RU2716920C2 - Способ производства листовой стали, характеризующейся улучшенными прочностью, тягучестью и формуемостью - Google Patents

Способ производства листовой стали, характеризующейся улучшенными прочностью, тягучестью и формуемостью Download PDF

Info

Publication number
RU2716920C2
RU2716920C2 RU2018122302A RU2018122302A RU2716920C2 RU 2716920 C2 RU2716920 C2 RU 2716920C2 RU 2018122302 A RU2018122302 A RU 2018122302A RU 2018122302 A RU2018122302 A RU 2018122302A RU 2716920 C2 RU2716920 C2 RU 2716920C2
Authority
RU
Russia
Prior art keywords
sheet steel
temperature
sheet
distribution
steel
Prior art date
Application number
RU2018122302A
Other languages
English (en)
Other versions
RU2018122302A3 (ru
RU2018122302A (ru
Inventor
Хюнь Цзо ЦЗУНЬ
Паван ВЕНКАТАСУРИЯ
Original Assignee
Арселормиттал
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Арселормиттал filed Critical Арселормиттал
Publication of RU2018122302A publication Critical patent/RU2018122302A/ru
Publication of RU2018122302A3 publication Critical patent/RU2018122302A3/ru
Application granted granted Critical
Publication of RU2716920C2 publication Critical patent/RU2716920C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

Изобретение относится к области металлургии. Для повышения предела текучести и предела прочности на растяжение способ производства листовой стали, обладающей микроструктурой, состоящей в долях площади из: от 20% до 50% межкритического феррита, от 10% до 20% остаточного аустенита, от 25% до 45% отпущенного мартенсита, от 10% до 20% свежего мартенсита и бейнита и от 30% до 60% суммарного количества отпущенного мартенсита и бейнита, включает получение холоднокатаной листовой стали, содержащей химический состав, мас.%: 0,18 ≤ С ≤ 0,25, 0,9 ≤ Si ≤ 1,8, 0,02 ≤ Al ≤ 1,0, при этом 1,00 ≤ Si + Al ≤ 2,35, 1,5 ≤ Mn ≤ 2,5, 0,010 ≤ Nb ≤ 0,035, 0,10 ≤ Cr ≤ 0,40, Fe и неизбежные примеси - остальное, отжиг листовой стали при температуре отжига Tв течение времени отжига tс обеспечением структуры, содержащей от 50% до 80% аустенита и от 20% до 50% феррита, закалку листа при скорости охлаждения от 20°С/с до 50°С/с до температуры закалки QT от Ms - 50°С до Ms - 5°С, нагрев листа до температуры распределения РТ от 375°С до 450°С и выдержку листа при температуре распределения РТ в течение времени распределения Pt, составляющего по меньшей мере 50 с, и охлаждение листа до комнатной температуры. 2 н. и 19 з.п. ф-лы, 8 табл.

