition (compared with J644 and J603), a better combination of yield strength and electrical conductivity can be obtained. ^ Without the addition of Mg, the addition of Cr is not as effective by itself (compare Table i 丨 (cabinet &D; J) 's low strength with Table 9's higher strength). Please also pay attention to Table 11, how to increase the flexural strength (and tensile strength) values of Mg added in the range of 0, 0.16, 0.31 wt% Mg, respectively: 703 (758), 710 (772), 745 ( 772), 745 (800), 758 (814) MPa [102 (110), 103 (112), 108 (116), 110 (118) ksi], and the conductivity value is approximately fixed at approximately 48% IACS. Table 10 Composition of Example 6 alloy alloy identification number analysis, weight% J603 Cu-l.86Ni-l.47Ti-0.99Fe J604 Cu-l.89Ni-l.3 3Ti-0.98Fe-0.25Mg J642 Cu-l.61Ni -l.42Ti-l.04Fe-0.16Mg J643 Cu-l.61Ni-l.40Ti-l.02Fe-0.31Mg J644 Cu-l.5 3Ni-l.3 7Ti-0.91Fe-0.19Zr J646 Cu-l .61Ni-l.43Ti-0.98Fe-0.5 2Cr O: \ 88 \ 88009.doc -25- 200422410 Properties of 0.25 mm (U010 ") thick relaxation annealing conditions for alloys listed in Table 10-YS, MPa / UTS, " MPa / Elong.,% (YS, ksi / UTS, ksi / Elong.,%) Conductivity,% IACS _ ~ w Process alloy identification ABCDHF J603 607/669/4 627/690/4 696/758/4 ~ ~ 703/758/3 ~ 710/772/3 710/765/3 (88/97/4) (91/100/4) (101/110/4) (102/110/3) (103/112 / 3) (103/111/3) 62.4 56.0 53.4 48.1 ^ 50.3 46.9 J604 ^ 696/745/5 696/758/4 758/814/3 745/800/3 786/841/2 786/827/2 (101 / 108/5) (101/110/4) (110/118/3) (108/116/3) (114/122/2) (114/120/2) 54.2 50.0 49.9 48.2 v 46.6 43.9 J642 ^ 641 / 696/3 648/717/4 724/772/3 710/772/3 731/786/3 731/779/3 (93/101/3) (94/104 / 4) (105/112/3) (103/112/3) (106/114/3) (106/113/3) 60.1 56.0 53.9 51.3 53.8 50.6 J643 v 662/7105 662/738/4 738/793/4 758/814/3 752/800/3 758/814/3 (96/103/5) (96/107/4) (107/115/4) (110/118/3) (109/116/3) (110/118/3) 56.7 52.6 51.7 477 50.7 46.9 J644 600/676/4 669/738/4 724/786/3 738/800/4 745/807/3 745/800/3 (87/98/4) (97/107/4) (105/114/3) (107/116/4) (108/117/3) (108/116/3) 64.7 61.1 56.8 50.3 53.4 47.6 J646 524/579/4 524/593/5 607/662/2 600/662/3 607/676/4 621/690/4 (76/84/4 ) (76/86/5) (88/96/2) (87/96/3) (88/98/4) (90/100/4) 64.7 61.3 60.8 56.2 61.6 58.7 Example 7 This example shows the composition and processing How it affects flexion strength and electrical conductivity. The alloys J694 and J709 with the composition listed in Table 12 have been processed from 10.16 cm X 10.16 (: 11 ^ 4.45 (: 111 (4 '\ 4'11.75 ")) ingot, that is, they are all heated at 950 ° (3 Hours and hot-rolled to 1.27 cm (0.50 inch), followed by quenching with water. After the oxide was trimmed and milled, the alloy was cold-rolled to 2.54 mm (0 · 10 inch) and solution heat treated at 1000 ° C for 35 hours. It was quenched with water and water. Then, the alloy was cold rolled to 1.27 mm (0.05 inch), solutionized at 950 ° C for 35 seconds and quenched with water. Further processing is shown in Table 13 and the properties are listed in Table 14.

O:\88\88009.DOC -26- 200422410 表12 合金 組成 J894 Cu-l.78Ni-l.34Ti-0.98Fe-0.24Mg J709 Cu-0.98Ni-0.90Ti-l.05Fe-0.24Mg 表13 製程 自1.27 mm (0.05吋)起之製程步驟 J1 在565 °C下退火3小時+冷軋至0.64 mm (0.025吋)+在410°C下退火2小時+冷軋至 0.3 8 mm (0·015吋)+在25 0°C下退火2小時 J2 在565 °C下退火3小時+冷軋至0.025吋+在 410°C下退火2小時+冷軋至〇·〇〇8吋+在250 °C下退火2小時 製程 合金J694 合金J709 · YS MPa (ksi) TS MPa (ksi) Elong (%) 電導度 (%IACS) YS MPa (ksi) TS MPa (ksi) 伸長率 (%) 電導度 (%IACS) J1 807 117 841 122 1 42.8 765 111 793 115 1 42.8 J2 827 120 848 123 1 36.8 793 115 821 119 1 37.5 以上己說明本發明之一或多個具體例。雖然如此,應瞭 解的是,在不偏離本發明之精神及範圍下,可作各種不同 修正。因此,其他具體例也在隨附申請專利範圍之範圍内。 【圖式簡單說明】 圖1顯示本發明銅合金第一加工方法之流程圖格式。 圖2顯示本發明銅合金第二加工方法之流程圖格式。O: \ 88 \ 88009.DOC -26- 200422410 Table 12 Alloy composition J894 Cu-l.78Ni-l.34Ti-0.98Fe-0.24Mg J709 Cu-0.98Ni-0.90Ti-l.05Fe-0.24Mg Table 13 Process Process steps from 1.27 mm (0.05 inch) J1 Annealed at 565 ° C for 3 hours + cold rolled to 0.64 mm (0.025 inch) + Annealed at 410 ° C for 2 hours + Cold rolled to 0.3 8 mm (0.015 Inches) + annealing at 25 0 ° C for 2 hours J2 annealing at 565 ° C for 3 hours + cold rolling to 0.025 inches + annealing at 410 ° C for 2 hours + cold rolling to 0.08 inches + at 250 ° Annealing under C for 2 hours. Alloy J694 Alloy J709YS MPa (ksi) TS MPa (ksi) Elong (%) Electrical conductivity (% IACS) YS MPa (ksi) TS MPa (ksi) Elongation (%) Electrical conductivity (% IACS) J1 807 117 841 122 1 42.8 765 111 793 115 1 42.8 J2 827 120 848 123 1 36.8 793 115 821 119 1 37.5 One or more specific examples of the present invention have been described above. Nevertheless, it should be understood that various modifications may be made without departing from the spirit and scope of the invention. Therefore, other specific examples are also within the scope of the accompanying patent application. [Brief description of the drawings] FIG. 1 shows a flowchart format of the first processing method of the copper alloy according to the present invention. FIG. 2 shows a flowchart format of a second processing method of a copper alloy according to the present invention.

