TW200305187A - Fed cathode structure using electrophoretic deposition and method of fabrication - Google Patents

Fed cathode structure using electrophoretic deposition and method of fabrication Download PDF

Info

Publication number
TW200305187A
TW200305187A TW091136435A TW91136435A TW200305187A TW 200305187 A TW200305187 A TW 200305187A TW 091136435 A TW091136435 A TW 091136435A TW 91136435 A TW91136435 A TW 91136435A TW 200305187 A TW200305187 A TW 200305187A
Authority
TW
Taiwan
Prior art keywords
substrate
many
manufacturing
providing
islands
Prior art date
Application number
TW091136435A
Other languages
Chinese (zh)
Other versions
TWI264039B (en
Inventor
Albert Alec Talin
Kenneth Andrew Dean
Shawn M O'rourke
Bernard F Coll
Matthew Stainer
Subrahmanyan Ravichandran
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of TW200305187A publication Critical patent/TW200305187A/en
Application granted granted Critical
Publication of TWI264039B publication Critical patent/TWI264039B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes

Abstract

A method of fabricating a field emission device cathode (50) using electrophoretic deposition of carbon nanotubes in which a separate step of depositing a binder material (22) onto a substrate (18), is performed prior to carbon nanotube particle (36) deposition. First, a binder layer is deposited on a substrate from a solution containing a binder material. The substrate having the binder material deposited thereon is then transferred into a carbon nanotube suspension bath allowing for coating of the carbon nanotube particles onto the substrate. Thermal processing of the coating transforms the binder layer properties which provides for the adhesion of the carbon nanotube particles to the binder material.

Description

0) 0) 200305187 玟、發明說明 (¾月4月應㈣.發明所屬之技術領域、先前技術、内容、實施方式及圖式簡單說明) 技術領撼. 本發明關於場發射顯示器裝置,及更特別地關於一種新 場發射陰極結構及形成該場發射陰極結構以用在一場發射 顯示器裝置的方法。 先前技術 場發射裝置(FEDs)習知在本技藝。該先前技藝裝置利用 各種不同方法建構,所有方法產生具有從一射極電極發射 電子的目的之結構。FEDs典型地包括一陽極,一陰極,及 碟佈置在對應個別晝素的位置間。操作期間,由陰極發射 的電子受到產生在陽極與陰極間的電場加速及撞擊到磷上 ,因此激發磷發光,及因而顯示一影像。 先前技#習知使用奈来碳管(CNT)沉積形成陰極結構。典 型地,在陰極製造期間,一黏結劑材料及CNT顆粒同時沉 積。一種沉積的方法是混合CNT_與黏結劑成為膠聚及 沉積該M。在電泳沉積(EPD)中需要黏結劑黏著⑶丁顆粒 至基板上。如說明’通常’黏結劑沉積與顆粒沉積同時實 施。然而,-穩定膠質懸浮液,其為均勾薄膜所需要,總 是無法在相同溶液中以黏結劑材料與粉末一起獲得。黏^ 劑材料,或黏結劑鹽類,強制一正電荷在懸浮的顆粒上。 在CNT顆粒的情形,其導致—失效的懸浮液,具有⑶丁顆 粒叢聚在一起。從該溶液的EPD導致高度地非均勻沉積而 具有高密度團聚存在薄膜表面上。非均勻Epi)塗層導致場 發射電流空間分佈的不均勻性及導致陰極中的缺陷。野 2003051870) 0) 200305187 发明, description of the invention (April-April should be ㈣. The technical field to which the invention belongs, the prior art, the content, the embodiments and the simple description of the drawings) technical leadership. The present invention relates to field emission display devices, and more In particular, it relates to a new field emission cathode structure and a method of forming the field emission cathode structure for use in a field emission display device. Prior art Field emission devices (FEDs) are known in the art. This prior art device is constructed using a variety of methods, all of which produce a structure with the purpose of emitting electrons from an emitter electrode. FEDs typically include an anode, a cathode, and a dish arranged between positions corresponding to individual day elements. During operation, the electrons emitted by the cathode are accelerated by an electric field generated between the anode and the cathode and impinge on the phosphor, thereby exciting the phosphor to emit light, and thus displaying an image. It is known in the prior art to use a carbon nanotube (CNT) deposition to form a cathode structure. Typically, during the fabrication of the cathode, a binder material and CNT particles are deposited simultaneously. One method of deposition is to mix CNT_ with a binder to form agglomerates and deposit the M. In the electrophoretic deposition (EPD), a binder is required to adhere the CD particles to the substrate. As stated, 'usually' binder deposition is performed simultaneously with particle deposition. However, a -stabilizing colloidal suspension, which is required for a homogeneous film, cannot always be obtained with a binder material together with a powder in the same solution. Adhesive materials, or binder salts, force a positive charge on the suspended particles. In the case of CNT particles, which results in a -failed suspension, the clusters of CU particles are clustered together. EPD from this solution results in highly non-uniform deposition with a high density of agglomerations present on the film surface. Non-uniform Epi) coatings cause non-uniformity in the spatial distribution of field emission currents and defects in the cathode. Wild 200305187