Description

Настоящее изобретение относится к способу производства высокопрочной листовой стали, характеризующейся улучшенными прочностью, тягучестью и формуемостью, и к листу, полученному при использовании данного способа.
Для изготовления различных единиц оборудования, таких как детали элементов конструкции кузова и панелей кузова для механических транспортных средств, известным является использование листов, изготовленных из DP-(двухфазные)-сталей или TRIP-(c пластичностью, обусловленной мартенситным превращением)-сталей.
Также известно и использование сталей, обладающих бейнитной структурой, свободных от выделений карбидов, включающих остаточный аустенит, содержащих приблизительно 0,2% С, приблизительно 2% Mn, приблизительно 1,7% Si и характеризующихся пределом текучести при растяжении, составляющим приблизительно 750 МПа, пределом прочности при растяжении, составляющим приблизительно 980 МПа, и полным относительным удлинением, составляющим приблизительно 8%. Данные листы производят в технологических линиях непрерывного отжига в результате охлаждения от температуры отжига, большей, чем температура превращения Ас3, вплоть до температуры выдерживания выше температуры превращения Ms и сохранения листа при данной температуре в течение заданного времени.
Для уменьшения массы автомобиля таким образом, чтобы улучшить его коэффициент полезного действия по топливу с учетом сохранения окружающей среды в глобальных масштабах, желательно иметь листы, характеризующиеся улучшенными пределами текучести и прочности при растяжении. Но такие листы также должны характеризоваться хорошей тягучестью и хорошей формуемостью.
В данном отношении желательно иметь листы с нанесенными покрытиями или без нанесенных покрытий, характеризующиеся пределом текучести при растяжении YS, заключенным в пределах от 440 МПа до 750 МПа, предпочтительно заключенным в пределах от 450 МПа до 750 МПа, пределом прочности при растяжении TS, составляющим по меньшей мере 980 МПа, полным относительным удлинением ТЕ, составляющим по меньшей мере 20%, предпочтительно по меньшей мере 21%, и коэффициентом раздачи отверстия HER, в соответствии с документом ISO standard 16630:2009 составляющим по меньшей мере 20%. Предел прочности при растяжении TS и полное относительное удлинение ТЕ измеряют в соответствии с документом ISO standard ISO 6892-1, опубликованным в октябре 2009 года. Как это необходимо подчеркнуть, вследствие различий в методах измерения, в частности, вследствие различий в геометриях использующихся образцов, значения полного относительного удлинения ТЕ, соответствующие стандарту ISO standard, очень сильно отличаются от значений полного относительного удлинения, измеренных в соответствии с документом JIS Z 2201-05 standard, в частности, будучи меньшими в сопоставлении с ними. Также вследствие различий в методах измерения значения коэффициента раздачи отверстия HER, соответствующие стандарту ISO standard, очень сильно отличаются от значений коэффициента раздачи отверстия λ, соответствующих документу JFS T 1001 (Japan Iron and Steel Federation standard), и не могут быть с ними сопоставлены.
Также желательно иметь листовые стали, обладающие механическими свойствами, соответствующими вышеупомянутым, в диапазоне толщин от 0,7 до 3 мм, а более предпочтительно в диапазоне от 1 до 2 мм.
Поэтому цель настоящего изобретения заключается в предложении листа, обладающего вышеупомянутыми механическими свойствами, и способа его производства.
Исходя из данной цели изобретение относится к способу производства листовой стали, обладающей микроструктурой, состоящей в долях площади из от 20% до 50% межкритического феррита, от 10% до 20% остаточного аустенита, от 25% до 45% отпущенного мартенсита, от 10% до 20% свежего мартенсита и бейнита, при этом суммарное количество отпущенного мартенсита и бейнита заключено в пределах от 30% до 60%, где способ включает следующие далее последовательные стадии:
- получение холоднокатаной листовой стали, при этом химический состав стали включает в % (масс.):
0,18% ≤ С ≤ 0,25%,
0,9% ≤ Si ≤ 1,8%,
0,02% ≤ Al ≤ 1,0%,
причем 1,0% ≤ Si + Al ≤ 2,35%,
1,5% ≤ Mn ≤ 2,5%,
0,010% ≤ Nb ≤ 0,035%,
0,10% ≤ Cr ≤ 0,40%,
при этом остаток представляет собой Fe и неизбежные примеси,
- отжиг листовой стали при температуре отжига TA и в течение времени отжига tA таким образом, чтобы получить структуру, содержащую от 50% до 80% аустенита и от 20% до 50% феррита,
- закалка листа при скорости охлаждения, заключенной в пределах от 20°С/сек до 50°С/сек, вплоть до температуры закалки QT, заключенной в пределах от Ms - 50°С до Ms - 5°С,
- нагревание листа вплоть до температуры распределения РТ, заключенной в пределах от 375°С до 450°С, и сохранение листа при температуре распределения РТ в течение времени распределения Pt, составляющего, по меньшей мере 50 сек,
- охлаждение листа вплоть до комнатной температуры.
Предпочтительно листовая сталь непосредственно после закалки обладает структурой, состоящей в долях площади из по меньшей мере 20% аустенита, от 30% до 60% мартенсита и от 20% до 50% феррита.
В соответствии с одним конкретным вариантом осуществления композиция стали является такой, что 1,25% ≤ Si + Al ≤ 2,35%.
В соответствии с одним конкретным вариантом осуществления способ, кроме того, включает между стадией сохранения листа при температуре распределения РТ и стадией охлаждения листа вплоть до комнатной температуры стадию нанесения покрытия на лист погружением в расплав.
В данном варианте осуществления температура распределения РТ предпочтительно заключена в пределах от 400°С до 430°С, а время распределения Pt предпочтительно заключено в пределах от 50 сек до 150 сек.
Например, стадия нанесения покрытия погружением в расплав является стадией цинкования горячим способом.
В соответствии с еще одним примером стадия нанесения покрытия погружением в расплав является стадией цинкования c отжигом, при этом температура сплавления GAT заключена в пределах от 480°С до 515°С. Предпочтительно в данном примере время распределения Pt заключено в пределах от 50 сек до 140 сек.
В соответствии с еще одним конкретным вариантом осуществления стадию охлаждения листа вплоть до комнатной температуры проводят незамедлительно после стадии сохранения листа при температуре распределения РТ в течение времени распределения Pt, и время распределения Pt составляет по меньшей мере 100 сек.
Предпочтительно лист охлаждают вплоть до комнатной температуры при скорости охлаждения, составляющей по меньшей мере 10°С/сек.
Предпочтительно после закалки листа до температуры закалки QT и до нагревания листа до температуры распределения РТ лист выдерживают при температуре закалки QT в течение времени выдерживания, заключенного в пределах от 2 сек до 8 сек, предпочтительно от 3 сек до 7 сек.
Изобретение также относится к листовой стали, имеющей химический состав, включающий в % (масс.):
0,18% ≤ С ≤ 0,25%,
0,9% ≤ Si ≤ 1,8%,
0,02% ≤ Al ≤ 1,0%,
причем 1,0% ≤ Si + Al ≤ 2,35%,
1,5% ≤ Mn ≤ 2,5%,
0,010% ≤ Nb ≤ 0,035%,
0,10% ≤ Cr ≤ 0,40%,
при этом остаток представляет собой Fe и неизбежные примеси,
где микроструктура стали состоит в долях площади из:
- от 20% до 50% межкритического феррита,
- от 10% до 20% остаточного аустенита,
- от 25% до 45% отпущенного мартенсита,
- бейнита, причем суммарное количество отпущенного мартенсита и бейнита заключено в пределах от 30% до 60%,
- от 10% до 20% свежего мартенсита.
Предпочтительно листовая сталь характеризуется пределом текучести при растяжении, заключенным в пределах от 440 до 750 МПа, пределом прочности при растяжении TS, составляющим по меньшей мере 980 МПа, полным относительным удлинением, согласно измерению в соответствии с документом ISO standard 6892-1 составляющим по меньшей мере 20%, и коэффициентом раздачи отверстия HER, согласно измерению в соответствии с документом ISO standard 16630:2009 составляющим по меньшей мере 20%.
В соответствии с одним конкретным вариантом осуществления композиция стали является такой, что 1,25% ≤ Si + Al ≤ 2,35%.
Предпочтительно уровень содержания С CRA% в остаточном аустените заключен в пределах от 0,9% до 1,3 %.
В соответствии с одним конкретным вариантом осуществления на листовую сталь наносят покрытие, например, из Zn или сплава Zn или Al или сплава Al.
Например, листовую сталь подвергают цинкованию горячим способом или цинкованию с отжигом.
Теперь изобретение будет описываться подробно, но без введения ограничений.
Композиция стали, соответствующей изобретению, содержит в массовых процентах:
- от 0,18% до 0,25% углерода, а предпочтительно от 0,19% до 0,22%, для обеспечения наличия удовлетворительной прочности и улучшения стабильности остаточного аустенита. Данный уровень содержания остаточного аустенита необходим для получения достаточного полного относительного удлинения. В случае уровня содержания углерода, составляющего более, чем 0,25%, горячекатаный лист будет чрезмерно твердым для холодной прокатки, а свариваемость будет недостаточной. В случае уровня содержания углерода, составляющего менее, чем 0,18%, уровни пределов текучести и прочности при растяжении не достигнут, соответственно, 450 и 980 МПа, а полное относительное удлинение не достигнет 20%.