O:\88\88009.DOC -27- 200422410 圖3顯示本發明銅合金第三加工方法之流程圖格式 【圖式代表符號說明】 10 澆鑄 12 熱軋 14 、 20 、 24 、 30 、 34 冷軋 16 溶液化 18 驟冷 22 > 26 退火 28 第一次退火 32 第二次冷軋 O:\88\88009.DOC -28-O: \ 88 \ 88009.DOC -27- 200422410 Figure 3 shows the flow chart format of the third processing method of the copper alloy of the present invention [illustration of the representative symbols] 10 casting 12 hot rolling 14, 20, 24, 30, 34 cold rolling 16 solubilization 18 quenching 22 > 26 annealing 28 first annealing 32 second cold rolling O: \ 88 \ 88009.DOC -28-

Claims (1)

200422410 拾、申請專利範圍: 1 · 一種銅基合金,其主要係由以下所組成: 自0.35至5重量%鈦; 自〇〇1至10重量%χ,其中X係選自Ni、Fe、Sn、P、A;l、 Zn、Si、Pb、Be、Μη、Mg、Bi、s、Te、Se、Ag、As、 Sb、Zr、B、Cr及Co及其組合; 及其餘為銅及不可避免的不純物,該合金具有電導度 為至少50% IACS及屈伏強度為至少724 MPa (105 ksi)。 2·如申請專利範圍第1項之銅基合金,其特徵為X係選自 Ni' Fe、Co、Mg、Cr、Zr、Ag及其組合所組成之族群。 3·如申請專利範圍第2項之銅基合金,進一步主要係由以下 所組成: 自35%至2.5%鈦; 自〇·5%至5.0%鎳; 自0.5%至0.8%鐵、鈷及其混合物; 自 0.01%至 1.0%鎂; 高達1 % Cr、Zr、Ag及其組合;及 其餘為銅及不可避免的不純物。 4.如申請專利範圍第3項之銅基合金,進一步主要係由以下 所組成: 自0.8%至1.4%鈦; 自0·8%至1.7%鎳; 自0.9%至1.1%鐵、鈷及其混合物; 自0.1%至0.4%鎂; O:\88\88009.DOC 200422410 高達1 % Cr、Zr、Ag及其混合物;及 其餘為銅及不可避免的不純物。 5 · 一種具有改良之屈伏強度、電導度及耐應力鬆弛性組合 之銅基合金,其主要係由以下所組成: 〇.35-2.5重量%鈦; 0.5-5.0重量%鎳; 0.5-1.5重量%鐵、鈷及其混合物; 0.01-1.0重量 %鎮; 高達 1% Sn、Cr、Zr、Ag、Sn、P、Al、2n、Si、 Pb、Bi、S、Te、Se、Be、Mn、As、Sb、2r、B 及其混合物; 及其餘為銅及不可避免的不純物。 6.如申請專利範圍第5項之銅基合金,其含有高達1% Cr、 Zr、Ag及其混合物。 7 ·如申請專利範圍第6項之銅基合金,主要係由以下所組 成: 0.8-1.4% 鈦; 0·8-1·7% 鎳; 0.90-1.10% 鐵或鈷; 0.10-0.40% 鎂; 0.01%至1.0%(^、21"、八§及其混合物;及 其餘為銅及不可避免的不純物。 8. —種製造具有改良屈伏強度、電導度及應力鬆弛組合之 銅基合金之方法,其特徵為: O:\88\88009.DOC 200422410 將銅基合金澆鑄(10),該合金主要係由以重量計0.35% 至10%鈦,0.001%至6%乂(其中又係選自犯、?6、311、?、 Al、Zn、Si、Pb、Be、Mn、Mg、Bi、S、Te、Se、Ag、 As、Sb、Zr、B、Cr及Co及其組合)及其餘為銅及不可避 免的不純物所組成; 將合金在約750°C至約l,〇〇〇t:下熱軋(12); 將合金第一次冷軋(14)至面積縮小約50%至約97% ; 將合金在溫度約850°C至約1,000°C下第一次退火(16) 約10秒至約1小時,繼之快速冷卻(1 8)至室溫; 將合金第二次冷軋(20)至達約80%面積縮小; 將合金在約400°C至約650°C下第二次退火(22)約i分鐘 至約10小時; 將合金第三次冷軋(24)約10%至約50%面積縮小至最終 厚度。 9. 如申請專利範圍第8項之方法,其特徵為在該第三次冷軋 步驟(24)之後,將該合金在溫度約150°C至約60(rc下退火 (26)約15秒至約10小時。 10. 如申請專利範圍第9項之方法,其特徵為該第一次(16)、 第二次(22)及第三次(26)退火步驟有時間及溫度可有效 使該合金在最終厚度時具有屈伏強度為至少724 Mpa (105 ksi)及電導度為至少50% IACS。 11 · 一種製造具有改良屈伏強度、電導度、耐應力鬆弛性以 及中等可彎曲性組合之銅基合金之方法,其特徵為. 將銅基合金洗鑄(10)’該合金主要係由以重量叶〇 3 5 % O:\88\88009.DOC 200422410 至10%鈦,0.001%至6%父(其中父係選自州、只€、311、?、 A1、Zn、Si、Pb、Be、Μη、Mg、Bi、S、Te、Se、Ag、 As、Zr、B、Cr及Co及其組合)及其餘為銅及不可避免的 不純物所組成; 將合金在約750°C至約1,000°C下熱縮(12); 提供一或多個循環,其包含將合金冷縮(14)至面積縮小 約5 0%至約99%,及然後在退火溫度約4〇〇°C至約650°C下 時效退火(28)約15秒至約1〇小時; 將該合金冷縮(30)約40%至約80%面積縮小; 將合金在約400°C至約650°C下退火約1至約10小時予 以時效硬化(32);及 將合金最後縮小(34)約1 〇%至約50%面積縮小至最終厚 度。 12·如申請專利範圍第11項之方法,其特徵為在該最後冷軋 步驟(34)之後,將該合金在溫度約15〇。〇至約6〇〇°C下退火 (26)約15秒至約10小時。 1 3 ·如申請專利範圍第12項之方法,其特徵為該退火步驟 (2 8、32、26)有時間及溫度可有效使該合金在最終厚度時 具有屈伏強度為至少724 MPa (105 ksi)及電導度為至少 50% IACS。 14· 一種製造具有高屈伏強度及中等強度電導度之銅基合金 之方法,其特徵為: 將銅基合金澆鑄(10),該合金主要係由以重量計0.35% 至1〇%鈦’〇.〇〇1%至6%又(其中乂係選自州10、311、?、 O:\88\88009.DOC 200422410 A1、Zn、Si、Pb、Be、Μη、Mg、Bi、S、Te、Se、Ag、 As、Sb、Zr、B、Cr及Co及其組合)及其餘為銅及不可避 免的不純物所組成; 將合金在約750°C至約1,000°C下熱縮(12); 將合金冷縮(14)至面積縮小約50%至約99% ; 將合金在溫度約950°C至約1,000°C下溶液退火(16)約 15秒至約1小時,繼之快速冷卻至室溫; 將合金冷縮(20)約40%至約60%面積縮小; 將合金在溫度約40(TC至約650°C下時效退火(28)約1至 約10小時; 將合金冷縮(30)約40%至約60%面積縮小; 將合金在較第一次時效退火約375t:至約55(rc為低之 溫度下第二次時效退火(32);及 冷縮(34)至少約30%面積縮小至最終厚度。 15.如申請專利範圍第14項之方法,其特徵為在該最後冷軋 步驟(34)之後’將该合金在溫度約1 $〇。〇至約6〇〇。〇下退火 (26)約15秒至約1〇小時。 16·如申請專利範圍第15項之方法,其特徵為該第一次(16)、 第二次(32)及第三次(26)退火步驟有時間及溫度可有效 使该合金在最終厚度時具有屈伏強度為至少724 Mpa (105 ksi)及電導度為至少50% IACS。 17· —種製造具有高屈伏強度及中等強度電導度之銅基合金 之方法,其特徵為: 將銅基合金澆鑄(10),該合金主要係由以重量計〇 35% O:\88\88009 DOC 200422410 至10%鈦,0.001%至6%乂(其中又係選自州、1^、311、;?、 A1、Zn、Si、Pb、Be、Μη、Mg、Bi、S、Te、Se、Ag、 As、Sb、Zr、B、Cr及Co及其組合)及其餘為銅及不可避 免的不純物所組成; 將合金在約75 0°C至約1,000°C下熱軋(12); 將合金冷軋(14)至面積縮小約50%至約99% ; 將合金在溫度約950°C至約1,000°C下溶液退火(16)約 10秒至約1小時,繼之快速冷卻至室溫; 將合金冷縮(20)約40%至約60%面積縮小; 將合金在溫度約500°C至約575°C下時效退火(28)約15 秒至約10小時,或在溫度約425°C至約475。(3下約2.5至約 3.5小時; 將合金冷軋(30)約40%至約60%面積縮小; 將合金在溫度約500 °C至約550 °C下第二次時效退火 (32)約1至約4小時;及 最後滾軋(34)至少約30%面積縮小至最終厚度。 1 8·如申請專利範圍第17項之方法,其特徵為在該最後冷軋 步驟(34)之後,將該合金在溫度約150°C至約600°C下退火 (26)約15秒至約1〇小時。 19 ·如申請專利範圍第1 8項之方法,其特徵為該退火步驟 (16、28、32、36)有時間及溫度可有效使該合金在最終厚 度時具有屈伏強度為至少724 MPa (105 ksi)及電導度為 至少 50% IACS。 O:\88\88009 DOC -6-200422410 The scope of patent application: 1. A copper-based alloy mainly composed of: from 0.35 to 5% by weight titanium; from 0.001 to 10% by weight χ, where X is selected from Ni, Fe, Sn , P, A; 1, Zn, Si, Pb, Be, Mη, Mg, Bi, s, Te, Se, Ag, As, Sb, Zr, B, Cr, and Co and their combinations; and the rest are copper and impossibility Impurities to be avoided, the alloy has an electrical conductivity of at least 50% IACS and a yield strength of at least 724 MPa (105 ksi). 