據此,有需要改進陰極結構及使用將導致一均勻EPD塗 層的電泳沉積技術以製造該陰極結構的方法。 本發明一目的是提供一 FED陰極及使用電泳沉積奈米碳 管製造一FED陰極的方法。 本發明另一目的是提供一FED陰極及製造一fed陰極的 方法其中達到一均勻的EpD塗層。 本發明再另一目的是提供一 EPD塗層其不需要後沉積活 化以得到一高密度發射位置。 發明内容 上面問題及其他者至少部份被解決以及上面目的與其他 者被貫現在一 FED陰極結構中以及使用電泳沉積奈米碳管 製造一 FED陰極結構之方法中在奈米碳管顆粒沉積之前實 施/儿積一黏結劑材料在一基板上的個別步驟。在EpD中需 要黏結劑黏著顆粒至基板上。首先,當基板在一溶液如 Mg(N〇3)2/IPA中被沉積時,一黏結劑層形成在一基板上。 5玄具有黏結劑材料形成在其上的基板接著被轉移至一奈米 碳管(CNT)懸浮液槽允許CNT顆粒披覆在黏結劑層上。熱處 理黏結劑層及CNT顆粒塗層轉變Mg(OH)2成為MgO。在一特 別具體實施例中形成許多微島狀結構。該Mg〇因其不是良 導體而用做均勾發射的穩重層。並且,熱處理使CNT顆粒 内埋至黏結劑材料中。後沉積活化如機械研磨是不需要的 ,存在的MgO黏結劑經熱處理分離成微島嶼,及CNT從島 嶼邊緣突出以得到一高密度的發射位置。 實施方式 200305187 本發明描述-種場發射陰極結構及從_懸浮液使用顆粒 的電泳沉積(EPD)製造該場發射陰極結構的新方法。一種特 別適合奈米碳管(CNT)沉積的製程用做一實施例。製造該陰 極結構的新方法包括分隔黏結劑沉積做為一個別步~驟:二 奈米碳管顆粒沉積之前實施。在EpD中需要黏結劑黏著奈 米碳管顆粒至基板上。先前技藝提供黏結劑與顆粒同時二 積。如前所述,一穩定的膠質懸浮液,其為均句薄膜所需 要,總是無法在相同溶液中以黏結劑材料與粉末一起獲得 。其以CNT在陽離子存在的懸浮液中的情形為實施例。例 如,CN 丁在異丙醇(岡中可以形成一穩定的懸浮液。然而 ,假如加入一黏結劑成份如Mg(N〇3)2,懸浮液即不穩定導 致凝聚。從該懸浮液EPD導致不均勻沉積具有高密度團聚 存在薄膜表面。文中說明的是準備一均勻塗層的方法盆包 括從一個別的溶液(Mg(N〇3)2/IPA)預沉積一黏結劑層,接著 轉移該基板進人-具有CNT懸浮液的液槽其不含黏結劑而 不允許黏結劑層乾掉。最後,CNT顆粒披覆到基板上。熱 處理該塗層轉變Mg(〇H)2成為Mg〇其基本上黏著CN丁顆粒 至基板上。所得的陰極結構提供不需後沉積活化的結構, 即如需要機械研磨才能得到一高密度的發射位置是不需的 。化是因為Mg0黏結劑經熱處理分離成微島嶼與CN丁從島 :邊緣犬出以及做為一穩定層。應該瞭解本揭露期望的是 ^ ^ Ί、、σ劑層不形成微島峡而成一均勻的層。 日^在轉到附圖,圖i _5以簡化的橫截面圖示說明根據本發 明製造一場發射陰極結構的方法的步驟。並且,說明在圖5 200305187Accordingly, there is a need to improve the cathode structure and a method for manufacturing the cathode structure using an electrophoretic deposition technique that will result in a uniform EPD coating. An object of the present invention is to provide a FED cathode and a method for manufacturing a FED cathode using electrophoretic deposited carbon nanotubes. Another object of the present invention is to provide a FED cathode and a method for manufacturing a fed cathode in which a uniform EpD coating is achieved. Yet another object of the present invention is to provide an EPD coating which does not require post-deposition activation to obtain a high-density emission site. SUMMARY OF THE INVENTION The above problem and others are at least partially solved and the above objects and others are implemented in a FED cathode structure and in a method for manufacturing a FED cathode structure using electrophoretic deposition of carbon nanotubes before the deposition of the carbon nanotube particles Individual steps of implementing / accumulating an adhesive material on a substrate. In EpD, an adhesive is required to adhere the particles to the substrate. First, when a substrate is deposited in a solution such as Mg (NO3) 2 / IPA, an adhesive layer is formed on a substrate. The substrate with the binder material formed thereon was then transferred to a one-nanometer carbon tube (CNT) suspension tank to allow the CNT particles to cover the binder layer. The heat treated adhesive layer and CNT particle coating transform Mg (OH) 2 into MgO. Many micro-island structures are formed in a particular embodiment. This Mg0 is used as a stable layer for uniform emission because it is not a good conductor. Further, the heat treatment causes the CNT particles to be embedded in the binder material. Post-deposition activation such as mechanical grinding is not required. The existing MgO binder is separated into micro islands by heat treatment, and CNTs protrude from the edge of the island to obtain a high-density emission site. Embodiment 200305187 The present invention describes a field emission cathode structure and a new method for manufacturing the field emission cathode structure using electrophoretic deposition (EPD) of particles from a suspension. A process particularly suitable for the deposition of carbon nanotubes (CNTs) is used as an embodiment. The new method of manufacturing the cathode structure includes separating the adhesive deposits as an additional step ~ implementation before the carbon nanotube particles are deposited. In EpD, an adhesive is required to adhere the carbon nanotube particles to the substrate. Prior art provided simultaneous bonding of the binder and the particles. As mentioned earlier, a stable colloidal suspension, which is required for uniform film, cannot always be obtained with a binder material and powder in the same solution. This is exemplified by the case of CNTs in a suspension in which cations are present. For example, CN butane can form a stable suspension in isopropanol. However, if a binder component such as Mg (N03) 2 is added, the suspension is unstable and causes aggregation. EPD from this suspension causes Heterogeneous deposition with high-density agglomeration exists on the surface of the film. The article illustrates that a method for preparing a uniform coating includes pre-depositing a layer of adhesive from another solution (Mg (NO3) 2 / IPA), and then transferring Substrate entry-the liquid tank with CNT suspension does not contain adhesive and does not allow the adhesive layer to dry off. Finally, CNT particles are coated on the substrate. Heat treatment of this coating transforms Mg (〇H) 2 into Mg〇. Its basic CN butadiene particles are adhered to the substrate. The resulting cathode structure provides a structure that does not require post-deposition activation, that is, if mechanical grinding is required to obtain a high-density emission site, it is unnecessary. The Mg0 binder is separated into Micro islands and CN Ding Cong islands: edge out and as a stable layer. It should be understood that the disclosure expects that the ^, Ί, and σ agent layers do not form a micro island gorge and form a uniform layer. Figure i_5 with simplified cross section The plan view illustrates the steps of a method of manufacturing a field emission cathode structure according to the present invention, and is illustrated in FIG. 5 200305187.