- от 1,5% до 2,5% марганца. Минимум определяют для достижения достаточной прокаливаемости в целях получения микроструктуры, содержащей по меньшей мере 30% суммарного количества мартенсита и бейнита, и предела прочности при растяжении, составляющего более, чем 980 МПа. Максимум определяют во избежание возникновения проблем, связанных с ликвацией, которые являются вредными c точки зрения тягучести.
- от 0,9% до 1,8% кремния в целях стабилизации аустенита для получения упрочнения твердого раствора и задерживания образования карбидов во время перестаривания, то есть, во время сохранения при температуре распределения РТ, без образования оксидов кремния на поверхности листа, что было бы вредным с точки зрения пригодности к нанесению покрытия. Предпочтительно уровень содержания кремния является большим или равным 1,1%. Увеличенное количество кремния улучшает коэффициент раздачи отверстия. Предпочтительно уровень содержания кремния является меньшим или равным 1,7%. Уровень содержания кремния, составляющий более, чем 1,8%, будет приводить к образованию оксидов кремния на поверхности.
- от 0,02% до 1,0% алюминия. Алюминий добавляют для раскисления жидкой стали, и он увеличивает эксплуатационную надежность способа изготовления, в частности, уменьшает вариации доли аустенита при варьировании температуры отжига. Максимальный уровень содержания алюминия определяют для предотвращения увеличения температуры превращения Ас3 до температуры, которая сделала бы отжиг более затруднительным. Алюминий, как и кремний, задерживает образование карбидов во время перераспределения углерода из мартенсита в аустенит, представляющего собой результат перестаривания. Для задерживания образования карбидов минимальный уровень содержания Al + Si должен составлять 1,0%, предпочтительно 1,25%. Максимальный уровень содержания Al + Si должен составлять 2,35%. Таким образом, в соответствии с одним первым вариантом осуществления 1,0% ≤ Al + Si < 1,25%. В соответствии с одним вторым вариантом осуществления 1,25% ≤ Al + Si ≤ 2,35%.
- от 0,10% до 0,40% хрома. По меньшей мере, 0,10% необходимо для увеличения прокаливаемости и стабилизации остаточного аустенита в целях задерживания образования бейнита во время перестаривания. Допустимым является максимум в 0,40% Cr, выше отмечается эффект насыщения, и добавление Cr является как бесполезным, так и дорогостоящим. Кроме того, уровень содержания Cr, составляющий более, чем 0,40%, приводил бы к образованию окалины, содержащей оксиды хрома, прочно пристающие к поверхности листовой стали во время горячей прокатки и холодной прокатки и с очень большим трудом удаляемые в результате травления.
- от 0,010% до 0,035% ниобия в целях измельчения бывших аустенитных зерен и получения дисперсионного упрочнения. Уровень содержания Nb в диапазоне от 0,010% до 0,035% делает возможным получение удовлетворительных предела текучести при растяжении и относительного удлинения, в частности, предела текучести при растяжении, составляющего по меньшей мере 440 МПа.
Остаток представляет собой железо и остаточные элементы, представляющие собой результат осуществления сталеплавильного производства. В данном отношении Ni, Mo, Cu, Ti, V, B, S, P и N по меньшей мере рассматриваются в качестве остаточных элементов, которые представляют собой неизбежные примеси. Поэтому их уровни содержания составляют менее, чем 0,05% для Ni, 0,02% для Мо, 0,03 % для Cu, 0,007% для V, 0,0010% для B, 0,005% для S, 0,02% для P и 0,010% для N. Уровень содержания Ti ограничивается значением 0,05%, поскольку выше таких значений будут образовываться крупноразмерные выделения карбонитридов в основном в жидкой фазе, и формуемость листовой стали ухудшится, что делает более труднодостижимой цель в виде 20% для полного относительного удлинения.
Лист получают в результате горячей прокатки и холодной прокатки в соответствии со способами, известными для специалистов в соответствующей области техники. Холоднокатаный лист имеет толщину в диапазоне от 0,7 мм до 3 мм, например, в диапазоне от 1 мм до 2 мм.
После прокатки лист подвергают травлению или зачистке, после этого термической обработке и либо нанесению покрытия погружением в расплав, либо нанесению покрытия электроосаждением либо нанесению покрытия в вакууме.
Термическая обработка, которую предпочтительно проводят в объединенной технологической линии непрерывного отжига и нанесения покрытия погружением в расплав, включает стадии:
- отжига листа при температуре отжига ТА таким образом, чтобы по завершении стадии отжига сталь обладала бы структурой, состоя из от 50% до 80% аустенита и от 20% до 50% феррита, предпочтительно от 25% до 50% феррита. Специалисты в соответствующей области техники знают то, как определить температуру отжига ТА на основании дилатометрических испытаний. В общем случае температура отжига заключена в пределах от 780°С до 840°С. Предпочтительно лист нагревают до температуры отжига при скорости нагревания, составляющей по меньшей мере 3°С/сек. Лист сохраняют при температуре отжига, то есть, сохраняют в диапазоне от ТА - 5°С до ТА + 10°С, в течение времени отжига tA, достаточного для гомогенизирования химического состава. Данное время отжига tA предпочтительно составляет более, чем 30 сек, но не должно составлять более, чем 300 сек. Предпочтительно время отжига составляет по меньшей мере 70 сек.
- закалки листа вплоть до температуры закалки QT, меньшей, чем температура превращения Ms аустенита, остающегося после отжига, при скорости охлаждения, достаточно большой для избегания образования новых феррита и бейнита во время охлаждения. Полезным для избегания такого образования является Cr. Например, скорость охлаждения составляет более, чем 20°С/сек. Температура закалки находится в диапазоне от Ms - 50°С до Ms - 5°С в целях получения структуры, состоящей из по меньшей мере 20% аустенита, от 30% до 60% мартенсита и от 20% до 50% феррита, которым является межкритический феррит, непосредственно после охлаждения. В случае температуры закалки QT, составляющей менее, чем Ms - 50°С, доля отпущенного и неотпущенного мартенсита в конечной структуре будет чрезмерно большой для стабилизации достаточного количества остаточного аустенита, составляющего более, чем 10%, и полное относительное удлинение, составляющее по меньшей мере 20%, получено не будет. Помимо этого, в случае температуры закалки QT, составляющей более, чем Ms - 5°С, доля образовавшегося мартенсита будет чрезмерно маленькой таким образом, что распределение углерода во время последующей стадии распределения будет недостаточным. Следовательно, аустенит недостаточно стабилизируется для получения желательной доли остаточного аустенита после охлаждения до комнатной температуры, и относительное удлинение, составляющее по меньшей мере 20%, не получается.
- необязательного выдерживания подвергнутого закалке листа при температуре закалки в течение времени выдерживания, заключенного в пределах от 2 сек до 8 сек, предпочтительно от 3 сек до 7 сек.
- повторного нагревания листа от температуры закалки вплоть до температуры распределения РТ, заключенной в пределах от 375°С до 450°С, а предпочтительно заключенной в пределах от 375°С до 430°С. В случае температуры распределения РТ, составляющей более, чем 450°С, полное относительное удлинение, составляющее более, чем 20%, получено не будет. В случае температуры распределения РТ, составляющей менее, чем 430°С, может быть получено полное относительное удлинение, составляющее по меньшей мере 21%. Предпочтительно в случае нанесения на лист покрытия погружением в расплав, например, в результате цинкования горячим способом или цинкования с отжигом, температура распределения РТ будет заключена в пределах от 400°С до 430°С. Скорость повторного нагревания может быть высокой в случае проведения повторного нагревания при использовании индукционного нагревателя, но скорость повторного нагревания не оказывало ощутимого воздействия на конечные свойства листа.
- сохранения листа при температуре распределения РТ в течение времени распределения Pt, составляющего по меньшей мере 50 сек, например, заключенного в пределах от 50 сек до 250 сек. Во время стадии распределения углерод распределяется, то есть, диффундирует из мартенсита в аустенит, который, таким образом, обогащается по углероду и стабилизируется. В случае необходимости цинкования листа горячим способом время распределения Pt предпочтительно будет заключено в пределах от 50 сек до 150 сек. В случае необходимости цинкования с отжигом листа время распределения Pt предпочтительно будет заключено в пределах от 50 сек до 140 сек. В случае ненанесения покрытия на лист погружением в расплав время распределения предпочтительно составляет по меньшей мере 100 сек.
- необязательно в случае необходимости нанесения на лист покрытия погружением в расплав подстраивания температуры листа в результате охлаждения или нагревания в целях обеспечения равенства температуре, при которой на лист необходимо наносить покрытие погружением в расплав.