2. The copper-based alloy according to item 1 of the patent application, wherein X is selected from the group consisting of Ni 'Fe, Co, Mg, Cr, Zr, Ag and combinations thereof. 3. The copper-based alloy as claimed in item 2 of the patent application scope, further consisting mainly of: from 35% to 2.5% titanium; from 0.5% to 5.0% nickel; from 0.5% to 0.8% iron, cobalt and Its mixture; from 0.01% to 1.0% magnesium; up to 1% Cr, Zr, Ag and combinations thereof; and the rest are copper and unavoidable impurities. 4. The copper-based alloy as claimed in item 3 of the patent application scope, further consisting mainly of: from 0.8% to 1.4% titanium; from 0.8% to 1.7% nickel; from 0.9% to 1.1% iron, cobalt and Its mixture; from 0.1% to 0.4% magnesium; O: \ 88 \ 88009.DOC 200422410 up to 1% Cr, Zr, Ag and mixtures thereof; and the rest are copper and unavoidable impurities. 5 · A copper-based alloy with an improved combination of yield strength, electrical conductivity, and stress relaxation resistance, which is mainly composed of: 0.35-2.5% by weight titanium; 0.5-5.0% by weight nickel; 0.5-1.5% by weight % Iron, cobalt and mixtures thereof; 0.01-1.0% by weight of town; up to 1% Sn, Cr, Zr, Ag, Sn, P, Al, 2n, Si, Pb, Bi, S, Te, Se, Be, Mn, As, Sb, 2r, B and mixtures thereof; and the rest are copper and unavoidable impurities. 6. The copper-based alloy according to item 5 of the patent application scope, which contains up to 1% Cr, Zr, Ag and mixtures thereof. 7 · The copper-based alloy according to item 6 of the patent application, which is mainly composed of: 0.8-1.4% titanium; 0.8-1.7% nickel; 0.90-1.10% iron or cobalt; 0.10-0.40% magnesium 0.01% to 1.0% (^, 21 ", eight § and mixtures thereof; and the rest are copper and unavoidable impurities. 8.-A method for manufacturing a copper-based alloy with improved combination of yield strength, electrical conductivity, and stress relaxation , Its characteristics are: O: \ 88 \ 88009.DOC 200422410 Cast copper-based alloy (10), the alloy is mainly composed of 0.35% to 10% titanium, 0.001% to 6% by weight (of which Offender,? 6, 311,?, Al, Zn, Si, Pb, Be, Mn, Mg, Bi, S, Te, Se, Ag, As, Sb, Zr, B, Cr and Co and combinations thereof) and the rest It is composed of copper and unavoidable impurities; hot-rolled the alloy at about 750 ° C to about 10,000 t: (12); cold-rolled the alloy for the first time (14) to reduce the area by about 50% to About 97%; annealing the alloy for the first time at a temperature of about 850 ° C to about 1,000 ° C (16) for about 10 seconds to about 1 hour, followed by rapid cooling (18) to room temperature; Secondary cold rolling (20) to reach The area is reduced by about 80%; the second annealing (22) is performed at about 400 ° C to about 650 ° C for about i minutes to about 10 hours; the third cold rolling of the alloy (24) is about 10% to about 50 % Area is reduced to the final thickness. 9. The method according to item 8 of the patent application scope is characterized in that after the third cold rolling step (24), the alloy is at a temperature of about 150 ° C to about 60 (rc The annealing (26) is about 15 seconds to about 10 hours. 10. The method of item 9 of the patent application scope is characterized by the first (16), second (22), and third (26) annealing steps Time and temperature can effectively make the alloy have a yield strength of at least 724 Mpa (105 ksi) and an electrical conductivity of at least 50% IACS at the final thickness. 11 · A manufacture with improved yield strength, electrical conductivity, stress relaxation resistance, and A method for a copper-based alloy with a medium bendability combination, characterized in that the copper-based alloy is washed and cast (10) 'The alloy is mainly composed of 5% by weight O: \ 88 \ 88009.DOC 200422410 to 10% Titanium, 0.001% to 6% father (where the father is selected from the state, only €, 311,?, A1, Zn, Si, Pb, Be, Mη, Mg, Bi, S, T e, Se, Ag, As, Zr, B, Cr and Co and combinations thereof) and the rest are made of copper and unavoidable impurities; heat shrink the alloy at about 750 ° C to about 1,000 ° C (12 ); Providing one or more cycles comprising cold shrinking the alloy (14) to reduce the area by about 50% to about 99%, and then aging annealing at an annealing temperature of about 400 ° C to about 650 ° C ( 28) about 15 seconds to about 10 hours; cold shrink (30) the area of about 40% to about 80% of the area; annealing the alloy at about 400 ° C to about 650 ° C for about 1 to about 10 hours; Age hardening (32); and finally shrinking (34) the alloy by about 10% to about 50% of the area to a final thickness. 