RU2813066C1 - Способ получения высокопрочного стального листа - Google Patents

Способ получения высокопрочного стального листа Download PDF

Info

Publication number
RU2813066C1
RU2813066C1 RU2023113036A RU2023113036A RU2813066C1 RU 2813066 C1 RU2813066 C1 RU 2813066C1 RU 2023113036 A RU2023113036 A RU 2023113036A RU 2023113036 A RU2023113036 A RU 2023113036A RU 2813066 C1 RU2813066 C1 RU 2813066C1
Authority
RU
Russia
Prior art keywords
temperature
strength
steel
sheet
carbon
Prior art date
Application number
RU2023113036A
Other languages
English (en)
Inventor
Роман Владимирович Мишнев
Юлия Игоревна Борисова
Людмила Григорьевна Ригина
Евгений Сергеевич Ткачёв
Сергей Иванович Борисов
Диана Юнусовна Юзбекова
Валерий Александрович Дудко
Сергей Михайлович Гайдар
Рустам Оскарович Кайбышев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный аграрный университет - МСХА имени К.А. Тимирязева" (ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный аграрный университет - МСХА имени К.А. Тимирязева" (ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный аграрный университет - МСХА имени К.А. Тимирязева" (ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева)
Application granted granted Critical
Publication of RU2813066C1 publication Critical patent/RU2813066C1/ru

Links

Abstract

Изобретение относится к области металлургии, а именно к получению высокопрочного стального листа, и может быть использовано для изготовления режущего инструмента и ответственных элементов сельскохозяйственной землеройной техники. Способ получения высокопрочного стального листа с пределом текучести на растяжение не менее 1350 МПа, пределом прочности не менее 1700 МПа и относительным удлинением не менее 18% из стали, содержащей, мас.%: углерод 0,30-0,46, кремний 1,50-2,0, марганец 1,00-1,40, хром 0,80-1,20, молибден 0,20-0,50, при необходимости по меньшей мере один компонент: ниобий до 0,10, ванадий до 0,20, титан до 0,04 и бор до 0,005, железо и неизбежные примеси остальное характеризуется тем, что стальную заготовку нагревают до температуры 1100-1080°С и выдерживают при данной температуре не менее 1 часа для гомогенизации. Прокатку осуществляют от температуры 1100-1080°С до температуры не менее 900°С со степенью обжатия не менее 60% и последующим охлаждением на воздухе. Затем повторно нагревают до температуры АС3+(30-50)°С, но не ниже 900°С, до полной аустенизации. Охлаждают до температуры закалки в соляной расплав, предварительно нагретый до температуры на 70-130°С ниже температуры начала мартенситного превращения Ms, со скоростью охлаждения 210-250°С в секунду в интервале 900-300°С в течение 30-180 секунд с обеспечением получения в структуре не более 40% остаточного аустенита. Затем нагревают лист в соляном расплаве до температуры, которая выше температуры начала мартенситного превращения MS и составляет 350-410°С, проводят распределение углерода между мартенситом и остаточным аустенитом в течение 60-300 секунд для предотвращения образования бейнита в количестве более 15% и охлаждают лист в воду. Обеспечивается получение стального листа с высокой прочностью и пластичностью. 1 з.п. ф-лы, 1 табл., 3 пр.

