RU2703792C1 - Система очистки выхлопных газов двигателя внутреннего сгорания - Google Patents

Система очистки выхлопных газов двигателя внутреннего сгорания Download PDF

Info

Publication number
RU2703792C1
RU2703792C1 RU2019109848A RU2019109848A RU2703792C1 RU 2703792 C1 RU2703792 C1 RU 2703792C1 RU 2019109848 A RU2019109848 A RU 2019109848A RU 2019109848 A RU2019109848 A RU 2019109848A RU 2703792 C1 RU2703792 C1 RU 2703792C1
Authority
RU
Russia
Prior art keywords
hydrogen
exhaust
pipe
exhaust gases
supply pipe
Prior art date
Application number
RU2019109848A
Other languages
English (en)
Inventor
Ясумаса НОТАКЕ
Хиромаса НИСИОКА
Кеиси ТАКАДА
Тецуя САКУМА
Киёси ФУДЗИХАРА
Original Assignee
Тойота Дзидося Кабусики Кайся
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тойота Дзидося Кабусики Кайся filed Critical Тойота Дзидося Кабусики Кайся
Application granted granted Critical
Publication of RU2703792C1 publication Critical patent/RU2703792C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/0205Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/10Engines with means for rendering exhaust gases innocuous
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/14Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/12Tubes being corrugated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/04Adding substances to exhaust gases the substance being hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Каталитический нейтрализатор (5) для обработки выхлопных газов размещается в выхлопном канале двигателя, и водород, сформированный в риформере (6), подается по трубе (13) для подачи водорода внутрь выхлопного канала двигателя выше по потоку от каталитического нейтрализатора (5) для обработки выхлопных газов. Теплообменные ребра (15) для теплообмена с выхлопными газами, протекающими через внутреннее пространство выхлопного канала двигателя, формируются на внешней круговой поверхности трубы (13) для подачи водорода, вставленной внутрь выхлопного канала двигателя. 3 з.п. ф-лы, 10 ил.

Description

Область техники
Настоящее изобретение относится к системе очистки выхлопных газов двигателя внутреннего сгорания.
Уровень техники
В прошлом был известен двигатель внутреннего сгорания, в котором каталитический нейтрализатор для очистки NOX размещается в выхлопном канале двигателя, предусматривается устройство риформинга топлива для создания риформированного газа, содержащего водород, высокотемпературный газ, содержащий водород, произведенный в устройстве риформинга топлива, подается в выхлопной канал двигателя выше по потоку от каталитического нейтрализатора для очистки NOX во время запуска двигателя, и водород в подаваемом риформированном газе используется для повышения степени очистки NOX каталитического нейтрализатора для очистки NOX (см., например, публикацию не прошедшей экспертизу заявки на патент Японии № 2010-270664).
Техническая проблема
В этом отношении, в случае размещения каталитического нейтрализатора для обработки выхлопных газов типа окислительного нейтрализатора в выпускном канале двигателя, подачи высокотемпературного риформированного газа, содержащего водород, сформированного в устройстве риформинга топлива, внутрь выхлопного канала двигателя выше по потоку от каталитического нейтрализатора для обработки выхлопных газов и попытки заставить температуру каталитического нейтрализатора для обработки выхлопных газов быстро расти за счет тепла окислительной реакции водорода на каталитическом нейтрализаторе для обработки выхлопных газов, если водород, подаваемый внутрь выхлопного канала двигателя, прекращает реагировать с кислородом, содержащимся в выхлопных газах, и будет расходоваться за счет самовозгорания до реагирования с кислородом на каталитическом нейтрализаторе для обработки выхлопных газов, тепло окислительной реакции водорода не будет формироваться как-либо больше на каталитическом нейтрализаторе для обработки выхлопных газов, и станет трудно заставлять температуру каталитического нейтрализатора для обработки выхлопных газов быстро расти.
В этом случае, чтобы заставлять температуру каталитического нейтрализатора для обработки выхлопных газов быстро расти, необходимо удерживать водород, подаваемый внутрь выпускного канала двигателя, от реагирования с кислородом, содержащимся в выхлопных газах, и расходования за счет самовозгорания до реагирования с кислородом на каталитическом нейтрализаторе для обработки выхлопных газов. Однако, в вышеупомянутом двигателе внутреннего сгорания, это не рассматривалось вообще.
Решение проблемы
Согласно настоящему изобретению, предоставляется система очистки выхлопных газов двигателя внутреннего сгорания, содержащая: риформер, каталитический нейтрализатор для обработки выхлопных газов, размещенный в выпускном канале двигателя, трубу для подачи водорода, вставленную внутрь выхлопного канала двигателя выше по потоку от каталитического нейтрализатора для обработки выхлопных газов, водород, сформированный в риформере, подается в выхлопной канал двигателя выше по потоку от каталитического нейтрализатора для обработки выхлопных газов по трубе для подачи водорода, и теплообменные ребра, сформированные на внешней круговой поверхности трубы для подачи водорода для теплообмена с выхлопными газами, протекающими через внутреннее пространство выхлопного канала двигателя.