的是根據本發明方法製造的完全場發射陰極結構。現在參 考圖1 ’簡化的橫截面圖示說明的是本發明製造場發射陰極 、’、。構的製%之第一步驟。提供的是一電鍍槽1 〇,或懸浮液 槽其中已含有一黏結劑溶液12,由一溶劑14及具有一溶 貝瓜類16配置在其中所組成。揭露在較佳具體實施例的溶 劑14是醇類,水,甘油,或醇類及/或水及/或甘油的組合。 期望使用的醇類包括乙醇,甲醇,異丙醇(IPA),或相似者 。溶質鹽類16分散在溶劑14内及由一金屬硝酸鹽,如鋁或 鎂硝酸鹽,硫酸鹽,或相似者所組成。在一較佳具體實施 例,溶質鹽類16由硝酸鎂顆粒(Mg^sjO3)2)組成。溶質鹽類 16提供的濃度在1><1〇.2至1χ1〇-4Μ等級。製造期間硝酸鎂分 解成鎮離子及硝酸根離子(目前討論)。 接著,提供一基板18 ,具有一表面2〇。揭露在較佳具體 貝加例的基板1 8由任何標準的基板材料,如玻璃,塑膠, 或陶瓷所形成及具有許多金屬電極22形成圖紋在表面20上 。揭露的金屬電極22由任何適合的導體金屬,如銅(Cu), 鉬(Mo),鉑(Pt),氧化銦錫(1丁〇),或相似者所形成。 本發明的陰極結構製造期間,基板18是浸在溶液12中。 一電壓,或偏壓,28以電源23施加到基板18,因此提供溶 質顆粒16移動向表面20,更特別地移向基板18的金屬電極 22。如說明,為了完成該溶質顆粒16移動向金屬電極, 一反向電極,更特別地是一輔助電極25,浸入溶液丨2中。 在该特別具體實施例中輔助電極25形成一個別的電極,但應 遠瞭解其可以形成做為閘極電極在陰極表面上。輔助電極25 (5) (5)200305187What is a full field emission cathode structure made according to the method of the present invention. Referring now to FIG. 1 ', a simplified cross-section diagram illustrates the fabrication of a field emission cathode of the present invention. The first step of the system. Provided is an electroplating tank 10, or a suspension tank which already contains a binder solution 12, which is composed of a solvent 14 and a soluble shellfish 16 disposed therein. The solvent 14 disclosed in the preferred embodiment is an alcohol, water, glycerol, or a combination of alcohol and / or water and / or glycerol. Desirable alcohols include ethanol, methanol, isopropyl alcohol (IPA), or the like. The solute salts 16 are dispersed in the solvent 14 and consist of a metal nitrate, such as aluminum or magnesium nitrate, sulfate, or the like. In a preferred embodiment, the solute salt 16 is composed of magnesium nitrate particles (Mg ^ sjO3) 2). The solute salt 16 provides a concentration on the order of 1 > < 10.2 to 1x10-4M. Magnesium nitrate is decomposed into ballast and nitrate ions during manufacture (currently discussed). Next, a substrate 18 is provided with a surface 20. The substrate 18 disclosed in the preferred embodiment is formed of any standard substrate material, such as glass, plastic, or ceramic, and has a plurality of metal electrodes 22 patterned on the surface 20. The disclosed metal electrode 22 is formed of any suitable conductive metal, such as copper (Cu), molybdenum (Mo), platinum (Pt), indium tin oxide (1but 0), or the like. During manufacture of the cathode structure of the present invention, the substrate 18 is immersed in the solution 12. A voltage, or bias, 28 is applied to the substrate 18 with a power source 23, thus providing metal particles 22 for the solute particles 16 to move toward the surface 20, and more particularly toward the substrate 18. As illustrated, in order to complete the movement of the solute particles 16 to the metal electrode, a counter electrode, more particularly an auxiliary electrode 25, is immersed in the solution 2. In this particular embodiment, the auxiliary electrode 25 forms another electrode, but it should be understood that it can be formed on the cathode surface as a gate electrode. Auxiliary electrode 25 (5) (5) 200305187

與電極22相隔範圍近似! _至5 cm,及較佳地近似i⑽。輔 助電極25提供一增進的場強度及一均勻的電場。在一較 佳具體實㈣+ ’ - A電壓28範圍卜耻特施加到基板 18的時間間隔在U分鐘的範圍’依據結果層所需的厚度 而定(目前討論的)。更特別地,在該特別具體實施例中, 一負電壓-5謂加到基板18的時間“分鐘之電流〇25安 培。結I,帶正電荷的解離確酸鎂顆粒,黏著到電極22 ,因此形成一黏結劑層24如圖2之說明。更特別地,作用 偏壓28形成Mg(0H)2在基板18的表面上其反應為The distance from the electrode 22 is similar! _ To 5 cm, and preferably approximately i⑽. The auxiliary electrode 25 provides an enhanced field strength and a uniform electric field. In a better specific range, the voltage 28 is applied to the substrate 18 in a range of U minutes, depending on the desired thickness of the resulting layer (currently discussed). More specifically, in this particular embodiment, a negative voltage of -5 refers to the time "minutes of current applied to the substrate 18" of 25 amps. Junction I, positively charged dissociated magnesium oxide particles adhere to the electrode 22, Therefore, an adhesive layer 24 is formed as shown in Fig. 2. More specifically, the bias voltage 28 is applied to form Mg (0H) 2 on the surface of the substrate 18, and the reaction is

