RU2639903C2 - Деформируемый термически неупрочняемый сплав на основе алюминия - Google Patents

Деформируемый термически неупрочняемый сплав на основе алюминия Download PDF

Info

Publication number
RU2639903C2
RU2639903C2 RU2016122485A RU2016122485A RU2639903C2 RU 2639903 C2 RU2639903 C2 RU 2639903C2 RU 2016122485 A RU2016122485 A RU 2016122485A RU 2016122485 A RU2016122485 A RU 2016122485A RU 2639903 C2 RU2639903 C2 RU 2639903C2
Authority
RU
Russia
Prior art keywords
alloy
zirconium
aluminum
scandium
ratio
Prior art date
Application number
RU2016122485A
Other languages
English (en)
Other versions
RU2016122485A (ru
Inventor
Валерий Владимирович Захаров
Николай Григорьевич Байдин
Юрий Аркадьевич Филатов
Сергей Георгиевич Бочвар
Руслана Ивановна Доброжинская
Original Assignee
Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") filed Critical Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС")
Priority to RU2016122485A priority Critical patent/RU2639903C2/ru
Publication of RU2016122485A publication Critical patent/RU2016122485A/ru
Application granted granted Critical
Publication of RU2639903C2 publication Critical patent/RU2639903C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Silicon Compounds (AREA)

Abstract

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов, преимущественно в виде листов, в качестве конструкционного материала. Деформируемый термически неупрочняемый сплав на основе алюминия содержит, мас. %: магний 5,3-6,3; марганец 0,3-0,6; цирконий 0,11-0,16; бериллий 0,0001-0,005; скандий 0,11-0,16; титан 0,01-0,03; железо 0,06-0,18; алюминий и неизбежные примеси - остальное, в том числе кремний не более 0,1, цинк не более 0,06 и медь не более 0,06, при их суммарном содержании не более 0,18, при этом отношение содержания циркония к содержанию скандия составляет от 0,9 до 1,1, а отношение содержания железа к содержанию кремния равно или больше единицы. Техническим результатом является повышение прочности и пластичности сплава. 1 пр., 2 табл.