Полезные результаты изобретения
За счет формирования теплообменных ребер для обмена теплом с выхлопными газами на внешней круговой поверхности трубы для подачи водорода температура риформированного газа падает. Вследствие этого, водород, содержащийся в риформированном газе, удерживается от расходования посредством самосгорания, таким образом, возможно заставлять температуру каталитического нейтрализатора для обработки выхлопных газов быстро расти. Кроме того, посредством формирования теплообменных ребер на внешней круговой поверхности трубы для подачи водорода, тепло риформированного газа эффективно передается выхлопным газам. В результате, температура выхлопных газов растет, и, соответственно, стимулируется рост температуры каталитического нейтрализатора для обработки выхлопных газов.
Краткое описание чертежей
Фиг. 1 - общий вид двигателя внутреннего сгорания;
Фиг. 2A и 2B - укрупненный вид в боковом разрезе окружающего пространства устройства обработки выхлопных газов с фиг. 1 и вид в поперечном разрезе B-B с фиг. 2A, соответственно;
Фиг. 3 - укрупненный вид в боковом разрезе окружающего пространства устройства обработки выхлопных газов, показывающий другой вариант осуществления;
Фиг. 4A и 4B - укрупненный вид в боковом разрезе окружающего пространства устройства обработки выхлопных газов, показывающий еще один вариант осуществления, и вид в поперечном разрезе B-B с фиг. 4A, соответственно;
Фиг. 5 - вид для объяснения реакции риформинга дизельного топлива;
Фиг. 6A и 6B - вид, показывающий соотношение между равновесной температуры TB реакции и молярным отношением O2/C, и вид, показывающий соотношение между числом молекул, сформированных на каждый атом углерода, и молярным отношением O2/C, соответственно; и
Фиг. 7 - вид, показывающий область, где водород будет расходоваться за счет самовозгорания.
Подробное описание вариантов осуществления изобретения
Фиг. 1 является общим видом двигателя внутреннего сгорания с типом воспламенения от сжатия. Обращаясь к фиг. 1, указывает корпус 2 двигателя, выпускной коллектор 3, выхлопную трубу 4, устройство обработки выхлопных газов, соединенное с выхлопной трубой 3, 5, каталитический нейтрализатор для обработки выхлопных газов, удерживаемый внутри устройства 4 обработки выхлопных газов, и риформер 6 для формирования риформированного газа, содержащего водород. Риформер 6 снабжается катализатором 7 риформинга, камерой 8 сгорания с форсункой, сформированной на одной стороне катализатора 7 риформинга, камерой 9 выпуска риформированного газа, сформированной на другой стороне катализатора 7 риформинга, и топливной форсункой 10. Топливная форсунка 10 соединяется с топливным баком 11 и воздушным насосом 12. Топливо, подаваемое из топливного бака 11, и воздух, подаваемый от воздушного насоса 12, подаются из топливной форсунки 10 внутрь камеры 8 сгорания с форсункой.
Топливо, подаваемое из топливной форсунки 10, принудительно сгорает внутри камеры 8 сгорания с форсункой. Далее, произведенный газ сгорания отправляется в катализатор 7 риформинга и риформируется, в результате чего, риформированный газ, содержащий водород, производится в катализаторе 7 риформинга. Риформированный газ, содержащий водород, произведенный в катализаторе 7 риформинга, отправляется в камеру 9 выпуска риформированного газа. Риформированный газ, содержащий водород, отправленный в камеру 9 выпуска риформированного газа, подается через трубу 13 для подачи водорода, проходящую от камеры 9 выпуска риформированного газа внутрь выхлопной трубы 3, внутрь выхлопной трубы 3 выше по потоку от каталитического нейтрализатора 5 для обработки выхлопных газов, т.е., внутрь выхлопного канала двигателя выше по потоку от каталитического нейтрализатора 5 для обработки выхлопных газов. Этот каталитический нейтрализатор 5 для обработки выхлопных газов состоит из окислительного нейтрализатора, каталитического нейтрализатора для накопления NOX или оснащенного катализатором фильтра для улавливания частиц.
Фиг. 2A является укрупненным видом в боковом разрезе окружающего пространства устройства 4 для обработки выхлопных газов, показанного на фиг. 1. Обращаясь к фиг. 2A, труба 13 для подачи водорода состоит из полой металлической трубы. Передняя концевая часть этой трубы 13 для подачи водорода проходит от внешней стороны выхлопной трубы 3 сквозь стенку выхлопной трубы 3 внутрь выхлопной трубы 3. Передняя концевая часть трубы 13 для подачи водорода изгибается в центральной части внутри выхлопной трубы 3 в осевом направлении выхлопной трубы 3, так что передняя концевая открывающаяся часть 14 трубы 13 для подачи водорода обращена к торцевой поверхности на стороне выше по потоку от каталитического нейтрализатора 5 для обработки выхлопных газов. Отметим, что в примере, показанном на фиг. 2A, передняя концевая часть трубы 13 для подачи водорода формирует L-образную форму внутри выхлопной трубы 3.