Mg(N〇3)++細·痛g(〇H)2(s)+N〇3•。本揭露期望黏結劑層 24可以由取代的任何金屬氧化物,如氧化紹,氧化紀,氧 化鑭,或相似者形成。本揭露更加期望一更具導電性的金 屬氧化物,如氧化鐵,氧化錫,或相似者可以加到黏結劑 層24進一步增加黏結劑層24的導電率。 現在參考圖3,說明在簡化的橫截面圖示,是本發明製造 陰極結構的下-步驟。當黏結劑層24形成在基板18上,基 板18被浸在一溶劑中的一發射結構之膠質溶液32中。在該 特別具體實施例中,提供一電鑛槽3〇,或懸浮液槽,其中 已包含’由許多奈米碳管36懸浮在IpA 34所組成的溶液^ 中。依據所需的結果,一適當的分散劑(未表示)可以加到溶 液32以幫助懸浮液中的奈米碳管36之懸浮。 者從電壓源3 3施加一偏壓3 8。在一較佳且體實施 例 正電壓範圍5巧0伏特施加到基板1 8的時間間隔大約 在3〇秒至5分鐘的範圍,依據結果層所需的厚度而定(目前 200305187Mg (NO3) ++ fine · pain g (〇H) 2 (s) + NO3 •. It is contemplated in this disclosure that the binder layer 24 may be formed of any metal oxide substituted, such as oxide, oxide, lanthanum oxide, or the like. It is more desirable in this disclosure that a more conductive metal oxide such as iron oxide, tin oxide, or the like can be added to the adhesive layer 24 to further increase the electrical conductivity of the adhesive layer 24. Referring now to Fig. 3, a simplified cross-sectional illustration is illustrated, which is the next step in the fabrication of a cathode structure according to the present invention. When the adhesive layer 24 is formed on the substrate 18, the substrate 18 is immersed in a colloidal solution 32 of an emitting structure in a solvent. In this particular embodiment, an electric ore tank 30, or suspension tank, is provided which already contains ' a solution consisting of a plurality of nano carbon tubes 36 suspended in IpA 34. Depending on the desired result, an appropriate dispersant (not shown) can be added to the solution 32 to help suspend the carbon nanotubes 36 in the suspension. A bias voltage 3 8 is applied from the voltage source 3 3. In a preferred embodiment, the time interval between the application of a positive voltage range of 50 volts to the substrate 18 is approximately 30 seconds to 5 minutes, depending on the desired thickness of the resulting layer (currently 200305187).

纣論的)。更特別地,在該特別具體實施例中,一正偏壓38 的+50伏特施加到基板1 8大約30秒。偏壓38的作用提供奈米 碳管36移向黏結劑層24。 現在參考圖4,跟隨作用偏壓38到基板18及其結果奈米碳 管36移向黏結劑層24,基板18從懸浮液槽3〇取出及在 100-300。(:的溫度範圍的空氣中乾燥約5-2〇分鐘。乾燥後, 在真空中實施第二烘烤步驟,在35〇_5〇〇〇c的溫度範圍約 30-90分鐘。該熱處理步驟提供基板18形成附著性質及提供 形成由許多邊緣42,43,及44所定義的許多微島嶼4〇(如圖 5說明)在黏結劑層24中。該許多微島嶼4〇具有奈米碳管36 埋入微島嶼40的邊緣42,43,及44及從邊緣42,43,及44 突出。據此,說明的是根據本發明製造的一最終的場發射 陰極結構,參考50。本揭露期望的一具體實施例其中黏結 劑層24製造成一均勻的層以致埋入奈米碳管36時尚不需要 形成微島嗅40。 圖6是一簡化的流程圖說明根據本發明製造一場發射陰 極結構的方法60。 根據該新製程製備場發射陰極以導電陶瓷為開始,如 FODEL@,(含有Ag,Mo,或Cu)厚膜圖紋在侧矽玻璃上 。黏結劑沉積以·5 V作用到基板1分鐘電流為0.25安培在 異丙醇(ΙΡΑ)的5χ10·3Μ Mg(N03)2溶液中實施。形成 Mg(〇H)2在FODEL表面上的步驟之反應為Mg(N03)+ +20H ->Mg(0H)2(s)+N03·。該塗佈的基板接著轉移進入一 僅含(IPA)的液槽。具有架構(1 mm氧化鋁隔離物及不鏽鋼 -12- 200305187Let alone). More specifically, in this particular embodiment, a positive bias voltage of +50 volts of 38 is applied to the substrate 18 for about 30 seconds. The effect of the bias 38 provides that the carbon nanotubes 36 are moved toward the adhesive layer 24. Referring now to FIG. 4, following the application bias 38 to the substrate 18 and the resulting carbon nanotubes 36 move toward the adhesive layer 24, the substrate 18 is removed from the suspension tank 30 and at 100-300. (: In the temperature range of about 5 to 20 minutes for drying. After drying, the second baking step is performed in a vacuum, about 30 to 90 minutes at a temperature range of 350,000 to 50000c. This heat treatment step The substrate 18 is provided to form an adhesion property and to provide a plurality of micro islands 40 (as illustrated in FIG. 5) defined by a plurality of edges 42, 43, and 44 in the adhesive layer 24. The plurality of micro islands 40 have nano-carbon tubes 36 The edges 42, 43, and 44 embedded in the micro-island 40 protrude from and protrude from the edges 42, 43, and 44. According to this, a final field emission cathode structure made in accordance with the present invention is described, reference 50. This disclosure In a specific embodiment, the adhesive layer 24 is made into a uniform layer so that the embedded carbon nanotubes 36 do not need to form micro islands 40. Fig. 6 is a simplified flowchart illustrating a method for manufacturing a field cathode structure according to the present invention. 60. The field emission cathode prepared according to this new process starts with a conductive ceramic, such as FODEL @, (containing Ag, Mo, or Cu) thick film pattern on the side silica glass. The adhesive is deposited to apply 5 V to the substrate 1 Minute current is 0.25 amps in isopropanol ( The reaction of the step of forming Mg (〇H) 2 on the surface of FODEL is Mg (N03) + + 20H-> Mg (0H) 2 (s) + N03 .. The coated substrate is then transferred into a (IPA) -only liquid tank. Has a structure (1 mm alumina separator and stainless steel-12- 200305187