Description

Предлагаемое изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов, преимущественно в виде листов, в качестве конструкционного материала в авиакосмической технике, судостроении, транспортном машиностроении и других отраслях промышленности.
Известен деформируемый термически неупрочняемый сплав на основе алюминия марки АМг61, применяемый в виде деформированных полуфабрикатов в качестве конструкционного материала, содержащий, мас. %:
Магний 5,5-6,5
Марганец 0,8-1,1
Цирконий 0,02-0,1
Бериллий 0,0001-0,005
Медь, не более 0,05
Цинк, не более 0,2
Железо, не более 0,2
Кремний, не более 0,2
Алюминий Остальное
(см. Алюминиевые сплавы. Промышленные деформируемые спеченные и литейные алюминиевые сплавы. Справочное руководство. М.: Металлургия. 1972. С. 44-45).
Однако существующий сплав имеет низкие прочностные свойства.
Известен деформируемый термически неупрочняемый сплав на основе алюминия, применяемый в виде деформированных полуфабрикатов в качестве конструкционного материала (см. патент RU 2081934, МПК С22С 21/06 - прототип), следующего химического состава, мас. %:
Магний 5,3-6,3
Марганец 0,2-0,7
Цирконий 0,02-0,15
Бериллий 0,0001-0,005
Скандий 0,17-0,35
По крайней мере один металл из группы, содержащей
Титан и хром 0,01-0,25
Алюминий Остальное
Недостатком сплава-прототипа является недостаточно высокая прочность и низкая пластичность изготовленных из него листов, что утяжеляет конструкцию, изготовленную из листовых материалов, и снижает ее надежность. Также недостатком сплава-прототипа является довольно высокое содержание в нем дорогостоящего скандия, что удорожает сплав.
Предлагается деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, марганец, цирконий, бериллий, скандий и титан, который дополнительно содержит железо и неизбежные примеси, основными из которых являются кремний, цинк и медь, при следующем соотношении компонентов, мас. %:
Магний 5,3-6,3
Марганец 0,3-0,6
Цирконий 0,11-0,16
Бериллий 0,0001-0,005
Скандий 0,11-0,16
Титан 0,01-0,03
Железо 0,06-0,18
Алюминий и неизбежные примеси, в том числе кремний в количестве не более 0,1 мас. %,
Цинк в количестве не более 0,06 мас. %
Медь в количестве не более 0,06 мас. %,
При суммарном содержании примесей кремния, цинка и меди не более 0,18 мас. % Остальное,
при этом величина отношения содержания циркония к содержанию скандия должна быть от 0,9 до 1,1, а величина отношения содержания железа к содержанию кремния должна быть равна или больше единицы.
Предлагаемый сплав отличается от известного тем, что он дополнительно содержит железо и неизбежные примеси, основными из которых являются кремний, цинк и медь, при следующем соотношении компонентов, мас. %:
Магний 5,3-6,3
Марганец 0,3-0,6
Цирконий 0,11-0,16
Бериллий 0,0001-0,005
Скандий 0,11-0,16
Титан 0,01-0,03
Железо 0,06-0,18
Алюминий и неизбежные примеси, в том числе кремний в количестве не более 0,1 мас. %,
Цинк в количестве не более 0,06 мас. %
Медь в количестве не более 0,06 мас. %
При суммарном содержании примесей кремния, цинка и меди не более 0,18 мас. % Остальное,
при этом величина отношения содержания циркония к содержанию скандия должна быть от 0,9 до 1,1, а величина отношения содержания железа к содержанию кремния должна быть равна или больше единицы.
Отличием предлагаемого сплава является также то, что соотношение между содержанием циркония и скандия у него близко к единице, а соотношение между содержанием железа и неизбежной примеси кремния должно быть не менее единицы. Кроме того, предлагаемый сплав имеет более низкое содержание скандия.
Технический результат - повышение прочности и пластичности, что позволяет снизить массу конструкции и повысить ее надежность, а также снижение стоимости сплава, что позволит снизить стоимость элементов конструкции, изготавливаемой из предлагаемого сплава, и конструкции в целом.
При предлагаемом содержании и соотношении компонентов в процессе кристаллизации слитка сплава предлагаемого состава образуется пересыщенный твердый раствор основных легирующих компонентов (Mg, Mn, Zr, Sc) в алюминии. При последующих неизбежных технологических нагревах слитка происходит распад пересыщенного твердого раствора, при этом продуктами распада являются дисперсные наноразмерные частицы фазы Al3(Sc,Zr), оказывающие сильное упрочняющее действие как непосредственно, так и за счет формирования в деформированном полуфабрикате нерекристаллизованной (полигонизованной) структуры. При предлагаемом соотношении между содержанием скандия и циркония сплав максимально склонен к пересыщению твердого раствора этими элементами, что обеспечивает максимальное упрочнение при последующем распаде твердого раствора. Основная часть магния и марганца остается в матрице сплава, обеспечивая твердорастворное упрочнение. Титан входит в состав упрочняющей фазы Al3(Sc,Zr), растворяясь в ней и способствуя тем самым повышению прочности сплава. При предлагаемом содержании Sc и Zr в сплаве и предлагаемом соотношении между содержанием этих элементов образовавшаяся при распаде твердого раствора фаза Al3(Sc,Zr) обладает высокой термической стабильностью, что позволяет повысить температуру технологических нагревов и предотвратить возможное разупрочнение материала вследствие коагуляции продуктов распада. Добавка железа в сплав формирует частицы фазы Al(Fe,Mn) кристаллизационного происхождения, способствующие упрочнению сплава. Микродобавка бериллия предохраняет плавку от окисления и выгорания магния, что также способствует упрочнению сплава. При предлагаемом содержании Sc и Zr в сплаве и предлагаемом соотношении между содержанием этих компонентов снижается вероятность образования грубых первичных интерметаллидов Al3(Sc,Zr), что способствует повышению пластичности сплава. Повышению пластичности сплава способствует также ограничение содержания неизбежных примесей кремния, цинка и меди. Предлагаемое соотношение между содержанием железа и кремния способствует улучшению литейных свойств сплава. Снижение содержания дорогостоящего скандия в предлагаемом сплаве и его частичная замена цирконием, стоимость которого на порядок ниже стоимости скандия, позволяет снизить стоимость предлагаемого сплава и изготавливаемых из него деформированных полуфабрикатов.
Пример
Получили предлагаемый сплав из шихты, состоящей из алюминия А7, магния Мг90 и двойных лигатур алюминий-марганец, алюминий-цирконий, алюминий-бериллий, алюминий-скандий, алюминий-титан и алюминий-железо. Сплав готовили в электрической тигельной печи и отливали плоские слитки размером 16×160×200 мм. Химический состав сплава приведен в таблице 1.
Слитки гомогенизировали, затем механически обрабатывали до толщины 14 мм, после чего нагревали до 400°С и прокатывали вгорячую до толщины 6 мм, затем при 100°С - до толщины 2,8 мм. Полученные листы толщиной 2,8 мм отжигали при 320°С в течение 1 ч. Отожженные листы испытывали при комнатной температуре с определением предела прочности σВ и относительного удлинения δ на стандартных плоских образцах с шириной рабочей части 10 мм (ГОСТ 11701-84), вырезанных в долевом направлении. Также проводили испытания изготовленных тем же способом листов из сплава-прототипа, содержащего, мас. %: магний 5,8, марганец 0,41, цирконий 0,13, бериллий 0,001, скандий 0,19, титан 0,04, алюминий - остальное. Результаты испытаний листов приведены в таблице 2.
Figure 00000001
Figure 00000002
Таким образом, предлагаемый сплав имеет примерно на 3% более высокий предел прочности и примерно в 1,3 раза более высокое относительное удлинение, что позволит примерно на 3% снизить массу конструкции и соответственно повысить характеристики весовой отдачи, а также позволит повысить надежность конструкций, изготовленных из тонкого листа, например, топливных баков, что крайне важно для космической техники. Кроме того, за счет того, что предлагаемый сплав содержит в среднем на 48% меньше дорогостоящего скандия, его стоимость может быть уменьшена соответственно.