- необязательного нанесения на лист покрытия погружением в расплав. Необязательное нанесение покрытия погружением в расплав может представлять собой, например, цинкование горячим способом, но возможным является нанесение всех металлических покрытий погружением в расплав при том условии, что температуры, до которых лист доводят во время нанесения покрытия, остаются меньшими, чем 480°С. В случае цинкования листа горячим способом это производят в обычных условиях. Листовая сталь, соответствующая изобретению, может подвергнута цинкованию с отжигом при температуре цинкования с отжигом, заключенной в пределах от 480°С до 515°С, например, заключенной в пределах от 480°С до 500°С, для проведения сплавления покрытия из Zn в результате встречной диффузии с Fe после погружения стали в ванну с Zn. В случае температуры цинкования с отжигом, составляющей более, чем 515°С, полное относительное удлинение будет уменьшаться до менее, чем 20%. Сталь, соответствующая изобретению, также может быть подвергнута цинкованию горячим способом при использовании сплавов Zn, подлобных цинково-магниевому или цинково-магниево-алюминиевому.
- охлаждения листа до комнатной температуры после стадии нанесения покрытия погружением в расплав или непосредственно после стадии сохранения листа при температуре распределения при скорости охлаждения, предпочтительно составляющей более, чем 10°С/сек.
Вместо использования нанесения покрытия погружением в расплав на лист может быть нанесено покрытие при использовании электрохимических способов, например, электролитического цинкования, или при использовании любого способа нанесения покрытия в вакууме, подобного плазменному осаждению из паровой фазы или струйному осаждению из паровой фазы. Опять-таки может быть использован любой тип покрытий, а, в частности, из цинка или цинковых сплавов, подобных цинково-никелевому, цинково-магниевому или цинково-магниево-алюминиевому сплавам.
Данная обработка делает возможным получение конечной структуры, то есть, после распределения, необязательного нанесения покрытия погружением в расплав и охлаждения до комнатной температуры, состоящей из от 20% до 50% межкритического феррита, от 10% до 20% остаточного аустенита, от 25% до 45% отпущенного мартенсита, от 10% до 20% свежего мартенсита и бейнита, при этом суммарное количество отпущенного мартенсита и бейнита заключено в пределах от 30% до 60%.
Кроме того, данная обработка делает возможным получение увеличенного уровня содержания С в остаточном аустените, который составляет по меньшей мере 0,9%, предпочтительно даже по меньшей мере 1,0% и вплоть до 1,3 %.
При использовании такой обработки могут быть получены листы, характеризующиеся пределом текучести при растяжении YS, заключенным в пределах от 450 МПа до 750 МПа, пределом прочности при растяжении, составляющим по меньшей мере 980 МПа, полным относительным удлинением, составляющим по меньшей мере 20% и даже более, чем 21%, и коэффициентом раздачи отверстия HER, в соответствии с документом ISO standard 16630:2009 составляющим по меньшей мере 20%.
Следующие далее примеры предназначены для целей иллюстрирования и не предполагают восприятия в качестве ограничения объема раскрытия изобретения в настоящем документе.
Примеры:
В порядке одного примера листы, полученные из стали, характеризующейся композицией, содержащей 0,21% С, 1,5% Si, 1,9% Mn, 0,015% Nb, 0,2% Cr и 0,02% Al, при этом остаток представляет собой Fe и примеси, (композиция №1), производили в результате горячей прокатки и холодной прокатки.
Температуры Ас1, Ас3 и Ms для стали определили в результате проведения экспериментов при использовании дилатометра в виде Ас1 = 780°С, Ас3 = 900°С и Ms = 250°С.
Первые образцы листа подвергали термической обработке в результате отжига при температуре ТА в течение периода времени tA, закалки при температуре QT при скорости охлаждения 50°С/сек, повторному нагреванию до температуры распределения РТ и сохранению при температуре распределения РТ в течение времени распределения Pt, после этого незамедлительному охлаждению до комнатной температуры.
Условия проведения термической обработки и полученные свойства приводятся в таблице I.
В приведенных ниже таблицах ТА представляет собой температуру отжига, tA представляет собой время отжига, QT представляет собой температуру закалки, РТ представляет собой температуру распределения, Pt представляет собой время сохранения при температуре распределения, YS представляет собой предел текучести при растяжении, TS представляет собой предел прочности при растяжении, UE представляет собой равномерное относительное удлинение, TE представляет собой полное относительное удлинение, а HER представляет собой коэффициент раздачи отверстия, измеренный в соответствии со стандартом ISO.
В приведенных ниже таблице I и таблицах II-IV подчеркнутые числа не соответствуют изобретению, а обозначение «н/о» говорит о том, что данные свойства не определяли.
Таблица I
Пример ТА (°С) tA (сек) QT (°C) PT (°C) Pt (сек) YS (МПа) TS (МПа) UE (%) TE (%) HER (%)
1 820 120 175 400 150 691 1054 12,1 16,9 н/о
2 200 694 1062 14,2 21,8 н/о
3 225 612 1016 15,4 21,5 31
4 250 594 996 10,5 10,4 н/о
5 225 375 150 489 996 15,6 21,4 н/о
6 400 612 1016 15,4 21,5 31
7 425 526 980 17 21,6 н/о
8 450 440 1011 15,6 20,4 н/о
9 225 400 50 520 1030 12,9 15,1 20,6
10 80 601 1035 13,7 18,1 28
11 100 639 1039 16,3 23,5 30,2
12 150 612 1016 15,4 21,5 31
Для примеров 1-12 температура отжига составляла 820°С, что приводило к получению структуры после стадии отжига, состоящей из 65% аустенита и 35% межкритического феррита.
Примеры от 1 до 4 иллюстрируют воздействие температуры закалки на полученные механические свойства. Как это демонстрируют данные примеры, в случае температуры закалки QT, большей или меньшей диапазона Ms - 50°C - Ms - 5°C, полное относительное удлинение ТЕ не достигнет 20%.
Примеры от 5 до 8 иллюстрируют вариации механических свойств в зависимости от температуры распределения РТ, при этом пример 6 идентичен примеру 3. Как это демонстрируют данные примеры, в случае температуры распределения РТ, заключенной в пределах от 375°С до 450°С, механические свойства будут достигать целевых значений.
В частности, в случае температуры распределения РТ, заключенной в пределах от 375°С до 425°С, относительное удлинение при растяжении ТЕ будет составлять даже более, чем 21%, а предел текучести при растяжении - более, чем 450 МПа.
Примеры от 10 до 12 иллюстрируют воздействие времени распределения Pt на механические свойства для листа, на который наносят покрытие погружением в расплав. Пример 12 идентичен примерам 3 и 6.
Как это демонстрируют данные примеры, в отсутствие стадии нанесения покрытия погружением в расплав время распределения Pt, составляющее по меньшей мере 100 сек, делает возможным получение предела текучести при растяжении, заключенного в пределах от 440 до 750 МПа, предела прочности при растяжении, составляющего более, чем 980 МПа, полного относительного удлинения, составляющего более, чем 20%, даже более, чем 21%, и коэффициента раздачи отверстия, составляющего более, чем 20% и даже более, чем 30%.
Другие примеры листа подвергали термической обработке в результате отжига при температуре ТА в течение периода времени tA таким образом, чтобы получить структуру, содержащую от 50% до 80% аустенита и от 20% до 50% феррита, закалки при температуре QT при скорости охлаждения 50°С/сек, повторному нагреванию до температуры распределения РТ, сохранению при температуре распределения РТ в течение времени распределения Pt, цинкованию горячим способом при 430°С и охлаждению до комнатной температуры.
Условия проведения термической обработки и полученные свойства приводятся в таблице II.
Примеры от 13 до 15 иллюстрируют вариации механических свойств в зависимости от температуры распределения РТ для листа, оцинкованного горячим способом. Как это демонстрируют данные примеры, в случае цинкования листа горячим способом температура распределения РТ, заключенная в пределах от 400°С до 430°С, делает возможным получение полного относительного удлинения ТЕ, составляющего более, чем 20%, при этом полное относительное удлинение ТЕ уменьшается при увеличении температур распределения.
Примеры от 16 до 18 иллюстрируют воздействие температуры закалки QT на полученные свойства, при этом температуры отжига ТА составляют 820°С или 840°С. Как это демонстрируют данные примеры, в случае температуры закалки, заключенной в пределах от Ms - 50°C до Ms - 5°C, полученные механические свойства будут удовлетворительными. Однако, в случае температуры закалки QT, составляющей более, чем Ms - 5°C, полное относительное удлинение ТЕ будет составлять менее, чем 20%, что обуславливается образованием чрезмерно маленькой доли мартенсита.
Примеры от 19 до 24 иллюстрируют вариацию полученных механических свойств в зависимости от температуры распределения РТ при температуре закалки QT, составляющей 200°С (примеры от 19 до 21) или 225°С (примеры от 22 до 24). Как это демонстрируют данные примеры, в случае чрезмерно высокой температуры распределения РТ полное относительное удлинение, составляющее более, чем 20%, получено не будет.
Таблица II
Пример ТА (°С) tA (сек) QT (°C) PT (°C) Pt (сек) YS (МПа) TS (МПа) UE (%) TE (%) HER (%)
13 820 120 225 400 100 459 1054 17,4 22,2 20,3
14 415 449 1042 17,2 23,6 н/о
15 430 440 1076 17,1 23,2 н/о
16 820 136 200 400 100 450 1061 18 25,4 н/о
17 840 225 470 1076 16,9 23,5 н/о
18 840 250 491 1073 15,7 17,4 н/о
19 800 136 200 400 100 644 1072 16,5 23,3 н/о
20 430 611 1096 16,8 23,3 н/о
21 460 501 1142 13,3 16,8 н/о
22 820 136 225 400 100 605 1068 16,9 23,1 н/о