С другой стороны, как показано на фиг. 2A и фиг. 2B, множество теплообменных ребер 15 для обмена теплом с выхлопными газами, протекающими сквозь внутренность выхлопной трубы 3, формируются на внешней круговой поверхности трубы 13 для подачи водорода, расположенной внутри выхлопной трубы 3. Другими словами, множество теплообменных ребер 15 для обмена теплом с выхлопными газами, протекающими сквозь внутренность выхлопного канала двигателя, формируются на внешней круговой поверхности трубы 13 для подачи водорода, вставленной внутрь выхлопного канала двигателя. Как будет понятно из фиг. 2A и фиг. 2B, эти теплообменные ребра 15 состоят из тонких ребер, проходящих в направлении потока выхлопных газов внутри выхлопной трубы 3. Дополнительно, в примере, показанном на фиг. 2A и фиг. 2B, теплообменные ребра 15 формируются по всей внешней круговой поверхности трубы 13 для подачи водорода, расположенной внутри выхлопной трубы 3.
С другой стороны, в примере, показанном на фиг. 2A и фиг. 2B, множество теплообменных ребер 16 для обмена теплом с водородом, протекающим сквозь внутренность трубы 13 для подачи водорода, более точно для обмена теплом с риформированным газом, содержащим водород, также формируются на внутренней круговой поверхности трубы 13 для подачи водорода, расположенной внутри выхлопной трубы 3. Отметим, что в примере, показанном на фиг. 2A и фиг. 2B, эти теплообменные ребра 16 формируются в трубе 13 для подачи водорода, расположенной внутри выхлопной трубы 3, только в части, проходящей вдоль осевой линии выхлопной трубы 3.
Фиг. 3 показывает модификацию трубы 13 для подачи водорода. В примере, показанном на фиг. 3, тем же образом, что и в примере, показанном на фиг. 2A и фиг. 2B, множество теплообменных ребер 15 для обмена теплом с выхлопными газами, протекающими сквозь внутренность выхлопной трубы 3, формируются на внешней круговой поверхности трубы 13 для подачи водорода, расположенной внутри выхлопной трубы 3. В противоположность этому, в примере, показанном на фиг. 3, в отличие от примера, показанного на фиг. 2A и фиг. 2B, теплообменные ребра не формируются на внутренней круговой поверхности трубы 13 для подачи водорода, расположенной внутри выхлопной трубы 3. Вместо этого, в примере, показанном на фиг. 3, генератор 17 вихревого потока для придания вихревого потока вокруг оси трубы 13 для подачи водорода водороду, протекающему сквозь внутренность трубы 13 для подачи водорода, более точно риформированному газу, содержащему водород, размещается в позиции внутри трубы 13 для подачи водорода и снаружи выхлопной трубы 3.
Фиг. 4A и фиг. 4B показывают другую модификацию трубы 13 для подачи водорода. В примере, показанном на фиг. 4A и фиг. 4B, передняя концевая часть трубы 13 для подачи водорода проходит внутрь выхлопной трубы 3 в форме завихрения вокруг оси выхлопной трубы 3 до оси выхлопной трубы 3, и передняя концевая открывающаяся часть 14 трубы 13 для подачи водорода ориентируется в направлении торцевой поверхности на стороне выше по потоку каталитического нейтрализатора 5 для обработки выхлопных газов. В этой модификации также, как показано на фиг. 4A и фиг. 4B, множество теплообменных ребер 15 для обмена теплом с выхлопными газами, протекающими сквозь внутренность выхлопной трубы 3, формируются на внешней круговой поверхности трубы 13 для подачи водорода, расположенной внутри выхлопной трубы 3. Эти теплообменные ребра 15 состоят из тонких ребер, проходящих в направлении потока выхлопных газов внутри выхлопной трубы 3.
Как объяснено выше, в риформере 6, водород формируется посредством риформирования топлива. Следовательно, далее, обращаясь к фиг. 5, будет просто объяснена реакция риформирования в случае использования дизельного топлива в качестве топлива. Фиг. 5(a) и (b) показывают формулу реакции, когда реакция полного окисления выполняется, и формулу реакции, когда реакция риформирования с частичным окислением выполняется в случае использования обычно используемого дизельного топлива в качестве топлива. Отметим, что количества сформированного тепла ΔH0 в формулах реакции показаны посредством нижнего значения нагрева (LHV). В риформере 6, показанном на фиг. 1, топливо и воздух, подаваемые из топливной форсунки 10, реагируют в катализаторе 7 риформинга посредством реакции риформинга с частичным окислением, показанной на фиг. 5(b), в результате чего, формируется водород. Эта реакция риформинга с частичным окислением, как показано посредством формулы реакции для реакции риформинга с частичным окислением на фиг. 5(b), выполняется посредством богатого соотношения воздух-топливо для молярного отношения O2/C, равного 0,5, указывающего отношение воздуха и топлива, которые принудительно реагируют. В это время формируются CO и H2.