Claims (5)

  1. Деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, марганец, цирконий, бериллий, скандий, титан, алюминий и неизбежные примеси отличающийся тем, что он дополнительно содержит железо при следующем соотношении компонентов, мас. %:
  2. магний 5,3-6,3 марганец 0,3-0,6 цирконий 0,11-0,16 бериллий 0,0001-0,005 скандий 0,11-0,16 титан 0,01-0,03 железо 0,06-0,18 алюминий и неизбежные примеси остальное,
  3. в том числе
  4. кремний не более 0,1 цинк не более 0,06 медь не более 0,06,
  5. при их суммарном содержании не более 0,18, при этом отношение содержания циркония к содержанию скандия составляет от 0,9 до 1,1, а отношение содержания железа к содержанию кремния равно или больше единицы.
RU2016122485A 2016-06-07 2016-06-07 Деформируемый термически неупрочняемый сплав на основе алюминия RU2639903C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016122485A RU2639903C2 (ru) 2016-06-07 2016-06-07 Деформируемый термически неупрочняемый сплав на основе алюминия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016122485A RU2639903C2 (ru) 2016-06-07 2016-06-07 Деформируемый термически неупрочняемый сплав на основе алюминия

Publications (2)

Publication Number Publication Date
RU2016122485A RU2016122485A (ru) 2017-12-12
RU2639903C2 true RU2639903C2 (ru) 2017-12-25

Family

ID=60718393

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016122485A RU2639903C2 (ru) 2016-06-07 2016-06-07 Деформируемый термически неупрочняемый сплав на основе алюминия

Country Status (1)

Country Link
RU (1) RU2639903C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708028C1 (ru) * 2018-07-05 2019-12-04 Открытое акционерное общество "Всероссийский институт лёгких сплавов" (ОАО "ВИЛС") Конструкционный деформируемый термически неупрочняемый сплав на основе алюминия
RU2800435C1 (ru) * 2022-12-02 2023-07-21 Общество с ограниченной ответственностью "Институт легких материалов и технологий" Сплав на основе алюминия