23 430 618 1100 15,2 20,3 н/о
24 460 645 1176 13,4 19,1 н/о
25 820 85 225 400 62 504 1080 16,9 20,2 н/о
26 172 124 589 1057 16,7 21 н/о
Примеры 25 и 26 иллюстрируют вариацию достигнутых механических свойств при варьировании времени отжига tA и времени распределения Pt. Как это демонстрируют данные примеры, даже если желательные механические свойства будут получаться всегда при варьировании времени отжига tA и при времени отжига Pt, составляющем по меньшей мере 50 сек, предел текучести при растяжении YS и полное относительное удлинение ТЕ будут улучшаться при увеличении времени отжига tA и времени распределения Pt.
Другие примеры листа подвергали термической обработке в результате отжига при температуре ТА в течение периода времени tA таким образом, чтобы получить структуру, содержащую от 50% до 80% аустенита и от 20% до 50% феррита, закалки при температуре QT при скорости охлаждения 50°С/сек, повторному нагреванию до температуры распределения РТ, сохранению при температуре распределения РТ в течение времени распределения Pt, цинкованию с отжигом при различных температурах цинкования с отжигом GAT, после этого охлаждению до комнатной температуры.
Условия проведения термической обработки и полученные свойства приводятся в таблице III.
Таблица III
Пример ТА (°С) tA (сек) QT (°C) PT (°C) Pt (сек) GAT (°C) YS (МПа) TS (МПа) UE (%) TE (%) HER (%)
27 820 120 225 400 50 480 601 1011 15,5 22 23,9
28 100 608 994 17 26,2 27,3
29 50 500 574 1020 15,2 20,5 25,5
30 100 583 998 16,6 24,1 26,8
31 50 520 537 1008 12,8 17,2 н/о
32 100 538 985 14,1 19,5 н/о
Как это демонстрируют данные примеры, в случае температуры цинкования с отжигом GAT, заключенной в пределах от 480°С до 515°С, целевые механические свойства будут получены при использовании либо времени распределения Pt 50 сек, либо времени распределения Pt 100 сек. В случае температуры цинкования с отжигом GAT 520°С полное относительное удлинение упадет до менее, чем 20%.
Были проведены дополнительные испытания для исследования воздействия скорости технологической линии на механические свойства листа во время изготовления, то есть, стабильности данных механических свойств в зависимости от вариаций скорости технологической линии.
Данные испытания были проведены в технологической линии непрерывного отжига, характеризующейся минимальной скоростью технологической линии 50 м/мин и максимальной скоростью технологической линии 120 м/мин, при конфигурировании секций томления и распределения таким образом, чтобы максимальные время томления и время распределения, достигаемые при использовании минимальной скорости технологической линии, составляли бы, соответственно, 188 сек и 433 сек. Минимальные время томления и время распределения, достигаемые при использовании максимальной скорости технологической линии, составляют, соответственно, 79 сек и 188 сек.
Испытания были проведены при использовании минимальной и максимальной скоростей технологической линии при температуре закалки QT 225°C и температуре распределения РТ 400°С. На листы покрытия не наносили.
Условия проведения термической обработки и полученные свойства приводятся в таблице IV.
Таблица IV
Пример ТА (°С) tA (сек) QT (°C) PT (°C) Pt (сек) YS (МПа) TS (МПа) UE (%) TE (%) HER (%)
33 820 79 225 400 181 604 985 16,2 24,6 23,3
34 188 433 665 994 15,2 21,8 28,2
Как это демонстрируют данные испытания, скорость технологической линии оказывает незначительное воздействие на качество полученных механических свойств, так что целевые свойства могут быть получены по всему диапазону скоростей технологической линии. Как это также демонстрируют данные результаты, способ изготовления является очень эксплуатационно надежным в отношении вариаций скорости технологической линии.
Были проведены дополнительные испытания при использовании сталей, характеризующихся композициями, приведенными в таблице V. В таблице V приводятся только уровни содержания C, Mn, Si, Cr, Nb и Al, при этом остаток композиций представляет собой железо и неизбежные примеси. В таблице V также приводятся и температуры Ас1, Ас3 и Ms для стали, определенные в результате проведения экспериментов при использовании дилатометра.
Таблица V
№ композиции C (%) Mn (%) Si (%) Cr (%) Nb (%) Al (%) Ac1 (°C) Ac3 (°C) Ms (°C)
2 0,22 1,9 1,5 0,2 0,03 0,05 770 875 240
3 0,22 1,9 1,0 0,2 0,03 0,05 770 860 230
4 0,22 1,9 1,0 0,2 0,03 0,5 760 915 180
Листовые стали, характеризующиеся данными композициями, производили в результате горячей прокатки и холодной прокатки.
Образцы данных листов подвергали термической обработке в результате отжига при температуре ТА в течение периода времени tA таким образом, чтобы получить структуру, содержащую от 50% до 80% аустенита и от 20% до 50% феррита, закалки при температуре QT при скорости охлаждения 50°С/сек, повторному нагреванию до температуры распределения РТ и сохранению при температуре распределения РТ в течение времени распределения Pt, цинкованию горячим способом при 430°С и охлаждению до комнатной температуры.
Условия проведения термической обработки и полученные свойства приводятся в таблице VI. В приведенной ниже таблице VI обозначение «н/о» говорит о том, что данные свойства не определяли.
Таблица VI
Пример № композиции TA (°C) tA (s) QT (°C) PT (°C) Pt (s) YS (MPa) TS (MPa) UE (%) TE (%) HER (%)
35 2 800 136 200 400 100 472 1074 16,6 20 н/о
36 2 820 136 225 400 100 459 1045 16,8 20,6 н/о
37 3 800 136 200 400 100 544 1007 18,2 22,4 н/о
38 3 800 85 225 400 62 494 989 17,2 21 н/о
39 3 800 136 225 400 100 520 987 18,2 21,7 н/о
40 3 820 85 225 400 62 578 1035 16,4 20,8 н/о
41 4 820 136 150 400 100 606 1019 17,5 22,3 н/о
42 4 900 136 325 400 100 1091 1200 6,4 9,9 н/о
Образцы 35-41 производили при использовании способа, соответствующего изобретению, и они характеризуются пределом текучести при растяжении, заключенным в пределах от 440 до 750 МПа, пределом прочности при растяжении, составляющим по меньшей мере 980 МПа, и полным относительным удлинением, составляющим по меньшей мере 20%.
Образец 42 подвергали закалке до температуры, большей, чем Ms (Ms = 180°C), таким образом, чтобы во время распределения могла бы стабилизироваться недостаточная доля аустенита. Как следствие образец 42 характеризуется полным относительным удлинением, составляющим намного менее, чем 20%.
Другие образцы листа, характеризующегося композицией № 4, подвергали термической обработке в результате отжига при температуре ТА в течение периода времени tA таким образом, чтобы получить структуру, содержащую от 50% до 80% аустенита и от 20% до 50% феррита, закалки при температуре QT при скорости охлаждения 50°С/сек, повторному нагреванию до температуры распределения РТ, сохранению при температуре распределения РТ в течение времени распределения Pt, цинкованию с отжигом при различных температурах цинкования с отжигом GAT, после этого охлаждению до комнатной температуры.
Условия проведения термической обработки и полученные свойства приводятся в таблице VII.
Таблица VII
Пример № композиции ТА (°С) tA (сек) QT (°C) PT (°C) Pt (сек) GAT (°C) YS (МПа) TS (МПа) UE (%) TE (%) HER (%)
43 4 800 136 160 400 100 500 539 1051 15,4 20,5 21
44 4 820 621 1049 15,7 21,4 23
45 4 820 520 609 1057 12,8 18,9 н/о
Как это демонстрируют данные примеры, в случае температуры цинкования с отжигом GAT, заключенной в пределах от 480°С до 515°С, будут получены целевые механические свойства. В случае температуры цинкования с отжигом GAT 520°С полное относительное удлинение упадет до менее, чем 20%.
Были проведены дополнительные испытания для исследования воздействия скорости технологической линии на механические свойства листа, характеризующегося композицией № 3, во время изготовления, то есть, стабильности данных механических свойств в зависимости от вариаций скорости технологической линии.
Данные испытания были проведены в технологической линии непрерывного отжига, характеризующейся минимальной скоростью технологической линии 50 м/мин и максимальной скоростью технологической линии 120 м/мин, при конфигурировании секций томления и распределения таким образом, чтобы максимальные время томления и время распределения, достигаемые при использовании минимальной скорости технологической линии, составляли бы, соответственно, 188 сек и 433 сек. Минимальные время томления и время распределения, достигаемые при использовании максимальной скорости технологической линии, составляют, соответственно, 79 сек и 188 сек.
Испытания были проведены при использовании минимальной и максимальной скоростей технологической линии. На листы покрытия не наносили.
Условия проведения термической обработки и полученные свойства приводятся в таблице VIII.
Таблица VIII
Пример № композиции TA (°C) tA (s) QT (°C) PT (°C) Pt (s) YS (MPa) TS (MPa) UE (%) TE (%) HER (%)
46 3 800 79 200 400 181 683 990 16,5 20,2 н/о
47 3 188 433 707 955 19,2 23,9 н/о
Как это опять-таки демонстрируют данные испытания, скорость технологической линии оказывает незначительное воздействие на качество полученных механических свойств, так что целевые свойства могут быть получены по всему диапазону скоростей технологической линии. Как это также демонстрируют данные результаты, способ изготовления является очень эксплуатационно надежным в отношении вариаций скорости технологической линии.

