JPH02173248A - Manufacture of copper alloy improved in adhesive strength of oxide film - Google Patents

Manufacture of copper alloy improved in adhesive strength of oxide film

Info

Publication number
JPH02173248A
JPH02173248A JP32617288A JP32617288A JPH02173248A JP H02173248 A JPH02173248 A JP H02173248A JP 32617288 A JP32617288 A JP 32617288A JP 32617288 A JP32617288 A JP 32617288A JP H02173248 A JPH02173248 A JP H02173248A
Authority
JP
Japan
Prior art keywords
oxide film
copper alloy
adhesive strength
thickness
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32617288A
Other languages
Japanese (ja)
Inventor
Tamio Toe
東江 民夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP32617288A priority Critical patent/JPH02173248A/en
Publication of JPH02173248A publication Critical patent/JPH02173248A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a copper alloy improved in adhesive strength of oxide film by working a copper alloy containing specific percentage of Sn to the sheet thickness of final product and then removing the surface of the above alloy by a specific thickness. CONSTITUTION:A copper alloy which has a composition consisting of, by weight, 0.01-5% Sn and the balance Cu with inevitable impurities and further containing, it necessary, 0.01-5%, in total, of one or >=2 elements among Fe, P, Al, Be, Co, Hf, In, Mo, Mg, Ni, Pb, Si, Te, Ti, Cr, Zr, and Zn is subjected to surface grinding by >=0.0001mm thickness after working to the sheet thickness of final product or after intermediate heat treatment, by which the oxidized part and concentrated part of Sn are removed. By this method, the copper alloy improved in adhesive strength of oxide film can be obtained. This copper alloy is useful for conductive spring material for semiconductor equipment.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明はトランジスタや集積回路などの半導体機器のリ
ード材、コネクター、端子、リレー、スイッチなどの導
電性ばね材に適する銅合金に関し、特に酸化膜密着性に
優れた高力高導電銅合金の製造方法に関するものである
[Detailed Description of the Invention] "Industrial Application Field" The present invention relates to a copper alloy suitable for lead materials for semiconductor devices such as transistors and integrated circuits, and conductive spring materials for connectors, terminals, relays, switches, etc. The present invention relates to a method for manufacturing a high-strength, high-conductivity copper alloy with excellent film adhesion.

[従来の技術] 従来、半導体機器の巾でも特にリード材としては、熱膨
張係数が低く、素子及びセラミックとの接着及び封着性
の良好なコバール(Fe−29Ni−16Co)、42
合金(Fe−42Ni)などの高ニッケル合金が好んで
使われてきた。しかし、近年、半導体回路の集積度の向
上に伴い消費電力の高いICが多くなってきたことと、
封止材料として樹脂が多く使用され、がっ索子とリード
フレームの接着も改良が加えられたことにより、使用さ
れるリード材も放熱性のよい銅基合金が使われるように
なってきた。
[Prior Art] Conventionally, Kovar (Fe-29Ni-16Co), 42, which has a low coefficient of thermal expansion and has good adhesion and sealing properties with elements and ceramics, has been used as a lead material especially for the width of semiconductor devices.
High nickel alloys such as Fe-42Ni have been preferred. However, in recent years, as the degree of integration of semiconductor circuits has improved, the number of ICs with high power consumption has increased.
As resins are increasingly used as sealing materials and improvements have been made to the adhesion between cords and lead frames, copper-based alloys with good heat dissipation properties are now being used as lead materials.

一般に半導体機器のリード材としては以下のような特性
が要求されている。
Generally, lead materials for semiconductor devices are required to have the following properties.

リードが電気信号伝達部であるとともに、パッケージン
グ工程中及び回路使用中に発生する熱を外部に放出する
機能を併せ持つことを要求される為、優れた熱及び電気
電導性を示すもの。
The lead is an electrical signal transmission part, and it is required to have the function of releasing heat generated during the packaging process and circuit use to the outside, so it exhibits excellent thermal and electrical conductivity.