⑺ 輔助電極與夾子)的基板從固定液槽被轉移進入一懸浮液 槽含一 CN丁在IPA中的懸浮液中,其具有一低濃度的 DARVAN 821分散劑(3滴/100 ml)以增進其懸浮效果。實施 + 20 V作用到基板約30秒以沉積CNT。沉積後,基板在80〇c 二氣中乾無15分鐘’接著在480。C真空中供烤90分鐘。(⑺ Auxiliary electrode and clip) The substrate is transferred from the fixed liquid tank to a suspension tank containing a CN but in IPA suspension, which has a low concentration of DARVAN 821 dispersant (3 drops / 100 ml) to enhance Its suspension effect. A +20 V was applied to the substrate for about 30 seconds to deposit CNTs. After deposition, the substrate was dried in 80 ° C for 15 minutes' and then at 480 °. C. Bake in vacuum for 90 minutes.

據此,揭露的是一場發射裝置陰極及使用電泳沉積製造 一場發射裝置陰極的方法。更特別地,揭露的是一方法其 中許多步驟被用來提供黏結奈来碳管顆粒至黏結劑材料因 此形成一場發射陰極結構具有比那些先前習知技藝更大的 發射表面。如揭露,一個別溶液含一黏結劑材料起始沉積 2一基板的表面上。具有黏結劑材料沉積在其上的基板接 著浸入一奈米碳管懸浮液槽中及施加一電壓以提供奈米碳 官移動到黏結劑層。-當從液槽中取出,具有黏結劑材料 及奈米碳管顆㈣浮其上的基板承受熱處理 劑層的附著性質。在-特別的具體實施例中,奈 埋入由黏結劑材料形成的許多微島财其有部份是從微島 〜剡的眾造步! “、知此項技藝的人士將發生進—步修正與改進。 明提供-場發射裝置陰極及使用電泳Accordingly, disclosed are a field emission device cathode and a method for manufacturing a field emission device cathode using electrophoretic deposition. More specifically, what is disclosed is a method in which many steps are used to provide the bonding of carbon nanotube particles to the binder material, thereby forming a field emission cathode structure having a larger emission surface than those previously known techniques. As disclosed, a separate solution containing a binder material is initially deposited on the surface of a substrate. The substrate having the adhesive material deposited thereon is then immersed in a nano-carbon tube suspension tank and a voltage is applied to provide nano-carbon molecules to move to the adhesive layer. -When taken out of the liquid tank, the substrate with the adhesive material and the carbon nanotube particles floating on it can withstand the adhesion of the heat treatment agent layer. In a particular embodiment, many micro islands made of adhesive materials are embedded in Nai, and some of them are made from micro islands ~ 剡! "People who know the art will make further corrections and improvements. Provide the cathode of the field emission device and use electrophoresis

=極的方法其中可以產生高的產率。更特;J 路的疋一方法而不偏離本發明的精神。我們期望 解’本發明不被限制在所示特定的製造步驟 附錄申請專利範圍包括所有修本’ 1场離本發明的精 200305187 ⑻= Extreme process where high yields can be produced. More specifically; J Lu's first method without departing from the spirit of the invention. We expect to understand that the present invention is not limited to the specific manufacturing steps shown in the appendix. The scope of the patent application includes all revisions.

範圍。 圖示簡單說色 、 對那些熟知此項技藝的人士從上面文中一較佳具體實施 例的詳細說明同時結合附圖,本發明前述及進一步與更特 別的目的及好處將變得更清楚,其中·· 圖“5以簡化的橫戴面圖示說明根據本發明製造一場發range. The illustration is simply color. For those who are familiar with this technology, from the above detailed description of a preferred embodiment, combined with the accompanying drawings, the foregoing and further and more special purposes and benefits of the present invention will become clearer. Figure 5 shows a simplified cross-sectional view illustrating the production of a hair in accordance with the present invention.

射陰極結構的方法的步驟及根據本發明方法形成最終:二 置結構;及 、 圖6是一簡化的程序圖說明根據本發明方法一 射陰極結構的方法。 Ik一%發 的元件不需 尺寸相對其 已在附圖中 明顯的為了簡單及易 依尺寸繪製。例如,為 他元件是誇大的。進一 重複的參考數字代表相 圖式代表符號說明 於說明,說明在附圖中 了清楚起見某些元件的 步,其中適當的考慮, 當的或類似的元件。 10,30 電錢槽 12 1占結劑溶液 14 溶劑 16 溶質鹽類 18 基板 20 表面 22 金屬電極 23,33 電源 24 點結劑層The steps of the method of injecting a cathode structure and forming the final according to the method of the present invention: a two-position structure; and FIG. 6 is a simplified process diagram illustrating a method of injecting a cathode structure according to the method of the present invention. Ik one% of the components need not be sized relative to what they have been shown in the drawings for simplicity and ease of size drawing. For example, the components for him are exaggerated. Further repeated reference numerals represent phases. Schematic representations of symbols are explained in the description, illustrating the steps of certain elements in the drawings for the sake of clarity, with due consideration given to current or similar elements. 10,30 Electric money slot 12 1Accounting solution 14 Solvent 16 Solute salts 18 Substrate 20 Surface 22 Metal electrode 23,33 Power supply 24 Point cement layer

-14- 200305187 (9)-14- 200305187 (9)

25 輔助電極 28,38 偏壓 32 膠質溶液 34 異丙醇 36 奈米碳管 40 微島嶼 42,43,44 邊緣 50 場發射陰極結構25 Auxiliary electrode 28, 38 Bias 32 Colloidal solution 34 Isopropanol 36 Nano carbon tube 40 Micro islands 42, 43, 44 Fringe 50 Field emission cathode structure