Description

Изобретение относится к области металлургии, а именно к способу получения высокопрочного стального листа, и может быть использовано для изготовления из него режущего лезвийного инструмента и других ответственных элементов сельскохозяйственной землеройной техники. Данное изобретение направлено на получение стального листа из среднеуглеродистой стали с высокой прочностью и пластичностью после термомеханической обработки, которая заключается в горячей прокатке и последующей трехступенчатой обработке «закалка-распределение».
На сегодняшний день к сталям для сельскохозяйственной и землеройной техники, предъявляются повышенные требования по показателям твердости, предела текучести, временного сопротивления разрушению, стойкости к абразивному износу, а главное, по пластичности и ударной вязкости. Важной задачей, при формировании структуры материала является обеспечение сочетания одновременно высокой прочности и пластичности материала, что позволит обеспечить высокий уровень эксплуатационных характеристик.
Для достижения заданного уровня эксплуатационных характеристик высокопрочные стали подвергают деформационной обработке для дополнительного измельчения структуры и различным способам термической обработки. Одним из таких способов термической обработки является трехступенчатая обработка «закалка-распределение», которая позволяет формировать двухфазную структуру стали и направлена на повышения пластичности при сохранении высоких прочностных характеристик.
Известен способ получения сверхпрочного стального листа, раскрытый в патенте RU 2684912 С2 от 03.07.2015. Сверхпрочная сталь имеет следующий химический состав, масс. %: 0,34-0,40 С, 1,50-2,30 Mn, 1,50-2,40 Si, 0,35-0,45 Cr, 0,07-0,20 Mo, 0,01-0,08 Al и менее 0,05 Nb, остальное Fe и неизбежные примеси. Предлагаемый способ заключается в изготовлении стального листа с покрытием и без покрытия, который включает следующие последовательные стадии: холодная прокатка, нагрев до температуры Та, причем температура Та выше, чем температура превращения стали Ас3, охлаждение нагретого стального листа до температуры Tq более низкой, чем температура превращения стали Ms, и находящейся в диапазоне от 200 до 230°С, и отжиг для перераспределения углерода при температуре Тр 350-450°С с выдержкой при этой температуре в течение времени перераспределения 25-55 секунд, при этом после перераспределения стальной лист оцинковывают и охлаждают до комнатной температуры. Полученный стальной лист с покрытием имеет структуру, содержащую, по меньшей мере 60% мартенсита и 12-15% остаточного аустенита.
Недостатком данного способа являются относительно низкие прочностные свойства - предел прочности листа не превышает 1470 МПа. В процессе термической обработки присутствует стадия обработки стального листа горячим цинкованием или цинкованием с отжигом, что усложняет технологический процесс получения требуемого уровня характеристик.
Наиболее близким по технической сущности к предлагаемому изобретению является патент RU 2677888, в котором раскрыт способ получения высокопрочного листа с пределом прочности на растяжение более 1300 МПа и относительным удлинением после разрыва более 13%. Лист из стали с химическим составом в % масс: 0,1%≤С≤0,4%, 4,5%≤Mn≤5,5%, l%≤Si≤3, 0,2≤Мо≤0,5, Cr≤σ,1% железо и неизбежные примеси. Термообработка листа состоит из нагрева до температуры выше Ас3 между 780 и 950°С, закалки листа посредством его охлаждения до температуры закаливания QT в диапазоне между температурами превращения Ms и Mf стали для получения конечной структуры, содержащей по меньшей мере 50% мартенсита и по меньшей мере 10% остаточного аустенита, при этом сумма феррита и бейнита составляет менее чем 10%. Далее следует нагрев листа до температуры перераспределения углерода РТ в диапазоне от 300°С до 500°С и его выдержка в течение времени Pt, большего чем 10 сек и охлаждение листа до температуры окружающей среды. Предлагаемое изобретение позволяет получить высокопрочную листовую сталь, характеризующуюся улучшенной формуемостью.
Данный способ обеспечивает прочностные показатели: предел прочности менее 1500 МПа и относительное удлинение 13%. Сочетание прочности и пластичности, определяемое как величина произведения временного сопротивления разрушению на относительное удлинение (σB×δ) не превышает 17000 МПа×%. Недостатком данного способа является относительно высокое содержание Mn в стали и относительно невысокое значение (σB×δ).
Из анализа литературных данных выявлено, что технической проблемой в данной области является необходимость в разработке режимов термомеханической обработки высокопрочной среднеуглеродистой стали для изготовления деталей рабочих органов сельскохозяйственной землеройной техники.
Задачей предлагаемого изобретения является разработка режимов термомеханической обработки среднеуглеродистой стали, обеспечивающих высокую прочность и пластичность.
Техническим результатом изобретения является получение высокопрочного горячекатаного и термически обработанного стального листа из среднеуглеродистой стали, обладающий одновременно высокой прочностью (предел прочности не менее 1700 МПа, предел текучести не менее 1350 МПа), в сочетании с высокой пластичностью (относительное удлинение не менее 18%).
Для решения технической проблемы и достижения заявленного технического результата выполняется термомеханическая обработка на среднеуглеродистой стали с химическим составом, содержащим в мас. % углерод (0,30-0,46), кремний (1,50-2,0), марганец (1,00-1,40), хром (0,80-1,20), молибден (0,20-0,50), остальное железо и неизбежные примеси. В сталь дополнительно вводят ванадий, ниобий, титан, бор. при следующем количественном соотношении компонентов, мас. %: углерод 0,30-0,46; кремний 1,50-2,0; марганец 1,0 -1,4; хром 0,8-1,2; молибден 0,2-0,5; ванадий 0-0,20; ниобий 0-0,10; титан 0-0,04; бор 0-0,005; железо и неизбежные примеси - остальное.