リードとモールドとの密着性が半導体素子保護の観点か
ら重要であるため、リード材とモールドHの熱膨張係数
か近いこと。
Since the adhesion between the lead and the mold is important from the viewpoint of protecting the semiconductor element, the thermal expansion coefficients of the lead material and the mold H should be similar.

パッケージング時に種々の加熱工程が加わる為、耐熱性
が良好であること。
It must have good heat resistance as various heating processes are added during packaging.

(4)  パッケージング時に種々の加熱工程が加わる
際、樹脂と素材の間に酸化膜が生ずる為、酸化膜密告性
が良好なこと。
(4) When various heating processes are applied during packaging, an oxide film is formed between the resin and the material, so the oxide film sealability is good.

リードはリード材を抜き打ち加工し、又曲げ加工して作
製されるものがほとんどである為、これらの加工性が良
好なこと。
Most leads are made by punching or bending lead material, so the workability of these materials must be good.

リードは表面に貴金属のメツキを行う為、(+) これら貴金属とのメツキ密着性が良好であること。Since the lead is plated with precious metal on the surface, (+) Good plating adhesion with these precious metals.

パッケージング後に封止材の外に露出している、いわゆ
るアウター・リード部に半田付けするものが多いので良
好な半田付は性を示すこと。
Many products are soldered to the so-called outer leads, which are exposed outside the sealing material after packaging, so good soldering requires good soldering.

機器の信頼性及び寿命の観点から耐食性が良好なこと。Good corrosion resistance from the viewpoint of equipment reliability and service life.

(9)  価格が低置であること。(9) Prices are low.

又、従来7u気機器用ばね、計M1器用ばね、スイッチ
、コネクター等に用いられるばね用材料としては安価な
黄銅、優れたばね特性を及び耐食性を有する洋白あるい
は優れたばね特性を有するりん青銅が使用されていた。
In addition, inexpensive brass, nickel silver, which has excellent spring properties and corrosion resistance, or phosphor bronze, which has excellent spring properties, have been used as spring materials for conventional 7U springs, M1 instrument springs, switches, connectors, etc. It had been.

[発明が解決しようとする課題] 上述の半導体機器に対する各種の要求特性に対し、無酸
素銅、コバール、42合金はいずれも一長一短があり、
これらの特性をすべて満足するものではない。一方Cu
−5n合金は上記特性をかなり満足するため、CuSn
合金やそれに若干の添加元素を加えた改良合金が開発さ
れてきた。しかし、近年半導体に対する信頼度の要求が
より厳しくなるとともに、小型化に対応した面付実装タ
イプが多くなってきたため、従来問題とされていなかっ
た酸化膜密着性が非常に重要な特性項目となってきた。
[Problems to be Solved by the Invention] Oxygen-free copper, Kovar, and 42 alloy all have advantages and disadvantages with respect to the various characteristics required for semiconductor devices as described above.
It does not satisfy all of these characteristics. On the other hand, Cu
-5n alloy satisfies the above characteristics to a great extent, so CuSn
Alloys and improved alloys with some additional elements have been developed. However, in recent years, reliability requirements for semiconductors have become more stringent, and surface mounting types have become more popular in response to miniaturization, so oxide film adhesion, which was not considered an issue in the past, has become an extremely important characteristic item. It's here.

すなわち、リードフレームはパッケージングの過稈で熱
が加わるため、酸化膜が必ず生成される。樹脂等で封止
された場合、樹脂と酸化膜、酸化膜と母材との密着強度
を比べると、酸化膜と母材の密着強度が一般に低い。
That is, since heat is applied to the lead frame due to excessive packaging, an oxide film is inevitably generated. When sealed with a resin or the like, the adhesion strength between the resin and the oxide film, and the oxide film and the base material are compared, and the adhesion strength between the oxide film and the base material is generally low.