Claims (50)

1. Способ производства листовой стали, обладающей микроструктурой, состоящей в долях площади из: от 20% до 50% межкритического феррита, от 10% до 20% остаточного аустенита, от 25% до 45% отпущенного мартенсита, от 10% до 20% свежего мартенсита и бейнита, при этом суммарное количество долей площади отпущенного мартенсита и бейнита находится в пределах от 30% до 60%, включающий следующие последовательные стадии:
получение холоднокатаной листовой стали, химический состав которой включает, мас.%:
0,18 ≤ С ≤ 0,25,
0,9 ≤ Si ≤ 1,8,
0,02 ≤ Al ≤ 1,0,
причем 1,0 ≤ Si + Al ≤ 2,35,
1,5 ≤ Mn ≤ 2,5,
0,010 ≤ Nb ≤ 0,035,
0,10 ≤ Cr ≤ 0,40,
Fe и неизбежные
примеси - остальное,
отжиг листовой стали при температуре отжига TA и в течение времени отжига tA таким образом, чтобы получить структуру, содержащую от 50% до 80% аустенита и от 20% до 50% феррита,
закалку листовой стали при скорости охлаждения, находящейся в пределах от 20°С/с до 50°С/с, вплоть до температуры закалки QT, находящейся в пределах от Ms – 50°С до Ms – 5°С,
нагрев листовой стали вплоть до температуры распределения РТ, находящейся в пределах от 375°С до 450°С, и выдержку листовой стали при температуре распределения РТ в течение времени распределения Pt, составляющего по меньшей мере 50 с,
охлаждение листовой стали до комнатной температуры.
2. Способ по п. 1, в котором листовая сталь непосредственно после закалки обладает структурой, состоящей в долях площади из по меньшей мере 20% аустенита, от 30% до 60% мартенсита и от 20% до 50% феррита.
3. Способ по п. 1, в котором химический состав стали является таким, что 1,25% ≤ Si + Al ≤ 2,35%.
4. Способ по любому из пп. 1-3, который включает между стадией выдержки листовой стали при температуре распределения РТ и стадией охлаждения листовой стали до комнатной температуры стадию нанесения покрытия на листовую сталь погружением в расплав.
5. Способ по п. 4, в котором температура распределения РТ находится в пределах от 400°С до 430°С.
6. Способ по п. 4, в котором время распределения Pt находится в пределах от 50 с до 150 с.
7. Способ по п. 4, в котором стадия нанесения покрытия погружением в расплав является стадией цинкования горячим способом.
8. Способ по п. 4, в котором стадия нанесения покрытия погружением в расплав является стадией цинкования c отжигом, при этом температура сплавления GAT находится в пределах от 480°С до 515°С.
9. Способ по п. 8, в котором время распределения Pt находится в пределах от 50 с до 140 с.
10. Способ по любому из пп. 1-3, в котором стадию охлаждения листовой стали до комнатной температуры проводят незамедлительно после стадии выдержки листовой стали при температуре распределения РТ в течение времени распределения Pt, причем время распределения Pt составляет по меньшей мере 100 с.
11. Способ по любому из пп. 1-3, в котором листовую сталь охлаждают до комнатной температуры при скорости охлаждения, составляющей по меньшей мере 10°С/с.
12. Способ по любому из пп. 1-3, в котором после закалки листовой стали до температуры закалки QT и до нагрева листовой стали до температуры распределения РТ листовую сталь выдерживают при температуре закалки QT в течение времени, находящегося в пределах от 2 с до 8 с, предпочтительно от 3 с до 7 с.
13. Листовая сталь, имеющая химический состав, включающий, мас.%:
0,18 ≤ С ≤ 0,25,
0,9 ≤ Si ≤ 1,8,
0,02 ≤ Al ≤ 1,0,
причем 1,0 ≤ Si + Al ≤ 2,35,
1,5 ≤ Mn ≤ 2,5,
0,010 ≤ Nb ≤ 0,035,
0,10 ≤ Cr ≤ 0,40,
Fe и неизбежные
примеси - остальное,
при этом микроструктура листовой стали состоит в долях площади % из:
от 20 до 50 межкритического феррита,
от 10 до 20 остаточного аустенита,
от 25 до 45 отпущенного мартенсита,
бейнита, причем суммарное количество долей площади отпущенного мартенсита и бейнита заключено в пределах от 30 до 60,
от 10 до 20 свежего мартенсита.
14. Листовая сталь по п. 13, которая охарактеризована пределом текучести при растяжении, находящимся в пределах от 440 до 750 МПа, пределом прочности при растяжении, составляющим по меньшей мере 980 МПа, полным относительным удлинением, составляющим по меньшей мере 20%, и коэффициентом раздачи отверстия HER, составляющим по меньшей мере 20%.
15. Листовая сталь по п. 13, в которой химический состав стали является таковым, что 1,25% ≤ Si + Al ≤ 2,35%.
16. Листовая сталь по п. 13, в которой остаточный аустенит имеет уровень содержания С CRA% в пределах от 0,9% до 1,3%.
17. Листовая сталь по любому из пп. 13-16, в которой на листовую сталь наносят покрытие.
18. Листовая сталь по п. 17, в которой на листовую сталь наносят покрытие из Zn или сплава Zn.
19. Листовая сталь по п. 17, в которой на листовую сталь наносят покрытие из Al или сплава Al.
20. Листовая сталь по п. 18, в которой листовую сталь подвергают цинкованию горячим способом.
21. Листовая сталь по п. 18, в которой листовую сталь подвергают цинкованию с отжигом.
RU2018122302A 2015-12-21 2016-12-21 Способ производства листовой стали, характеризующейся улучшенными прочностью, тягучестью и формуемостью RU2716920C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IBPCT/IB2015/059837 2015-12-21
PCT/IB2015/059837 WO2017109538A1 (en) 2015-12-21 2015-12-21 Method for producing a steel sheet having improved strength, ductility and formability
PCT/EP2016/082192 WO2017108956A1 (en) 2015-12-21 2016-12-21 Method for producing a steel sheet having improved strength, ductility and formability