Режим термомеханической обработки, включает: горячую прокатку, нагрев до температуры аустенизации, закалку в горячей среде (соляном расплаве) и операцию «распределения».
Для получения высокопрочного стального листа с пределом текучести на растяжение не менее 1350 МПа, пределом прочности не менее 1700 МПа и относительным удлинением не менее 18% из стали, содержащей углерод, кремний, марганец, хром, молибден, характеризующийся тем, что сталь нагревают до температуры 1100-1050°С, и выдерживают при данной температуре не менее 1 часа для гомогенизации, прокатку осуществляют от температуры 1100-1080°С до температуры не менее 900°С со степенью обжатия не менее 60% и последующим охлаждением на воздухе, затем повторно нагревают до температуры AC3 +30-50°С, но не ниже 900°С, до полной аустенизации, охлаждают до температуры закалки в соли, предварительно нагретой до температуры на 70-130°С ниже температуры начала мартенситного превращения Ms, при скорости закалки 210 -250°С в секунду в интервале 900-300°С, обеспечивая получение в структуре не более 40% остаточного аустенита, при продолжительности операции от 30 до 180 секунд, затем нагревают в растворе расплавленной соли до температуры 350-410°С, что выше температуры начала мартенситного превращения Ms, при этом время «распределения» определяют от 60 до 300 секунд, так, чтобы не допустить образования бейнита в количестве более 15% и охлаждают в воду.
Температуру начала мартенситного превращения Ms и объема образовавшегося бейнита определяют путем дилатометрических исследований.
Углерод обеспечивает высокую прочность и твердость сплава. Уменьшение содержания углерода менее заявленного уровня приводит к снижению прочности, а более высокое содержание по сравнению с заявленными пределами отрицательно влияет на пластичность. Углерод также оказывает положительное влияние на закаливаемость указанной стали. В связи с этим, содержание углерода ограничивается пределом от 0,30 до 0,46 масс. %.
Кремний оказывает положительное влияние на способность к закалке и обеспечивает повышенную прочность за счет подавления выделения цементита при операции «распределение». Для обеспечения высокой твердости и прочности, в состав стали включают от 1,5 до 2,0 масс. % кремния. Слишком высокое содержание кремния оказывает отрицательное действие на пластичность и ударную вязкость стали.
Легирование стали хромом приводит к повышению прочности стали. Марганец и хром, повышают прокаливаемость стали, позволяя значительно увеличить толщину закаливаемых деталей при снижении скорости охлаждения при закалке. Высокое содержание хрома (выше 1,2%) приводит к снижению прочности, пластичности и ударной вязкости, поэтому введение в заявленную сталь хрома ограничено в пределах от 0,8 до 1,2 масс. %.
Легирование марганцем приводит к раскислению и упрочнению, а также связывает серу, образуя сульфиды марганца. Содержание марганца в пределах 1,0-1,4 масс. % приводит к улучшению ударной вязкости и твердости.
Легирование стали молибденом в диапазоне 0,2-0,5 масс. % приводит к повышению коррозионной стойкости, твердости, а также улучшает ее прокаливаемость. Также молибден предотвращает отпускную хрупкость в процессе термообработки. Легирование стали молибденом более 0,5 масс. % экономически не целесообразно.
Легирование стали ниобием в пределах 0,01-0,10 масс. % приводит к упрочнению стали, а также к формированию мелкого зерна аустенита при горячей прокатке, и способствует появлению субзеренной структуры, закрепляемой и стабилизируемой дисперсными частицами карбидов и карбонитридов ниобия, а также предотвращает рост зерна аустенита при нагреве под закалку. Увеличение содержания ниобия более 0,10 масс. % приводит к образованию крупных карбонитридов ниобия и снижению вязкости материала, кроме того, является экономически нецелесообразным из-за очень высокой стоимости ниобия и, как следствие, - повышение расходов на легирование.
Легирование стали ванадием в пределах <0,20 масс. % приводит к упрочнению стали за счет формирования карбидов типа MX, и обеспечивает формирование мелкого зерна аустенита при горячей прокатке и способствует появлению субзеренной структуры, закрепляемой и стабилизируемой дисперсными частицами. Увеличение содержания ванадия более 0,20 масс. % приводит к образованию крупных карбонитридов ванадия и снижению вязкости материала, и повышению расходов на легирование.
Титан в количестве <0,04 масс. % является необходимой технологической добавкой для связывания азота, а также для предотвращения формирования нитридов бора. Выделение мелких частиц MX, содержащих титан направлено на увеличение прочности стали. Увеличение же содержания титана более 0,04% приводит к образованию нитридов титана еще в жидкой фазе, росту их в процессе кристаллизации и охлаждения стали, образуя очень крупные включения, снижающие пластичность стали, что, особенно для листовой продукции, недопустимо. При содержании бора более 0,01 масс. %. образуются бориды железа, ухудшающие технологичность стали и проводящие к охрупчиванию после термообработки.
Горячая прокатка обеспечивает измельчение исходных аустенитных зерен, что благоприятно влияет на структурные параметры мартенсита после закалки. Это, в свою очередь, приводит к повышению механических свойств низко- и среднеуглеродистых сталей до значительно более высокого уровня.