12. The method according to item 11 of the scope of patent application, characterized in that, after the final cold rolling step (34), the alloy is at a temperature of about 150. Annealing at 0 to about 600 ° C (26) for about 15 seconds to about 10 hours. 1 3 · The method according to item 12 of the scope of patent application, characterized in that the annealing step (28, 32, 26) has time and temperature effective to make the alloy have a yield strength of at least 724 MPa (105 ksi at the final thickness) ) And a conductivity of at least 50% IACS. 14. · A method for manufacturing a copper-based alloy with high yield strength and medium-strength electrical conductivity, which is characterized by casting a copper-based alloy (10), which is mainly composed of 0.35% to 10% titanium by weight. .00% to 6% (wherein the actinide is selected from the state 10, 311,?, O: \ 88 \ 88009.DOC 200422410 A1, Zn, Si, Pb, Be, Mη, Mg, Bi, S, Te , Se, Ag, As, Sb, Zr, B, Cr and Co and combinations thereof) and the rest are made of copper and unavoidable impurities; heat shrink the alloy at about 750 ° C to about 1,000 ° C ( 12); cold shrinking the alloy (14) to reduce the area by about 50% to about 99%; annealing the alloy at a temperature of about 950 ° C to about 1,000 ° C (16) for about 15 seconds to about 1 hour, Followed by rapid cooling to room temperature; shrink the alloy (20) by about 40% to about 60%; shrink the alloy at a temperature of about 40 (TC to about 650 ° C) (28) for about 1 to about 10 hours Shrinking the area of the alloy by about 40% to about 60% in cold shrinking (30); annealing the alloy at about 375t from the first aging annealing: to about 55 (rc at the lower temperature of the second aging annealing (32); and Cold Shrink (34) at least about 30% of area Reduced to the final thickness. 15. The method according to item 14 of the scope of patent application, characterized in that after the final cold rolling step (34), the alloy is at a temperature of about 1 $ 0.00 to about 600. The annealing (26) is about 15 seconds to about 10 hours. 16. The method of claim 15 in the scope of patent application is characterized by the first (16), second (32), and third (26) annealing The time and temperature of the steps can effectively make the alloy have a yield strength of at least 724 Mpa (105 ksi) and an electrical conductivity of at least 50% IACS at the final thickness. 17 · —Making copper with high yield strength and medium strength conductivity The method of base alloy is characterized by: casting a copper-based alloy (10), the alloy is mainly composed of 05% 5% by weight O: \ 88 \ 88009 DOC 200422410 to 10% titanium, 0.001% to 6% Also selected from the states, 1 ^, 311,?, A1, Zn, Si, Pb, Be, Mη, Mg, Bi, S, Te, Se, Ag, As, Sb, Zr, B, Cr, and Co and Its combination) and the rest are made of copper and unavoidable impurities; the alloy is hot rolled at about 7500 ° C to about 1,000 ° C (12); the alloy is cold rolled (14) Reduce the area by about 50% to about 99%; anneal the alloy at a temperature of about 950 ° C to about 1,000 ° C (16) for about 10 seconds to about 1 hour, followed by rapid cooling to room temperature; cool the alloy; Shrink (20) about 40% to about 60% area shrinkage; age-anneal the alloy at a temperature of about 500 ° C to about 575 ° C (28) for about 15 seconds to about 10 hours, or at a temperature of about 425 ° C to about 475. (3 to about 2.5 to about 3.5 hours; reduce the area of the alloy by cold rolling (30) from about 40% to about 60%; reduce the temperature of the alloy to about 500 ° C to about 550 ° C for the second aging annealing (32) about 1 to about 4 hours; and at least about 30% of the area of the final rolling (34) is reduced to the final thickness. 1 8. The method according to item 17 of the scope of patent application, characterized in that after the final cold rolling step (34), The alloy is annealed at a temperature of about 150 ° C to about 600 ° C (26) for about 15 seconds to about 10 hours. 19 · The method according to item 18 of the patent application scope is characterized by the annealing step (16, 28, 32, 36) Time and temperature can effectively make the alloy have a yield strength of at least 724 MPa (105 ksi) and a conductivity of at least 50% IACS at the final thickness. O: \ 88 \ 88009 DOC -6-
TW092125248A 2002-09-13 2003-09-12 Age-hardening copper-base alloy and processing TW200422410A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41059202P 2002-09-13 2002-09-13
US10/657,005 US20040166017A1 (en) 2002-09-13 2003-09-05 Age-hardening copper-base alloy and processing