Фиг. 6A показывает соотношение между равновесной температуры TB реакции, когда воздух и топливо принудительно реагируют в катализаторе 7 риформинга и достигают равновесия, и молярным отношением O2/C воздуха и топлива. Отметим, что сплошная линия на фиг. 6A показывает теоретическое значение, когда температура воздуха равна 25°C. Как показано сплошной линией на фиг. 6A, когда реакция риформинга с частичным окислением выполняется посредством богатого соотношения воздух-топливо для молярного отношения O2/C=0,5, равновесная температура TB реакции становится равной приблизительно 830°C. В это время, практически 830°C-риформированный газ вытекает из катализатора 7 риформинга внутрь камеры 9 выпуска риформированного газа, и риформированный газ, вытекающий внутрь камеры 9 выпуска риформированного газа, отправляется по трубе 13 для подачи водорода внутрь выхлопной трубы 3. Отметим, что фактическая равновесная температура TB реакции в это время отчасти ниже 830°C, следовательно, фактически, температура риформированного газа, вытекающего внутрь камеры 9 выпуска риформированного газа, отчасти ниже 830°C.
С другой стороны, как будет понятно из формулы реакции для реакции полного окисления на фиг. 5(a), соотношение воздуха и топлива, когда молярное отношение O2/C=1,4575 становится стехиометрическим отношением воздух-топливо. Как показано на фиг. 6A. равновесная температура TB реакции становится наивысшей, когда соотношение воздуха и топлива становится стехиометрическим отношением воздух-топливо. Когда молярное отношение O2/C находится между 0,5 и 1,4575, частично, выполняется реакция риформинга с частичным окислением, в то время как, частично, выполняется реакция полного окисления. В этом случае, чем больше молярное отношение O2/C, тем больше отношение, по которому выполняется реакция полного окисления, по сравнению с отношением, по которому выполняется реакция риформинга с частичным окислением, таким образом, чем больше молярное отношение O2/C, тем выше равновесная температура TB реакции.
С другой стороны, фиг. 6B показывает соотношение между числом молекул (H2 и CO), сформированных на каждый атом углерода, и молярным отношением O2/C. Как объяснено выше, чем молярное отношение O2/C больше чем 0,5, тем меньше отношение, по которому выполняется реакция риформинга с частичным окислением. Следовательно, как показано на фиг. 6B, чем больше молярное отношение O2/C чем 0,5, тем меньше количества формирования H2 и CO. Дополнительно, как показано на фиг. 6A, если молярное отношение O2/C становится больше 0,5, равновесная температура TB реакции быстро растет, и температура катализатора 7 риформинга также быстро растет. Следовательно, если сделать молярное отношение O2/C больше 0,5, катализатор 7 риформинга прекращает деградировать вследствие тепла. С другой стороны, как показано на фиг. 6B, если молярное отношение O2/C становится меньше 0,5, увеличивается избыточный углерод C, который не может реагировать. Этот избыточный углерод C оседает внутри пор подложки катализатора 7 риформинга, что вызывает так называемое "закоксовывание". Если происходит закоксовывание, способность риформирования катализатора 7 риформинга заметно падает. Следовательно, чтобы избегать возникновения закоксовывания, молярное отношение O2/C должно удерживаться от снижения ниже 0,5.
Дополнительно, как будет понятно из фиг. 6B, когда молярное отношение O2/C равно 0,5, величина формирования водорода становится наивысшей в диапазоне, где избыточный углерод C не формируется. Следовательно, когда выполняется реакция риформинга с частичным окислением для формирования водорода, чтобы избегать коксования и теплового износа катализатора 7 риформинга, в то же время предоставляя возможность наиболее эффективного формирования водорода, молярное отношение O2/C делается равным 0,5 или слегка выше 0,5. Температура риформированного газа, содержащего водород, сформированный в это время, падает от части до достижения выхлопной трубы 3 и становится равной 700-920°С или т.п.
Далее, будет объяснен, например, случай повышения температуры каталитического нейтрализатора 5 для обработки выхлопных газов, когда, как во время операции прогрева двигателя, температура каталитического нейтрализатора 5 для обработки выхлопных газов является низкой. Итак, когда температура каталитического нейтрализатора 5 для обработки выхлопных газов является низкой, если высокотемпературный риформированный газ, содержащий водород, подается из трубы 13 для подачи водорода, каталитический нейтрализатор 5 для обработки выхлопных газов нагревается не только посредством тепла выхлопных газов, но также тепла подаваемого риформированного газа, и его температура повышается. В это время, температура каталитического нейтрализатора 5 для обработки выхлопных газов растет благодаря теплу выхлопных газов и теплу риформированного газа, переносимого посредством теплопереноса на каталитический нейтрализатор 5 для обработки выхлопных газов. С другой стороны, как объяснено выше, каталитический нейтрализатор 5 для обработки выхлопных газов состоит из окислительного нейтрализатора, каталитического нейтрализатора для накопления NOX или оснащенного катализатором фильтра для улавливания частиц. Этот каталитический нейтрализатор 5 для обработки выхлопа несет катализатор из благородного металла, такого как платина Pt, палладий Pd или родий Rh. Если, таким образом, каталитический нейтрализатор 5 для обработки выхлопных газов несет катализатор из благородного металла, водород, содержащийся в риформированном газе, подаваемом из трубы 13 для подачи водорода, будет принудительно реагировать с кислородом на катализаторе из благородного металла, и каталитический нейтрализатор 5 для обработки выхлопных газов будет дополнительно повышать температуру благодаря теплу окислительной реакции, формируемой в это время.