Publications (3)

Publication Number Publication Date
RU2018122302A RU2018122302A (ru) 2019-12-25
RU2018122302A3 RU2018122302A3 (ru) 2020-01-28
RU2716920C2 true RU2716920C2 (ru) 2020-03-17

Family

ID=55273296

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018122302A RU2716920C2 (ru) 2015-12-21 2016-12-21 Способ производства листовой стали, характеризующейся улучшенными прочностью, тягучестью и формуемостью

Country Status (15)

Country Link
US (1) US20190003005A1 (ru)
EP (2) EP3653737B1 (ru)
JP (1) JP6935420B2 (ru)
KR (1) KR102618089B1 (ru)
CN (1) CN108513591B (ru)
BR (1) BR112018012131B1 (ru)
CA (1) CA3008067C (ru)
ES (2) ES2780924T3 (ru)
HU (2) HUE056674T2 (ru)
MA (2) MA49585B1 (ru)
MX (1) MX2018007648A (ru)
PL (2) PL3394296T3 (ru)
RU (1) RU2716920C2 (ru)
WO (2) WO2017109538A1 (ru)
ZA (1) ZA201803917B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2809296C1 (ru) * 2020-07-24 2023-12-11 Арселормиттал Холоднокатаный отожжённый стальной лист и способ его изготовления

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107597962A (zh) * 2017-08-15 2018-01-19 上海交通大学 一种热冲压与模具修边的集成工艺
WO2019122961A1 (en) * 2017-12-19 2019-06-27 Arcelormittal High strength and high formability steel sheet and manufacturing method
WO2019122964A1 (en) * 2017-12-19 2019-06-27 Arcelormittal Steel sheet having excellent toughness, ductility and strength, and manufacturing method thereof
WO2020058748A1 (en) * 2018-09-20 2020-03-26 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
WO2021026437A1 (en) * 2019-08-07 2021-02-11 United States Steel Corporation High ductility zinc-coated steel sheet products
WO2021123889A1 (en) * 2019-12-19 2021-06-24 Arcelormittal Hot rolled and heat-treated steel sheet and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2341566C2 (ru) * 2003-02-05 2008-12-20 Юзинор Способ изготовления холоднокатаной полосы из двухфазной стали с ферритно-мартенситной структурой и полученная полоса
RU2403311C2 (ru) * 2005-08-04 2010-11-10 Арселормитталь Франс Способ производства высокопрочных стальных плит с великолепной пластичностью и производимые этим способом плиты
WO2011065591A1 (ja) * 2009-11-30 2011-06-03 新日本製鐵株式会社 耐水素脆化特性に優れた引張最大強度900MPa以上の高強度鋼板及びその製造方法
EP2546368A1 (en) * 2010-03-09 2013-01-16 JFE Steel Corporation Method for producing high-strength steel sheet
RU2557035C1 (ru) * 2012-03-07 2015-07-20 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочный холоднокатаный стальной лист и способ его изготовления