この場合、酸化膜と母材との間に剥離が生じることがあ
り、そこから水分等が入り、ICの信頼性を著しく低下
させてしまう。従って、酸化膜密着性はリードフレーム
材等に用いられる高力高導電鋼合金として最も重要な特
性の一つである。
In this case, peeling may occur between the oxide film and the base material, allowing moisture and the like to enter therefrom, significantly reducing the reliability of the IC. Therefore, oxide film adhesion is one of the most important properties for high-strength, high-conductivity steel alloys used for lead frame materials and the like.

このような酸化膜密着性の厳しい要求に対し、現状のC
u−3n系合金では満足することができず、酸化膜密着
性を改善した高力高導電銅合金の現出が待たれていた。
In response to such strict requirements for oxide film adhesion, the current C
U-3N alloys were not satisfactory, and a high-strength, high-conductivity copper alloy with improved oxide film adhesion was awaited.

[課題を解決するための手段] 本発明はかかる点に鑑みなされたもので、特にCu−5
n系合金の酸化膜密着性を改善する製造方法を提t+t
しようとするものである。
[Means for Solving the Problems] The present invention has been made in view of the above points, and in particular Cu-5
Proposes a manufacturing method that improves oxide film adhesion of n-based alloyst+t
This is what I am trying to do.

すなわち、本発明はS n 0.01〜5 !1Ifu
%含み残部Cu及び不可避的不純物からなる銅合金及び
Sn0.01〜5市=%、さらにFe。
That is, the present invention has S n 0.01-5! 1Ifu
Copper alloy consisting of % Cu and unavoidable impurities and Sn0.01-5%, further Fe.

P、A1.Be、Co、Hf、In、Mo。P, A1. Be, Co, Hf, In, Mo.

Mg、Ni、Pb、Si、Te、Ti、Cr。Mg, Ni, Pb, Si, Te, Ti, Cr.

Zr、Znからなる群より選択された1種又は2種、以
上を総量で0.01〜5重量%含み、残部Cuおよび不
可避的不純物からなる銅合金を、中間熱処理後又は最終
製品板厚に加工後に表面を0.001mm以上除去する
ことを特徴とする酸化膜密告性を改善する銅合金の製造
方法である。
A copper alloy containing one or two selected from the group consisting of Zr and Zn in a total amount of 0.01 to 5% by weight, and the balance being Cu and unavoidable impurities, is added after intermediate heat treatment or to the thickness of the final product. This is a method for producing a copper alloy that improves oxide film adhesion, which is characterized by removing 0.001 mm or more of the surface after processing.

本発明者らはCu−5n系合金の酸化膜密着性について
種々の検討を行なったところ、酸化膜密着性とCu−5
n系合金の表面状況に強い相関のあることがわかった。
The present inventors conducted various studies on the oxide film adhesion of Cu-5n-based alloys, and found that the oxide film adhesion and Cu-5
It was found that there is a strong correlation with the surface condition of n-based alloys.

すなわち、中間熱処理等によって表面が酸化されると表
面近傍にSnの酸化や濃化等が起き、酸化膜密着性が劣
化する。しかし、中間熱処理後又は最終製品板厚に加工
後、半導体部品に組みたてられる間の工程で表面を0.
000111n以上研磨することにより、上記Snの酸
化部や濃化部を除去し、酸化膜密着性を改善した銅合金
を製造することが可能となった。研磨厚を0.0001
 mm以上とした理由は0.0001m++i以下では
研磨の効果が充分でないためである。上限は特に規定は
ないが、経済的な点から板厚の10%以ドが望ましい。
That is, when the surface is oxidized by intermediate heat treatment or the like, Sn oxidation and concentration occur near the surface, resulting in deterioration of oxide film adhesion. However, after intermediate heat treatment or after processing to the final product thickness, the surface is reduced to zero during the process during assembly into semiconductor components.
By polishing to a depth of 000111n or more, it became possible to remove the Sn oxidized portions and enriched portions and produce a copper alloy with improved oxide film adhesion. Polishing thickness is 0.0001
The reason why the thickness is set to be 0.0001 m++i or more is that the polishing effect is not sufficient if the thickness is 0.0001 m++i or less. There is no particular upper limit, but from an economical point of view, it is preferably 10% or more of the plate thickness.