Измельчение исходного аустенитного зерна необходимо, чтобы повысить ударную вязкость и предел текучести, а также пластичность сталей. Температура нагрева под прокатку выбирается выше, чем температура аустенизации при традиционной термической обработке (закалка+отпуск), но ниже чем 1150°С для получения минимального размера исходных аустенитных зерен. Используется обжатие при прокатке не менее 60%, чтобы обеспечить повышение свойств стали, с последующим охлаждением на воздухе.
Для оптимизации свойств среднеуглеродистые стали подвергают двухступенчатой термической обработке «закалка-распределение» (Q&P) после горячей прокатки, чтобы получить структуру, состоящую из первичного мартенсита и бейнита в количестве не менее 45%, 20-30% остаточного аустенита и 25-35% вторичного мартенсита. Нагрев выполняют до температуры АС3 +30-50°С, но не ниже 900°С, до полной аустенизации с последующим охлаждением в соли, предварительно нагретой до температуры закалки. В предлагаемом способе температура закалки подбирается на 70-130°С ниже температуры начала мартенситного превращения Ms, для получения мартенсита и контролируемого объема остаточного аустенита при скорости закалки не менее 210 -250°С в секунду в интервале 900-300°С, причем температура и время изотермической выдержки при закалке должны обеспечить получение в структуре не более 40% остаточного аустенита, но время не должно превышать 180 секунд для предотвращения формирования бейнита в избыточном объеме. Нагрев в печи в расплавленной соли до более высокой температуры по сравнению с температурой закалки необходим для стабилизации остаточного аустенита за счет его насыщения углеродом, который диффундирует в него из мартенсита. «Распределения» при температуре выше Ms в растворе расплавленной соли, нагретой между 350°С и 410°С для выполнения операции перераспределения углерода между мартенситом и остаточным аустенитом. Время распределения составляет от 60 до 300 секунд, а выбор температуры и времени этой операции определяется необходимостью не допустить образования более 15% бейнита при этой операции. Затем следует охлаждение в воду. В результате такой обработки формируется структура, состоящая из не менее 45% первичного мартенсита и бейнита, не более 40% остаточного аустенита и 25-35% вторичного мартенсита. Формирование такой структуры позволяет достигать одновременно высокой прочности и пластичности.
Примеры осуществления.
Высокопрочный горячекатаный лист из среднеуглеродистой стали со следующим химическим составом масс. %: 0,44 С, 1,81 Si, 0,82 Cr, 1,33 Mn, 0,28 Мо остальное Fe и неизбежные примеси (содержание S и Р не более 0,008 масс. %) был получен горячей прокаткой и обработкой «закалка-распределение» (Q&P). Для подбора температур Q&P обработки определялись температуры Ms и Mf с использованием закалочного дилатометра при скорости закалки не менее 200 град/сек при температуре в интервале 900-300°С и в интервале 300-70°С со скорость 76 град/сек. Температуры Ms и Mf составили 270°С и 51°С.
Пример 1. Высокопрочный горячекатаный лист из среднеуглеродистой стали был получен согласно следующим технологическим операциям:
1) Нагрев заготовки низкоуглеродистой стали в муфельной печи до температуры деформации 1050°С и выдержка в течение 2 часов;
2) Прокатка в интервале температур 1100°С-900°С с обжатием 60% и последующим охлаждением на воздухе.
3) Закалка, включающая аустенизацию при температуре 900°С с выдержкой в течение 300 секунд, охлаждение в горячей среде (соляном расплаве) при температуре 140°С в течение 30 секунд;
4) Распределение при температуре 350°С в течение 60 секунд в соляном расплаве, с последующим охлаждением в воду.
Пример 2. Высокопрочный горячекатаный лист из среднеуглеродистой стали был получен согласно следующим технологическим операциям:
1) Нагрев заготовки низкоуглеродистой стали в муфельной печи до температуры деформации 1080°С и выдержка в течение 2 часов;
2) Прокатка в интервале температур 1100°С-900°С с обжатием 60% и последующим охлаждением на воздухе.
3) Закалка, включающая аустенизацию при температуре 900°С с выдержкой в течение 300 секунд, охлаждение в горячей среде (соляном расплаве) при температуре 160°С в течение 120 секунд;
4) Распределение при температуре 400°С в течение 180 секунд в соляном расплаве, с последующим охлаждением в воду.
Пример 3. Высокопрочный горячекатаный лист из среднеуглеродистой стали был получен согласно следующим технологическим операциям:
1) Нагрев заготовки низкоуглеродистой стали в муфельной печи до температуры деформации 1100°С и выдержка в течение 2 часов;
2) Прокатка в интервале температур 1100°С-900°С с обжатием 60% и последующим охлаждением на воздухе.
3) Закалка, включающая аустенизацию при температуре 900°С с выдержкой в течение 300 секунд, охлаждение в горячей среде (соляном расплаве) при температуре 200°С в течение 180 секунд;
4) Распределение при температуре 410°С в течение 300 секунд в соляном расплаве, с последующим охлаждением в воду.
Результаты испытаний на растяжение при комнатной температуре и твердость по методу Роквелла выполнены в соответствии с ГОСТ. Доля остаточного аустенита определялась с использованием растрового микроскопа с приставкой для ДОРЭ (дифракция обратнорассеянных электронов) анализа. Результаты приведены в таблице 1.
Предложенное техническое решение обеспечивает комплекс высоких эксплуатационных характеристик горячекатаного листа, а именно высокую прочность, твердость и пластичность, кроме того позволяет получать одновременно высокий уровень прочности и пластичности, что подтверждается показателем сочетания прочности и пластичности (σB×δ), определяемым как величина произведения временного сопротивления разрушению и относительного удлинения.