-15--15-

Claims (1)

200305187 拾、申請專利範圍 1. 一種製造一陰極的方法’包括下列步驟: 提供一基板; 提供一溶劑’具有一溶質佈置在其中,該溶劑與溶質 形成一黏結劑溶液; 將基板浸入黏結劑溶液中; 施加一電壓到基板因此提供黏結劑溶液附著到基板 及形成一層黏結劑材料在基板上; 從黏結劑溶液中取出具有黏結劑材料層形成在其上 的基板; 提供一懸浮液槽具有一發射結構膠質溶液的特徵; 將具有黏結劑材料層形成在其上的基板浸入懸浮液 槽中; 從懸浮液槽中取出基板;及 熱處理该基板以形成附著性質。 2·如申請專利範圍第1項製造一陰極的方法,其中提供一 土板的步驟,包括提供—基板具有許多具有圖紋的金屬 電極形成在該基板的表面上。 如申明專利範圍第丨項製造一陰極的方法,其中提供一 =劑’具有-溶質佈置在其中,包括提供至少一醇類, 或甘’由/容劑之一的步驟,具有一溶質鹽類佈置 在其中。 4· t申請專利範圍第3項製造一陰極的方法,其中該黏結 蜊材料是氫氧化鎂(Mg(0H)2)。 200305187 3月寻利範圍第3項製造 懸浮液槽的步驟呈: 具中提供- -夺米皆“發射結構膠質溶液的特徵包括 人&芯子在一溶劑中的膠質溶液。 6.如申請專利範圍第5項製造_陰極的方法,其 懸浮液槽的井' _ θ + i、 ^八有一發射結構膠質溶液的特徵進一 V包括加入膠曾、、交、、右 性質。 合液,一分散劑,的步驟以增進懸浮液 7. 專利範圍第5項製造—陰極的方法,其中將具有 …知材料層形成在其上的基板浸人—發射結構膠質 溶液中的步驟進一步包括施加一偏壓到懸浮液槽,因此 提供移動及黏結發射結構至黏結㈣料的步驟。 8. 如申5青專利範圍第1項製造-陰極的方法,其中熱處理 基=以形成附著性質的步驟,進一步包括形成由許多邊 緣定義的許多微島喚在黏結劑層中,許多微島峡具有發 射結構埋入微島嶼中及從微島嶼邊緣突出。 9· 一種製造一陰極的方法,包括下列步·驟·· 提供一基板具有圖紋的金屬電極形成在其表面上; 提供一包括溶劑及溶質鹽類的黏結劑溶液; 沉積該黏結劑溶液在一基板的表面上,因此形成一層 黏結劑材料在許多金屬電極上,該金屬電極形成在基板 上; 提供一奈米碳管懸浮液槽; 將具有黏結劑溶液在其上的基板浸入奈米破管懸浮 液槽中; 200305187 從奈米碳管懸浮液槽中取出基板;及 熱處理基板以形成附著性質在黏結劑層中及形成由 許多邊緣定義的微島嶼,及具有從微島嶼邊緣突出的奈 米碳管。 ίο. —種場發射陰極,包括: 一基板; 許多微島嶼形成在基板上及由許多邊緣定義該微島 嶼,許多微島嶼由黏結劑材料形成; 許多奈米碳管埋入許多微島嶼邊緣,許多奈米碳管從 許多微島嶼邊緣突出。200305187 Patent application scope 1. A method of manufacturing a cathode 'includes the following steps: providing a substrate; providing a solvent' having a solute arranged therein, the solvent and the solute forming a binder solution; immersing the substrate in the binder solution Applying a voltage to the substrate so as to provide an adhesive solution to adhere to the substrate and form a layer of adhesive material on the substrate; taking out the substrate having the adhesive material layer formed thereon from the adhesive solution; providing a suspension tank having a Features of a colloidal solution emitting structure; immersing a substrate having a layer of adhesive material formed thereon into a suspension tank; removing the substrate from the suspension tank; and thermally treating the substrate to form adhesion properties. 2. The method of manufacturing a cathode according to item 1 of the scope of the patent application, wherein the step of providing a soil plate includes providing-the substrate has a plurality of metal electrodes having a pattern formed on the surface of the substrate. For example, the method of manufacturing a cathode according to the scope of the patent claim, wherein a method is provided in which a solute is arranged therein, including the step of providing at least one alcohol, or one of the glycerol / capsules, with a solute salt. Arranged in it. 4. The method of manufacturing a cathode according to item 3 of the patent application, wherein the bonding material is magnesium hydroxide (Mg (0H) 2). 200305187 The third step of manufacturing a suspension tank in the profit-seeking area in March was as follows: Provided in the tool--The characteristics of the colloidal solution "emission structure colloidal solution includes human & core in a solvent colloidal solution. 6. If applied The scope of the patent No. 5 manufacturing method of the cathode, the well of the suspension tank '_ θ + i, ^ has the characteristics of a colloidal solution with an emission structure, including the properties of colloidal, cross, and right. Step of dispersing agent to enhance suspension 7. Method of manufacturing a cathode according to claim 5-a method in which a substrate having a known material layer formed thereon is immersed in a human-emitting structure colloidal solution step further comprising applying a bias Pressing into the suspension tank, thus providing the steps of moving and bonding the emission structure to the bonding material. 8. The method of manufacturing a cathode according to item 5 of the patent application, wherein the step of heat-treating the base = to form an adhesion property further includes Many micro islands defined by many edges are formed in the adhesive layer, and many micro island isles have emitting structures buried in the micro islands and protruding from the edges of the micro islands. The method includes the following steps: providing a metal electrode having a pattern on a substrate and forming it on a surface; providing a binder solution including a solvent and a solute salt; and depositing the binder solution on a surface of a substrate, Therefore, a layer of adhesive material is formed on many metal electrodes, and the metal electrodes are formed on the substrate; a nano-carbon tube suspension tank is provided; the substrate having the adhesive solution thereon is immersed in the nano-tube breakage suspension tank; 200305187 Take out the substrate from the nano carbon tube suspension tank; and heat treat the substrate to form adhesion properties in the adhesive layer and form micro islands defined by many edges, and nano carbon tubes with protruding from the edges of the micro islands. Ίο. -A field emission cathode, including: a substrate; many micro islands are formed on the substrate and the micro islands are defined by many edges, and many micro islands are formed of an adhesive material; many nano carbon tubes are buried at the edges of many micro islands, and many nano islands Meter carbon tubes protrude from the edge of many micro islands.
TW091136435A 2001-12-18 2002-12-17 Fed cathode structure using electrophoretic deposition and method of fabrication TWI264039B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/024,164 US6902658B2 (en) 2001-12-18 2001-12-18 FED cathode structure using electrophoretic deposition and method of fabrication