Publications (1)

Publication Number Publication Date
TW200422410A true TW200422410A (en) 2004-11-01

Family

ID=31994162

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092125248A TW200422410A (en) 2002-09-13 2003-09-12 Age-hardening copper-base alloy and processing

Country Status (10)

Country Link
US (1) US20040166017A1 (en)
EP (1) EP1537249B1 (en)
JP (2) JP4590264B2 (en)
KR (1) KR20050050654A (en)
CN (1) CN1688732B (en)
AU (1) AU2003272276A1 (en)
CA (1) CA2497819A1 (en)
MX (1) MXPA05002640A (en)
TW (1) TW200422410A (en)
WO (1) WO2004024964A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI509090B (en) * 2013-09-25 2015-11-21 Jx Nippon Mining & Metals Corp Copper alloy plate, and with its high current with electronic components and thermal electronic components

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4332889B2 (en) * 2003-05-30 2009-09-16 住友電気工業株式会社 Method for producing magnesium-based alloy compact
EP1715077A4 (en) * 2003-12-25 2010-09-29 Nippon Mining Co Copper or copper alloy target/copper alloy backing plate assembly
DE102005063324B4 (en) * 2005-05-13 2008-02-28 Federal-Mogul Wiesbaden Gmbh & Co. Kg Slide bearing composite, use and manufacturing process
CN101238230B (en) * 2005-08-03 2011-01-26 Jx日矿日石金属株式会社 High strength copper alloy for electronic parts and electronic parts
JP5355865B2 (en) * 2006-06-01 2013-11-27 古河電気工業株式会社 Copper alloy wire manufacturing method and copper alloy wire
JP5520438B2 (en) * 2006-09-05 2014-06-11 古河電気工業株式会社 Wire manufacturing method and wire manufacturing apparatus
JP4563480B2 (en) * 2008-11-28 2010-10-13 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
US8349724B2 (en) * 2008-12-31 2013-01-08 Applied Materials, Inc. Method for improving electromigration lifetime of copper interconnection by extended post anneal
JP4889801B2 (en) * 2009-11-25 2012-03-07 Jx日鉱日石金属株式会社 Manufacturing method of titanium copper for electronic parts
JP5464352B2 (en) * 2010-03-05 2014-04-09 三菱マテリアル株式会社 Method for producing high purity copper processed material having uniform and fine crystal structure
JP4672804B1 (en) * 2010-05-31 2011-04-20 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy for electronic materials and method for producing the same
CN101956098B (en) * 2010-06-08 2011-12-28 上海华篷防爆科技有限公司 Titanium alloy explosion-proof material suitable for aerospace field and preparation method thereof
CN101892400A (en) * 2010-06-30 2010-11-24 天津大学 Copper-silver-titanium-tin oxide composite electrical contact material and preparation method thereof
CN101974702B (en) * 2010-07-28 2011-10-12 上海华篷防爆科技有限公司 Zinc-copper alloy explosionproof material and preparation method thereof
JP4834781B1 (en) 2010-08-24 2011-12-14 Jx日鉱日石金属株式会社 Cu-Co-Si alloy for electronic materials
US9181606B2 (en) 2010-10-29 2015-11-10 Sloan Valve Company Low lead alloy
JP5611773B2 (en) * 2010-10-29 2014-10-22 Jx日鉱日石金属株式会社 Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy
JP5226056B2 (en) * 2010-10-29 2013-07-03 Jx日鉱日石金属株式会社 Copper alloys, copper products, electronic components and connectors
JP5226057B2 (en) * 2010-10-29 2013-07-03 Jx日鉱日石金属株式会社 Copper alloys, copper products, electronic components and connectors
CN102346000A (en) * 2011-06-27 2012-02-08 苏州方暨圆节能科技有限公司 Copper alloy material of radiator heat pipe
JP5380621B1 (en) * 2013-03-25 2014-01-08 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5427971B1 (en) * 2013-03-25 2014-02-26 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient
KR101510222B1 (en) * 2013-03-29 2015-04-08 한국기계연구원 A copper alloy having high strength and high electrical conductivity
CN103456385B (en) * 2013-09-04 2016-01-20 江西理工大学 A kind of high-strength highly-conductive Cu-Cr-Ti alloy lead wire and preparation method thereof
JP2015086452A (en) * 2013-11-01 2015-05-07 株式会社オートネットワーク技術研究所 Copper alloy wire, copper alloy twisted wire, coated cable, wire harness and manufacturing method of copper alloy wire
CN103667771A (en) * 2013-12-03 2014-03-26 江苏帕齐尼铜业有限公司 Copper-magnesium alloy and preparation method thereof
CN103740976B (en) * 2014-01-16 2016-01-20 九星控股集团有限公司 By White Copper Tubes and preparation method thereof in a kind of oceanographic engineering
KR101468959B1 (en) * 2014-05-13 2014-12-08 한국기계연구원 A copper alloy having high strength and high electrical conductivity
CN104404292A (en) * 2014-11-13 2015-03-11 无锡信大气象传感网科技有限公司 High-strength copper alloy material for sensor and manufacture method
CN104505136A (en) * 2014-12-22 2015-04-08 乐清市长虹电工合金材料有限公司 Ceramic-shaped niobium copper hard special copper-based alloy electrical contact and preparation method thereof