次に、本発明の製造方法が適用される銅合金の合金成分
の限定理由を説明する。
Next, the reasons for limiting the alloy components of the copper alloy to which the manufacturing method of the present invention is applied will be explained.

Snの含有量をo 、oot〜5重量%としたのは、S
nは鋼中に固溶し、強度、ばね性の向1−に有効である
が、0.1重m%未満ではその効果が期待できず、5重
は%を超えると、導電率の低下が著しいためである。
The reason for setting the Sn content to o,oot~5% by weight is that
n is a solid solution in steel and is effective in improving strength and spring properties, but if it is less than 0.1% by weight, no such effect can be expected, and if it exceeds 5% by weight, the electrical conductivity decreases. This is because there is a significant

さらに、Fe、P、A1.Be、Co。Furthermore, Fe, P, A1. Be, Co.

Hf、In、Mo、Mg、Nl、Pb、St。Hf, In, Mo, Mg, Nl, Pb, St.

Te、Ti、Cr、Zr、Znからなる群より選択され
た1種又は28以上を総量で0201〜5重量%添加す
るのは、これらの添加により導電率を大きく下げずに強
度を向上させる効果が期待できるためで、含有量がo 
、oi重は5未満では前述の効果が期待できず、5屯瓜
%を超えると著しい導電率の低下が起こるためである。
Adding one or more selected from the group consisting of Te, Ti, Cr, Zr, and Zn in a total amount of 0201 to 5% by weight has the effect of improving strength without greatly reducing conductivity. This is because the content is expected to be o.
This is because if the oi weight is less than 5, the above-mentioned effect cannot be expected, and if it exceeds 5 tonne %, the electrical conductivity will drop significantly.

[実施例] 次に本発明実施例を比較例とともに具体的に説明する。[Example] Next, examples of the present invention will be specifically described together with comparative examples.

第1表に示す各種成分組成のインゴットを人気、不活性
または還元性雰囲気中で鋳造し、面側を行った後、85
0℃で1時間加熱し、熱間圧延で6相の板とした。
Ingots having various compositions shown in Table 1 were cast in an inert or reducing atmosphere, and after face-side treatment, 85
It was heated at 0° C. for 1 hour and hot rolled into a 6-phase plate.

この厚さ6 mmの板を冷間圧延で0.5關の板とし、
不活性雰囲気中で800℃で30分間熱処理を行なった
。また、第1表に示す様に1部の材料については、熱処
理後表面を所定深さり[磨により除去した。これらの板
を冷間圧延で0.2511鳳の板とし、250〜450
℃で所定時間熱処理後、第1表に示す様に表面を所定深
さ研磨により除去した。
This 6 mm thick plate was cold rolled into a 0.5 inch plate,
Heat treatment was performed at 800° C. for 30 minutes in an inert atmosphere. Further, as shown in Table 1, some of the materials were removed by polishing the surface to a predetermined depth after heat treatment. These plates are cold-rolled into 0.2511 steel plates, with a 250 to 450
After heat treatment at .degree. C. for a predetermined time, the surface was removed by polishing to a predetermined depth as shown in Table 1.

リード材及びばね材としての評価項目として強度、伸び
を引張試験により曲げ性を90″繰り返し曲げ試験によ
り一往復を1回として破断までの曲げ回数を測定し、電
気伝導性(放熱性)を導電率(%lAc5)によって示
した。半田付は性は、垂直式浸漬法230±5℃の半田
浴(錫60%、鉛40%)に5秒間浸漬し、半田のぬれ
の状態を目視観察することにより評価した。メツキ密着
性は試料に厚さ3μのAgメツキを施し、450℃にて
5分間加熱し、表面に発生するフクレの有無を目視観察
することにより評価した。また、ばね性はばね限界値に
よって示した。これらの結果を比較合金とともに第1表
に示した。
As evaluation items for lead materials and spring materials, strength and elongation are measured by a tensile test, bendability is measured by a 90" repeated bending test, where each round trip is counted as one time, and the number of bends until breakage is measured, and electrical conductivity (heat dissipation) is measured. Solderability was determined by vertical immersion method: immersed in a solder bath (60% tin, 40% lead) at 230±5°C for 5 seconds, and visually observed the state of solder wetting. The plating adhesion was evaluated by applying Ag plating to a thickness of 3μ on a sample, heating it at 450°C for 5 minutes, and visually observing the presence or absence of blisters on the surface.Also, the spring property was evaluated by These results are shown in Table 1 along with comparative alloys.