В этом отношении, когда каталитический нейтрализатор 5 для обработки выхлопных газов нагревается посредством тепла окислительной реакции водорода в этом способе, сам каталитический нейтрализатор 5 для обработки выхлопных газов непосредственно нагревается посредством тепла окислительной реакции водорода. Следовательно, если каталитический нейтрализатор 5 для обработки выхлопных газов нагревается посредством тепла окислительной реакции водорода, температура каталитического нейтрализатора 5 для обработки выхлопных газов принудительно растет гораздо более быстро по сравнению со случаем, когда каталитический нейтрализатор 5 для обработки выхлопных газов нагревается вследствие теплопереноса тепла выхлопных газов и тепла риформированного газа. Следовательно, чтобы принудительно поднимать температуру каталитического нейтрализатора 5 для обработки выхлопных газов, использование тепла окислительной реакции водорода является крайне эффективным. По этой причине, необходимо отправлять столько водорода, сколько возможно из трубы 13 для подачи водорода внутрь каталитического нейтрализатора 5 для обработки выхлопных газов.
В этом отношении, водород реагирует с кислородом (2H2+O2→2H2O) и расходуется за счет самовозгорания, если кислород присутствует в окружающем пространстве, и температура окружающего пространства становится высокой. Заштрихованная область на фиг. 7 показывает область, где водород реагирует с кислородом, и водород расходуется за счет самовозгорания в этом способе. Отметим, что, на фиг. 7, абсцисса показывает температуру вокруг водорода, т.е., температуру окружающего воздуха (°C), в то время как ордината показывает давление (мм рт.ст.). Дополнительно, на фиг. 7, прерывистая линия показывает атмосферное давление. Следовательно, из фиг. 7 будет понятно, что, если температура окружающего воздуха становится 550°C или более, водород будет расходоваться за счет самовозгорания. С другой стороны, давление выхлопных газов внутри выхлопной трубы 3 выше по потоку от каталитического нейтрализатора 5 для обработки выхлопных газов равно практически атмосферному давлению. Следовательно, когда водород подается из трубы 13 для подачи водорода внутрь выхлопной трубы 3, если температура окружающего воздуха приблизительно равна 550°C или более, этот водород будет расходоваться за счет самовозгорания.
Итак, чтобы отправить столько водорода, сколько возможно из трубы 13 для подачи водорода внутрь каталитического нейтрализатора 5 для обработки выхлопных газов, необходимо принудительно доставлять водород, подаваемый из трубы 13 для подачи водорода внутрь выхлопной трубы 3, к каталитическому нейтрализатору 5 для обработки выхлопных газов без расхода за счет самовозгорания. Для этого, когда водород подается из трубы 13 для подачи водорода внутрь выхлопной трубы 3, температура вокруг подаваемого водорода, т.е., температура окружающего воздуха, должна будет понижаться приблизительно до 550°C или менее. С другой стороны, как объяснено выше, риформированный газ, содержащий водород, сформированный в риформере 6, становится 700-920°C или около того, когда достигает выхлопной трубы 3. Следовательно, для того, чтобы отправлять столько водорода, сколько возможно из трубы 13 для подачи водорода внутрь каталитического нейтрализатора 5 для обработки выхлопных газов, необходимо понижать температуру водорода, которая равна 700-920°C или т.п., в то время как водород протекает по трубе 13 для подачи водорода, так что температура вокруг водорода, подаваемого из трубы 13 для подачи водорода, т.е., температура окружающего воздуха, становится равной приблизительно 550°C или менее.
Следовательно, в варианте осуществления согласно настоящему изобретению, множество теплообменных ребер 15 для обмена теплом с выхлопными газами, протекающими сквозь внутренность выхлопной трубы 3, формируются, по меньшей мере, на внешней круговой поверхности трубы 13 для подачи водорода, расположенной внутри выхлопной трубы 3. Если, таким образом, множество теплообменных ребер 15 формируются на внешней круговой поверхности трубы 13 для подачи водорода, благодаря действию теплообмена с выхлопными газами, которые имеют более низкую температуру, чем температура водорода, протекающего по трубе 13 для подачи водорода, температура водорода, протекающего по трубе 13 для подачи водорода, принудительно падает, так что температура вокруг водорода, подаваемого из трубы 13 для подачи водорода внутрь выхлопных газов, т.е., температура окружающего воздуха, становится равной приблизительно 550°C или менее. В результате, водород, подаваемый из трубы 13 для подачи водорода в выхлопную трубу 3, будет отправляться в каталитический нейтрализатор 5 для обработки выхлопных газов без расходования посредством самосгорания, и температура каталитического нейтрализатора 5 для обработки выхлопных газов должна быстро расти благодаря теплу окислительной реакции водорода, формируемому в каталитическом нейтрализаторе 5 для обработки выхлопных газов.