CN104404295A (en) * 2014-12-25 2015-03-11 春焱电子科技(苏州)有限公司 Copper alloy for electronic material
CN104681145B (en) * 2015-02-04 2017-05-17 国网山东省电力公司日照供电公司 cable for computer
CN104674054A (en) * 2015-03-12 2015-06-03 天津理工大学 High-strength copper-titanium alloy and preparation method thereof
JP6031548B2 (en) * 2015-03-27 2016-11-24 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts
WO2016158589A1 (en) * 2015-04-01 2016-10-06 古河電気工業株式会社 Rectangular rolled copper foil, flexible flat cable, rotating connector, and method for manufacturing rectangular rolled copper foil
CN104911390A (en) * 2015-06-13 2015-09-16 陈新棠 Antimicrobial corrosion-resistant heat exchanger copper tube
CN105040036B (en) * 2015-06-17 2017-07-28 中南大学 A kind of preparation method of non-ferrous metal electrodeposition calendering anode
CN105132734A (en) * 2015-07-13 2015-12-09 南通长江电器实业有限公司 High-strength and high-electric-conductivity copper alloy material
CN108018458A (en) * 2015-12-02 2018-05-11 芜湖楚江合金铜材有限公司 copper alloy wire processing method
CN105438637A (en) * 2015-12-24 2016-03-30 常熟市新冶机械制造有限公司 Morgan line bundling machine
JP6075490B1 (en) 2016-03-31 2017-02-08 株式会社オートネットワーク技術研究所 Shield wire for communication
US10818412B2 (en) * 2016-03-31 2020-10-27 Autonetworks Technologies, Ltd. Communication cable
CN105925833A (en) * 2016-05-10 2016-09-07 安徽九华金润铜业有限公司 Cold-resistant copper chromium zirconium alloy
CN105925834A (en) * 2016-05-10 2016-09-07 安徽九华金润铜业有限公司 Anti-corrosion copper molybdenum chromium alloy
CN106191725B (en) * 2016-06-24 2018-01-26 河南江河机械有限责任公司 High-intensity high-conductivity copper alloy nanometer phase precipitation technique method
CN106222484A (en) * 2016-07-20 2016-12-14 合肥恒研智能科技有限公司 A kind of built-in industrial control machine housing high-strength alloy
RU2623512C1 (en) * 2016-10-10 2017-06-27 Юлия Алексеевна Щепочкина Copper-based alloy
CN112614618B (en) * 2017-02-01 2022-12-09 株式会社自动网络技术研究所 Wire for communication
DE112018003618B4 (en) * 2017-07-14 2020-11-26 Autonetworks Technologies, Ltd. Sheathed electrical wire and electrical wire equipped with a connector
WO2019026365A2 (en) 2017-08-01 2019-02-07 住友電気工業株式会社 Electric wire and cable
CN108642419A (en) * 2018-05-31 2018-10-12 太原晋西春雷铜业有限公司 A kind of corson alloy band and preparation method thereof that bending is excellent
KR101883627B1 (en) * 2018-06-08 2018-07-31 주식회사 지.에이.엠 Copper alloy and copper alloy casting expressing gold color
WO2020041925A1 (en) * 2018-08-27 2020-03-05 湖南特力新材料有限公司 Lead-free superhard self-lubricating copper alloy and manufacturing method therefor
JP6629401B1 (en) * 2018-08-30 2020-01-15 Jx金属株式会社 Titanium copper plate before aging treatment, pressed product and method for producing pressed product
CN109112353A (en) * 2018-10-29 2019-01-01 九江中船消防设备有限公司 A kind of titanium microalloying silicon brass alloy bar and preparation method thereof
JP6650987B1 (en) * 2018-11-09 2020-02-19 Jx金属株式会社 Titanium copper foil, brass products, electronic equipment parts and autofocus camera modules
CN111378890A (en) * 2018-12-27 2020-07-07 杭州朱炳仁文化艺术有限公司 Cast copper sculpture material and preparation process of cast copper sculpture
US20220205074A1 (en) * 2019-04-12 2022-06-30 Materion Corporation Copper alloys with high strength and high conductivity, and processes for making such copper alloys
CN110512115B (en) * 2019-09-29 2021-08-17 宁波金田铜业(集团)股份有限公司 High-strength high-elasticity conductive copper-titanium alloy bar and preparation method thereof
CN111020277B (en) * 2019-12-11 2021-02-26 江西理工大学 Cu-Fe-Co-Ti alloy with high-strength conductivity, softening resistance and stress relaxation resistance
CN111020278A (en) * 2019-12-14 2020-04-17 常州市申鑫新材料科技有限公司 Superfine high-precision copper alloy composite material
CN111041270A (en) * 2019-12-30 2020-04-21 南通南平电子科技有限公司 High-stability high-efficiency vehicle-mounted capacitor guide pin
CN111719065B (en) * 2020-06-08 2021-11-16 广东中发摩丹科技有限公司 Cu-Ni-Sn-Si-Ag-P multi-element alloy foil and preparation method thereof
CN112048637B (en) * 2020-09-15 2021-09-14 杭州铜信科技有限公司 Copper alloy material and manufacturing method thereof
CN112458332B (en) * 2020-10-13 2022-01-11 宁波博威合金材料股份有限公司 Titanium bronze alloy bar and preparation method and application thereof
CN112725655B (en) * 2020-12-23 2021-12-17 无锡日月合金材料有限公司 High-strength high-conductivity copper-chromium alloy for high-power device and preparation method thereof
CN113403499A (en) * 2021-06-01 2021-09-17 西安工程大学 Conductive elastic Cu-Ti-Ni-V alloy and preparation method thereof
CN115011823B (en) * 2022-06-28 2023-04-18 沈阳有色金属研究所有限公司 Processing method of Cu-Ni-Sn alloy product