本発明のポイントである酸化膜密着性については、素材
を200〜500’Cで3分間大気中で加熱して表面に
酸化膜を生成させ、その酸化膜に粘着テープをはった後
、−気にはがして酸化膜の剥離の有無により評価を行っ
た。剥離が生じた酸化膜の生成温度を第1表に示す。
Regarding oxide film adhesion, which is the key point of the present invention, the material is heated in the air at 200 to 500'C for 3 minutes to form an oxide film on the surface, and after applying adhesive tape to the oxide film, - The film was carefully peeled off and evaluated based on the presence or absence of peeling of the oxide film. Table 1 shows the formation temperature of the oxide film at which peeling occurred.

[発明の効果] に2第1表の記載から明らかなように、本発明例磁1〜
11は比較例魔12〜22に比べ、表面を0.0001
−膳以1−研磨することにより、剥離する酸化膜の酸化
温度が25℃以上高くなる。また、比較例23はリード
フレーム用材や導電性ばね材としては強度不足であり、
比較例24は導電率が低すぎる。
[Effects of the Invention] As is clear from the description in Table 1 of Table 2, the examples of magnets 1 to 2 of the present invention
11 has a surface area of 0.0001 compared to comparative examples 12 to 22.
-Table 1- By polishing, the oxidation temperature of the oxide film to be peeled off increases by 25°C or more. In addition, Comparative Example 23 lacks strength as a lead frame material or conductive spring material,
Comparative Example 24 has too low conductivity.

以上のことから、本発明の製造方法はリードフレーム用
材や導電性ばね材等の銅合金の酸化膜密着性の改迫する
方法として有効である。
From the above, the manufacturing method of the present invention is effective as a method for improving the oxide film adhesion of copper alloys for lead frame materials, conductive spring materials, and the like.

手続補正用 (自発) 平成1年3月16日 特許庁長官  古 1)文 毅 殿 1、事件の表示    昭和63年特許願第32617
2号2、発明の名称    酸化膜密着性を改善する銅
合金の製造方法3、補正をする者 事件との関係  特許出願人 名  称    日本鉱業株式会社
For procedural amendment (voluntary) March 16, 1999 Commissioner of the Patent Office Furu 1) Moon Takeshi 1, Indication of case Patent application No. 32617 of 1988
No. 2 No. 2, Title of the invention Method for producing a copper alloy that improves oxide film adhesion 3, Relationship to the case of the person making the amendment Name of patent applicant Title Nippon Mining Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)Sn0.01〜5重量%を含み残部Cu及び不可
避的不純物からなる銅合金を最終製品板厚に加工後また
は中間熱処理後に表面を 0.0001mm以上除去することを特徴とする酸化膜
密着性を改善する銅合金の製造方法。
(1) Oxide film adhesion characterized by removing 0.0001 mm or more of the surface of a copper alloy consisting of 0.01 to 5% by weight of Sn and the balance Cu and unavoidable impurities after processing it to the final product thickness or after intermediate heat treatment. A method for producing copper alloys that improves properties.
(2)Sn0.01〜5重量%を含み、さらにFe、P
、Al、Be、Co、Hf、In、Mo、Mg、Ni、
Pb、Si、Te、Ti、Cr、Zr、Znからなる群
より1種または2種類以上を総量で0.01〜5重量%
含み、残部Cuおよび本可避的不純物からなる銅合金を
最終製品板厚に加工後または中間熱処理後に表面を0.
0001mm以上除去することを特徴とする酸化膜密着
性を改善する銅合金の製造方法。
(2) Contains 0.01 to 5% by weight of Sn, and further contains Fe, P
, Al, Be, Co, Hf, In, Mo, Mg, Ni,
One or more types from the group consisting of Pb, Si, Te, Ti, Cr, Zr, and Zn in a total amount of 0.01 to 5% by weight
After processing the copper alloy consisting of the remaining Cu and the inevitable impurities to the final product plate thickness or after intermediate heat treatment, the surface is reduced to 0.
A method for producing a copper alloy for improving oxide film adhesion, the method comprising removing 0,001 mm or more.
JP32617288A 1988-12-26 1988-12-26 Manufacture of copper alloy improved in adhesive strength of oxide film Pending JPH02173248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32617288A JPH02173248A (en) 1988-12-26 1988-12-26 Manufacture of copper alloy improved in adhesive strength of oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32617288A JPH02173248A (en) 1988-12-26 1988-12-26 Manufacture of copper alloy improved in adhesive strength of oxide film