С другой стороны, выхлопные газы, протекающие вокруг трубы 13 для подачи водорода, нагреваются за счет действия теплообмена с водородом, протекающим по трубе 13 для подачи водорода, и его температура повышается. Эти выхлопные газы с повышенной температурой протекают в каталитический нейтрализатор 5 для обработки выхлопных газов, в результате чего, температура каталитического нейтрализатора 5 для обработки выхлопных газов должна дополнительно расти. Т.е., количество тепла, используемого для охлаждения водорода, протекающего через внутреннее пространство трубы 13 для подачи водорода, может быть эффективно использовано для повышения температуры каталитического нейтрализатора 5 для обработки выхлопных газов. Отметим, что действие охлаждения водорода, протекающего по трубе 13 для подачи водорода, дополнительно стимулируется посредством формирования теплообменных ребер 15 по всей внешней круговой поверхности трубы 13 для подачи водорода и, как показано на фиг. 2A и фиг. 2B, дополнительно стимулируется посредством формирования множества теплообменных ребер 16 поверх внутренней круговой поверхности трубы 13 для подачи водорода, расположенной внутри выхлопной трубы 3.
В модификации, показанной на фиг. 3, генератор 17 вихревого потока размещается внутри трубы 13 для подачи водорода, расположенной на внешней боковой части выхлопной трубы 3, т.е., на входе трубы 13 для подачи водорода внутрь выхлопной трубы 3. Благодаря этому генератору 17 вихревого потока, вихревой поток вокруг оси трубы 13 для подачи водорода придается риформированному газу, содержащему водород, протекающему по трубе 13 для подачи водорода. В результате, теплообмен между водородом, протекающим по трубе 13 для подачи водорода, и выхлопными газами стимулируется, и действие охлаждения водорода, протекающего по трубе 13 для подачи водорода, стимулируется. Дополнительно, в модификации, показанной на фиг. 4A и фиг. 4B, площадь контакта трубы 13 для подачи водорода с выхлопными газами увеличивается, и время теплообмена с выхлопными газами также увеличивается, таким образом, действие охлаждения водорода, протекающего по трубе 13 для подачи водорода, дополнительно стимулируется.

Claims (8)

1. Система очистки выхлопных газов двигателя внутреннего сгорания, содержащая:
риформер,
каталитический нейтрализатор для обработки выхлопных газов, размещенный в выхлопном канале двигателя,
трубу для подачи водорода, вставленную внутрь выхлопного канала двигателя выше по потоку от каталитического нейтрализатора для обработки выхлопных газов, причем водород, образованный в риформере, подается в выхлопной канал двигателя выше по потоку от каталитического нейтрализатора для обработки выхлопных газов через трубу для подачи водорода, и
теплообменные ребра, сформированные на внешней круговой поверхности трубы для подачи водорода для теплообмена с выхлопными газами, протекающими через внутреннее пространство выхлопного канала двигателя.
2. Система очистки выхлопных газов двигателя внутреннего сгорания по п. 1, в которой теплообменные ребра для теплообмена с риформированным газом, содержащим водород и протекающим через внутреннее пространство трубы для подачи водорода, дополнительно сформированы на внутренней круговой поверхности трубы для подачи водорода.
3. Система очистки выхлопных газов двигателя внутреннего сгорания по п. 1, в которой внутри трубы для подачи водорода размещен генератор вихревого потока, придающий вихревой поток вокруг оси трубы для подачи водорода риформированному газу, содержащему водород, протекающему через внутреннее пространство трубы для подачи водорода.
4. Система очистки выхлопных газов двигателя внутреннего сгорания по п. 1, в которой передняя концевая часть трубы для подачи водорода проходит от внешней стороны выхлопной трубы сквозь стенку выхлопной трубы внутрь выхлопной трубы и сгибается в осевом направлении выхлопной трубы, так что открывающаяся часть переднего конца трубы для подачи водорода обращена к торцевой поверхности стороны выше по потоку каталитического нейтрализатора для обработки выхлопных газов.