Publications (2)

Publication Number Publication Date
TW200305187A true TW200305187A (en) 2003-10-16
TWI264039B TWI264039B (en) 2006-10-11

Family

ID=21819180

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091136435A TWI264039B (en) 2001-12-18 2002-12-17 Fed cathode structure using electrophoretic deposition and method of fabrication

Country Status (4)

Country Link
US (1) US6902658B2 (en)
AU (1) AU2002359578A1 (en)
TW (1) TWI264039B (en)
WO (1) WO2003052785A1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723299B1 (en) * 2001-05-17 2004-04-20 Zyvex Corporation System and method for manipulating nanotubes
KR100765539B1 (en) * 2001-05-18 2007-10-10 엘지.필립스 엘시디 주식회사 Chemical Vapor Deposition Apparatus
US7252749B2 (en) * 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
US7455757B2 (en) * 2001-11-30 2008-11-25 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
JP2003303540A (en) * 2002-04-11 2003-10-24 Sony Corp Field electron emission membrane, field electron emission electrode, and field electron emission display device
AU2003281237A1 (en) * 2002-07-03 2004-01-23 Applied Nanotechnologies, Inc. Fabrication and activation processes for nanostructure composite field emission cathodes
AU2003294586A1 (en) 2002-12-09 2004-06-30 The University Of North Carolina At Chapel Hill Methods for assembly and sorting of nanostructure-containing materials and related articles
CN1303260C (en) * 2004-04-23 2007-03-07 清华大学 Process for preparing carbon nano tube film through electrophoresis deposition
US20050248250A1 (en) * 2004-05-07 2005-11-10 Steris Inc Cathode structure for explosive electron emission and method of forming the same
US20070014148A1 (en) * 2004-05-10 2007-01-18 The University Of North Carolina At Chapel Hill Methods and systems for attaching a magnetic nanowire to an object and apparatuses formed therefrom
EP1883101B1 (en) * 2004-06-01 2014-12-31 Nikon Corporation Method for producing electronic device
KR20060032402A (en) * 2004-10-12 2006-04-17 삼성에스디아이 주식회사 Carbon nanotube emitter and manufacturing method thereof and field emission device and manufacturing method thereof
KR20060059618A (en) 2004-11-29 2006-06-02 삼성에스디아이 주식회사 Electron emission display
EP1877255A4 (en) * 2005-03-10 2011-03-30 Mat & Electrochem Res Corp Thin film production method and apparatus
US20060213774A1 (en) * 2005-03-28 2006-09-28 Teco Nanotech Co., Ltd. Method for enhancing homogeneity and effeciency of carbon nanotube electron emission source of field emission display
US20060217025A1 (en) * 2005-03-28 2006-09-28 Teco Nanotech Co., Ltd. Method for enhancing homogeneity of carbon nanotube electron emission source made by electrophoresis deposition
US8066967B2 (en) * 2005-06-13 2011-11-29 Electrox Corporation System and method for the manipulation, classification sorting, purification, placement, and alignment of nano fibers using electrostatic forces and electrographic techniques
US20070000782A1 (en) * 2005-06-29 2007-01-04 Teco Electric & Machinery Co., Ltd. Method for batch fabricating electron emission source of electrophoresis deposited carbon nanotubes
KR100818383B1 (en) 2005-08-05 2008-04-01 마이티테크, 인코퍼레이티드. Method for Preparing a nanostructured composite electrode through electrophoretic deposition and a product prepared thereby
US20070095665A1 (en) * 2005-11-03 2007-05-03 Teco Electric & Machinery Co., Ltd. Method for enhancing life span and adhesion of electrophoresis deposited electron emission source
CN1988101A (en) * 2005-12-23 2007-06-27 鸿富锦精密工业(深圳)有限公司 Method for preparing field emitting cathode
US20070215473A1 (en) * 2006-03-17 2007-09-20 Teco Electric & Machinery Co., Ltd. Method for sequentially electrophoresis depositing carbon nanotube of field emission display
US20070215659A1 (en) * 2006-03-17 2007-09-20 Knapp Christopher J Connector for portable devices and methods for using the same
KR100829694B1 (en) 2006-04-24 2008-05-16 재단법인서울대학교산학협력재단 A method to fabricate horizontally aligned carbon nanotube field emitter using electrophoresis
US8363201B2 (en) * 2007-01-18 2013-01-29 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Flexible transparent electrodes via nanowires and sacrificial conductive layer
US20090314647A1 (en) * 2007-02-24 2009-12-24 E.I. Du Pont De Nemours And Company Method for the electrochemical deposition of carbon nanotubes
AU2008244661A1 (en) * 2007-03-07 2008-11-06 Massachusetts Institute Of Technology Functionalization of nanoscale articles including nanotubes and fullerenes
DE102007012550B4 (en) 2007-03-13 2013-10-10 Sineurop Nanotech Gmbh Method and device for depositing nanoparticles and optical element
US7850874B2 (en) * 2007-09-20 2010-12-14 Xintek, Inc. Methods and devices for electrophoretic deposition of a uniform carbon nanotube composite film
WO2009136978A2 (en) * 2008-03-04 2009-11-12 Massachusetts Institute Of Technology Devices and methods for determination of species including chemical warfare agents
JP5242688B2 (en) * 2008-04-03 2013-07-24 エスエヌユー アールアンドディービー ファウンデーション Conductive nano thin film and micro electro mechanical system sensor using the same
US8252165B2 (en) * 2008-08-22 2012-08-28 E I Du Pont De Nemours And Company Method for the electrochemical deposition of carbon nanotubes
WO2010123482A2 (en) * 2008-12-12 2010-10-28 Massachusetts Institute Of Technology High charge density structures, including carbon-based nanostructures and applications thereof
KR20100119321A (en) * 2009-04-30 2010-11-09 엘지디스플레이 주식회사 Display device
US8456073B2 (en) 2009-05-29 2013-06-04 Massachusetts Institute Of Technology Field emission devices including nanotubes or other nanoscale articles
US8187887B2 (en) 2009-10-06 2012-05-29 Massachusetts Institute Of Technology Method and apparatus for determining radiation
US20110171629A1 (en) * 2009-11-04 2011-07-14 Massachusetts Institute Of Technology Nanostructured devices including analyte detectors, and related methods
EP2375435B1 (en) * 2010-04-06 2016-07-06 LightLab Sweden AB Field emission cathode
US8545599B2 (en) * 2010-10-28 2013-10-01 Tessera, Inc. Electrohydrodynamic device components employing solid solutions
WO2012061603A2 (en) 2010-11-03 2012-05-10 Massachusetts Institute Of Technology Compositions comprising and methods for forming functionalized carbon-based nanostructures
CN102403175A (en) * 2011-11-04 2012-04-04 上海交通大学 Method for depositing medium barrier layer on micro-nano electrode
CN102592918B (en) * 2012-02-23 2014-09-10 福州大学 Post-processing method for improving field electron emission performance of carbon nano tube cathode
US11505467B2 (en) 2017-11-06 2022-11-22 Massachusetts Institute Of Technology High functionalization density graphene