Publications (1)

Publication Number Publication Date
JPH02173248A true JPH02173248A (en) 1990-07-04

Family

ID=18184850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32617288A Pending JPH02173248A (en) 1988-12-26 1988-12-26 Manufacture of copper alloy improved in adhesive strength of oxide film

Country Status (1)

Country Link
JP (1) JPH02173248A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275640A (en) * 2002-09-13 2010-12-09 Olin Corp Age-hardening copper-base alloy and processing
JP2020164914A (en) * 2019-03-29 2020-10-08 三菱伸銅株式会社 Copper alloy plate, copper alloy plate with plated film, and manufacturing method of the same plates

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275640A (en) * 2002-09-13 2010-12-09 Olin Corp Age-hardening copper-base alloy and processing
JP2020164914A (en) * 2019-03-29 2020-10-08 三菱伸銅株式会社 Copper alloy plate, copper alloy plate with plated film, and manufacturing method of the same plates
WO2020203576A1 (en) * 2019-03-29 2020-10-08 三菱マテリアル株式会社 Copper alloy plate, copper alloy plate with plating film and manufacturing methods therefor
CN113614258A (en) * 2019-03-29 2021-11-05 三菱综合材料株式会社 Copper alloy sheet, copper alloy sheet with plating film, and method for producing same
CN113614258B (en) * 2019-03-29 2022-07-08 三菱综合材料株式会社 Copper alloy sheet, copper alloy sheet with plating film, and method for producing same
US11795525B2 (en) 2019-03-29 2023-10-24 Mitsubishi Materials Corporation Copper alloy plate, copper alloy plate with plating film, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2670670B2 (en) High strength and high conductivity copper alloy
JPH0372691B2 (en)
JPS60245754A (en) High strength copper alloy having high electric conductivity
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPH0372045A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPH04224645A (en) Copper alloy for electronic parts
JPS63262448A (en) Production of copper alloy having excellent peeling resistance of tin or tin alloy plating
JPH02163331A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPH0424417B2 (en)
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPS60245752A (en) High strength copper alloy having high electric conductivity
JPH02122039A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS6267144A (en) Copper alloy for lead frame
JPS61264144A (en) High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPH02122035A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPH02173248A (en) Manufacture of copper alloy improved in adhesive strength of oxide film
JPS6283441A (en) High strength alloy copper having high electric conductivity and superior resistance to stripping of solder by heat
JPS5853700B2 (en) Copper alloy for lead material of semiconductor equipment
JPS6393835A (en) Copper alloy for lead material of semiconductor equipment
JPH02145734A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS63192834A (en) Copper alloy excellent in thermal peeling resistance of tin or tin-alloy coating layer
JPS6283443A (en) High strength copper alloy having high electric conductivity for lead material for semiconductor appratus of electrically conductive spring material
JPH01268834A (en) Copper alloy for lead material of semiconductor device
JPH03191035A (en) High strength and high conductivity copper alloy for electronic equipment
JPS6283442A (en) High strength copper alloy having high electric conductivity and superior resistance to stripping of solder by heat