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1991162A (en) * 1929-02-28 1935-02-12 Metal & Thermit Corp Process for improving coppertitanium alloys
US3201234A (en) * 1961-09-25 1965-08-17 Beryllium Corp Alloy and method of producing the same
JPS5853059B2 (en) * 1979-12-25 1983-11-26 日本鉱業株式会社 Precipitation hardening copper alloy
JPS60114542A (en) * 1983-11-22 1985-06-21 Ngk Insulators Ltd Age hardenable titanium-copper alloy material
US4612167A (en) 1984-03-02 1986-09-16 Hitachi Metals, Ltd. Copper-base alloys for leadframes
DE3432226C1 (en) * 1984-06-07 1985-08-22 Wieland-Werke Ag, 7900 Ulm Copper-nickel-tin-titanium alloy, process for their production and their use
US4780275A (en) * 1984-08-25 1988-10-25 William Prym-Werke Gmbh. & Co. Kg. Corrosion-resistant copper alloy and article containing the same
US4678720A (en) * 1985-01-04 1987-07-07 Gte Laboratories Incorporated Silver-copper-titanium brazing alloy
JPS6250428A (en) * 1985-08-29 1987-03-05 Furukawa Electric Co Ltd:The Copper alloy for electronic appliance
US4606889A (en) * 1985-11-07 1986-08-19 Cabot Corporation Copper-titanium-beryllium alloy
JPS62263942A (en) * 1986-05-09 1987-11-16 Hitachi Metals Ltd Copper alloy for lead frame
JPS63274728A (en) * 1987-05-01 1988-11-11 Dowa Mining Co Ltd Copper alloy for wire-harness terminal and its production
DE3820203A1 (en) * 1988-06-14 1989-12-21 Kabelmetal Ag USE OF A CURABLE copper alloy
JP2689507B2 (en) * 1988-08-10 1997-12-10 三菱マテリアル株式会社 Cu alloy terminal and connector materials
JPH02173248A (en) * 1988-12-26 1990-07-04 Nippon Mining Co Ltd Manufacture of copper alloy improved in adhesive strength of oxide film
JPH0315217A (en) * 1989-06-09 1991-01-23 Kinki Denki Kk Bird damage preventive tool for wire or the like
JPH04231447A (en) * 1990-12-27 1992-08-20 Nikko Kyodo Co Ltd Conductive material
JP2904372B2 (en) * 1991-10-08 1999-06-14 恒昭 三川 Age hardening special copper alloy
EP0569036B1 (en) * 1992-05-08 1998-03-11 Mitsubishi Materials Corporation Wire for electric railways and method of producing the same
US5306465A (en) * 1992-11-04 1994-04-26 Olin Corporation Copper alloy having high strength and high electrical conductivity
US5370840A (en) * 1992-11-04 1994-12-06 Olin Corporation Copper alloy having high strength and high electrical conductivity
US5486244A (en) * 1992-11-04 1996-01-23 Olin Corporation Process for improving the bend formability of copper alloys
JPH06330211A (en) * 1993-05-27 1994-11-29 Kobe Steel Ltd Heat resistant copper alloy
US5338374A (en) * 1993-07-26 1994-08-16 The United States Of America As Represented By The Secretary Of The Navy Method of making copper-titanium nitride alloy
US5759548A (en) * 1993-11-30 1998-06-02 Lxr Biotechnology Inc. Compositions which inhibit apoptosis, methods of purifying the compositions and uses thereof
DE4438485C2 (en) * 1994-10-28 1998-05-20 Wieland Werke Ag Use of a copper-zinc alloy for drinking water installations
US5681662A (en) * 1995-09-15 1997-10-28 Olin Corporation Copper alloy foils for flexible circuits
US5882442A (en) * 1995-10-20 1999-03-16 Olin Corporation Iron modified phosphor-bronze
DE19548124C2 (en) * 1995-12-21 2002-08-29 Euroflamm Gmbh Friction body and method for producing such
JPH09263864A (en) * 1996-03-26 1997-10-07 Kobe Steel Ltd Copper alloy excellent in electric-discharge wear resistance
US6001196A (en) * 1996-10-28 1999-12-14 Brush Wellman, Inc. Lean, high conductivity, relaxation-resistant beryllium-nickel-copper alloys
US5820701A (en) * 1996-11-07 1998-10-13 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
US5865910A (en) * 1996-11-07 1999-02-02 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
JP2898627B2 (en) * 1997-03-27 1999-06-02 日鉱金属株式会社 Copper alloy foil
US5853505A (en) * 1997-04-18 1998-12-29 Olin Corporation Iron modified tin brass
JPH1081927A (en) * 1997-05-07 1998-03-31 Mitsubishi Materials Corp Terminal-connector material made of cu alloy
US5893953A (en) * 1997-09-16 1999-04-13 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
DE19756815C2 (en) * 1997-12-19 2003-01-09 Wieland Werke Ag Wrought copper alloy, process for producing a semi-finished product therefrom and its use
FR2780417B1 (en) * 1998-06-26 2004-04-09 Kobe Steel Ltd ALLOY HAVING ANTIBACTERIAL AND STERILIZING EFFECT
KR100329153B1 (en) * 1998-07-08 2002-03-21 구마모토 마사히로 Copper alloy for terminals and connectors and method for making same
JP4154100B2 (en) * 1999-12-17 2008-09-24 日鉱金属株式会社 Copper alloy for electronic materials having excellent surface characteristics and method for producing the same
JP4460037B2 (en) * 2000-07-21 2010-05-12 古河電気工業株式会社 Method of heat treatment of copper alloy for electrical connection member and copper alloy for electrical connection member
US6749699B2 (en) * 2000-08-09 2004-06-15 Olin Corporation Silver containing copper alloy
JP4729680B2 (en) * 2000-12-18 2011-07-20 Dowaメタルテック株式会社 Copper-based alloy with excellent press punchability
JP2002226928A (en) * 2001-01-30 2002-08-14 Nippon Mining & Metals Co Ltd Copper alloy foil for laminated board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI509090B (en) * 2013-09-25 2015-11-21 Jx Nippon Mining & Metals Corp Copper alloy plate, and with its high current with electronic components and thermal electronic components