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019003A (en) * 1989-09-29 1991-05-28 Motorola, Inc. Field emission device having preformed emitters
DE4405768A1 (en) * 1994-02-23 1995-08-24 Till Keesmann Field emission cathode device and method for its manufacture
US5709577A (en) * 1994-12-22 1998-01-20 Lucent Technologies Inc. Method of making field emission devices employing ultra-fine diamond particle emitters
US5872422A (en) * 1995-12-20 1999-02-16 Advanced Technology Materials, Inc. Carbon fiber-based field emission devices
JPH11329217A (en) 1998-05-15 1999-11-30 Sony Corp Manufacture of field emission type cathode
EP1061554A1 (en) * 1999-06-15 2000-12-20 Iljin Nanotech Co., Ltd. White light source using carbon nanotubes and fabrication method thereof
US6462467B1 (en) * 1999-08-11 2002-10-08 Sony Corporation Method for depositing a resistive material in a field emission cathode
US6342755B1 (en) 1999-08-11 2002-01-29 Sony Corporation Field emission cathodes having an emitting layer comprised of electron emitting particles and insulating particles
KR100314094B1 (en) * 1999-08-12 2001-11-15 김순택 Method for fabricating a carbon nanotube field emitter using electrophoresis process
JP4579372B2 (en) * 2000-05-01 2010-11-10 パナソニック株式会社 Electron emitting device, method for manufacturing electron emitting device, and image display device

Also Published As

Publication number Publication date
TWI264039B (en) 2006-10-11
US6902658B2 (en) 2005-06-07
US20030111946A1 (en) 2003-06-19
WO2003052785A1 (en) 2003-06-26
AU2002359578A1 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
TW200305187A (en) Fed cathode structure using electrophoretic deposition and method of fabrication
TW494423B (en) Elecron-emitting element, electronic source using the element, field emission display device, fluorescent lamp, and method for producing those
CN1871378B (en) Deposition method for nanostructure materials
US6462467B1 (en) Method for depositing a resistive material in a field emission cathode
JP4242832B2 (en) Fabrication method and activation treatment of nanostructured composite field emission cathode
KR960025999A (en) Field emission device and method of manufacturing the same, and flat panel field emission display
TW432419B (en) Electron emitting element, electron emitting source, image display, and method for producing them
US20040195950A1 (en) Field emission display including electron emission source formed in multi-layer structure
JP2006351524A (en) Ferroelectric cold cathode and ferroelectric field emission element equipped with the same
JP2001506959A (en) Diamond surface
US20050184643A1 (en) Method for forming electron emission source for electron emission device and electron emission device using the same
JP2001319560A (en) Electron emitting element, electron source, field-emission image display device and fluorescent lamp using electron emitting element and their manufacturing methods
JP2001168317A (en) Method of forming metal fine particle ordered-structure
JPH08241664A (en) Electric field effect electron source,its preparation and cathode luminescence display
CN103456581A (en) Carbon nanometer tube field emitting cathode and manufacturing method thereof
TW505938B (en) Method of providing uniform emission current
CN104835708B (en) Preparation method of graphene oxide field emission flat plate display instrument
TWI221624B (en) Method of flocking metallic nanowires or nanotubes in field emission display
US20060217025A1 (en) Method for enhancing homogeneity of carbon nanotube electron emission source made by electrophoresis deposition
TW480537B (en) Method for enhancing emission efficiency of carbon nanotube emission source field
CN107731637B (en) It is a kind of based on graphene oxide/graphene-ZnO micro-structure Flied emission is adjusted and controlled and method
US20060103287A1 (en) Carbon-nanotube cold cathode and method for fabricating the same
US20060213774A1 (en) Method for enhancing homogeneity and effeciency of carbon nanotube electron emission source of field emission display
TW478290B (en) Electron emissive surface and method of use
TWI328246B (en) Method for manufacturing electron emitters and electron sources using the same