Claims (2)

1. Способ получения высокопрочного стального листа с пределом текучести на растяжение не менее 1350 МПа, пределом прочности не менее 1700 МПа и относительным удлинением не менее 18% из стали, содержащей мас.%: углерод 0,30-0,46, кремний 1,50-2,0, марганец 1,00-1,40, хром 0,80-1,20, молибден 0,20-0,50, при необходимости по меньшей мере один компонент: ниобий до 0,10, ванадий до 0,20, титан до 0,04 и бор до 0,005, железо и неизбежные примеси остальное, характеризующийся тем, что стальную заготовку нагревают до температуры 1100-1080°С и выдерживают при данной температуре не менее 1 часа для гомогенизации, прокатку осуществляют от температуры 1100-1080°С до температуры не менее 900°С со степенью обжатия не менее 60% и последующим охлаждением на воздухе, затем повторно нагревают до температуры АC3+(30-50)°С, но не ниже 900°С, до полной аустенизации, охлаждают до температуры закалки в соляном расплаве, предварительно нагретом до температуры на 70-130°С ниже температуры начала мартенситного превращения Ms, со скоростью охлаждения 210-250°С в секунду в интервале 900-300°С в течение 30-180 секунд с обеспечением получения в структуре не более 40% остаточного аустенита, затем нагревают лист в соляном расплаве до температуры, которая выше температуры начала мартенситного превращения Ms и составляет 350-410°С, проводят распределение углерода между мартенситом и остаточным аустенитом в течение 60-300 секунд для предотвращения образования бейнита в количестве более 15% и охлаждают лист в воду.
2. Способ по п. 1, отличающийся тем, что температуру начала мартенситного превращения Ms и объем образовавшегося бейнита определяют дилатометрическим методом.
RU2023113036A 2023-05-19 Способ получения высокопрочного стального листа RU2813066C1 (ru)

Publications (1)