Also Published As

Publication number Publication date
MXPA05002640A (en) 2005-07-19
CN1688732A (en) 2005-10-26
EP1537249B1 (en) 2014-12-24
AU2003272276A1 (en) 2004-04-30
JP2010275640A (en) 2010-12-09
EP1537249A4 (en) 2007-07-11
CN1688732B (en) 2010-05-26
US20040166017A1 (en) 2004-08-26
JP2005539140A (en) 2005-12-22
JP4590264B2 (en) 2010-12-01
AU2003272276A8 (en) 2004-04-30
WO2004024964A2 (en) 2004-03-25
WO2004024964A3 (en) 2004-07-01
EP1537249A2 (en) 2005-06-08
CA2497819A1 (en) 2004-03-25
KR20050050654A (en) 2005-05-31

Similar Documents

Publication Publication Date Title
TW200422410A (en) Age-hardening copper-base alloy and processing
JP2617703B2 (en) Method for producing a copper-based alloy having improved combination ultimate tensile strength, electrical conductivity and stress relaxation resistance
JP3273613B2 (en) Method for producing copper alloy having high strength and conductivity
JP5847987B2 (en) Copper alloy containing silver
JP3803981B2 (en) Method for producing copper alloy having high strength and high conductivity
EP2508634A1 (en) Copper alloy sheet material having low young's modulus and method for producing same
JPH0625388B2 (en) High strength, high conductivity copper base alloy
EP0116969A1 (en) Precipitation hardenable copper alloy, process for treating such alloy and use of such alloy
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JPH0762472A (en) Copper-based shape memory alloy having high workability and its production
CA2346635A1 (en) Copper alloy
US5882442A (en) Iron modified phosphor-bronze
JP2790238B2 (en) Method for producing titanium copper alloy excellent in bending property and stress relaxation property
US2783143A (en) Age-hardenable, copper-base alloy
JP2005133185A (en) Deposition type copper alloy heat treatment method, deposition type copper alloy, and raw material thereof
JP4224859B2 (en) Copper-based alloy with excellent stress relaxation resistance
JPH09316569A (en) Copper alloy for lead frame and its production
JPS628491B2 (en)
JPH09143597A (en) Copper alloy for lead frame and its production
JPH0788545B2 (en) High strength and high toughness Cu alloy with little characteristic anisotropy
Murakami et al. High-strength and High-conductivity Precipitation Hardenable Dilute Copper Alloys
JPS5920441A (en) High strength high conduction copper alloy
JP2007023313A (en) High-strength and high-conductivity copper alloy and its manufacturing method