RU2019109848A 2018-04-11 2019-04-03 Система очистки выхлопных газов двигателя внутреннего сгорания RU2703792C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-076170 2018-04-11
JP2018076170A JP6958464B2 (ja) 2018-04-11 2018-04-11 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
RU2703792C1 true RU2703792C1 (ru) 2019-10-22

Family

ID=65493924

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019109848A RU2703792C1 (ru) 2018-04-11 2019-04-03 Система очистки выхлопных газов двигателя внутреннего сгорания

Country Status (7)

Country Link
US (1) US10641150B2 (ru)
EP (1) EP3553288A1 (ru)
JP (1) JP6958464B2 (ru)
KR (1) KR20190118969A (ru)
CN (1) CN110359986A (ru)
BR (1) BR102019003151A2 (ru)
RU (1) RU2703792C1 (ru)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998002648A1 (en) * 1996-07-16 1998-01-22 Lynntech, Inc. Method and apparatus for injecting hydrogen into a catalytic converter
RU2131980C1 (ru) * 1997-08-21 1999-06-20 Воропанова Лидия Алексеевна Каталитический нейтрализатор отработанных газов двигателя внутреннего сгорания
WO2000043103A1 (en) * 1999-01-22 2000-07-27 Benteler Automotive Corporation Vacuum-insulated exhaust treatment device with phase change materials and thermal management systems
RU2159344C1 (ru) * 1999-06-21 2000-11-20 Институт структурной макрокинетики и проблем материаловедения РАН Способ очистки выхлопных газов двигателя внутреннего сгорания
USRE39720E1 (en) * 1998-09-29 2007-07-10 Lynntech, Inc. Catalytic reduction of emissions from internal combustion engines
RU2008151941A (ru) * 2008-01-10 2010-07-10 Хальдор Топсеэ А/С (DK) Система для очистки выхлопного газа дизельных двигателей
RU2542159C2 (ru) * 2009-08-28 2015-02-20 Умикоре Аг & Ко. Кг Система нейтрализации отработавших газов, содержащая каталитический активный фильтр с проточной стенкой, имеющий функцию накопления и расположенный перед каталитическим нейтрализатором с такой же функйией накопления
CN205714365U (zh) * 2016-04-08 2016-11-23 江西省太平洋节能环保科技有限公司 一种二次燃烧净化处理装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2921158B2 (ja) * 1991-04-17 1999-07-19 トヨタ自動車株式会社 内燃機関の排気浄化装置
JPH05106430A (ja) 1991-10-16 1993-04-27 Toyota Central Res & Dev Lab Inc 内燃機関の窒素酸化物低減装置
JP2910468B2 (ja) * 1992-12-09 1999-06-23 トヨタ自動車株式会社 内燃機関の触媒暖機装置
US5813222A (en) * 1994-10-07 1998-09-29 Appleby; Anthony John Method and apparatus for heating a catalytic converter to reduce emissions
JP3733753B2 (ja) * 1998-07-29 2006-01-11 松下電器産業株式会社 水素精製装置
DE19855338A1 (de) * 1998-12-01 2000-06-08 Bosch Gmbh Robert Vorrichtung zum Einbringen eines Reduktionsmittels in einen Abgasrohrabschnitt einer Brennkraftmaschine
DE19934413A1 (de) * 1999-07-22 2001-01-25 Siemens Ag Vorrichtung zum Einbringen eines Zuschlagstoffes in ein Abgas
US6272849B1 (en) * 2000-01-13 2001-08-14 Ford Global Technologies, Inc. Apparatus and method for heating an automotive catalyst to an emission reactive condition
US6738930B1 (en) * 2000-12-22 2004-05-18 Crystal Group Inc. Method and system for extending the functionality of an environmental monitor for an industrial personal computer
DE10202171A1 (de) * 2002-01-22 2003-07-31 Bayerische Motoren Werke Ag Kraftfahrzeug mit einem Kryotank
US7021048B2 (en) * 2002-01-25 2006-04-04 Arvin Technologies, Inc. Combination emission abatement assembly and method of operating the same
US7614213B2 (en) * 2003-09-19 2009-11-10 Nissan Diesel Motor Co., Ltd. Engine exhaust emission purification apparatus
SE528119C2 (sv) * 2004-08-06 2006-09-05 Scania Cv Ab Arrangemang för att tillföra ett medium till en avgasledning hos en förbränningsmotor
US7581387B2 (en) 2005-02-28 2009-09-01 Caterpillar Inc. Exhaust gas mixing system
KR100675957B1 (ko) * 2005-10-04 2007-02-02 한국에너지기술연구원 내연기관 배기가스 가열장치
US20070144158A1 (en) * 2005-12-22 2007-06-28 Girard James W Exhaust dispersion device
JP4928304B2 (ja) * 2007-02-23 2012-05-09 日野自動車株式会社 排気浄化装置
JP5244334B2 (ja) * 2007-05-01 2013-07-24 三菱ふそうトラック・バス株式会社 内燃機関の排気浄化装置