Publication Number Publication Date
RU2813066C1 true RU2813066C1 (ru) 2024-02-06

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU991518A1 (ru) * 1979-12-28 1983-01-23 Всесоюзный Научно-Исследовательский Конструкторско-Технологический Институт Подшипниковой Промышленности Способ термообработки высоколегированных вторично-твердеющих сталей
CN106834962B (zh) * 2017-03-29 2018-07-06 沈阳工业大学 一种超高强高碳低合金钢及其成形和热处理工艺方法
RU2677888C2 (ru) * 2014-07-03 2019-01-22 Арселормиттал Способ изготовления высокопрочной листовой стали, имеющей улучшенную формуемость, и полученный лист
RU2680043C2 (ru) * 2014-07-03 2019-02-14 Арселормиттал Способ изготовления высокопрочного стального листа, обладающего улучшенной формуемостью и пластичностью, и полученный лист
RU2716920C2 (ru) * 2015-12-21 2020-03-17 Арселормиттал Способ производства листовой стали, характеризующейся улучшенными прочностью, тягучестью и формуемостью

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU991518A1 (ru) * 1979-12-28 1983-01-23 Всесоюзный Научно-Исследовательский Конструкторско-Технологический Институт Подшипниковой Промышленности Способ термообработки высоколегированных вторично-твердеющих сталей
RU2677888C2 (ru) * 2014-07-03 2019-01-22 Арселормиттал Способ изготовления высокопрочной листовой стали, имеющей улучшенную формуемость, и полученный лист
RU2680043C2 (ru) * 2014-07-03 2019-02-14 Арселормиттал Способ изготовления высокопрочного стального листа, обладающего улучшенной формуемостью и пластичностью, и полученный лист
RU2716920C2 (ru) * 2015-12-21 2020-03-17 Арселормиттал Способ производства листовой стали, характеризующейся улучшенными прочностью, тягучестью и формуемостью
CN106834962B (zh) * 2017-03-29 2018-07-06 沈阳工业大学 一种超高强高碳低合金钢及其成形和热处理工艺方法

Similar Documents

Publication Publication Date Title
CN110088342B (zh) 具有高成形性的高强度冷轧钢板及其制造方法
KR102470965B1 (ko) 우수한 인성, 연성 및 강도를 갖는 강 시트 및 이의 제조 방법
RU2757020C1 (ru) Холоднокатаная и термообработанная листовая сталь и способ ее изготовления
JP6306711B2 (ja) 耐遅れ破壊特性を有するマルテンサイト鋼および製造方法
JP2022160585A (ja) 冷間圧延鋼板及びその製造方法
KR102548555B1 (ko) 냉간 압연 및 열 처리된 강판 및 냉간 압연 및 열 처리된 강판의 제조 방법
WO2019009410A1 (ja) 熱延鋼板及びその製造方法
KR102383626B1 (ko) 냉간 압연되고 어닐링된 강 시트 및 냉간 압연되고 어닐링된 강 시트를 제조하는 방법
RU2750317C1 (ru) Холоднокатаная и термообработанная листовая сталь и способ ее изготовления
CN113316650B (zh) 高强度钢带材
CN111771009A (zh) 一种汽车钢及其制造方法
JP2021503040A (ja) 平鋼製品およびその製造方法
WO2021089851A1 (en) Medium manganese steel product and method of manufacturing the same
JP6972153B2 (ja) 最低1100MPaの引張強度と、18%以上の全伸びを有する熱間圧延ベイナイト鋼製品
CN113840930A (zh) 经冷轧和涂覆的钢板及其制造方法
CN112877591A (zh) 一种高强韧五金工具及链条用钢及其制造方法
RU2768717C1 (ru) Холоднокатаный отожжённый стальной лист с высокой степенью раздачи отверстия и способ его изготовления
RU2813066C1 (ru) Способ получения высокопрочного стального листа
RU2813069C1 (ru) Способ получения высокопрочного стального листа
RU2813064C1 (ru) Способ получения высокопрочного стального листа
CN115698365B (zh) 经热处理的冷轧钢板及其制造方法
RU2812417C1 (ru) Способ получения высокопрочного стального листа
WO2021172297A1 (ja) 鋼板、部材及びそれらの製造方法
WO2021172298A1 (ja) 鋼板、部材及びそれらの製造方法
WO2021172299A1 (ja) 鋼板、部材及びそれらの製造方法