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022794A1 (en) * 2002-09-04 2004-03-18 Colorado School Of Mines Method for producing steel with retained austenite
JP5418047B2 (ja) * 2008-09-10 2014-02-19 Jfeスチール株式会社 高強度鋼板およびその製造方法
US20130133792A1 (en) * 2010-08-12 2013-05-30 Jfe Steel Corporation High-strength cold rolled sheet having excellent formability and crashworthiness and method for manufacturing the same
JP5408383B2 (ja) * 2011-03-28 2014-02-05 新日鐵住金株式会社 冷延鋼板及びその製造方法
WO2012168564A1 (fr) * 2011-06-07 2012-12-13 Arcelormittal Investigación Y Desarrollo Sl Tôle d'acier laminée à froid et revêtue de zinc ou d'alliage de zinc, procédé de fabrication et utilisation d'une telle tôle
KR101607786B1 (ko) * 2011-09-30 2016-03-30 신닛테츠스미킨 카부시키카이샤 인장 강도 980㎫ 이상 갖는 도금 밀착성, 성형성과 구멍 확장성이 우수한 고강도 용융 아연 도금 강판 및 고강도 합금화 용융 아연 도금 강판과 그 제조 방법
JP5953695B2 (ja) * 2011-09-30 2016-07-20 新日鐵住金株式会社 めっき密着性と成形性に優れた高強度溶融亜鉛めっき鋼板とその製造方法
CN103827335B (zh) * 2011-09-30 2015-10-21 新日铁住金株式会社 镀锌钢板及其制造方法
US8876987B2 (en) * 2011-10-04 2014-11-04 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
EP2881481B1 (en) * 2012-07-31 2019-04-03 JFE Steel Corporation High-strength hot-dip galvanized steel sheet having excellent moldability and shape fixability, and method for manufacturing same
CN102952996A (zh) * 2013-01-04 2013-03-06 鞍钢股份有限公司 一种高延伸率冷轧trip钢板及其制备方法
EP2971209B1 (en) * 2013-03-11 2017-04-05 Tata Steel IJmuiden B.V. High strength hot dip galvanised complex phase steel strip
JP5728115B1 (ja) * 2013-09-27 2015-06-03 株式会社神戸製鋼所 延性および低温靭性に優れた高強度鋼板、並びにその製造方法
EP3167092B1 (en) * 2014-07-07 2018-03-28 Tata Steel IJmuiden BV Steel strip having high strength and high formability, the steel strip having a hot dip zinc based coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2341566C2 (ru) * 2003-02-05 2008-12-20 Юзинор Способ изготовления холоднокатаной полосы из двухфазной стали с ферритно-мартенситной структурой и полученная полоса
RU2403311C2 (ru) * 2005-08-04 2010-11-10 Арселормитталь Франс Способ производства высокопрочных стальных плит с великолепной пластичностью и производимые этим способом плиты
WO2011065591A1 (ja) * 2009-11-30 2011-06-03 新日本製鐵株式会社 耐水素脆化特性に優れた引張最大強度900MPa以上の高強度鋼板及びその製造方法
EP2546368A1 (en) * 2010-03-09 2013-01-16 JFE Steel Corporation Method for producing high-strength steel sheet
RU2557035C1 (ru) * 2012-03-07 2015-07-20 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочный холоднокатаный стальной лист и способ его изготовления

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2809296C1 (ru) * 2020-07-24 2023-12-11 Арселормиттал Холоднокатаный отожжённый стальной лист и способ его изготовления
RU2809295C1 (ru) * 2020-07-24 2023-12-11 Арселормиттал Холоднокатаный и подвергнутый двойному отжигу стальной лист
RU2813064C1 (ru) * 2023-05-19 2024-02-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный аграрный университет - МСХА имени К.А. Тимирязева" (ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева) Способ получения высокопрочного стального листа
RU2813069C1 (ru) * 2023-05-19 2024-02-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный аграрный университет - МСХА имени К.А. Тимирязева" (ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева) Способ получения высокопрочного стального листа
RU2813066C1 (ru) * 2023-05-19 2024-02-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный аграрный университет - МСХА имени К.А. Тимирязева" (ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева) Способ получения высокопрочного стального листа
RU2812417C1 (ru) * 2023-07-18 2024-01-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный аграрный университет - МСХА имени К.А. Тимирязева" (ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева) Способ получения высокопрочного стального листа

Also Published As

Publication number Publication date
JP6935420B2 (ja) 2021-09-15
EP3394296A1 (en) 2018-10-31
WO2017108956A1 (en) 2017-06-29
MA44134B1 (fr) 2020-06-30
CN108513591B (zh) 2020-04-28
KR20180096638A (ko) 2018-08-29
ES2899448T3 (es) 2022-03-11
MA49585B1 (fr) 2021-10-29
BR112018012131B1 (pt) 2021-09-28
MA49585A (fr) 2021-04-28
CN108513591A (zh) 2018-09-07
US20190003005A1 (en) 2019-01-03
HUE056674T2 (hu) 2022-02-28
EP3653737A1 (en) 2020-05-20
BR112018012131A2 (pt) 2018-12-04
ES2780924T3 (es) 2020-08-27
EP3394296B1 (en) 2020-02-12
RU2018122302A3 (ru) 2020-01-28
MX2018007648A (es) 2018-09-21
PL3653737T3 (pl) 2022-02-07
CA3008067C (en) 2023-09-05
EP3653737B1 (en) 2021-10-27
WO2017109538A1 (en) 2017-06-29
PL3394296T3 (pl) 2020-08-10
CA3008067A1 (en) 2017-06-29
ZA201803917B (en) 2019-02-27
HUE049063T2 (hu) 2020-09-28
JP2019505692A (ja) 2019-02-28
RU2018122302A (ru) 2019-12-25
KR102618089B1 (ko) 2023-12-26

Similar Documents

Publication Publication Date Title
RU2728369C2 (ru) Способ производства высокопрочной листовой стали, характеризующейся улучшенными тягучестью и формуемостью, и полученная листовая сталь
RU2716920C2 (ru) Способ производства листовой стали, характеризующейся улучшенными прочностью, тягучестью и формуемостью
JP6193219B2 (ja) 高強度鋼板製品及びその製造方法
US10954580B2 (en) Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet
JP7033625B2 (ja) 強度、延性および成形性が改善された被覆鋼板の製造方法
KR102548555B1 (ko) 냉간 압연 및 열 처리된 강판 및 냉간 압연 및 열 처리된 강판의 제조 방법
KR102455942B1 (ko) 향상된 강도, 연성 및 성형성을 갖는 고강도 피복 강 시트의 제조 방법
RU2736374C1 (ru) Холоднокатаный и отожженный стальной лист и способ его изготовления
KR102423654B1 (ko) 성형성이 개선된 고강도 강 시트의 제조 방법 및 얻어진 시트
JP7082963B2 (ja) 強度、成形性が改善された高強度被覆鋼板の製造方法および得られた鋼板
KR102453718B1 (ko) 성형성 및 연성이 개선된 고강도 강 시트의 제조 방법 및 얻어진 시트
KR20240105467A (ko) 강도 및 성형성이 개선된 고강도 강 시트의 제조 방법 및 얻어진 고강도 강 시트