EP2014886A1 (en) * 2007-07-09 2009-01-14 Delphi Technologies, Inc. Reservoir for a fluid dosing system
DE102008044708A1 (de) * 2008-08-28 2010-03-04 Emitec Gesellschaft Für Emissionstechnologie Mbh SCR-System mit Kompensationselement
JP2010203335A (ja) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd 排気浄化装置
JP2010270664A (ja) 2009-05-21 2010-12-02 Honda Motor Co Ltd 内燃機関の排気浄化システム
DE102009032022A1 (de) * 2009-07-07 2011-01-13 Man Nutzfahrzeuge Aktiengesellschaft Verfahren und Vorrichtung zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters
CN102791971B (zh) * 2010-03-15 2015-08-05 丰田自动车株式会社 内燃机的排气净化装置
EP3267005B2 (en) * 2010-06-22 2023-12-27 Donaldson Company, Inc. Exhaust aftertreatment device
EP2778382A4 (en) * 2011-09-14 2015-09-09 Hino Motors Ltd FUEL REFORMER AND EXHAUST PURIFYING DEVICE USING THE REFORMER
FR3014136B1 (fr) * 2013-12-03 2018-04-20 Faurecia Systemes D'echappement Dispositif d'injection d'un reducteur et ligne d'echappement correspondante
DE102016107867A1 (de) * 2015-05-12 2016-11-17 Denso Corporation Abgasemissions-Steuerungssystem und Reinigungssteuerungsvorrichtung
DE102016100284A1 (de) * 2016-01-11 2017-07-13 Eberspächer Exhaust Technology GmbH & Co. KG Abgasanlage für eine Brennkraftmaschine und Verfahren zum Betreiben einer Abgasanlage
JP2018003654A (ja) * 2016-06-29 2018-01-11 株式会社Soken 改質還元剤供給装置
JP6443404B2 (ja) 2016-07-04 2018-12-26 トヨタ自動車株式会社 熱、水素生成装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998002648A1 (en) * 1996-07-16 1998-01-22 Lynntech, Inc. Method and apparatus for injecting hydrogen into a catalytic converter
RU2131980C1 (ru) * 1997-08-21 1999-06-20 Воропанова Лидия Алексеевна Каталитический нейтрализатор отработанных газов двигателя внутреннего сгорания
USRE39720E1 (en) * 1998-09-29 2007-07-10 Lynntech, Inc. Catalytic reduction of emissions from internal combustion engines
WO2000043103A1 (en) * 1999-01-22 2000-07-27 Benteler Automotive Corporation Vacuum-insulated exhaust treatment device with phase change materials and thermal management systems
RU2159344C1 (ru) * 1999-06-21 2000-11-20 Институт структурной макрокинетики и проблем материаловедения РАН Способ очистки выхлопных газов двигателя внутреннего сгорания
RU2008151941A (ru) * 2008-01-10 2010-07-10 Хальдор Топсеэ А/С (DK) Система для очистки выхлопного газа дизельных двигателей
RU2542159C2 (ru) * 2009-08-28 2015-02-20 Умикоре Аг & Ко. Кг Система нейтрализации отработавших газов, содержащая каталитический активный фильтр с проточной стенкой, имеющий функцию накопления и расположенный перед каталитическим нейтрализатором с такой же функйией накопления
CN205714365U (zh) * 2016-04-08 2016-11-23 江西省太平洋节能环保科技有限公司 一种二次燃烧净化处理装置

Also Published As

Publication number Publication date
JP2019183756A (ja) 2019-10-24
KR20190118969A (ko) 2019-10-21
US10641150B2 (en) 2020-05-05
BR102019003151A2 (pt) 2019-10-29
CN110359986A (zh) 2019-10-22
JP6958464B2 (ja) 2021-11-02
EP3553288A1 (en) 2019-10-16
US20190316505A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
US6168650B1 (en) High temperature gas purification apparatus
US5987878A (en) Fuel reforming apparatus and electric power generating system having the same
JP4541646B2 (ja) コンパクトな蒸気リフォーマー
JP5097160B2 (ja) 燃料改質装置
JP4911927B2 (ja) 固体酸化物形燃料電池システム
JP4299868B2 (ja) 水素燃焼装置
JP4674189B2 (ja) ディーゼルエンジンの排気装置
TW200505576A (en) Method and apparatus for rapid heating of fuel reforming reactants
RU2684151C1 (ru) Узел камеры сгорания и нагревательный прибор
JP2010238446A (ja) 燃料電池システム
US7814746B2 (en) Exhaust device for a diesel engine
JP4538429B2 (ja) ディーゼルエンジンの排気装置
RU2703792C1 (ru) Система очистки выхлопных газов двигателя внутреннего сгорания
JP2010238416A (ja) 燃料電池システム
JP2002025595A (ja) 燃料蒸発器の暖機装置
US20050172618A1 (en) Catalytic combustion heating apparatus
JPH03218902A (ja) 水素原料改質装置の始動方法
JP2006225192A (ja) 改質装置
JPH03218903A (ja) 水素精製装置
RU2580738C1 (ru) Реактор для получения синтез-газа
JPH0891803A (ja) エンジン用メタノ−ルの改質装置
JP4590766B2 (ja) 改質装置
JPH0450244B2 (ru)
JPS5914672Y2 (ja) ボイラ−
JP2015010012A (ja) 燃料処理装置