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0158769A1 (en) * 1984-02-29 1985-10-23 Allied Corporation Low density aluminum alloys
RU2184165C2 (ru) * 2000-09-14 2002-06-27 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Сплав на основе алюминия и изделие, выполненное из этого сплава
RU2233345C1 (ru) * 2003-01-13 2004-07-27 Открытое акционерное общество "Всероссийский институт легких сплавов" Конструкционный деформируемый термически неупрочняемый сплав на основе алюминия
EP1413636B9 (en) * 2001-07-25 2009-10-21 Showa Denko K.K. Aluminum alloy excellent in machinability and aluminum alloy material and method for production thereof
RU2513492C1 (ru) * 2013-02-21 2014-04-20 Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") Деформируемый термически неупрочняемый сплав на основе алюминия

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0158769A1 (en) * 1984-02-29 1985-10-23 Allied Corporation Low density aluminum alloys
RU2184165C2 (ru) * 2000-09-14 2002-06-27 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Сплав на основе алюминия и изделие, выполненное из этого сплава
EP1413636B9 (en) * 2001-07-25 2009-10-21 Showa Denko K.K. Aluminum alloy excellent in machinability and aluminum alloy material and method for production thereof
RU2233345C1 (ru) * 2003-01-13 2004-07-27 Открытое акционерное общество "Всероссийский институт легких сплавов" Конструкционный деформируемый термически неупрочняемый сплав на основе алюминия
RU2513492C1 (ru) * 2013-02-21 2014-04-20 Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") Деформируемый термически неупрочняемый сплав на основе алюминия

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708028C1 (ru) * 2018-07-05 2019-12-04 Открытое акционерное общество "Всероссийский институт лёгких сплавов" (ОАО "ВИЛС") Конструкционный деформируемый термически неупрочняемый сплав на основе алюминия
RU2800435C1 (ru) * 2022-12-02 2023-07-21 Общество с ограниченной ответственностью "Институт легких материалов и технологий" Сплав на основе алюминия

Also Published As

Publication number Publication date
RU2016122485A (ru) 2017-12-12

Similar Documents

Publication Publication Date Title
RU2683399C1 (ru) Сплав на основе алюминия
RU2394113C1 (ru) Высокопрочный деформируемый сплав на основе алюминия и изделие из него
US20080000561A1 (en) Cast aluminum alloy excellent in relaxation resistance property and method of heat-treating the same
US10202672B2 (en) Magnesium casting alloy and method of manufacturing same
JP2018518594A (ja) 高温用途のためのβチタン合金シート
US20220325387A1 (en) Aluminum-based alloy
US11898232B2 (en) High-strength alloy based on aluminium and method for producing articles therefrom
RU2639903C2 (ru) Деформируемый термически неупрочняемый сплав на основе алюминия
RU2327758C2 (ru) Сплав на основе алюминия и изделия из него
RU2623932C1 (ru) Деформируемый термически неупрочняемый сплав на основе алюминия
JP2013053361A (ja) 耐熱強度に優れた飛翔体用アルミニウム合金
RU2716568C1 (ru) Деформируемый свариваемый алюминиево-кальциевый сплав
RU2659546C1 (ru) Термостойкий сплав на основе алюминия
RU2743079C1 (ru) Деформируемый алюминиевый сплав на основе системы Al-Mg-Sc-Zr с добавками Er и Yb (варианты)
EP3192883B1 (en) Ai alloy containing cu and c and its manufacturing method
JPH08144003A (ja) 耐熱性に優れた高強度アルミニウム合金
RU2749073C1 (ru) Жаропрочные литейные и деформируемые алюминиевые сплавы на основе систем Al-Cu-Y и Al-Cu-Er (варианты)
RU2699422C1 (ru) Деформируемый алюминиево-кальциевый сплав
RU2741874C1 (ru) Литейный алюминиево-кальциевый сплав на основе вторичного сырья
RU2599590C1 (ru) Конструкционный деформируемый термически неупрочняемый сплав на основе алюминия
KR100904503B1 (ko) 가공용 고강도 알루미늄 합금
RU2672977C1 (ru) АЛЮМИНИЕВЫЙ СПЛАВ СИСТЕМЫ Al-Mg-Si
JP2014196525A (ja) 耐熱マグネシウム合金
US3157496A (en) Magnesium base alloy containing small amounts of rare earth metal
JP5522692B2 (ja) 高強度銅合金鍛造材